
1



2



3



4



In the scene there can be anything or nothing between those two camera poses and 
points of interest. We assume nothing about the scene here.

5



6



In the scene, the blue dots are the eye point of the camera and the red dots the 
points of interest. The cube is an approximation of the view frustum (i.e. about the 
extend we can see in the camera view)

7



POI and eye point are linearly interpolated. If sampled at equidistant parameter t, the 
blue and red dots have the same distance to each other. This doesn’ t look too bad 
from the outside, but…

8



When look at from the camera view, the result is rather jarring. The objects slide in 
and out of view while being really close to them and half of the time we can’ t see 
either of them.

9



The second point couldn’t be seen that well in the first video but is very apparent in 
this example. We seem to speed up approaching the red dot although the camera has 
a constant ”real world” velocity.

10



11



Euclidean space = world space/geometric space

12



This is much better than the previous example in Euclidean space because it shows all 
of the desired properties we talked about in the previous slide.

13



We are firmly in the interpolation techniques section. We do NO path planning or 
collision avoidance or cinematographic optimization (see paper for more 
comparisons)

14



15



16



All our schematic examples are in 2D so the projection is to 1D. Of course for a 3D 
camera the projection is a 2D image on the screen

17



18



The eye point (blue dot) is a computed property here. It is possible for most camera 
models to convert it to our model and vice-versa.

19



We start with a camera looking at a scene

20



Moving that camera a little bit changes the relative position of the scene objects in 
the view frustum. This change is also present in the 3D image if we transform the 
view frustum to it

21



By going infinitesimally small with the camera change (dt -> 0) we define a flow.

22



The flow can then be used in the energy functional. The energy functional can 
measure the length of a path (here x(t)) if given a metric (here M(t)). The metric M 
defines at every point of a space, how the local lengths look like (here, the ellipses 
representing the metric in the image say that going up or down the bump make the 
path longer because they are longer in that direction). So to minimize the path length 
(or energy we need to travel along it) we minimize the functional. That gives us the 
geodesic equations (a set of differential equations) which we can solve to get the 
shortest path (the geodesic).

For us this means we have a two step process:
- Define metric tensor M(x(t))
- Solve geodesic equation for x(t)

23



We use the flow magnitude to judge the length of the path. By expanding this, we can 
rearrange the terms to get out the metric which, with the current camera model, has 
a very complicated solution

24



Geodesic equation: second order differential equation

-> basically impossible to solve with this metric, so having the metric is only half the 
battle

25



Simplifying the camera space simplifies the metric a lot. We also tested that 
calculating the energy functional with simplified metric gives a similar result to the 
original metric -> can conclude the simplification is justified

26



Have two independent blocks which allow us to solve the geodesic equation 
independently for each block

27



28



29



Very similar work to ours for 2D zooming and panning in images.

30



31



Rotation turns out to be a constant speed rotation around a fixed axis of rotation. 
This axis of rotation (k) can be calculated by solving an eigenvalue problem in 3D.

32



33



Layout of the video examples because there is so much going an in them that it’s easy 
to get overwhelmed.

34



Nice zooming out/in in for out method. Alternative methods in the upper right and 
lower left loose sight of the scene objects

35



36



37



38



Again nice zooming out/in for our method. We actually see the objects most of the 
time while the other methods just look at the floor.

39



40



41



Euclidean space interpolation looks like its not moving at all in the beginning and 
then “crashes” into the fractal. Our method gives an apparent constant speed 
impression

42



Comparison between the second to last and last frame of both methods. Euclidean 
method clearly has issues.

43



44



4 keyframe spline in Gaia Sky with varying distances

45



Euclidean method looks like it‘s not moving at the beginning then overshoots all the
keyframe positions, so it‘s basically not possible to see anything of the interesting
parts. Our method gives a nice path.

46



5 keyframe path in a gallery. Euclidean space path slides along the pictures in the 
gallery so it’s basically impossible to see anything. Our path looks like it would not be 
smooth but because the camera moves very slowly at the keyframe positions, it still 
looks smooth

47



48



49



Of course we also have limitations which we discuss in the paper

50



Blender plugin demonstration

51



52



53



One limitation is that we do not consider any shape of an object. So if we have 
opposite points of the sphere, the path might not ”zoom out” enough to be pleasant. 
We would rather want something as on the right

54



55



Another limitation with Catmull-Rom curves creating gaps

56



57



58



59



60



61


