
Trajectory Planning for BERTHA -
a Local, Continuous Method

Julius Ziegler1, Philipp Bender1, Thao Dang2 and Christoph Stiller3

Abstract—In this paper, we present the strategy for trajectory
planning that was used on-board the vehicle that completed the
103 km of the Bertha-Benz-Memorial-Route fully autonomously.
We suggest a local, continuous method that is derived from a
variational formulation. The solution trajectory is the constrained
extremum of an objective function that is designed to express
dynamic feasibility and comfort. Static and dynamic obstacle
constraints are incorporated in the form of polygons. The
constraints are carefully designed to ensure that the solution
converges to a single, global optimum.

I. INTRODUCTION

In August 2013, the modified Mercedes-Benz S-Class
S500 INTELLIGENT DRIVE (“BERTHA”) completed the
Bertha-Benz-Memorial-Route (BBMR) fully autonomously.
The Bertha-Benz-Memorial-Route is a historic, 100 km long
route connecting the cities of Mannheim and Pforzheim, and
passing through 25 towns.

In this paper, we describe the aspects of trajectory planning
that were used for this challenge, i.e. the part of the system that
takes a sensor- and map based representation of the situation
as input, and generates a trajectory that the vehicle is supposed
to follow. To cope with moving obstacles, the trajectory is time
parametrized.

We pose the trajectory planning problem as a non linear
optimization problem with non linear inequality constraints.
The objective function is essentially quadratic. We use a
Newton type method to solve for the optimal trajectory. We
show that the Hessian of the constrained optimization problem
has a specific structure that can be exploited to improve
performance of the optimization process, both in terms of
the number of iterations required for convergence, and of
complexity required for a single iteration.

Special attention was paid to the setup of the constraint
system. Because we use a local optimization scheme that starts
from an initial guess of the trajectory, we must make sure that
the constraints are setup in such a way that the optimization
problem has no stationary points other than the global opti-
mum. To this end, the sensor information is reduced to simple
polygons, from which differentiable constraint functions are
derived. Through a decision process, the polygons are modified
in a way to eliminate stationary points that are not the global
optimum.

1J. Ziegler and P. Bender are with the FZI Research Center for Information
Technology, Dep. on Mobile Perception Systems, 76131 Karlsruhe, Germany
{ziegler|pbender}@fzi.de

2T. Dang is with Daimler AG, Research and Technology, 71063 Sindelfin-
gen, Germany thao.dang@daimler.com

3C. Stiller is with Karlsruhe Institute of Technology (KIT), Department
of Measurement and Control Systems (MRT), 76131 Karlsruhe, Germany
stiller@kit.edu

II. RELATED WORK

A large part of vehicular trajectory- and path planning
research is devoted to the solution of problems which show a
strong combinatorial characteristic. This applies to most meth-
ods which have been designed for parking and maneuvering
in narrow, unstructured spaces, where it is often necessary to
maneuver backwards and forwards. Not surprisingly, this field
is dominated by methods of combinatorial nature, i.e. a search
tree is spanned which can be either random [1] or deterministic
[2], [3], [4]. The search can be based on a graph which is
either defined implicitly with an infinite amount of nodes as
in [3], [4], or explicitly with a finite number of nodes as in
[2]. We would like to focus our review of related work on
methods which, like the work at hand, have been designed
for driving in moving traffic within an environment which
is structured by roads. Here, combinatorial aspects are often
of minor importance, while smoothness, dynamics, optimality
and the ability to treat moving obstacles become relevant.

Nevertheless, combinatorial methods have been applied to
dynamic street scenarios [5], [6]. From our own experience in
[5], we conclude that this bears some difficulties in practice.
The requirements call for augmenting the search space with
a time axis and with higher derivatives of the system state. If
high accuracy is required, the resulting discrete search space,
and with it the search time, can become prohibitively large.
Hence, in practice, accuracy is limited by the necessarily low
sampling density of the state space.

In Werling et al’s method [7], the best trajectory is selected
from a finite set. The set of candidate trajectories consists of
s-shaped swerve trajectories, which align the vehicle on a path
parallel to the road centerline after a finite time. This method
can be considered as a simplified combinatorial one, where
the graph is reduced to a star, and all paths have length 1.
This limits the generality of maneuvers that can be planned in
an anticipatory way, but drastically reduces the combinatorial
complexity. A similar strategy was used in [8].

In this work, we abandon the combinatorial approach and
resort to a continuous optimization scheme where the work
space does not have to be discretized. Hence, there is no inher-
ent inaccuracy due to the discretization limit, and the method
does not suffer from a complexity which rises exponentially
with the dimensionality of the state space.

III. METHODOLOGY

A. Preliminaries

The trajectory is planned in a global coordinate system.
Hence, a precise, video based localization is required which

2014 IEEE Intelligent Vehicles Symposium (IV)
June 8-11, 2014. Dearborn, Michigan, USA

978-1-4799-3637-3/14/$31.00 ©2014 IEEE 450

Authorized licensed use limited to: Texas A & M University - Kingsville. Downloaded on December 29,2020 at 10:08:32 UTC from IEEE Xplore.  Restrictions apply. 



Figure 1: Obstacle- and object data (bottom) with matching
video frame (top).

has been provided by [9], [10], [11]. Since the trajectory is
referenced with respect to some global coordinate system, we
can make use of rich maps that have been created offline.
For trajectory planning, the main information provided by
these map is the position of a left and a right bound, which
together specify a driving corridor. A detailed description of
the map contents and the mapping process can be found in
[12]. As soon as a trajectory is available, a feedback controller
stabilizes the vehicle along it. For this, the pose from the
localization system is fed back to minimize the lateral and
longitudinal offset towards the trajectory. The control strategy
employed has been described in [7].

Obstacle- and object data is provided by stereo vision and
radar sensors. Franke et al. give an account on BERTHAs
perception system in [13]. Stereo- and radar-data is prepro-
cessed by a data fusion- and validation stage and arrives
at trajectory planning in two supplementary representations:
Static obstacles are provided as a set of stixels [14], which
are the result of scanning the disparity image for vertical
structures. For every image column, the position of the closest
such structure is provided. Moving objects are provided as a
list of rectangular objects which also have a velocity vector
assigned. Fig. 1 shows an example of the perception system.
Static obstacles are displayed in magenta, the oncoming object
as a box in cyan blue. BERTHA is represented in white.

B. Objective function

The trajectory planner computes an optimal trajectory
x(t) = (x(t), y(t))T for the rear axle center point of the
vehicle. The tangent angle ψ(t) and the curvature κ(t) of the

trajectory are defined as

ψ(t) = arctan
ẏ(t)

ẋ(t)

κ(t) =
ẋ(t)ÿ(t)− ẏ(t)ẍ(t)

3

√

ẋ2 + ẏ2
.

The optimal trajectory is defined as the one that minimizes the
integral

J [x(t)] =

ˆ t0+T

t0

L(x, ẋ, ẍ,
...
x)dt, (1)

with
L = joffs + jvel + jacc + jjerk + jyawr.

The time t0 is the current time and T is the preview horizon,
which ideally approaches ∞. In practice, it is replaced by a
finite preview horizon which is chosen as large as computation
time allows. We now discuss the individual summands of the
integrand L. All summands contain a weighting factor woffs,
wvel etc.

joffs(x(t)) = woffs

∣

∣

∣

∣

1

2
(dleft(x(t)) + dright(x(t))

∣

∣

∣

∣

2

is the term to make the trajectory pass in the center between
the left and right bounds of the driving corridor. The functions
dleft and dright are the signed distance functions towards the
bounds of the driving corridor, the distance being positive for
all points left of the bound, and negative for all the points
to the right. We will address the concrete implementation of
these distance functions later in section III-E. The term

jvel(x(t)) = wvel |vdes(x(t)) − ẋ(t)|
2

contains the quadratic error of the velocity vector of the
trajectory compared to a reference velocity vector vdes . The
absolute value vdes of vdes is determined by the behavior
generation and corresponds to the speed-limit extracted from
the map. The direction of the velocity vector is orthogonal to
the gradient of the distance functions of the corridor, such that
the target direction is parallel to the bounds of the corridor .
It is

vdes(x) = vdes

(

0 −1
1 0

)

1

2
(∇dleft(x) +∇dright(x)).

The two terms described so far specify the desired behavior
of the trajectory: it should run in the middle of the driving
corridor and make progress along it at a specified velocity.
They act against the following smoothness terms, which are
motivated by driving dynamics an comfort. The term

jacc(x(t)) = wacc |ẍ(t)|
2

suppresses strong acceleration in the transverse and longitu-
dinal directions, and thus the forces acting on the passengers.
The jerk term

jjerk(x(t)) = wjerk |
...
x(t)|

2 (2)

451

Authorized licensed use limited to: Texas A & M University - Kingsville. Downloaded on December 29,2020 at 10:08:32 UTC from IEEE Xplore.  Restrictions apply. 



further smoothness the trajectory by dampening rapid changes
in acceleration. The suppression of acceleration and jerk alone
will not prevent rapid changes of direction that occur when
driving along the trajectory. For this purpose, we introduced
a term into the functional which attenuates high yaw rates:

jyawr(x(t)) = wyawrψ̇(t)
2. (3)

The objective functional (1) is transformed to a function by
using the method of finite differences, as we will demonstrate
now. For the sake of clarity, we will assume wjerk = 0, such
that L is no longer dependent on the third derivative of x(t).
The trajectory x(t) is approximated by N points xi = x(ti),
which are sampled at equidistant times

ti = t0 + ih, 0 ≤ i < N, (4)

with a sampling step width of h. The time derivatives of x are
approximated by differences of the sampling points,

ẋ(ti) ≈ xd =
xi+1 − xi−1

2h
, (5)

ẍ(ti) ≈ xdd =
xi−1 − 2xi + xi+1

h2
. (6)

Now, an approximation of the integral J [x(t)] can be ex-
pressed as the finite sum

Jd(x0,x1, . . . ,xN−1) =
N−2
∑

i=1

L(ti,xi,xd,xdd)h. (7)

The variational problem of minimizing (1) has now been
converted to the ordinary extremum problem of minimizing
(7), where x0,x1, . . . ,xN−1 are the free variables. We will
refer to the xi = (xi, yi)

⊺ as the trajectory support points. By
slight abuse of notation, we will occasionally refer to Jd as a
function

Jd(X) : R2N −→ R, (8)

where the argument vector X = (x0, y0, x1, y1, . . .)
⊺ has been

stacked from the single support point coordinates.
Insights from the field of linear quadratic (LQ) optimal

control [15] can be used to chose the weights woffs, wvel,
wacc and wjerk in such a way that overshoot or oscillation are
avoided in the result trajectory.

C. Constraint functions

The optimal trajectory must minimize the energy func-
tional (1), but, at the same time, obey a set of constraints.
Constraints can be separated into two classes, internal and
external constraints.

Internal constraints result from limits of the vehicle kine-
matics and dynamics. At low speeds, the curvature of the
trajectory is limited by the steering geometry of the vehicle,
so

−κmax ≤ κ(t) ≤ κmax. (9)

At higher velocity, driving dynamics usually become bound
by the friction limit of the tires. This limit can be thought of
as a circle of forces [16], and at any time,

‖ẍ(t)‖
2
≤ a2max (10)

Figure 2: Polygonal constraints for moving objects. Only a
part of the trajectory x(t) is constrained by each polygon.

must hold. Both equations (9) and (10) are implemented by
using the approximate derivatives (5), (6) at all ti, hence, we
yield 2n inequations for (9) and n for (10).

External constraints are imposed by the driving corridor
(which is taken from the map) and by obstacles and objects
(which are detected at runtime by sensors). All external
constraints are formed as polygons. For setting up a constraint
equation from a polygon p, we require a distance function
d(p,x) which gives the distance of a point x to the polygon
boundary. The distance function is signed, i.e. it is negative
for all points inside p and positive for all points outside of it.
Later in section III-E, we will demonstrate how the distance
function was implemented concretely. If objects are moving,
their position is predicted into the future and they will form
a different polygon for every discrete time interval. Fig. 2
illustrates schematically how polygons are created for moving
objects, where xpred,j is the predicted trajectory of the jth
moving object. All polygons that belong to the time interval
[ti, ti+1) are put into the set Pi. If a polygon represents a static
object, it will be in all sets Pi, 0 ≤ i < N .

To assert freedom of collision, the vehicles shape must be
considered. We decompose the vehicle shape into k circles
of radius rveh, which are laid out equidistantly along its
longitudinal axis as depicted in Fig. 3a. The reference point for
the trajectory is the rear axis center point, which is indicated
as a broken line in the figure. The rear-most circle center
is lmin behind the rear axle, the foremost is lmax in front
of it. Fig. 3b illustrates how the center points of the circles
are stretched out to cover a single, infinitesimal segment of
the trajectory, xixi+1. Fig.3c shows the approximation of the
complete maneuver area for an example trajectory. Altogether,
the maneuver area is composed from (N−1)k circles. For later
reference, we will denote the set of the circle center points as
Cmaneuver.

Further constraint inequations are now created from the sets
Pi of all constraint polygons, 0 ≤ i < N , by combining them
with all circles,

d(p,xc) ≥ rveh, p ∈ Pi,xc ∈ Cmaneuver. (11)

This creates further (N − 1)ko inequations, where o is the
number of obstacles. The overall number of constraints is M =
(N − 1)ko+ 3N .

452

Authorized licensed use limited to: Texas A & M University - Kingsville. Downloaded on December 29,2020 at 10:08:32 UTC from IEEE Xplore.  Restrictions apply. 



(a)

(b)

(c)

Figure 3: Circle decomposition of vehicle shape and maneuver
area

For convenience of notation, we rearrange the M individual
constraint inequations (9), (10), (11) such that the right hand
side becomes 0, and that the relation becomes “≥”. We will
consistently refer to the left hand sides of these M inequations
as the constraint functions fj(x0, . . . ,xN−1), 0 ≤ j < M.
Occasionally, we will refer to the vector valued constraint
function f(X) : R2N −→ R

M which is created by stacking
all fj , and by stacking the support points into a 2N -vector
X =(x0, y0, x1, y1 . . .)

⊺.

D. Building constraint polygons from sensor data

As depicted earlier, constraints are brought into trajectory
planning in the form of polygons. This section illustrates how
the polygons are generated from the raw sensor measurements.

We will use a local optimization scheme to find the optimal
trajectory. Hence, convergence to a global optimum cannot
be guaranteed per se. The objective function (7) is essentially
quadratic and thus, has one well defined stationary point which
is the local minimum. However, multiple stationary points
can be induced by the obstacle constraints. Consider Fig. 4a,
which exemplifies the problem schematically. A trajectory that
optimizes some kind of smoothness criterion is to be planned
from A to B, and the free space is constrained by three
polygons (red). The trajectories a,b,c,d are the stationary points

(a)

(b)

Figure 4: Stationary points of trajectory optimization (a)
without (b) with decision process.

of this problem. Especially interesting is trajectory b, which is
not valid, because it clearly violates two constraints. However,
locally, none of the constraint violations can be diminished
without making the other constraint violation worse. Hence, b
is a stationary point of the constrained optimization problem.
Fig. 4b shows the same situation but it has been decided prior
to optimization which obstacles are to be passed on the left
(red) and which ones on the right hand side (green). The
decision is greatly simplified by inspecting the run of the road,
which has been provided by the map-based driving corridor, cf.
sec. III-A. The left/right decision has been incorporated into
the shapes of the polygons, by extending them infinitely to
one side of the workspace. The extensions are tapered slightly
towards the side that the trajectory is supposed to pass on. Note
that the modified problem has exactly one stationary point,
which is also the global optimum. Trajectory optimization will
converge to the optimum, independent of where it has been
initialized.

To build the constraint polygons, first a decision is made on
the basis of single obstacle points. A minimum vertex graph
cut is used for this. The structure of the graph to be cut is
illustrated schematically in figures 5a and 5b. Each individual
stixel correspond to a node in the graph. The two larger nodes
represent the left and right bound of the driving corridor. Two
nodes are connected if it is geometrically infeasible to pass
between the corresponding stixels, or between the correspond-
ing stixels and the respective corridor bound, without collision.
The graph will now be cut into two sections. This is done in
a minimal way, i.e. by removing the smallest possible amount
of nodes required to separate the left and and right corridor
bounds. In Figure 5a, the cut set is empty, because the corridor

453

Authorized licensed use limited to: Texas A & M University - Kingsville. Downloaded on December 29,2020 at 10:08:32 UTC from IEEE Xplore.  Restrictions apply. 



(a) (b) (c)

Figure 5: Building constraint polygons from sensor data.

bounds were not connected initially. In figure 5b, the graph is
cut by removing one node (blue). If the cut set is not empty,
passage at this point is not possible, and a stopping maneuver
is induced by putting a stop line constraint (blue).

After the decision has been made for every single stixel,
polygons are created by enveloping the stixels inside polygonal
hulls, cf. Fig. 5c. Construction of the polygonal hulls asserts
that all single polygons are convex (non-convex polygons can
contribute to an indefinite Lagrangian). Enveloping stage is
also used to add a safety distance to the obstacles.

For moving obstacles, left-right decision and geometric
processing are different. Firstly, left-right decision is much
simpler, because the direction of motion gives a good indi-
cation of whether a vehicle is to be passed on the left or
right side. Based on their direction of motion, all vehicles are
classified as either oncoming or as potentially overtakeable
(overtakees). All oncommers are passed on the right, all
overtakees are passed on the left. As already indicated in
section III-C and Fig. 2, building constraint polygons for
moving objects involves predicting their future poses. In our
application and sensor setup, the best cue for this is the run of
the road, which we can extract from the map. For trajectory
prediction, a simple routing in the map is performed for every
moving obstacle, to obtain a set of corridors that the other
object will potentially use for traveling. A prediction is then
done under the assumption that the other vehicle maintains its
speed and its offset from the right corridor bound.

E. Distance function

For the constraint inequations (11), the signed distance to
a polygon must be determined. Since we will use a Newton-
type optimization method, it is desirable that all constraint
functions are continuously differentiable. For the EUCLIDEAN

distance to a non convex polygon, this can not be guaranteed.
In this section, we will introduce a pseudo distance that has
the desired properties. We define a single linear segment of
a polygon as the tuple G = (p1p2, t1, t2), where p1 and p2

are two adjacent corner points of the polygon, and t1,t2 are
predefined tangent vectors at the corner points. The tangent
vectors can, e.g., be chosen as the difference of neighboring
points, just like in (5). A pseudo tangent vector is now created
by interpolating the corner tangents linearly along the length
l of the segment,

tλ = λt2 + (1− λ)t1

(a)

(b)

Figure 6: Pseudo distance and pseudo gradient field.

which is the pseudo tangent vector at the point

pλ = λp2 + (1− λ)p1,

for λ ∈ [0, 1]. For projecting a point x = (x, y)⊺ onto G, we
determine λ such that the pseudo tangent is perpendicular to
to the pseudo normal vector nλ = x− pλ, thus

nλtλ = 0, (12)

compare Fig. 6a. Without loss of generality, we assume that
p1 = (0, 0)⊺ and p2 = (l, 0)⊺, as is the case in Fig. 6a. In this
case, the corner tangents can be expressed in terms of their
slopes m1 and m2 thus t1 = (1,m1)

⊺ and t2 = (1,m2)
⊺. In

this case, λ can be easily solved for,

λ = (m1y + x)/(m1 −m2)y + l.

The signed pseudo distance d to the segment is ‖nλ‖ if
y > 0 and −‖nλ‖ else. For the sake of simplicity, instead
of using the true gradient of d, we use the vectornλ

|d| as the
pseudo gradient of d. To determine the distance to a complete
polygon, we compute the distance to every linear segment in
the polygon and pick the smallest one. Fig. 6b depicts the field
of pseudo gradients (black) for an exemplary poly line (red).
The dashed blue lines are the points where the true, Euclidean,
distance to the poly line would have a discontinuous gradient.

454

Authorized licensed use limited to: Texas A & M University - Kingsville. Downloaded on December 29,2020 at 10:08:32 UTC from IEEE Xplore.  Restrictions apply. 



Figure 7: Continuous re-planning with C2 continuity.

F. Re-planning scheme

As the vehicle drives along, more and more information
becomes available through sensors. Hence, the trajectory must
be continuously re-planned to adapt to the new sensor data.
During re-planning, it is important that the trajectory is kept
smooth over the transition points, so that no steps are generated
on the steering input of the vehicle. The steering wheel angle
is related directly to the curvature, and hence the second
derivative of the trajectory. Thus, we strive for third level
parametric continuity (C2-continuity) of the trajectory.

In Fig. 7, the trajectory of the last iteration is displayed
in black. It has become available just now, at time tnow.
For the sake of clarity, we will assume that tnow and other
timestamps in this section match up with one of the times ti
of the finite trajectory support, as introduced in equation (4).
From tnow on, the vehicle will be guided by the trajectory
controller along the red part of the trajectory, until a new
trajectory becomes available. Planning a new trajectory will
take up some processing time, and we will assume that this
time is guaranteed to be less than tprocess. We must expect
that the old trajectory stays valid as control reference until
time tnow + tprocess. To guarantee continuous feed forward
control, this part of the trajectory must never be changed.
Thus, re-planning can only alter the part of the trajectory that
is displayed in green. We know that the green trajectory will
be available at latest at tnow + tprocess.

It must be asserted that the green and the red part of the
trajectory are connected smoothly, without a step in accelera-
tion. This can be achieved by binding the first three support
points of the newly planned trajectory, x(t0),x(t1),x(t2), to
constant values that are consistent with the red part of the
trajectory. These boundary points are colored blue in Fig.
7, and fixing them is actually equivalent to fixing an initial
value for x(t0), ẋ(t0) and ẍ(t0) in the original, not discretized,
variational formulation from equation (1).

During re-planning, an initial guess for local trajectory opti-
mization is generated from the result of the last optimization.

G. Constrained optimization

The problem of finding the optimal trajectory has now
been posed as the constrained optimization problem of finding
trajectory support points

argmin
x3,...,xN−1

Jd(x0, . . . ,xN−1) (13)

such that

fj(x0, . . . ,xN−1) ≥ 0, 0 ≤ j < M. (14)

Note that in (13) and (14), x0,x1,x2 are not free variables,
but bound to constant values as explained in the preceding
section.

In a solution or solution candidate X =
(x0, y0, . . . , xN−1, yN−1)

⊺ to the optimization problem,
the jth constraint is called active, if fj(X) = 0 and inactive
if fj(X) > 0.

The problem is solved by means of a sequential quadratic
programming (SQP) method [17]. This method builds on
the method of Lagrange multipliers [18] which are a vector
l =(l0, . . . , lM−1)

⊺ of M auxiliary variables, one for every
constraint. The function

L(x3, . . . ,xN−1, l0, . . . , lM−1) = Jd(x0, . . . ,xN−1) +

l⊺f(X) (15)

is called the Lagrangian of the constrained optimization prob-
lem. The Lagrange multipliers of all inactive constraints are
set to 0. Every solution to the optimization problem must be
a stationary point of L. In SQP, L is locally approximated by
a quadratic function through its Hessian and gradient, while
f is approximated by a linear function. Instead of using a
quasi-Newton method where the Hessian of the Lagrangian is
replaced by an iteratively computed approximation, we suggest
to compute the true Hessian instead. The rationale for this is
twofold and aims at runtime performance.

Firstly, the objective function Jd is actually almost
quadratic, the only non-quadratic term being that for yaw
rate, (3) (which nevertheless approaches linearity when the so-
lution approaches a parametrically smooth trajectory). Hence,
when all constraints are inactive, and neglecting the yaw
rate term, a true Newton method will find the extremum
immediately, after a single iteration. Hence, by using the true
Hessian, we expect to reduce the number of iterations required
for convergence significantly.

Secondly, in the problem at hand, the Hessian of the La-
grangian has a sparse, banded structure. This can be seen from
inspecting the single summands of Jd, which only depend
on a small neighborhood of support point coordinates. The
same applies to all constraint functions fj and consequently,
to the Lagrangian (15). This locality property translates to
a sparsity property of the Hessian of L, where only values
in a band around the diagonal are 6= 0. In the problem at
hand, the bandwidth is 7. The sparsity of the Hessian can be
exploited for performance. Firstly, only 7(N +M) entries of
the Lagrangian have to be computed in the first place, instead
of (N + M)2. Secondly, in a single iteration of SQP, the
Lagrangian forms the left hand side of a linear system of
equations that has to be solved. For a banded matrix, this
requires O(N) operations instead of O(N3). Thus, by using
the true Hessian, the cost of a single iteration of SQP can be
reduced significantly.

IV. EXPERIMENTS

In August of 2013, the proposed trajectory planner was
used on-board the BERTHA vehicle to complete the 100 km
of the Bertha-Benz-Memorial-Route in multiple sections. The

455

Authorized licensed use limited to: Texas A & M University - Kingsville. Downloaded on December 29,2020 at 10:08:32 UTC from IEEE Xplore.  Restrictions apply. 



experiment was conducted in public traffic. The amount of
support points was N = 30, sampled at a time step of h = 1

3
s,

yielding a preview horizon of T = 10s. Iteration of the
optimizer was terminated after tprocess = 0.5s, 20 iterations or
when no progress was made towards the optimum, whichever
event occurred first. Fig. 8 shows some example trajectories
computed by the method. Note that these are not tracks of the
vehicle position, but the anticipatory trajectories planned at
a single time instant. Fig. 8a shows a fast passage through
a roundabout. It gives a good impression on the dynamic
capabilities of the method. The apexes at entry, midpoint and
exit of the roundabout are clipped tightly, which minimizes
lateral accelerations. Fig. 8b, 8c and 8d show passages through
the same right turn, with obstacles placed at different positions.
The blue crosses are positions of single stixels, accumulated
over 5 frames, and the blue polygons are their polygonal
envelopes (cf. Sec. III-D). A smooth trajectory is found, even
with the little free space available. Fig. 8e shows a swerve
maneuver towards a slower, oncoming vehicle. The predicted
trajectory of the oncoming object is depicted in dark blue,
and the resulting obstacle polygons in light blue. The obstacle
polygons are time dependent, as has been previously illustrated
in Fig. 2. The circle indicates the moment where the two
vehicles encounter.

V. DISCUSSION, CONCLUSIONS AND OUTLOOK

The trajectory planner proposed here has proven very capa-
ble of tackling the various challenges encountered along the
BBMR. The essential design decisions where the following:
Careful design of a single objective function, careful arrange-
ment of polygonal constraints, and attention to detail in the
numerical optimization scheme. The resulting system is very
universal, and implements many maneuvers naturally. Without
any outside heuristics, the vehicle slows down in tight bends or
when turning, and cuts through corners smoothly. The driving
style has been described as pleasant and natural by passengers.
Nevertheless, we would like to point out some directions for
improvement.

We started from the proposition that combinatorial aspects
are of minor importance in on-road driving. However, during
the BBMR project, we learned that situations that require
simple combinatorial skills do occur in everyday driving.
Consider, e.g., the schematical Fig. 9. The road is partially
blocked by a black obstacle. We are planning a trajectory for
the red vehicle traveling from left to right. The black vehicle is
approaching from the right and will form a critical section (CS)
with the obstacle. It will block the passage from time tenter
through texit. Assume that in our local method, the trajectory
is initialized to the black curve. The positions x(tenter) and
x(texit) are highlighted by green and blue circles on the
trajectory. Two discrete classes of solutions can be identified
for this situation. Either, we will pass the CS before the black
vehicle enters it, or we wait in front of the CS until the black
vehicle exits it. The local method presented in this paper is not
guaranteed to converge in the correct solution class. It is also
likely to get trapped in an invalid state, similar to trajectory

(a)

(b)

(c)

(d)

(e)

Figure 8: Example trajectories. Traveling direction is from left
to right. Maneuver area of the vehicle in red, obstacles and
constraint polygons in blue, boundary constraints in black.

456

Authorized licensed use limited to: Texas A & M University - Kingsville. Downloaded on December 29,2020 at 10:08:32 UTC from IEEE Xplore.  Restrictions apply. 



Figure 9: A critical section.

“b” in Fig. 4a. For the BBMR challenge, this situation was
remedied by deciding ad hoc for one of the solution classes,
based on the distance and speed of the oncomer towards the
obstacle. Based on the decision, the constraint system was
altered: Either the blue part of the trajectory in Fig. 9 is
constrained to be in front of the hatched blue line, or the
green part is constrained to be behind the hatched green line.
Similar ad hoc decisions had to be implemented for merge
maneuvers. In principle, this scheme can be extended to an
optimal procedure, by enumerating the constraint systems for
all discrete solution classes and trying the local solver on all of
them. Then, the smallest cost solution is picked. This scheme
is computationally expensive, however. A future direction of
research will be a more systematic approach to detect and deal
with situations that call for such discrete decisions.

In summary, it can be said that a continuous, local method
must be complemented by a combinatorial one if is meant to
be fully universal. However, the by far largest part of everyday
driving situations does not require combinatorial reasoning at
all, and in these situations, a purely local method produces
excellent results.

REFERENCES

[1] M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” tech. rep., Computer Science Dept., Iowa State University,
1998.

[2] M. Pitvoraiko and A. Kelly, “Efficient constrained path planning via
search in state lattices,” in International Symposium on Artificial Intel-
ligence, Robotics, and Automation in Space, 2005.

[3] J. Ziegler, M. Werling, and J. Schröder, “Navigating car-like vehicles in
unstructured environment,” in Intelligent Vehicles Symposium, IEEE.

[4] J. Barraquand and J.-C. Latombe, “Nonholonomic multibody mobile
robots: Controllability and motion planning in the presence of obstacles,”
Algorithmica, vol. 10, pp. 121–155, 1993.

[5] J. Ziegler and C. Stiller, “Spatiotemporal state lattices for fast trajec-
tory planning in dynamic on-road driving scenarios,” in International
Conference on Intelligent Robots and Systems, IEEE, 2009.

[6] M. McNaughton, C. Urmson, J. M. Dolan, and J.-W. Lee, “Motion plan-
ning for autonomous driving with a conformal spatiotemporal lattice.,”
in ICRA, pp. 4889–4895, IEEE, 2011.

[7] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory
generation for dynamic street scenarios in a frenet frame,” in IEEE
International Conference on Robotics and Automation, pp. 987–993,
2010.

[8] T. M. Howard, C. J. Green, A. Kelly, and D. Ferguson, “State space
sampling of feasible motions for high-performance mobile robot nav-
igation in complex environments,” Journal of Field Robotics, vol. 25,
pp. 325–345, 2008.

[9] H. Lategahn, M. Schreiber, J. Ziegler, and C. Stiller, “Urban localization
with camera and inertial measurement unit,” in Intelligent Vehicles
Symposium, pp. 719–724, IEEE, 2013.

[10] M. Schreiber, C. Knöppel, and U. Franke, “LaneLoc: Lane marking
based localization using highly accurate maps.,” in Intelligent Vehicles
Symposium, pp. 449–454, IEEE, IEEE, 2013.

[11] J. Ziegler, H. Lategahn, M. Schreiber, C. G. Keller, C. Knöppel, J. Hipp,
M. Haueis, and C. Stiller, “Video based localization for Bertha,” in
Intelligent Vehicles Symposium, (Dearborn, Michigan, USA), IEEE,
2014.

[12] P. Bender, J. Ziegler, and C. Stiller, “Lanelets: Efficient map repre-
sentation for autonomous driving,” in Intelligent Vehicles Symposium,
(Dearborn, Michigan, USA), IEEE, 2014.

[13] U. Franke, D. Pfeiffer, C. Rabe, C. Knöppel, M. Enzweiler, F. Stein,
and R. G. Herrtwich, “Making Bertha see,” in IEEE ICCV Workshop
Computer Vision for Autounomous Vehicles, (Sydney, Australia), pp. 1–
10, December 2013.

[14] D. Pfeiffer and U. Franke, “Towards a global optimal multi-layer stixel
representation of dense 3D data,” BMVC, Dundee, Scotland. BMVA
Press (August 2011), 2011.

[15] B. D. O. Anderson and J. B. Moore, Optimal Control: Linear Quadratic
Methods. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1990.

[16] H. B. Pacejka, Tire and Vehicle Dynamics. Society of Automotive
Engineers, Inc., 2nd ed., 2006.

[17] M. Bartholomew-Biggs, “Constrained minimization using recursive
quadratic programming,” in Numerical Methods for Nonlinear Optimiza-
tion (F. Lootsma, ed.), pp. 411–428, Academic Press, 1972.

[18] L. Lasdon, Optimization Theory for Large Systems. Dover Books on
Mathematics Series, Dover Publications, 1970.

457

Authorized licensed use limited to: Texas A & M University - Kingsville. Downloaded on December 29,2020 at 10:08:32 UTC from IEEE Xplore.  Restrictions apply. 


