DRIVING AND LISTENING TO X-PLANE

This document will tell you how to get data from or send data to X-Plane!
Use this data for whatever purposes you like, including running custom
cockpits, motion platforms, or anything else you can think of.

| made X-Plane to be used, so you should use these messages to drive it,
or listen to it, in any way you can imagine, without restriction.

This document shows how to send data to and from X-Plane by UDP
messages over ethernet cable or WIFI,

but you can also Google “plugins for X-Plane” to learn how to write a plugin
that actually RUNS INSIDE X-PLANE ITSELF,

giving much FASTER control of MORE X-Plane variables... but you have
to learn how to write a plugin to do that.

So PLUGINS are the way to read and write lots of stuff to and from
X-Plane, fast.

BUT, there is SOME stuff you can do WITHOUT plugins, by writing your
OWN app to simply send and receive data by UDP over ethernet or WIFI!
Cool!

With the UDP messages described in this document, you don’t have to
learn plugins if you already know how to send and receive UDP messages
from your own App.

NOTES

NOTE: X-Plane always receives on port 49000.
NOTE: Any strings that you send should be null-terminated!
NOTE: GO TO THE SETTINGS MENU, OPERATIONS AND WARNINGS

SCREEN, AND TURN ON THE “dump net data to log.txt” button to have
X-Plane dump log data to the file error.out.

This will slow down the sim a little, but you can leave it on for a little while
as you get started, so that if your data transfer does NOT work,

you can quit X-Plane, open the error.out file with a text editor, and see what
error messages X-Plane is giving you based on the data you are sending
in!

GET STARTED

OK let’s get the first two sections out of the way since they are the only two
things that anyone ever asks me for:

Driving X-Plane as a visual system for your own flight model, or using
X-Plane’s flight model to drive your own visual system.

JUST LET ME GET OUTPUT FROM X-PLANE TO DRIVE MY VISUAL OR
MAP: RPOS

Now: A UDP output from X-Plane to drive you own visuals or moving map!
Send the following data to X-Plane’s IP address by UDP into port 49,000:

The 5 chars “RPOS” (four chars plus a NULL at the end!) followed by a
STRING (also null-terminated of course!) that lists the number of positions
per second that you want X-Plane to send right back to you

to drive your visual system.

So send “RPOS_60_", where the _is a null, to have X-Plane send you it's
position 60 times per second.

NOTE: X-Plane will send the message right back to the IP address and port
number you sent the RPOS command FROM!

This is in the settings menu, internet settings screen, right-most tab for data
output.

And here is the data that will come to you, with no annoying
struct-alignment issues: The data is all perfectly tightly packed with no
spacing.

the four chars RPOS and a NULL.

double dat lon longitude of the aircraft in X-Plane of
course, 1in degrees

double dat lat latitude

double dat ele elevation above sea level in meters
float y agl mtr elevation above the terrain in meters

float veh the loc pitch, degrees
float veh psi loc true heading, in degrees
float veh phi loc roll, in degrees

float vx wrl speed in the x, EAST, direction, in
meters per second

float vy wrl speed in the y, UP, direction, in meters
per second

float vz wrl speed in the z, SOUTH, direction, in
meters per second

float Prad roll rate in radians per second
float Qrad pitch rate in radians per second
float Rrad yah rate in radians per second

So, this is very simple, and will let you drive your moving maps and
external visuals, which is the most commonly used output from X-Plane!

JUST LET ME GET THE WEATHER-RADAR FROM X-PLANE: RADR

Now: A UDP output from X-Plane to drive you own weather radar display...
perhaps for your own moving map!

Send the following data to X-Plane’s IP address by UDP into port 49,000:

The 5 chars “RADR” (four chars plus a NULL at the end!) followed by a
STRING (also null-terminated of course!) that lists the number of radar
points per frame that you want X-Plane to send right back to you

to drive your visual system.

So send “RADR_10_", where the _is a null, to have X-Plane send you 10
radar data points per frame.

NOTE: X-Plane will send the message right back to the IP address and port
number you sent the RADR command FROM!

This is in the settings menu, internet settings screen, right-most tab for data
output.

And here is the data that will come to you, with no annoying
struct-alignment issues: The data is all perfectly tightly packed with no
spacing.

the four chars RADR and a NULL.

float lon longitude of the radar point
float lat latitude of course

float storm level 0 100 precip level, 0 to 100

float storm height meters the storm tops in meters above
sea level

So, this is very simple, and will let you drive your moving maps and
external visuals, which is the most commonly used output from X-Plane!

JUST LET ME GET REAL-TIME FLIR-IMAGERY FROM X-PLANE: FLIR

Send the following data to X-Plane’s IP address by UDP into port 49,000:

The 5 chars “FLIR” (four chars plus a NULL at the end!) followed by a
STRING (also null-terminated of course!) that lists the number of FLIR
frames per second that you want X-Plane to send right back to you.

So send “FLIR_10_”", where the _is a null, to have X-Plane send you 10
FLIR images per second.

See the document: “Getting X-Plane real-time FLIR.rtf” for full code on how
to extract the FLIR images that will be sent to you.

JUST LET ME USE MY FLIGHT MODEL TO DRIVE X-PLANE AS A
VISUAL DISPLAY: VEHX

OK YOU HAVE A GREAT FLIGHT MODEL BUT A BAD VISUAL SYSTEM,
S0 now you want to drive X-Plane as a visual system!

OR, you want to drive ALL the airplanes in X-Plane all about the sky as you
like.

OK! Then send the following data to X-Plane’s IP address by UDP into port
49,000:

The 5 chars “VEHX” (four chars plus a NULL at the end!) followed by the
following data, with no annoying spaces in between the data due to struct
alignment at all.

This is just perfectly-packed data:

int p The index of the airplane you want
to control. use 0 for the main airplane that you fly to drive
the visuals.

double dat lat latitude, in degrees

double dat lon longitude, 1in degrees

double dat ele elevation above sea level, 1n
meters

float veh psi true heading, degrees true

float veh the pitch, degrees

float veh phi roll, degrees

OTHER UDP MESSAGES TO X-PLANE

So those are plugins (which let you do anything) and and the VEHX,
RPOS, and RADR messages to let you drive X-Plane as a visual system,
or use X-Plane to drive YOUR visual system.

Now, let’s go over various OTHER messages you can send to X-Plane to
do various OTHER stuff!

Below, you will see some variable types that are defined internally to
X-Plane, and here they are:

XCHR (character, in local byte-order for the machine you are on)

XINT (4-byte int, in local byte-order for the machine you are on)

XFLT (4-byte ints and floats, in local byte-order for the machine you are on)
XDOB (double-precision float, in local byte-order for the machine you are
on)

You may notice that we sometimes pass around STRINGS TO
REPRESENT NUMBERS, like the null-termed string "123" to represent the
number 123.

This is simply to avoid byte-order conversion head-aches.

Now you need to know what the format is to send messages to X-Plane by
UDP!
All of the UDP messages have the same format, which is:

5-character MESSAGE PROLOGUE (to indicate the type of message)
and then a

DATA INPUT STRUCTURE (containing the message data that you want to
send or receive)

So what is the 5-char message prologue? Easy!

The first 4 chars are the message type,
the 5th char is a byte of value zero, to null-term the label,
and after that comes the data to send!

So, to send a UDP message to X-Plane, just send:
-the 4-letter label

-a byte of value ‘0’

-the message data you want to send

NOTE ON STRUCTS: All structs are tightly packed, no extra spacing.

If you want diagnostics on what X-Plane is getting or sending, run X-Plane,
go to the SETTINGS menu, OPERATIONS AND WARNINGS screen,

turn on the DUMP NET DATA TO LOG.TXT, and then send your
messages.

Then exit X-Plane and open the log.txt file to see what size structs X-Plane
expected, versus what you sent.

THE MESSAGES YOU CAN SEND

So now you see how to send messages to X-Plane... your final question is:
What are the messages | can send?

Well, following are various DATA STRUCTURES that you can send (right
after the 5-char MESSAGE PROLOGUE, each being 4 chars (plus a zero
byte) as mentioned above):

LOAD AN AIRCRAFT: ACEN

const xint net_strDIM=150; // must be short enough to send over the net, long
enough to hold a full ACF path from the x-system folder

struct acfn struct
{
xint m_acfn_p;
xchr m_acfn_path_rel[net_strDIM];
xchr pad[2];
xint m_acfn_live_ind;

b

Use this to load an airplane.

Just enter which plane to load as 'p', and the path of the plane as the path.
Send this in and X-Plane will load this plane. Send in 1->19 to load the
other planes!

INIT THE AIRPLANE AT SOME LOCATION: PREL

const xint idDIM=8; // used for navaids and airports both, so not in the navt or airp
classes

struct PREL struct
{

init_flt_enum type_start;

xint p_idx;

xchr apt_id[idDIM];
xint apt_rwy_idx;

xint apt_rwy_dir;

xdob dob_lat_deg;

xdob dob_lon_deg;
xdob dob_ele_mtr;
xdob dob_psi_tru;

xdob dob_spd_msc;

b

Use this to set the airplane at some new location.
The TYPE START enums are:

loc repeat last 5 // used by ATC and reset-flt
command

loc specify 1lle 6 // used by maps and the like

loc _general area 7 // used to auto-load new airplanes
when the number of airplanes is increased

loc nearest apt 8 // used when we are just loading a

new plane, not wanting to change the location in any way,
but still starting in a proper manner for the new airplane
loc_snap load 9 // for when we are getting
snapshots from movies and the like, so do not want to reset
the flt-path or move the plane!

loc ram 10 // Ramp start

loc tak 11 // Takeoff on runway
loc vfr 12 // VFR app to runway
loc ifr 13 // IFR app to runway

loc grs 14 // Grass strip

loc drt 15 // Dirty strip

loc grv 16 // Gravel strip

loc_wat 17 // Seaplane start

loc pad 18 // Helipad start

loc _cat 19 // Carrier cat shot

loc_tow 20 // Glider - Tow Plane

loc win 21 // Glider - Winch

loc frm 22 // Formation flying

loc Are 23 // Refuel - Boom

loc_ Nre 24 // Refuel - Basket

loc drp 25 // B52 drop

loc pig 26 // Piggy back with shuttle on top
loc car 27 // Aircraft carrier approach
loc fri 28 // Frigate approach

loc rig 29 // Small oil rig approach

loc pla 30 // Large oil platform approach
loc fir 31 // Forest fire approach

loc SOl 32 // Shuttle stuff

loc SO2 33 . // "

loc SO3 4 // "

loc S04 3 // "

loc shuttle glide 36 // we don't access this one except
by dropping the shuttle when it is in piggyback

| would use the “1oc specify 11e” start type to simply set the lat, lon,
and elevation as you like.
You can leave the airport info set to ZERO in that case.

OK FINE LOAD AN AIRCRAFT>>>AND<<< INIT THE AIRPLANE AT
SOME LOCATION! ACPR

Send in “ACPR” plus a NULL plus the TWO structs mentioned above!

OK NOW LOAD or SAVE A SITUATION OR MOVIE!

Send in “SIMQO” plus a NULL plus the struct mentioned below!

enum
{
SIMO save sit=0,
SIMO load sit=1,
SIMO save mov=2,
SIMO load mov=3
bi

struct SIMO struct // situation or
movie to load or save... kind of nice and requested
{
public:
SIMO struct () {memset (this, 0,sizeof (*this));}
~SIMO struct () {}

xint SIMO_type; // any of the SIMO_xxx enums listed above
xchr SIMO_path[net_strDIM];
xchr pad[2];

b

RUN A COMMAND: CMND

DATA INPUT STRUCTURE is a string

The data part of this message is simply the command that you want
X-Plane to initiate!

Easy!

To see the (plethora) of X-Plane commands, run X-Plane and go to the
Settings menu, Joystick and Equipment screen, Buttons:Advanced tab.
The commands are the group name you see in the center of the screen,

PLUS command string in the right side, all run together.

So, for example, the first command in the sim is: “hone/none”.
OK that was a boring one.

But there are more! Lots more!

TYPICAL MESSAGE TO GET FLAPS ONE NOTCH UP WILL LOOK LIKE

CMNDO+sim/flight_controls/flaps_up

SEND ME ALL THE DATAREFS | WANT: RREF

So this one is cool: Send in the 5 chars RREF (null-terminated!) plus this
struct:

struct dref struct in

{
xint dref_freq;
xint dref_sender_index;// the index the customer is using to define this dataref
xchr dref _string[400];

}i

Where dref_freq IS ACTUALLY THE NUMBER OF TIMES PER SECOND
YOU WANT X-PLANE TO SEND THIS DATA!

Where dref_en is the integer code you want X-Plane to send back with the
dataref value so you can tell WHICH dataref X-Plane is giving you! (since
you are likely to ask for MANY different datarefs!)

Where dref_string is the dataref string that you want X-Plane to send to
you!

And, if the dataref is to an ARRAY of values (like engine thrust, since there
can be 8 engines), just add [xxx] to the end, where “xxx” is the array index
you want X-Plane to send!

The [and] should simply surround the number to indicate that the number
is the index you want.

So, send in “sim/flightmodel/engine/POINT _thrust[1] “to have X-Plane send
the second engine, for example (since we start at 0!)

NOTE: You can send at most about 148 requests at one go (that is, without
X-Plane advancing one frame in between). If you are requesting more than
about 140 data refs, it is best to request them in batches of 100, and wait
100 milliseconds before requesting the next batch.

X-Plane will send the message right back to the IP address and port
number you sent the RREF command from!
You will get:

struct dref struct out
{
xint dref_sender_index ;
xflt dref_flt_value ;
I

Where dref_en is the integer code you sent in for this dataref in the struct
above.

Where dref _flt is the dataref value, in machine-native floating-point value,
even for ints!

X-Plane will send as many of these structs right behind one another as
there are dataref requests pending at any given time for one receiver IP.
This means, if more than one dataref request times out the same time, you
get RREF+0+(dref_struct_out)+(dref struct_out)+(dref struct out)+.... as
one UDP packet.

NOTE: X-Plane will send at most 183 dref_struct_outs at one go, because
that fits into a 1500 byte MTU. After 183 structs send, X-Plane will send a
new packet, starting again with the RREF header.

So, of course, you can send in all the RREF messages you want, to get all
the dataref values back that you want!
Easy!

Send in a “dref_freq” of 0 to stop having X-Pane send the dataref values.

SET A DATAREF TO A VALUE: DREF

const xint strDIM=500; // must be long enough for ATIS! we must not use in Pascal str

above 255!

struct dref struct
{

xflt var;

xchr dref _path[strDIM];
} i

Use this to set ANY data-ref by UDP! With this power, you can send in any
floating-point value to any data-ref in the entire sim!

Just look up the datarefs at http://www.xsquawkbox.net/.

Easy!

IMPORTANT: NULL TERMINATION MEANS THE NULL CHARACTER
MUST BE PLACED AT THE END OF dref_path THEN SHOULD BE
FILLED WITH BLANK

SO YOUR TYPICAL MESSAGE SHOULD LOOK LIKE THIS

DREFO+(4byte byte value)+dref path+0+spaces to complete the whole
message to 509 bytes

AN EXAMPLE TO TURN ON AN ANTI-ICE SWITCH WOULD BE

DREFO+(4byte byte value of 1)+
sim/cockpit/switches/anti_ice_surf_heat_left+0+spaces to complete to 509
bytes

DO NOT ADD ANY + SIGNS. THIS IS JUST TO SHOW THE PARTS OF
THE MESSAGE TO BE ADDED AS ONE SINGLE BLOCK

REMEMBER: You can go to the SETTINGS menu, OPERATIONS AND
WARNING window, to turn on a diagnostics option that will output what
data X-Plane thinks it is getting from you to a log file!

Turn this on during development to see what X-Plane THINKS it is getting
from you!

SET A DATA OUTPUT TO A VALUE: DATA

Remember how you can output data from the Data Output Screen?

You can also SET data as well with the DATA message!

You just send in the variables that you want to SET!

(Now, you can NOT set ALL the variables! Mach number, for example, is
determined by the speed of the plane... so you cannot change that, for
example).

But, to enter radios or control deflections by UDP, simply send the DATA
message described below TO X-Plane by UDP, and X-Plane will use those
messages for input and control of the sim! You may send joystick
deflections to fly the plane with your own hardware, or send in any number
of other variables selectable in the data output screen... whatever can
come out, you can send right back in with an identical message but the
values of the number changed! Easy! (Just realize that some messages will
be over-ridden by X-Plane!)

const xint VALUES_PER_DATA_ITEM=S;

struct data struct

{

dout_line_index_t index ; // which index
to send into the list of choices in the data output screen
xflt data[VALUES_PER_DATA_ITEM] ; // the 8

values that can be sent for each index

Y

SEND A -999 FOR ANY VARIABLE IN THE SELECTION LIST THAT YOU
JUST WANT TO LEAVE ALONE, OR RETURN TO DEFAULT CONTROL
IN THE SIMULATOR RATHER THAN UDP OVER-RIDE.

So, to send in a DATA message to control some value in X-Plane, send in:
“‘DATA” (4 chars)

0 (1 char of val 0)

data_struct (a filled-in data struct as per above, with struct alignment 4)

Do this, and you should be able to control some of the variables in X-Plane
by UDP!

SELECT OR DE-SELECT DATA OUTPUT TO NOT OR COCKPIT
DISLPAY: DSEL/USEL/DCOC/UCOC

DATA INPUT STRUCTURE is any series of XINTs

Now, say that you are writing an add-on or something for X-Plane and you
want your motion-platform or cockpit to send in a request to X-Plane to
send a bunch of data out like this, because you are getting tired of going
into the data output screen and making selections of data to output all the
time. In that case you will SEND a packet just like the one above to
X-Plane, but the label will be "DSEL". The data will be a series of integers
indicating which data output you want! (1 for the first in the list, 2 for the
second, etc).

So "DSEL0456" would request that X-Plane send the fourth, fifth, and sixth
items in the data output screen many times per second to the IP address
listed in the Internet Settings screen. DSEL is in characters, but 4 5 6 are
YOUR MACHINE-BYTE-ORDER integers.

Use DSEL to select data to send via UDP output.

Use USEL to UN-select data to send via UDP output.

Use DCOC to select data to the COCKPIT DISPLAY rather than UDP
output.

Use UCOC to UN-select data to the COCKPIT DISPLAY rather than UDP
output.

SET UP THE INTERNET OPTIONS: ISE4

This allows you to set up internet options for X-Plane without touching it.
This is useful if you have a simulator with many displays, and do not want
to manually set the IP options for each copy of X-Plane.

Simply send this structure:

struct ISE4_Struct // SET AN IP OUTPUT
v4

xint index;

xchr snd_ip_str[16]; // IP's we are sending to, in English

xchr snd_pt_str[8]; // ports are easier to work with in STRINGS, and
make this 8 bytes not 6 to avoid byte-spacing issues in th struct.. 8 bytes really does fill
the space

xint snd_use_ip; // use various IP's

I
And following are a list of the enums for X-Plane 11.00:

1f (input<=18)sel=ip mplayer 00 +input
multiplayer!
else 1f (input<=38)sel=ip exvis 00 +input-19
external visuals!
else 1f (input==39)sel=ip master 1is exvis
master machine, this is an external visuall!
else if (input==42)sel=ip master is IOS
master machine, this is an IOS
else 1if (input==62)sel=ip IOS 1is master
IOS, this is master machine!
else if (input==64)sel=ip DOUT uil set
data output target
else if (input==71)sel=ip Xavi 1
Xavion 1
else 1if (input==72)sel=ip Xavi 2
Xavion 2
else if (input==73)sel=ip Xavi 3
Xavion 3
else if (input==74)sel=1ip Xavi 4
Xavion 4
else if (input==75)sel=ip fore ip addy
Foreflight, one IP addy
else 1if (input==76)sel=ip fore broadcast
Foreflight, broadcast
else 1f (input==77)sel=ip control pad
X-Plane Control pad for IOS

//
//
//
//
//
//
//
//
//
//
//
//
//

SET UP THE INTERNET OPTIONS: ISE6

This allows you to set up internet options for X-Plane without touching it.
This is useful if you have a simulator with many displays, and do not want
to manually set the IP options for each copy of X-Plane.

Simply send this structure:

struct ISE6 struct // SET AN IP OUTPUT v6
{

xint index;

xchr snd_ip_str[65]; // IP's we are sending to, in English
sized to match Windows

xchr snd_pt_str[6]; // ports are easier to work with in
STRINGS!

xchr pad1[1];

xint snd_use_ip; // use various IP's

I
Same index enums as the ASE4 message above!

PLAY A SOUND: SOUN

const xint strDIM=500; // must be long enough for ATIS! we must not use in Pascal str
above 255!

struct soun struct // play any sound
{

xflt freq, vol;

xchr soun_path[strDIM];
I

Use this to simply play a WAV-file sound. Enter the path of the WAV file in
the struct. The freq and volume scale 0.0 to 1.0. Easy!

PLAY A LOOPING SOUND: LSND and SSND

const xint strDIM=500; // must be long enough for ATIS! we must not use in Pascal str
above 255!

struct loop struct
{

xint index;

xflt freq, vol;

xchr soun_path[strDIM];
} i

Use this to simply play a WAV-file sound THAT LOOPS, with index O to 4
(so you can have 5 going at once)
LSND starts it, SSND stops it.

LOAD AN OBJECT: OBJN

const xint strDIM=500; // must be long enough for ATIS! we must not use in Pascal str
above 255!

struct objN struct // object name: draw any object in the
world in the sim
{
xint index;
xchr path_rel[strDIM];
I

Just like the airplane struct, but with any OBJ7 object (see the San
Bernardino "KSBD_example.obj" sample object in the Custom Scenery
folder for an example of an OBJ7 object.

With this message, simply send in the path of any object that you have on
the drive and you want X-Plane to display! The location is controlled with
the struct below.

PLACE AN OBJECT: OBJL

struct objL struct // object location: draw any object in
the world in the sim
{

xint index;

xchr pad1[4];

xdob lat_lon_ele[3];

xflt psi_the_phi[3];

xint on_ground; // is this object on the ground? if so, simply enter 0
for the elevation, x-plane will put it on the ground
xflt smoke_size; // is this object smoking? if so, simply indicate the size of

the smoke puffs here
xchr pad2[4];
I

Enter the location of the object you loaded here. It can be a tank driving
around on the ground, a missile firing, or anything else you can imagine.

MAKE AN ALERT MESSAGE IN X-PLANE: ALRT

struct ALRT struct // MAKE AN ALERT
MESSAGE, used between copies of X-Plane
{
public:
ALRT struct () {memset (this, 0,sizeocf (*this));}
~ALRT struct() {}

xchr m_m1[240]; // needs to be multiple of 8 for the align to work out perfect for
the copy?

xchr m_m2[240]; // needs to be long enough to hold the strings!

xchr m_m3[240];

xchr m_m4[240];
} i

FAIL A SYSTEM: FAIL

Fail a system, where the data will indicate which system to fail. The system
to fail is sent as an ASCI STRING (ie: "145"), where the O is the first failure
listed in the failure window in X-Plane (currently the vacuum system) and
incremented by 1 from there.

RECOVER A SYSTEM: RECO

Recover a system, where the data will be an integer indicating which
system to recover. The system to recover is sent as an ASCI STRING (ie:
"145"), where the 0 is the first failure listed in the failure window in X-Plane
(currently the vacuum system) and incremented by 1 from there.

FAIL A NAVAID: NFAL

Fail a NAVAID, where the data will be the ID of which NAVAID to falil.

RECOVER A NAVAID: NREC

Recover a NAVAID, where the data will be the ID of which NAVAID to
Recover.

RECOVER ALL FAILED SYSTEMS: RESE

Just send RESE followed by a NULL of course to recover ALL failed
system.

SHUT IT ALL DOWN. GO HOME. WE'RE DONE.

QUIT (no message needed after this label. we’re done here)
SHUT (no message needed after this label. we’re done here)

DISCOVER X-PLANE BY A BEACON

In order to send and receive UDP messages to talk to X-Plane, you must
know the IP-address of that machine within your network. You can either
enter the IP-address manually, or you can use the BEACON that each
instance of X-Plane running in your network broadcasts to announce its
presence.

The BEACON message uses a mechanism called multicast, which is a
special IP-address range that you can subscribe to in order to get
announcements from X-Plane. This works both when X-Plane is running on
the same local machine, or on a machine in the same local area network.

In order to subscribe to X-Plane's BEACON, you must join the multicast
group 239.255.1.1 and listen on port 49707. While this looks like an
IP-address that is not in your network, it is really a group identifier. Consult
your operating system's documentation on how to join a multicast group
with a UDP socket. You will want to read the documentation of the
setsockopt() function and the IP_ADD_ MEMBERSHIP parameter.

When you configure a socket to receive X-Plane’s multicast messages, you
also want to use the SO_REUSEADDR (SO_REUSEPORT on Mac)
option. This is important so that multiple applications on the same machine
can all receive the BEACON from X-Plane. If you don’t use

SO_REUSEADDR (SO_REUSEPORT on Mac) only one application per
machine will be able to detect X-Plane, and others will get a failure when
they try to bind the socket.

However, be careful that you normally do NOT want to use any of the
REUSE* options for the sockets you receive unicast traffic from X-Plane
on. Unless you know exactly what you are doing, DO ONLY set
SO_REUSEPORT or SO_REUSEADDR for receiving X-Plane’s BEACON
on port 49707.

Once you are receiving the BEACON messages from X-Plane, the struct
must be interpreted as follows:

5-character MESSAGE PROLOGUE which indicates the type of the
following struct as
BECN\O

struct becn struct

{

uchar beacon major version; // 1 at the time of
X-Plane 10.40

uchar beacon minor version; // 1 at the time of
X-Plane 10.40

xint application host id; // 1 for X-Plane, 2 for
PlaneMaker

xint version number; // 104103 for X-Plane
10.41r3

uint role; // 1 for master, 2 for
extern visual, 3 for IOS

ushort port; // port number X-Plane
is listening on, 49000 by default

xchr computer name computer name[500]; // the

hostname of the computer, e.g. “Joe’s Macbook”

Y

Parsing this struct allows you to find any instance of X-Plane running in the
network, find out which version of X-Plane is running, see the name of the
computer and find out whether it's configured as a master or visual slave
machine, and lastly find out if X-Plane's receive port has been changed
from the default of 49000.

You can expect the struct to be compatible within the same major version

of the BEACON. Expect structs to change when the major version
changes, so you will want to abort parsing when you discover a mismatch
of the beacon_major_version.

DATAREF READ/WRITE

If you go to the SETTINGS menu in X-Plane as selected on the upper-right
corner of the screen,

Then to the DATA OUTPUT tab,

Then to the DATAREF READ/WRITE group,

There, you can select any dataref for outputting from X-Plane, or reading
into X-Plane, to or from either a networked computer by UPD, or a
com-port, as you like.

Here is the format:

Send data to NETWORKED COMPUTER (via UDP):

This struct will be filled in and sent for each dataref selected: (enter
the IP address in the GENERAL DATA OUTPUT group right there on that
screen)

const xint strDIM=500; // must be long enough for ATIS! we must not use in Pascal str
above 255!

struct DREF struct
{

xflt var;

xchr dref _path[strDIM];
} i

Send data to A COM PORT:

A string will be built and sent to the com port, which is simply
BXXX.XXX.XXX, etc, where each xxx is the floating-point value of that dataref
in the list, in the order shown in the selection list.

For reading, it's the same thing: Have the variables selected so the values
read go into the right slots in X-Plane.

OK so there you have it!

