
Slice and Maps no need to pass by reference in order to modify its value.
Pass by value is enough for this both to modify the original value in the called function.

All other data types other than this need to be pass by reference in-order to modify its original value by
the function.
Ex: array, struct, int ,float,string,....

Print - Prints the output and there is no newline
Println - Prints the output and there is newline

Go pkg installation
This works

Custom function for particular data type

This receiver function can be created only for the custom data types not for default data types

So i created alias for the default datatype and implemented the receiver function for that data type

Created alias for the default data type and
Created the receiver function

Once readed its won’t get the
updated.

Scope of loop variables

https://yourbasic.org/golang/three-dots-ellipsis/

Single quotes takes exactly one character and prints the
ASCII value of that character

Printf - is the format print

Short hand

gofmt - is used to format the file according to the Go standard.
Formatting is nothing but the aligning the codes in the file in the proper way
like a=10 is formatted to a = 10
gofmt -w filename.go - format the file and writes back to the same file

gofmt -w -l directory - formats all the file in that directory

go fmt - is to format all the go files in that directory where this command is
executed

Variables initialization

package main

import (

 "fmt"

)

func main() {

 var a int

 fmt.Println(a)

 var b int = 10

 fmt.Println(b)

 var c = 11

 fmt.Println(c)

 d := 10

 fmt.Println(d)

 // var e := 11 // missing variable type or initialization (var e invalid type)

 // fmt.Println(e)

}

package main

import (

 "fmt"

)

func main() {

 var a []int

 fmt.Println(a)

 // var b = []int //expected expression

 var b = []int{}

 fmt.Println(b)

 var c = []int{1, 3, 5, 6}

 fmt.Println(c)

 var d = make([]int, 3) // makes slice(list) of length

3

 fmt.Println(d)

 e := []int{18, 32, 53, 66}

 fmt.Println(e)

}

package main

import (

 "fmt"

)

func main() {

 // array (fixed length)

 var a [5]int

 fmt.Println(a)

 // var b = []int //expected expression

 var b = [3]int{}

 fmt.Println(b)

 var c = [4]int{1, 3, 5, 6}

 c[3] = 1

 // c[4]=9 // invalid argument: index 4 (constant of type int) is out of bounds

 fmt.Println(c)

 var d = make([]int, 3) // makes array(list) of length 3

 fmt.Println(d)

 e := [5]int{18, 32, 53, 66}

 fmt.Println(e)

}

package main

import (

 "fmt"

)

func main() {

 var a map[int]int

 fmt.Println(a)

 var b = map[int]int{0: 1, 1: 2}

 fmt.Println(b)

 var c = map[int]int{}

 fmt.Println(c)

 var d = make(map[int]int, 3) // makes map(dict)

 d[1] = 1

 fmt.Println(d)

 e := map[int]int{}

 e[0] = 0

 fmt.Println(e)

}

package main

import (

 "fmt"

 "math"

)

const s string = "constant"

func main() {

 fmt.Println(s)

 const n = 500000000

 const d = 3e20 / n

 fmt.Println(d)

 fmt.Println(int64(d))

 fmt.Println(math.Sin(n))

}

Function with Pointers parameters

package main

import (

 "fmt"

)

func fun_pointers(a *int) {

 fmt.Println("Address of given argument :", a)

 fmt.Println("Value of the given argument:", *a)

 fmt.Println("Changing the value to 10")

 *a = 10

}

func main() {

 var to_change = 1

 fmt.Println("Value of to_change before Pointer function call", to_change)

 fun_pointers(&to_change)

 fmt.Println("Value of to_change after Pointer function call", to_change)

}

We can pass by reference for all the data types but for the Maps we don’t need to call
function by pass by reference .
By default like in python (dict) pass by value is pass by reference for Maps.

So be careful while using the Maps(dicts) because they are passed as the reference by
default so it may leads to unexpected altering the values.

package main

import (

 "fmt"

)

func fun_pointers(a *[]int) {

 fmt.Println("Address of given argument :", a)

 fmt.Println("Value of the given argument:", *a)

 fmt.Println("Changing the value of index 1 to 10")

 (*a)[1] = 10 // *a[1]=10 gives error due to the precedence level. so first pointing and then

indexing

}

func main() {

 var to_change = []int{1, 2, 3}

 fmt.Println("Value of to_change before Pointer function call", to_change)

 fun_pointers(&to_change)

 fmt.Println("Value of to_change after Pointer function call", to_change)

}

Change the value of Slice without the pointers in function call

Function with return values

package main

import "fmt"

func vals() (int, int) {

 return 3, 7

}

func main() {

 a, b := vals()

 fmt.Println(a, b)

 _, c := vals()

 fmt.Println(c)

}

Variables in Go.
Variables must be declared before use and the declared variable must be used
Ex:

var a int = 10
var s string
s = “Logesh”
B := “Hey” this is the shorthand to define the variable

:= is only for declaring the new variables

Working with constants

If the situation arises to work with the unused variables. Use _ to suppress the error

Multiple declarations

We can redeclare the variable using multiple declaration and short hand combinations

Now the A is redeclared using := along with the new variable with it.

Another way of multiple declaration without assigning the value and with assigning the value

In Go all variables are initialized. Even if we haven’t gave the value Go will assign the default value

String - empty string “”
Numeric - 0
Bool - false
Pointer - nil

 //** ZERO VALUES **//

 // An uninitialized variable or empty variable will get the so
called ZERO VALUE

 // The zero-value mechanism of Go ensures that a variable always
holds a well defined value of its type

 var value int // initialized with 0
 var price float64 // initialized with 0.0
 var name string // initialized with empty
string -> ""

 var done bool // initialized with false
 fmt.Println(value, price, name, done) // -> 0 0.0 "" false

 // VERBS:
 // %d -> decimal
 // %f -> float
 // %s -> string
 // %q -> double-quoted string
 // %v -> value (any)
 // %#v -> a Go-syntax representation of the value
 // %T -> value Type
 // %t -> bool (true or false)
 // %p -> pointer (address in base 16, with leading 0x)
 // %c -> char (rune) represented by the corresponding Unicode code point

 a, b, c := 10, 15.5, "Gophers"
 grades := [] int{10, 20, 30}

 fmt.Printf("a is %d, b is %f, c is %s \n" , a, b, c) // => a is 10, b is 15.500000, c is

Gophers
 fmt.Printf("%q\n", c) // => "Gophers"
 fmt.Printf("%v\n", grades) // => [10 20 30]
 fmt.Printf("%#v\n", grades) // => b is of type float64 and grades is of type

[]int
 fmt.Printf("b is of type %T and grades is of type %T\n" , b, grades)
 // => b is of type float64 and grades is of type []int
 fmt.Printf("The address of a: %p\n" , &a) // => The address of a: 0xc000016128
 fmt.Printf("%c and %c\n", 100, 51011) // => d and 읃 (runes for code points 101 and

51011)

 const pi float64 = 3.14159265359
 fmt.Printf("pi is %.4f\n", pi) // => formatting with 4 decimal points

 // %b -> base 2
 // %x -> base 16
 fmt.Printf("255 in base 2 is %b\n", 255) // => 255 in base 2 is 11111111
 fmt.Printf("101 in base 16 is %x\n", 101) // => 101 in base 16 is 65

 // fmt.Sprintf() returns a string. Uses the same verbs as fmt.Printf()
 s := fmt.Sprintf("a is %d, b is %f, c is %s \n", a, b, c)
 fmt.Println(s) // => a is 10, b is 15.500000, c is Gophers

fmt.Printf("255 in base 2 is %08b\n", 5) //255 in base 2 is 00000101

No error is thrown . unused year.
Only the variables will get the error unused variable

Const must be initialized at the time of declaration
For variables it is not necessary it has the default value (Zero values)

Typed and Untyped Constant

Same code as previous but produces error. Its all due to mentioning the type so we can’t use with other
types.(Strong typed)

User defined data type - struct

String concatenation

Go not allow to initialize the overflowed value.

Another most used conversion is Atoi() , Itoa()
ASCII to Int
Int to ASCII

Go routines

Anonymous Function

Go Packets

To install the pkg open the cmd as Administrator permission and
Go to the path : C:\Program Files\Go\src
And issue the go get github.com/google/gopacket

PS E:_GOlang\go_programs> go run .\first_file.go
first_file.go:6:2: no required module provides package github.com/google/gopacket/pcap: go.mod file not
found in current directory or any parent directory; see 'go help modules'
PS E:_GOlang\go_programs> go env -w GO111MODULE=off
PS E:_GOlang\go_programs> go run .\first_file.go
Npcap version 1.00, based on libpcap version 1.9.1
PS E:_GOlang\go_programs>

package main

import (

 "fmt"

 "github.com/google/gopacket"

 "github.com/google/gopacket/pcap"

)

func main() {

 version := pcap.Version()

 fmt.Println(version)

 o_handle, _ := pcap.OpenOffline("DNS_pcap.pcapng")

 defer o_handle.Close()

 packetsource := gopacket.NewPacketSource(o_handle, o_handle.LinkType(),)

 pkt, _ := packetsource.NextPacket()

 // fmt.Println(pkt)

 fmt.Printf("pkt type %T", pkt)

 fmt.Println(pkt.Metadata().CaptureInfo)

 fmt.Printf("Type of pkt.Metadata().CaptureInfo is %T\n", pkt.Metadata().CaptureInfo)

 aa := pkt.Metadata().CaptureInfo.Timestamp.Unix()

 fmt.Println(aa)

}

Channels

package main

import (

 "fmt"

)

func main() {

 messages := make(chan string)

 go func() { messages <- "ping" }()

 msg := <-messages

 fmt.Println(msg)

 go func() { messages <- "traceroute" }()

 msg = <-messages

 fmt.Println(msg)

}

Channels are the pipes that connect concurrent goroutines. You can send values into channels from one goroutine and receive
those values into another goroutine.

Send a value into a channel using the channel <- syntax.

The <-channel syntax receives a value from the channel.

In Unbuffered channel we can send value
then we can receive the value only once.
When we try to receive the value from the
channel which has no value in it or it has
delivered already then we will get an error

Channel can store value but once the value
is received from the channel the subsequent
call to receive value from channel will raise
error.

Channel is like queue but not the queue.
We can override the value in the channel by
the subsequent send to channel. But can’t
receive subsequently.

The receive concept of the channel will
coincide with the queue concept.
Once the value is got from the queue we
can’t again get from that queue.

package main

import "fmt"

func main() {

 // unbuffered channel

 messages := make(chan string)

 // send value to channel

 go func() { messages <- "value" }()

 // receive the value from the channel. now thew channel is empty after receive

 msg := <-messages

 fmt.Println(msg)

 // now the channel is empty sending new value

 go func() { messages <- "new value" }()

 // ovverride the value in that channel

 go func() { messages <- "new new value" }()

 // now the channel has new value in it so we are receiveing it

 new_msg := <-messages

 fmt.Println(new_msg)

}

Buffered channel

By default channels are unbuffered, meaning that they will only accept sends (chan <-) if there
is a corresponding receive (<- chan) ready to receive the sent value. Buffered channels accept a
limited number of values without a corresponding receiver for those values.

package main

import "fmt"

func main() {

 messages := make(chan string, 2)

 messages <- "buffered"

 messages <- "channel"

 fmt.Println(<-messages)

 fmt.Println(<-messages)

}

Here we got an error,
Becoz the channel has the
capacity to store 2 values but
now it has only one value.
At the line 12 we have
received that value , now the
channel has no value but at
the next line we are trying to
receive the value that doesn’t
exists.

When using channels as function parameters, you can specify if a channel is
meant to only send or receive values. This specificity increases the type-safety of
the program.

Channel Directions

Timeouts

For our example, suppose we’re executing an external call that returns its
result on a channel c1 after 2s. Note that the channel is buffered, so the send
in the goroutine is nonblocking. This is a common pattern to prevent
goroutine leaks in case the channel is never read.

Here’s the select implementing a timeout. res := <-c1 awaits the result
and <-time.After awaits a value to be sent after the timeout of 1s. Since
select proceeds with the first receive that’s ready, we’ll take the timeout
case if the operation takes more than the allowed 1s.

If we allow a longer timeout of 3s, then the receive from c2 will succeed and
we’ll print the result.

Range over Channels

This range iterates over each element as it’s received from queue. Because we closed
the channel above, the iteration terminates after receiving the 2 elements.

This example also showed that it’s possible to close a non-empty channel but still have
the remaining values be received.

We got error when we try to loop (range) through the channel beyond the value it stored then we got
the error. But we can solve this error by closing the channel.

We can receive the value from the closed channel until the buffer
values. But we can’t send values to the closed channel

WaitGroups

To wait for multiple goroutines to finish, we can use a wait group.

Launch several goroutines and increment the WaitGroup counter for each.
wg.Add(1)

Block until the WaitGroup counter goes back to 0; all the workers notified
they’re done.

Here we have given wg.Add(3) so it will wait for 3 concurrent goroutines

to finish

Defer is used to ensure that a function call is performed later in a program’s
execution, usually for purposes of cleanup. defer is often used where e.g.
ensure and finally would be used in other languages.

Defer

Immediately after getting a file object with createFile, we defer the closing
of that file with closeFile. This will be executed at the end of the enclosing
function (main), after writeFile has finished.

Sprintf formats and returns a string without printing it anywhere.

package main

import (

 "encoding/json"

 "fmt"

 "os"

)

func main() {

 mapD := map[string]int{"one": 5, "two": 7}

 mapB, _ := json.Marshal(mapD)

 fmt.Println(string(mapB))

 enc := json.NewEncoder(os.Stdout)

 d := map[string]int{"apple": 5, "lettuce": 7}

 enc.SetIndent("", " ")

 enc.Encode(d)

 enc.Encode(mapD)

}

Files

Labels

This code is infinite loop

 // There are 3 Scopes:
 // - File Scope
 // - Package Scope
 // - Block (local) Scope

 package main
 // import statements are file scoped
 import (
 "fmt"
 // import "fmt" -> error, within the same scope, unique names
 // importing as another name (alias) is permitted
 f "fmt"
)
 // variables or constant declared outside any function are package scoped
 const done = false

 func main() { // package scoped

 // block scoped: visible until the end of the block "}"
 var task = "Running:"
 fmt.Println(task, done) // => Running: false (this is done from package scope)
 f.Println("Bye bye!")

 // names must be unique only within the same scope
 const done = true // local scoped
 fmt.Printf("done in main(): %v\n", done) // => done in main(): true
 f1()
 }
 func f1() {
 fmt.Printf("done in f(): %v\n", done) //this is done from package scope
 }

Working with arrays

Append is only for Slice not for array. Since array is fixed length even we use
the ellipsis operator it has the fixed length. So append won’t work.

Just
array[index]=new_value

Index must be in range otherwise error

We cannot add or remove element form the array since they are fixed length.
We can only modify the existing element

Keyed array. Which has no special use

Here we can only store upto 5 elements (0 to 4) but i try to add the element for the 6th
index which is out of range. So keyed array is not an special one its a usual array but we
can see the make that element to that index visibly

Slices

We cannot compare two slices

We can’t append slice to another slice like in python. But if we need to append
one slices element one by one we need to use eclipsis operator

Back ticks in Go strings

package main

import "fmt"

func main() {

 s1 := "String \"String\""

 fmt.Println(s1)

 raw_string := `Raw String can be written within "back ticks" \n \t won't wrk`

 fmt.Println(raw_string)

 s := "Hi there Go!"

 fmt.Printf("%s\n", s) // => Hi there Go!

 fmt.Printf("%q\n", s) // => "Hi there Go!" - quoted string

}

 package main

 import "fmt"

 func main() {

 // Slicing a string is efficient because it reuses the same backing array
 // Slicing returns bytes not runes

 s1 := "abcdefghijkl"
 fmt.Println(s1[2:5]) // -> cde, bytes from 2 (included) to 5 (excluded)

 s2 := "中文维基是世界上"
 fmt.Println(s2[0:2]) // -> � - the unicode representation of bytes from index 0

and 1.

 // returning a slice of runes
 // 1st step: converting string to rune slice
 rs := []rune(s2)
 fmt.Printf("%T\n", rs) // => []int32

 // 2st step: slicing the rune slice
 fmt.Println(string(rs[0:3])) // => 中文维

 }

 import ("fmt"
 "strings")
 func main() {
 // declaring a variable of type func to call the Println function easier.
 p := fmt.Println
 // it returns true whether a substr is within a string
 result := strings.Contains("I love Go Programming!", "love")
 p(result) // -> True
 // it returns true whether any Unicode code points are within our string, and false otherwise.
 result = strings.ContainsAny("success", "xy")
 p(result) // => false
 // it reports whether a rune is within a string.
 result = strings.ContainsRune("golang", 'g')
 p(result) // => true
 // it returns the number of instances of a substring in a string
 n := strings.Count("cheese", "e")
 p(n) // => 3
 // if the substr is an empty string Count() returns 1 + the number of runes in the string
 n = strings.Count("five", "")
 p(n) // => 5 (1 + 4 runes)

// ToUpper() and ToLower() return a new string with all the letters of the original string converted to uppercase or
lowercase.

 p(strings.ToLower("Go Python Java")) // -> go python java
 p(strings.ToUpper("Go Python Java")) // -> GO PYTHON JAVA
 // comparing strings (case matters)
 p("go" == "go") // -> true
 p("Go" == "go") // -> false

 // comparing strings (case doesn't matter) -> it is not efficient
 p(strings.ToLower("Go") == strings.ToLower("go")) // -> true

 // EqualFold() compares strings (case doesn't matter) -> it's efficient
 p(strings.EqualFold("Go", "gO")) // -> true

 // it returns a new string consisting of n copies of the string that is passed as the first argument
 myStr := strings.Repeat("ab", 10)
 p(myStr) // => abababababababababab

 // it returns a copy of a string by replacing a substring (old) by another substring (new)
 myStr = strings.Replace("192.168.0.1", ".", ":", 2) // it replaces the first 2 occurrences
 p(myStr) // -> 192:168:0.1

 // if the last argument is -1 it replaces all occurrences of old by new
 myStr = strings.Replace("192.168.0.1", ".", ":", -1)
 p(myStr) // -> 192:168:0:1

 // ReplaceAll() returns a copy of the string s with all non-overlapping instances of old replaced by

new.
 myStr = strings.ReplaceAll("192.168.0.1", ".", ":")
 p(myStr) // -> 192:168:0:1

 // it slices a string into all substrings separated by separator and returns a slice of the substrings

between those separators.
 s := strings.Split("a,b,c", ",")
 fmt.Printf("%T\n", s) // -> []string
 fmt.Printf("strings.Split():%#v\n", s) // => strings.Split():[]string{"a", "b", "c"}

 // If separator is empty Split function splits after each UTF-8 rune literal.
 s = strings.Split("Go for Go!", "")
 fmt.Printf("strings.Split():%#v\n" , s) // -> []string{"G", "o", " ", "f", "o", "r", "

", "G", "o", "!"}

 // Join() concatenates the elements of a slice of strings to create a single string.
 // The separator string is placed between elements in the resulting string.
 s = []string{"I", "learn", "Golang"}
 j := strings.Join(s, "-")
 fmt.Printf("%T\n", j) // -> string
 p(j) // -> I-learn-Golang

 // splitting a string by whitespaces and newlines.
 myStr = "Orange Green \n Blue Yellow"
 fields := strings.Fields(myStr) // it returns a slice of strings
 fmt.Printf("%T\n", fields) // -> []string
 fmt.Printf("%#v\n", fields) // -> []string{"Orange", "Green", "Blue", "Yellow"}

 // TrimSpace() removes leading and trailing whitespaces and tabs.
 s1 := strings.TrimSpace("\t Goodbye Windows, Welcome Linux!\n ")
 fmt.Printf("%q\n", s1) // "Goodbye Windows, Welcome Linux!"

 // To remove other leading and trailing characters, use Trim()
 s2 := strings.Trim("...Hello, Gophers!!!?" , ".!?")
 fmt.Printf("%q\n", s2) // "Hello, Gophers"
 }

Structs

package main

import "fmt"

type Person struct {

 name string

 age int

 status string

}

func main() {

 var p1 Person

 p1.name = "Logesh"

 p1.age = 23

 p1.status = "Single"

 fmt.Println(p1)

 var p2 = Person{}

 fmt.Printf("p2: %#v\n", p2)

 p3 := Person{name: "Someone", age: 3422, status: "Not known"}

 fmt.Printf("p3: %#v\n", p3)

}

 // an anonymous struct is a struct with no explicitly defined struct type alias.

 diana := struct {

 firstName, lastName string

 age int

 }{

 firstName: "Diana",

 lastName: "Muller",

 age: 30,

 }

 fmt.Printf("%#v\n", diana)

 // =>struct { firstName string; lastName string; age int }{firstName:"Diana", lastName:"Muller", age:30

 //** ANONYMOUS FIELDS **//

 // fields type becomes fields name.

 type Book struct {

 string

 float64

 bool

 }

 b1 := Book{"1984 by George Orwell", 10.2, false}

 fmt.Printf("%#v\n", b1) // => main.Book{string:"1984 by George Orwell", float64:10.2, bool:false}

 fmt.Println(b1.string) // => 1984 by George Orwell

 // mixing anonymous with named fields:

 type Employee1 struct {

 name string

 salary int

 bool

 }

 e := Employee1{"John", 40000, false}

 fmt.Printf("%#v\n", e) // => main.Employee1{name:"John", salary:40000, bool:false}

 e.bool = true // changing a field

Functions

 // defining a function that have one parameter of type float64 and returns a value of type
float64

 func f4(a float64) float64 {
 return math.Pow(a, a)
 //any statements below the return statement are never executed

 }

 // defining a function that have two parameters of type int and returns two values of type

int
 func f5(a, b int) (int, int) {
 return a * b, a + b
 }

 // defining a function that have one parameter of type int and returns a "named parameter"
 func sum(a, b int) (s int) {
 fmt.Println("s:", s) // -> s is a variable with the zero value inside the function
 s = a + b

 // it automatically return s
 return // This is known as a "naked" return.
 }

Interface

Interface is like an abstract method.
It has only the definition not the function body.

Here the circle type implicitly implements the
Shape interface and also the circle has its own
methods in addition to the implemented
methods.

Rectangle also implements the shape interface

Here comes the advantage of the interface. Now the print function will work for
any type that implements the shape interface. So it makes the print function to
acts as an polymorphism.

 // there is access only to the methods that are defined inside the interface
 fmt.Printf("Circle Area:%v\n", s.area())

 // an interface value hides its dynamic value.
 // use type assertion to extract and return the dynamic value of the interface

value.
 fmt.Printf("Sphere Volume:%v\n", s.(circle).volume())

 //** TYPE ASSERTIONS**//
 // checking if the assertion succeded or not
 ball, ok := s.(circle)
 if ok == true {
 fmt.Printf("Ball Volume:%v\n", ball.volume())
 }

 //** TYPE SWITCHES **//

 // it permits several type assertions in series
 switch value := s.(type) {
 case circle:
 fmt.Printf("%#v has circle type\n", value)
 case rectangle:
 fmt.Printf("%#v has rectangle type\n", value)
 }

This type assertion and type switch only works for Interfaces

Empty interface

wait Group

 // Declaring two functions: f1 and f2
 func f1(wg *sync.WaitGroup) { // wg is passed as a pointer
 fmt.Println("f1(goroutine) execution started")
 for i := 0; i < 3; i++ {
 fmt.Println("f1, i=", i)
 // sleep for a second to simulate an expensive task.
 time.Sleep(time.Second)

 }
 fmt.Println("f1 execution finished")

 //3.
 // Before exiting, call wg.Done() in each goroutine
 // to indicate to the WaitGroup that the goroutine has finished executing.
 wg.Done()
 //or:
 // (*wg).Done()
 }

 func f2() {
 fmt.Println("f2 execution

started")
 time.Sleep(time.Second)

 for i := 5; i < 8; i++ {
 fmt.Println("f2(), i=", i)

 }
 fmt.Println("f2 execution

finished")

 }

 func main() {
 fmt.Println("main execution started")
 // 1. Create a new instance of sync.WaitGroup (we’ll call it symply wg)
 // This WaitGroup is used to wait for all the goroutines that have been launched to finish.
 var wg sync.WaitGroup

 // 2.Call wg.Add(n) method before attempting to
 // launch the go routine.
 wg.Add(1) // n which is 1 is the number of goroutines to wait for

 // Launching a goroutine
 go f1(&wg) // it takes in a pointer to sync.WaitGroup

 // No. of running goroutines
 fmt.Println("No. of Goroutines:", runtime.NumGoroutine()) // => 2

 // calling other functions:
 f2()

 // Finally, we call wg.Wait()to block the execution of main() until the goroutines
 // in the WaitGroup have successfully completed.
 wg.Wait()

 fmt.Println("main execution stopped")
 }

Mutex to avoid the data race. Data race is when many go routines try to
access the shared resource

Mutex to lock and unlock shared resource.
To make sure that the resource is accessed by only
one go-routines at a time

Select statement with channels

The switch case is executed when the case statement receives the value from the channel.
That is the the cases is executed , which is received first

Go installation

New error which means we are progressing

https://github.com/google/gopacket/issues/280

Important note in using the github modules in the go lang

When we import we should import the package not the module.
Ex: github repo name is module under that repo we will be having several
folders, these are the packages.
So import should be some thing like this

Import “github.com/user/repo_name/package_name”

Steps to get starting to use the github packages in your project.

Go create the folder (your project) in anypath.
After that under the root folder of your project initialize the go module by

Go mod init project_folder_name

Now create you files for your project and keep working when you want to use any github packages just
import them in the files and start working
Sometimes go will automatically call the go get -u imported_pkages while running the file. Else it will ask as
to get so at that time you need to issue the
Go get github.com/,,/.. Command to get the package

Once the mod file is created then in your program file import you packages
and the issue the command
Go build to get the packages to get download.

Creating Your Own Go Module
Consider the following steps to create your own Go module and publish it on GitHub.

Create a free GitHub account if you don’t have one.

1. Using the browser, create a new repository on GitHub

e.g. go_math

2. Create a directory for the module anywhere on the disk. Inside it create a directory for each package of the
module.

The name of the directory will be the name of the module on GitHub.

Write the code for each package.

Don’t forget to export all names! That means that the first letter of each name must be uppercase.

3. The next step is to initialize the module by running go mod init and the module path from the module
directory. This will generate go.mod file that stores the import path and any dependencies.

e.g. go mod init github.com/ddadumitrescu/go_math

https://github.com/

The executed commands:

$mkdir go_math

$cd go_math/

$mkdir calc geometry

$go mod init github.com/ddadumitrescu/go_math eventhough the go_math folder is in different place we need
init the mod only by the remote repo path so that other can use.

go: creating new go.mod: module github.com/ddadumitrescu/go_math

$cat go.mod

module github.com/ddadumitrescu/go_math

go 1.13

$cd ..

$ls

go_math

$tree .

.

└── go_math

├── calc

├── geometry

└── go.mod

3 directories, 1 file

Publish the Module on GitHub
Move to the module directory (e.g. cd go_math)

1. Initialize the local module folder as a git repository.

git init

2. Add the remote repository and give it the name origin

git remote add origin https://github.com/ddadumitrescu/go_math.git

Check the name and the URL of the remote repository: git remote -v

3. Add all files from the current directory to the staging area.

git add -A

4. Set some variables

git config user.name "andrei"

git config user.email "someone@someplace.com"

https://github.com/ddadumitrescu/go_math.git

5. Commit the changes

git commit -m "some init msg"

6. Synchronize the local and remote repositories.

git push -u -f origin master

Authenticating …

Now the local and the remote repositories are synchronized.

7. Version the module or make the first release.

Create a git tag:

git tag -a v1.0.0 -m "initial release"

git push origin master --tags

Authenticating ...

Getting go-eharts package for my codes

Struct type for the json encodings

Correct format.

It will take the given names for the json
encoding if we not given the json string
for that struct.

For more about Golang visit

https://docs.google.com/presentation/d/1einB0LEjUbBpdE0drq_9IDe6P_rpHM3l_gA2XRDVhWI/ed
it?usp=sharing

