
%p - &data : to print the address of the data variable
%g - (used instead of %d or %e) it is mainly used to print the decimal points accurate no extra or no
cut off.
%t - is to print the bool data types
%T - is used to print the type of the variable
%v - prints the values of any data type
%#v- prints the map,slice,array values and its types
%+v - useful for printing the struct types

Golang has no concept of inheritance i.e. no is-a relationship
Instead it has has-a relationship
Ex: one struct type can be used in other type by using it not by
inheriting it. It has the type not it is the type.

In inheritance child class has is a relationship with parent class.

type Title struct {
name string

}

type Book struct{
title Title
auther string

}

Here Book has a Title type.

An IS-A relationship is inheritance. The classes which inherit are known as sub classes or child classes. On the other hand,
HAS-A relationship is composition.

In OOP, IS-A relationship is completely inheritance. This means, that the child class is a type of parent class.

On the other hand, composition means creating instances which have references to other objects.

https://turnoff.us/geek/inheritance-versus-composition/

You can’t get the address of the map element but for the slices and
arrays we can get

There is an switch type
v := interface{}

switch v := v.(type) {

case int:
fmt.Println(“its int”)// inside this case the v value is of int type

case string:
fmt.Println(“its string”)// inside this case the v value is of string type

default:
// do soemthing

}

Here v has the value

package main

import "fmt"

func main() {

 var v interface{}

 v = 10.0

 switch v := v.(type) {

 case int:

 fmt.Printf("v: %v\n", v)

 fmt.Printf("type of v: %T\n", v)

 case string:

 fmt.Printf("v: %v\n", v)

 fmt.Printf("type of v: %T\n", v)

 case float64:

 fmt.Printf("v: %v\n", v)

 fmt.Printf("type of v: %T\n", v)

 }

}

Time format layout can be of any format but we need to use the
reference time values in our own format.

String and Byte slice

String is a byte slice behind the scene.

String and []byte are interchangeably convertible

When it comes to strings the len() function will return the number bytes that string variable holds not
the number of characters it has. It is due to that the string may contain the non - english characters
which may require some more bytes to store it.

To get the length of the string (number of characters) then we need to use utf.RuneCountInString() .
this function returns the number of characters.

Range loop on the string variables will loop through the character by character.

To convert the int to string (1 to “1”)
We need to use the strconv.ItoA() function

When we are given an interval we can say the interval upper and lower limits

Ex: [0,n)
[- says that the number is included i.e. 0 is included
) - says that the number is excluded i.e. n is excluded

[] - square brackets means included

() - parenthesis or round bracket means excluded

Len returns the number of bytes the
string takes not the number of
characters it has.

To find the number of characters it has
we can use the

RuneCountInString from the utf8
package

In the switch statement we don’t need break at the end of each case clause. And
also we have the default clause. This default class can be written anywhere
inside the switch statement.

Here i have used the break statement else it will be an infinite loop

Here the parent (outer) loop is breaked since that loop is labeled as queries and we
break with that label

Go automatically sets the uninitialized variables to their zero values

Array is a collection elements. It stores the same type in contiguous memory locations

Unkeyed element gets the index from the last keyed element

To generate the random number we can use the rand package from math folder.
Also the rand doesn’t generates the true random numbers. We can make the rand function to
generate the true random numbers by Seed the rand package with the random number.

Almost random values

%g

Slice

Can’t sort an array using sort.Ints() since Ints() accepts only the slice

Solution

Now we sliced our array to make it like an slice.

When we slice an array then the return is an slice

Here we can see that the sliced array result is an Slice.

Backing array

In the above example even though the length of the slice is 2 We can access the 4th index since the
slice has the backing array. The Backing array length is 5 in our case. So i can access the last
index(4).

We could access that only by the slice expression not by the normal indexing

We can see our backing array length that can be accessed or visible for this slice by using the cap(slice)

Inserting elements in middle of the slice

Slice Expression

https://go.dev/ref/spec#Slice_expressions

https://go.dev/ref/spec#Making_slices_maps_and_channels

https://go.dev/ref/spec#Appending_and_copying_slices

Options
- make() and copy
- Append to nil slice (this is best)

At the end both the option tries to create the new backing array for
the second slice to backup the original data.

Map

Comparing maps using == we get error

We can sort the map only by making all the keys to the slice and then sorting the key slice and
then looping over the key slice and then print the map values.

So this can only be used to print in the sorted order. It doesn’t actually sort the map. Also map is
an unorder data type.

bufio

Json package only encodes the exported fields

Becoz only the exported fields can be seen by other packages. So, that means our struct fields
should be exported inorder for the json package to see it and encode it.

JSON and Structs

This are field tags

https://www.youtube.com/watch?v=_SCRvMunkdA

Struct fields explanation

https://www.youtube.com/watch?v=_SCRvMunkdA

The only limitation when we can’t even == the struct when the
struct fields have map or slice data types

Only same struct types can be compared

Functions

Pointers

Pointer for structs

Structs also needs the pointer to change its
value in the function.
Since structs are bare type like int and string

Methods

Even this is the method of Person type it can’t change the
value
receiver value, we can change it by passing the pointer way

p.Name = “Logesh Vel”
This doesn’t changes caller variable

For the pointer receiver method we don’t need to pass the & the
Go will automatically pass it.

strings.Builder

outerloop:

 for _, ele1 := range s1 {

 for _, ele2 := range s2 {

 for _, ele3 := range s3 {

 // …

 continue outerloop

 }

 }

 }

