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Given two virtual camera poses, how do we connect them?
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Motivation

Simplest Idea: Linear Interpolation

of eye point and angle of rotation

OptFlowCarr
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Simplest Idea: Linear Interpolation
of eye point and point of interest
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Simplest Idea: Linear Interpolation
of eye point and point of interest
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In the scene there can be anything or nothing between those two camera poses and
points of interest. We assume nothing about the scene here.
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Simplest Idea: Linear Interpolation

of point of interest,
distance to the point of interest
and angle of rotation
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(@ ffk"&gg:sjﬁi Motivation: What is the problem?

For a scene like this...
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In the scene, the blue dots are the eye point of the camera and the red dots the
points of interest. The cube is an approximation of the view frustum (i.e. about the
extend we can see in the camera view)
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... we get a path like this ...

POI and eye point are linearly interpolated. If sampled at equidistant parameter t, the
blue and red dots have the same distance to each other. This doesn’ t look too bad
from the outside, but...
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(@ ffk"&gg:sjﬁi Motivation: What is the problem?

... that looks like this (in Euclidean space) ...

When look at from the camera view, the result is rather jarring. The objects slide in
and out of view while being really close to them and half of the time we can’ t see
either of them.
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* Detail-to-detail view without overview in between
-» can be disorienting

* Whole path has same velocity
-» can create effects of perceived speeding up/slowing down (esp.
when changing scale like Overview-to-detail or Detail-to-overview)

Camera View

The second point couldn’t be seen that well in the first video but is very apparent in
this example. We seem to speed up approaching the red dot although the camera has
a constant “real world” velocity.
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» Transition between detailed viewpoints with overview in between
-> creates context

+ Adapt velocity to current scale
-» similar perceived velocity over the path

* Closed-form solution of interpolation scheme
-> easier to integrate into existing systems
(and faster than performing an optimization routine)

Lisa Piotrowski OptFlowCarr
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Observation: Problem is the Euclidean space.
-> Objective

* introduce Riemannian metric in camera space
* do linear interpolation in new space

Lisa Piotrowsk OptFlowCan

Euclidean space = world space/geometric space
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... and then looks like this (in our new space):

This is much better than the previous example in Euclidean space because it shows all
of the desired properties we talked about in the previous slide.
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Interpolation techniques (linear interpolation of camera
parameters or camera transformations [Ale02])

» Toric Space [LC15]
* Zooming and panning in 2D [VvNO3]

Camera path planning (lots of different works)

OptFlowCarr

Lisa Piotrowski
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We are firmly in the interpolation techniques section. We do NO path planning or
collision avoidance or cinematographic optimization (see paper for more

comparisons)
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(@ Idea: Base camera path on optical flow

Canonical View Volume

Lisa Piotrowski

View
Transformation
R

® Visible Points

OptFlowCam

2D Image

Projection
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I

Optical Flow
Computation
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arilgglégll}&é ea: Base camera path on optical flow
Optical Flow depends on visible surfaces which means...
* .. it needs an optimization routine on a discretized path

« ... but objects entering and exiting the view create discontinuities
(which makes it difficult to optimize)

« ... and collisions can derail the optimization routine.

-> need something that is mostly agnostic to the (visible) scene
for a closed-form solution

Lisa Piotrowski OptFlowCarr
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(@ 0TSl  Idea: Base Camera Path on Flow in the Canonical View Volume (3D Image)

View Frustum Canonical View Volume 2D Image
(3D Image)
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oeneneet * Transformation Projection

3D Image Flow
Computation

Lisa Piotrowsk OptFlowCan 17

All our schematic examples are in 2D so the projection is to 1D. Of course for a 3D
camera the projection is a 2D image on the screen
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3D image flow ...

« ...does not depend on objects in the scene but the position of
the point of interest in relation to the eye point of the camera

» ... which implicitly defines if it is a detail view or overview

* ...and can be expressed as a closed-form solution.

Lisa Piotrowski OptFlowCarr 18
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mx
my
mz
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Frustum center point m

Scaling factors of the frustum

s = (sx-sy-52)3

Euler angles defining
the frustum orientation

Constant related to focal length

The eye point (blue dot) is a computed property here. It is possible for most camera

models to convert it to our model and vice-versa.
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We start with a camera looking at a scene

20
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World Space View Frustum 3D Image

Transformation
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Relative position of scene Position of points in 3D
points in frustum changes image changes

¢ =c+dr
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Small change T
in camera parameters

Lisa Piotrowsk OptFlowCan 21

Moving that camera a little bit changes the relative position of the scene objects in
the view frustum. This change is also present in the 3D image if we transform the
view frustum to it
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World Space

3D Image
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By going infinitesimally small with the camera change (dt -> 0) we define a flow.
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1 P
. \T . Objective: find a space other than
/0 X(t) M(X(I)) X(t) dt Euclidean space for interpolation

Energy Functional
* Energy functional describes
how "expensive" a path is
-> minimizing gives geodesic equation

* Use 3D image flow to define a new
metric and solve geodesic equation
-> shortest path in new space

- need to define metric tensor IM to solve the geodesic equation for finding geodesic x(7)

The flow can then be used in the energy functional. The energy functional can
measure the length of a path (here x(t)) if given a metric (here M(t)). The metric M
defines at every point of a space, how the local lengths look like (here, the ellipses
representing the metric in the image say that going up or down the bump make the
path longer because they are longer in that direction). So to minimize the path length
(or energy we need to travel along it) we minimize the functional. That gives us the
geodesic equations (a set of differential equations) which we can solve to get the
shortest path (the geodesic).

For us this means we have a two step process:
- Define metric tensor M(x(t))
- Solve geodesic equation for x(t)
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(@ 0Ethisll  Method: 3D-Image-Flow-Based Metric

fo d Energy functional
X (squared 3D image flow magnitude

Q over whole 3D image volume)
T XA o . ,
=V M(c) V can be written in terms of metric
Lﬁ_.!
3D-Image-Flow-Based
Metric

-> has a (complicated) closed-form solution!

We use the flow magnitude to judge the length of the path. By expanding this, we can
rearrange the terms to get out the metric which, with the current camera model, has

a very complicated solution




MAG

(@ ffk"&ggguﬁi Method: 3D-Image-Flow-Based Metric

Geodesic equation: second order differential equation

-> basically impossible to solve with this metric, so having the metric is only half the
battle
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Replace frustum by best-fitting cube

¢ = (mx,my,mz,sx, sy, sz,0, 9.\|J)T ¢ = (mx,my, m:,s.d),().\u)T

Simplifying the camera space simplifies the metric a lot. We also tested that
calculating the energy functional with simplified metric gives a similar result to the
original metric -> can conclude the simplification is justified
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(@ Method: Metric Simplification

Replace frustum by best-fitting cube

L 0 0 0 0 0 0
0 £ 0 0 0 0 0
0 0 5 0 0 0 0
ME=|0 0 0 %5 0 0 0
0o 0 0 0 & o e
00 0 0 0 £ O
0o 0 0o o -8 o I
translation + scale rotation

-> use metric to solve geodesic equation
translation and scale can be handled independently of rotation

Piotrowski OptFlowCan

Have two independent blocks which allow us to solve the geodesic equation
independently for each block
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Method: Geodesics - Translation and Scale
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m; —mg
d=m—myl|, d=———

57— s+ (—1)" 4d*
4sid for i=0,1
ri=tn(—bi+ /6 +1)

Some helpful definitions - bi =

Scale changes faster .
_ s s(t) = socosh(rg)
‘ if current scale is higher = cosh((ry —ro)t +10)
(i.e. camera further away from POI) L
S0 S0 .
Frustum position changes faster m(t) = = cosh(ro) tanh((ry —ro)t +ro) — == sinh(rp)
if current scale is high m(t) =mg+m(t) d.

-> slower movement when close to POI, faster movement when further away
zooming in/out in between viewpoints depending on distance and scale

Lisa Piotrowski OptFlowCarr
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Method:

Geodesics - Translation and Scale

zoom
pan
(up, wy)  (u(s), w(s))
u, w,)
Wy w)
T T
u, u, u—»

Very similar work to ours for 2D zooming and panning in images.
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Method: Geodesics - Rotation
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(@ MTId  Method: Geodesics - Rotation

Z)

Lisa Piotrowski OptFlowCarr

Rotation turns out to be a constant speed rotation around a fixed axis of rotation.
This axis of rotation (k) can be calculated by solving an eigenvalue problem in 3D.
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Rotation matrix transforming
axis of rotation k
to/from the z-axis
(solution of an eigenvalue problem)

T
R() = Ri Re (t) Rg Ry
l_Y_I ¢ Y J L - )
Final Rotation matrix rotating Initial
orientation by an angle of fi orientation
matrix around the z-axis matrix

-> final rotation is around a constant axis with constant speed

Lisa Piotrowski OptFlowCarr
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Scene Paths Camera Views

Layout of the video examples because there is so much going an in them that it’s easy
to get overwhelmed.
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Results: Scenario 1

Nice zooming out/in in for out method. Alternative methods in the upper right and
lower left loose sight of the scene objects
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Results: Scenario 2
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Results: Scenario 3
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Results: Scenario 4
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Results: Scenario 5

Again nice zooming out/in for our method. We actually see the objects most of the
time while the other methods just look at the floor.
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Results: Scenario 6
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Camera distance to POI:
2 units

Keyframe End

Camera distance to POI:
1.4 x 1012 units
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Linear Interpolation (Euclidean Space) Linear Interpolation (Our Metric Space)

Euclidean space interpolation looks like its not moving at all in the beginning and
then “crashes” into the fractal. Our method gives an apparent constant speed
impression
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Linear Interpolation (Our Metric Space)

Y

Frame 499

Frame 500

Comparison between the second to last and last frame of both methods. Euclidean
method clearly has issues.
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We can also chain multiple camera poses into one path.

* Inany spline evaluation scheme that is based on repeated linear

interpolation we could substitute linear interpolation for our geodesics.

* We used Catmull-Rom curves in our examples.

Lisa Piotrowski OptFlowCarr
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Keyframe 1 Keyframe 2

Sun (far away) Sun (close) Earth
1.21 x 10 km 3.22 x 105 km 2.19 x10%km

4 keyframe spline in Gaia Sky with varying distances

Keyframe 4

)

Moon
8.39x 103 km
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Catmull-Rom (Euclidean Space) Catmull-Rom (Our Metric Space)

Euclidean method looks like it‘s not moving at the beginning then overshoots all the
keyframe positions, so it‘s basically not possible to see anything of the interesting
parts. Our method gives a nice path.
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Results: Gallery

Catmull-Rom (Euclidean Space) Catmull-Rom (Our Metric Space)

m
el S N

5 keyframe path in a gallery. Euclidean space path slides along the pictures in the
gallery so it’s basically impossible to see anything. Our path looks like it would not be
smooth but because the camera moves very slowly at the keyframe positions, it still
looks smooth
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Catmull-Rom (Our Metric Space)
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Results: Mars Rover

3D model: Courtesy of NASA/JPL-Caltech.
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iy Conclusion

We introduced a new camera metric space that...

+ .. is simple to use
+ ... gives us closed-form geodesics
« ... can handle extreme scale variations in scenes

¢ .. can be used in interactive contexts

Of course we also have limitations which we discuss in the paper
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Blender plugin demonstration
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Method: Length of Geodesic Path

OptFlowCarr
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One limitation is that we do not consider any shape of an object. So if we have
opposite points of the sphere, the path might not “zoom out” enough to be pleasant.
We would rather want something as on the right
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Spline with discontinuity
caused by the Catmull-
Rom evaluation

Spline with discontinuity
resolved by using an
additional keyframe (a)
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Another limitation with Catmull-Rom curves creating gaps
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Results: Gallery

With collision

Lisa Piotrowski

OptFlowCam

Without collision (and additional keyframes b + d)
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Catmull-Rom

Lisa Piotrowski

Results: Different Spline Curves

Bézier Curve

OptFlowCam
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Condition Number

Trace
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Results: Interactive Blender Session
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