Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Browse files

ArtForz's new and enchanced implementation of Scrypt - should give so…

…mewhere around ~30% more hot TBX love
  • Loading branch information...
commit 2c6f8678a42e1003936f21df02774ce61f52e495 1 parent b86916b
Lolcust authored
Showing with 201 additions and 472 deletions.
  1. +201 −472 scrypt.c
673 scrypt.c
View
@@ -34,83 +34,24 @@
#include <stdint.h>
#include <string.h>
-
-static inline uint32_t
-be32dec(const void *pp)
-{
- const uint8_t *p = (uint8_t const *)pp;
-
- return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8) +
- ((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24));
-}
-
-static inline void
-be32enc(void *pp, uint32_t x)
-{
- uint8_t * p = (uint8_t *)pp;
-
- p[3] = x & 0xff;
- p[2] = (x >> 8) & 0xff;
- p[1] = (x >> 16) & 0xff;
- p[0] = (x >> 24) & 0xff;
-}
-
-static inline uint32_t
-le32dec(const void *pp)
-{
- const uint8_t *p = (uint8_t const *)pp;
-
- return ((uint32_t)(p[0]) + ((uint32_t)(p[1]) << 8) +
- ((uint32_t)(p[2]) << 16) + ((uint32_t)(p[3]) << 24));
-}
-
-static inline void
-le32enc(void *pp, uint32_t x)
-{
- uint8_t * p = (uint8_t *)pp;
-
- p[0] = x & 0xff;
- p[1] = (x >> 8) & 0xff;
- p[2] = (x >> 16) & 0xff;
- p[3] = (x >> 24) & 0xff;
-}
-
+#define byteswap(x) ((((x) << 24) & 0xff000000u) | (((x) << 8) & 0x00ff0000u) | (((x) >> 8) & 0x0000ff00u) | (((x) >> 24) & 0x000000ffu))
typedef struct SHA256Context {
uint32_t state[8];
- uint32_t count[2];
- unsigned char buf[64];
+ uint32_t buf[16];
} SHA256_CTX;
-typedef struct HMAC_SHA256Context {
- SHA256_CTX ictx;
- SHA256_CTX octx;
-} HMAC_SHA256_CTX;
-
/*
* Encode a length len/4 vector of (uint32_t) into a length len vector of
* (unsigned char) in big-endian form. Assumes len is a multiple of 4.
*/
-static void
-be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len)
-{
- size_t i;
-
- for (i = 0; i < len / 4; i++)
- be32enc(dst + i * 4, src[i]);
-}
-
-/*
- * Decode a big-endian length len vector of (unsigned char) into a length
- * len/4 vector of (uint32_t). Assumes len is a multiple of 4.
- */
-static void
-be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len)
+static inline void
+be32enc_vect(uint32_t *dst, const uint32_t *src, uint32_t len)
{
- size_t i;
+ uint32_t i;
- for (i = 0; i < len / 4; i++)
- dst[i] = be32dec(src + i * 4);
+ for (i = 0; i < len; i++)
+ dst[i] = byteswap(src[i]);
}
/* Elementary functions used by SHA256 */
@@ -143,7 +84,7 @@ be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len)
* the 512-bit input block to produce a new state.
*/
static void
-SHA256_Transform(uint32_t * state, const unsigned char block[64])
+SHA256_Transform(uint32_t * state, const uint32_t block[16], int swap)
{
uint32_t W[64];
uint32_t S[8];
@@ -151,9 +92,15 @@ SHA256_Transform(uint32_t * state, const unsigned char block[64])
int i;
/* 1. Prepare message schedule W. */
- be32dec_vect(W, block, 64);
- for (i = 16; i < 64; i++)
+ if(swap)
+ for (i = 0; i < 16; i++)
+ W[i] = byteswap(block[i]);
+ else
+ memcpy(W, block, 64);
+ for (i = 16; i < 64; i += 2) {
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
+ W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15];
+ }
/* 2. Initialize working variables. */
memcpy(S, state, 32);
@@ -227,478 +174,260 @@ SHA256_Transform(uint32_t * state, const unsigned char block[64])
/* 4. Mix local working variables into global state */
for (i = 0; i < 8; i++)
state[i] += S[i];
-
- /* Clean the stack. */
- memset(W, 0, 256);
- memset(S, 0, 32);
- t0 = t1 = 0;
}
-static unsigned char PAD[64] = {
- 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
-};
-
-/* SHA-256 initialization. Begins a SHA-256 operation. */
-static void
-SHA256_Init(SHA256_CTX * ctx)
+static inline void
+SHA256_InitState(uint32_t * state)
{
-
- /* Zero bits processed so far */
- ctx->count[0] = ctx->count[1] = 0;
-
/* Magic initialization constants */
- ctx->state[0] = 0x6A09E667;
- ctx->state[1] = 0xBB67AE85;
- ctx->state[2] = 0x3C6EF372;
- ctx->state[3] = 0xA54FF53A;
- ctx->state[4] = 0x510E527F;
- ctx->state[5] = 0x9B05688C;
- ctx->state[6] = 0x1F83D9AB;
- ctx->state[7] = 0x5BE0CD19;
-}
-
-/* Add bytes into the hash */
-static void
-SHA256_Update(SHA256_CTX * ctx, const void *in, size_t len)
-{
- uint32_t bitlen[2];
- uint32_t r;
- const unsigned char *src = in;
-
- /* Number of bytes left in the buffer from previous updates */
- r = (ctx->count[1] >> 3) & 0x3f;
-
- /* Convert the length into a number of bits */
- bitlen[1] = ((uint32_t)len) << 3;
- bitlen[0] = (uint32_t)(len >> 29);
-
- /* Update number of bits */
- if ((ctx->count[1] += bitlen[1]) < bitlen[1])
- ctx->count[0]++;
- ctx->count[0] += bitlen[0];
-
- /* Handle the case where we don't need to perform any transforms */
- if (len < 64 - r) {
- memcpy(&ctx->buf[r], src, len);
- return;
- }
-
- /* Finish the current block */
- memcpy(&ctx->buf[r], src, 64 - r);
- SHA256_Transform(ctx->state, ctx->buf);
- src += 64 - r;
- len -= 64 - r;
-
- /* Perform complete blocks */
- while (len >= 64) {
- SHA256_Transform(ctx->state, src);
- src += 64;
- len -= 64;
- }
-
- /* Copy left over data into buffer */
- memcpy(ctx->buf, src, len);
-}
-
-/* Add padding and terminating bit-count. */
-static void
-SHA256_Pad(SHA256_CTX * ctx)
-{
- unsigned char len[8];
- uint32_t r, plen;
-
- /*
- * Convert length to a vector of bytes -- we do this now rather
- * than later because the length will change after we pad.
- */
- be32enc_vect(len, ctx->count, 8);
-
- /* Add 1--64 bytes so that the resulting length is 56 mod 64 */
- r = (ctx->count[1] >> 3) & 0x3f;
- plen = (r < 56) ? (56 - r) : (120 - r);
- SHA256_Update(ctx, PAD, (size_t)plen);
-
- /* Add the terminating bit-count */
- SHA256_Update(ctx, len, 8);
+ state[0] = 0x6A09E667;
+ state[1] = 0xBB67AE85;
+ state[2] = 0x3C6EF372;
+ state[3] = 0xA54FF53A;
+ state[4] = 0x510E527F;
+ state[5] = 0x9B05688C;
+ state[6] = 0x1F83D9AB;
+ state[7] = 0x5BE0CD19;
}
-/*
- * SHA-256 finalization. Pads the input data, exports the hash value,
- * and clears the context state.
- */
-static void
-SHA256_Final(unsigned char digest[32], SHA256_CTX * ctx)
-{
-
- /* Add padding */
- SHA256_Pad(ctx);
-
- /* Write the hash */
- be32enc_vect(digest, ctx->state, 32);
-
- /* Clear the context state */
- memset((void *)ctx, 0, sizeof(*ctx));
-}
-
-/* Initialize an HMAC-SHA256 operation with the given key. */
-static void
-HMAC_SHA256_Init(HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen)
-{
- unsigned char pad[64];
- unsigned char khash[32];
- const unsigned char * K = _K;
- size_t i;
-
- /* If Klen > 64, the key is really SHA256(K). */
- if (Klen > 64) {
- SHA256_Init(&ctx->ictx);
- SHA256_Update(&ctx->ictx, K, Klen);
- SHA256_Final(khash, &ctx->ictx);
- K = khash;
- Klen = 32;
- }
-
- /* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
- SHA256_Init(&ctx->ictx);
- memset(pad, 0x36, 64);
- for (i = 0; i < Klen; i++)
- pad[i] ^= K[i];
- SHA256_Update(&ctx->ictx, pad, 64);
-
- /* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
- SHA256_Init(&ctx->octx);
- memset(pad, 0x5c, 64);
- for (i = 0; i < Klen; i++)
- pad[i] ^= K[i];
- SHA256_Update(&ctx->octx, pad, 64);
-
- /* Clean the stack. */
- memset(khash, 0, 32);
-}
-
-/* Add bytes to the HMAC-SHA256 operation. */
-static void
-HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void *in, size_t len)
-{
-
- /* Feed data to the inner SHA256 operation. */
- SHA256_Update(&ctx->ictx, in, len);
-}
-
-/* Finish an HMAC-SHA256 operation. */
-static void
-HMAC_SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX * ctx)
-{
- unsigned char ihash[32];
-
- /* Finish the inner SHA256 operation. */
- SHA256_Final(ihash, &ctx->ictx);
-
- /* Feed the inner hash to the outer SHA256 operation. */
- SHA256_Update(&ctx->octx, ihash, 32);
-
- /* Finish the outer SHA256 operation. */
- SHA256_Final(digest, &ctx->octx);
-
- /* Clean the stack. */
- memset(ihash, 0, 32);
-}
+static const uint32_t passwdpad[12] = {0x00000080, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80020000};
+static const uint32_t outerpad[8] = {0x80000000, 0, 0, 0, 0, 0, 0, 0x00000300};
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
-static void
-PBKDF2_SHA256(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt,
- size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen)
+static inline void
+PBKDF2_SHA256_80_128(const uint32_t * passwd, uint32_t * buf)
{
- HMAC_SHA256_CTX PShctx, hctx;
- size_t i;
- uint8_t ivec[4];
- uint8_t U[32];
- uint8_t T[32];
- uint64_t j;
- int k;
- size_t clen;
+ SHA256_CTX PShictx, PShoctx;
+ uint32_t tstate[8];
+ uint32_t ihash[8];
+ uint32_t i;
+ uint32_t pad[16];
+
+ static const uint32_t innerpad[11] = {0x00000080, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xa0040000};
- /* Compute HMAC state after processing P and S. */
- HMAC_SHA256_Init(&PShctx, passwd, passwdlen);
- HMAC_SHA256_Update(&PShctx, salt, saltlen);
+ /* If Klen > 64, the key is really SHA256(K). */
+ SHA256_InitState(tstate);
+ SHA256_Transform(tstate, passwd, 1);
+ memcpy(pad, passwd+16, 16);
+ memcpy(pad+4, passwdpad, 48);
+ SHA256_Transform(tstate, pad, 1);
+ memcpy(ihash, tstate, 32);
+
+ SHA256_InitState(PShictx.state);
+ for (i = 0; i < 8; i++)
+ pad[i] = ihash[i] ^ 0x36363636;
+ for (; i < 16; i++)
+ pad[i] = 0x36363636;
+ SHA256_Transform(PShictx.state, pad, 0);
+ SHA256_Transform(PShictx.state, passwd, 1);
+ be32enc_vect(PShictx.buf, passwd+16, 4);
+ be32enc_vect(PShictx.buf+5, innerpad, 11);
+
+ SHA256_InitState(PShoctx.state);
+ for (i = 0; i < 8; i++)
+ pad[i] = ihash[i] ^ 0x5c5c5c5c;
+ for (; i < 16; i++)
+ pad[i] = 0x5c5c5c5c;
+ SHA256_Transform(PShoctx.state, pad, 0);
+ memcpy(PShoctx.buf+8, outerpad, 32);
/* Iterate through the blocks. */
- for (i = 0; i * 32 < dkLen; i++) {
- /* Generate INT(i + 1). */
- be32enc(ivec, (uint32_t)(i + 1));
-
- /* Compute U_1 = PRF(P, S || INT(i)). */
- memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX));
- HMAC_SHA256_Update(&hctx, ivec, 4);
- HMAC_SHA256_Final(U, &hctx);
-
- /* T_i = U_1 ... */
- memcpy(T, U, 32);
-
- for (j = 2; j <= c; j++) {
- /* Compute U_j. */
- HMAC_SHA256_Init(&hctx, passwd, passwdlen);
- HMAC_SHA256_Update(&hctx, U, 32);
- HMAC_SHA256_Final(U, &hctx);
-
- /* ... xor U_j ... */
- for (k = 0; k < 32; k++)
- T[k] ^= U[k];
- }
-
- /* Copy as many bytes as necessary into buf. */
- clen = dkLen - i * 32;
- if (clen > 32)
- clen = 32;
- memcpy(&buf[i * 32], T, clen);
+ for (i = 0; i < 4; i++) {
+ uint32_t istate[8];
+ uint32_t ostate[8];
+
+ memcpy(istate, PShictx.state, 32);
+ PShictx.buf[4] = i + 1;
+ SHA256_Transform(istate, PShictx.buf, 0);
+ memcpy(PShoctx.buf, istate, 32);
+
+ memcpy(ostate, PShoctx.state, 32);
+ SHA256_Transform(ostate, PShoctx.buf, 0);
+ be32enc_vect(buf+i*8, ostate, 8);
}
-
- /* Clean PShctx, since we never called _Final on it. */
- memset(&PShctx, 0, sizeof(HMAC_SHA256_CTX));
}
-static void blkcpy(void *, void *, size_t);
-static void blkxor(void *, void *, size_t);
-static void salsa20_8(uint32_t[16]);
-static void blockmix_salsa8(uint32_t *, uint32_t *, uint32_t *, size_t);
-static uint64_t integerify(void *, size_t);
-static void smix(uint8_t *, size_t, uint64_t, uint32_t *, uint32_t *);
-
-static void
-blkcpy(void * dest, void * src, size_t len)
+static inline uint32_t
+PBKDF2_SHA256_80_128_32(const uint32_t * passwd, const uint32_t * salt)
{
- size_t * D = dest;
- size_t * S = src;
- size_t L = len / sizeof(size_t);
- size_t i;
+ uint32_t tstate[8];
+ uint32_t ostate[8];
+ uint32_t ihash[8];
+ uint32_t i;
- for (i = 0; i < L; i++)
- D[i] = S[i];
-}
+ /* Compute HMAC state after processing P and S. */
+ uint32_t pad[16];
+
+ static const uint32_t ihash_finalblk[16] = {0x00000001,0x80000000,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0x00000620};
-static void
-blkxor(void * dest, void * src, size_t len)
-{
- size_t * D = dest;
- size_t * S = src;
- size_t L = len / sizeof(size_t);
- size_t i;
+ /* If Klen > 64, the key is really SHA256(K). */
+ SHA256_InitState(tstate);
+ SHA256_Transform(tstate, passwd, 1);
+ memcpy(pad, passwd+16, 16);
+ memcpy(pad+4, passwdpad, 48);
+ SHA256_Transform(tstate, pad, 1);
+ memcpy(ihash, tstate, 32);
+
+ SHA256_InitState(ostate);
+ for (i = 0; i < 8; i++)
+ pad[i] = ihash[i] ^ 0x5c5c5c5c;
+ for (; i < 16; i++)
+ pad[i] = 0x5c5c5c5c;
+ SHA256_Transform(ostate, pad, 0);
+
+ SHA256_InitState(tstate);
+ for (i = 0; i < 8; i++)
+ pad[i] = ihash[i] ^ 0x36363636;
+ for (; i < 16; i++)
+ pad[i] = 0x36363636;
+ SHA256_Transform(tstate, pad, 0);
+ SHA256_Transform(tstate, salt, 1);
+ SHA256_Transform(tstate, salt+16, 1);
+ SHA256_Transform(tstate, ihash_finalblk, 0);
+ memcpy(pad, tstate, 32);
+ memcpy(pad+8, outerpad, 32);
- for (i = 0; i < L; i++)
- D[i] ^= S[i];
+ /* Feed the inner hash to the outer SHA256 operation. */
+ SHA256_Transform(ostate, pad, 0);
+ /* Finish the outer SHA256 operation. */
+ return byteswap(ostate[7]);
}
+
/**
* salsa20_8(B):
* Apply the salsa20/8 core to the provided block.
*/
-static void
-salsa20_8(uint32_t B[16])
+static inline void
+salsa20_8(uint32_t B[16], const uint32_t Bx[16])
{
- uint32_t x[16];
+ uint32_t x00,x01,x02,x03,x04,x05,x06,x07,x08,x09,x10,x11,x12,x13,x14,x15;
size_t i;
- blkcpy(x, B, 64);
+ x00 = (B[ 0] ^= Bx[ 0]);
+ x01 = (B[ 1] ^= Bx[ 1]);
+ x02 = (B[ 2] ^= Bx[ 2]);
+ x03 = (B[ 3] ^= Bx[ 3]);
+ x04 = (B[ 4] ^= Bx[ 4]);
+ x05 = (B[ 5] ^= Bx[ 5]);
+ x06 = (B[ 6] ^= Bx[ 6]);
+ x07 = (B[ 7] ^= Bx[ 7]);
+ x08 = (B[ 8] ^= Bx[ 8]);
+ x09 = (B[ 9] ^= Bx[ 9]);
+ x10 = (B[10] ^= Bx[10]);
+ x11 = (B[11] ^= Bx[11]);
+ x12 = (B[12] ^= Bx[12]);
+ x13 = (B[13] ^= Bx[13]);
+ x14 = (B[14] ^= Bx[14]);
+ x15 = (B[15] ^= Bx[15]);
for (i = 0; i < 8; i += 2) {
#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
/* Operate on columns. */
- x[ 4] ^= R(x[ 0]+x[12], 7); x[ 8] ^= R(x[ 4]+x[ 0], 9);
- x[12] ^= R(x[ 8]+x[ 4],13); x[ 0] ^= R(x[12]+x[ 8],18);
-
- x[ 9] ^= R(x[ 5]+x[ 1], 7); x[13] ^= R(x[ 9]+x[ 5], 9);
- x[ 1] ^= R(x[13]+x[ 9],13); x[ 5] ^= R(x[ 1]+x[13],18);
-
- x[14] ^= R(x[10]+x[ 6], 7); x[ 2] ^= R(x[14]+x[10], 9);
- x[ 6] ^= R(x[ 2]+x[14],13); x[10] ^= R(x[ 6]+x[ 2],18);
-
- x[ 3] ^= R(x[15]+x[11], 7); x[ 7] ^= R(x[ 3]+x[15], 9);
- x[11] ^= R(x[ 7]+x[ 3],13); x[15] ^= R(x[11]+x[ 7],18);
+ x04 ^= R(x00+x12, 7); x09 ^= R(x05+x01, 7); x14 ^= R(x10+x06, 7); x03 ^= R(x15+x11, 7);
+ x08 ^= R(x04+x00, 9); x13 ^= R(x09+x05, 9); x02 ^= R(x14+x10, 9); x07 ^= R(x03+x15, 9);
+ x12 ^= R(x08+x04,13); x01 ^= R(x13+x09,13); x06 ^= R(x02+x14,13); x11 ^= R(x07+x03,13);
+ x00 ^= R(x12+x08,18); x05 ^= R(x01+x13,18); x10 ^= R(x06+x02,18); x15 ^= R(x11+x07,18);
/* Operate on rows. */
- x[ 1] ^= R(x[ 0]+x[ 3], 7); x[ 2] ^= R(x[ 1]+x[ 0], 9);
- x[ 3] ^= R(x[ 2]+x[ 1],13); x[ 0] ^= R(x[ 3]+x[ 2],18);
-
- x[ 6] ^= R(x[ 5]+x[ 4], 7); x[ 7] ^= R(x[ 6]+x[ 5], 9);
- x[ 4] ^= R(x[ 7]+x[ 6],13); x[ 5] ^= R(x[ 4]+x[ 7],18);
-
- x[11] ^= R(x[10]+x[ 9], 7); x[ 8] ^= R(x[11]+x[10], 9);
- x[ 9] ^= R(x[ 8]+x[11],13); x[10] ^= R(x[ 9]+x[ 8],18);
-
- x[12] ^= R(x[15]+x[14], 7); x[13] ^= R(x[12]+x[15], 9);
- x[14] ^= R(x[13]+x[12],13); x[15] ^= R(x[14]+x[13],18);
+ x01 ^= R(x00+x03, 7); x06 ^= R(x05+x04, 7); x11 ^= R(x10+x09, 7); x12 ^= R(x15+x14, 7);
+ x02 ^= R(x01+x00, 9); x07 ^= R(x06+x05, 9); x08 ^= R(x11+x10, 9); x13 ^= R(x12+x15, 9);
+ x03 ^= R(x02+x01,13); x04 ^= R(x07+x06,13); x09 ^= R(x08+x11,13); x14 ^= R(x13+x12,13);
+ x00 ^= R(x03+x02,18); x05 ^= R(x04+x07,18); x10 ^= R(x09+x08,18); x15 ^= R(x14+x13,18);
#undef R
}
- for (i = 0; i < 16; i++)
- B[i] += x[i];
-}
-
-/**
- * blockmix_salsa8(Bin, Bout, X, r):
- * Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r
- * bytes in length; the output Bout must also be the same size. The
- * temporary space X must be 64 bytes.
- */
-static void
-blockmix_salsa8(uint32_t * Bin, uint32_t * Bout, uint32_t * X, size_t r)
-{
- size_t i;
-
- /* 1: X <-- B_{2r - 1} */
- blkcpy(X, &Bin[(2 * r - 1) * 16], 64);
-
- /* 2: for i = 0 to 2r - 1 do */
- for (i = 0; i < 2 * r; i += 2) {
- /* 3: X <-- H(X \xor B_i) */
- blkxor(X, &Bin[i * 16], 64);
- salsa20_8(X);
-
- /* 4: Y_i <-- X */
- /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
- blkcpy(&Bout[i * 8], X, 64);
-
- /* 3: X <-- H(X \xor B_i) */
- blkxor(X, &Bin[i * 16 + 16], 64);
- salsa20_8(X);
-
- /* 4: Y_i <-- X */
- /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
- blkcpy(&Bout[i * 8 + r * 16], X, 64);
- }
-}
-
-/**
- * integerify(B, r):
- * Return the result of parsing B_{2r-1} as a little-endian integer.
- */
-static uint64_t
-integerify(void * B, size_t r)
-{
- uint32_t * X = (void *)((uintptr_t)(B) + (2 * r - 1) * 64);
-
- return (((uint64_t)(X[1]) << 32) + X[0]);
-}
-
-/**
- * smix(B, r, N, V, XY):
- * Compute B = SMix_r(B, N). The input B must be 128r bytes in length;
- * the temporary storage V must be 128rN bytes in length; the temporary
- * storage XY must be 256r + 64 bytes in length. The value N must be a
- * power of 2 greater than 1. The arrays B, V, and XY must be aligned to a
- * multiple of 64 bytes.
- */
-static void
-smix(uint8_t * B, size_t r, uint64_t N, uint32_t * V, uint32_t * XY)
-{
- uint32_t * X = XY;
- uint32_t * Y = &XY[32 * r];
- uint32_t * Z = &XY[64 * r];
- uint64_t i;
- uint64_t j;
- size_t k;
-
- /* 1: X <-- B */
- for (k = 0; k < 32 * r; k++)
- X[k] = le32dec(&B[4 * k]);
-
- /* 2: for i = 0 to N - 1 do */
- for (i = 0; i < N; i += 2) {
- /* 3: V_i <-- X */
- blkcpy(&V[i * (32 * r)], X, 128 * r);
-
- /* 4: X <-- H(X) */
- blockmix_salsa8(X, Y, Z, r);
-
- /* 3: V_i <-- X */
- blkcpy(&V[(i + 1) * (32 * r)], Y, 128 * r);
-
- /* 4: X <-- H(X) */
- blockmix_salsa8(Y, X, Z, r);
- }
-
- /* 6: for i = 0 to N - 1 do */
- for (i = 0; i < N; i += 2) {
- /* 7: j <-- Integerify(X) mod N */
- j = integerify(X, r) & (N - 1);
-
- /* 8: X <-- H(X \xor V_j) */
- blkxor(X, &V[j * (32 * r)], 128 * r);
- blockmix_salsa8(X, Y, Z, r);
-
- /* 7: j <-- Integerify(X) mod N */
- j = integerify(Y, r) & (N - 1);
-
- /* 8: X <-- H(X \xor V_j) */
- blkxor(Y, &V[j * (32 * r)], 128 * r);
- blockmix_salsa8(Y, X, Z, r);
- }
-
- /* 10: B' <-- X */
- for (k = 0; k < 32 * r; k++)
- le32enc(&B[4 * k], X[k]);
+ B[ 0] += x00;
+ B[ 1] += x01;
+ B[ 2] += x02;
+ B[ 3] += x03;
+ B[ 4] += x04;
+ B[ 5] += x05;
+ B[ 6] += x06;
+ B[ 7] += x07;
+ B[ 8] += x08;
+ B[ 9] += x09;
+ B[10] += x10;
+ B[11] += x11;
+ B[12] += x12;
+ B[13] += x13;
+ B[14] += x14;
+ B[15] += x15;
}
/* cpu and memory intensive function to transform a 80 byte buffer into a 32 byte output
scratchpad size needs to be at least 63 + (128 * r * p) + (256 * r + 64) + (128 * r * N) bytes
*/
-static void scrypt_1024_1_1_256_sp(const char* input, char* output, char* scratchpad)
+static uint32_t scrypt_1024_1_1_256_sp(const uint32_t* input, char* scratchpad)
{
- uint8_t * B;
uint32_t * V;
- uint32_t * XY;
+ uint32_t X[32];
uint32_t i;
+ uint32_t j;
+ uint32_t k;
+ uint64_t *p1, *p2;
+
+ p1 = (uint64_t *)X;
+ V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63));
- const uint32_t N = 1024;
- const uint32_t r = 1;
- const uint32_t p = 1;
+ PBKDF2_SHA256_80_128(input, X);
- B = (uint8_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63));
- XY = (uint32_t *)(B + (128 * r * p));
- V = (uint32_t *)(B + (128 * r * p) + (256 * r + 64));
+ for (i = 0; i < 1024; i += 2) {
+ memcpy(&V[i * 32], X, 128);
- /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
- PBKDF2_SHA256((const uint8_t*)input, 80, (const uint8_t*)input, 80, 1, B, p * 128 * r);
+ salsa20_8(&X[0], &X[16]);
+ salsa20_8(&X[16], &X[0]);
- /* 2: for i = 0 to p - 1 do */
- for (i = 0; i < p; i++) {
- /* 3: B_i <-- MF(B_i, N) */
- smix(&B[i * 128 * r], r, N, V, XY);
+ memcpy(&V[(i + 1) * 32], X, 128);
+
+ salsa20_8(&X[0], &X[16]);
+ salsa20_8(&X[16], &X[0]);
+ }
+ for (i = 0; i < 1024; i += 2) {
+ j = X[16] & 1023;
+ p2 = (uint64_t *)(&V[j * 32]);
+ for(k = 0; k < 16; k++)
+ p1[k] ^= p2[k];
+
+ salsa20_8(&X[0], &X[16]);
+ salsa20_8(&X[16], &X[0]);
+
+ j = X[16] & 1023;
+ p2 = (uint64_t *)(&V[j * 32]);
+ for(k = 0; k < 16; k++)
+ p1[k] ^= p2[k];
+
+ salsa20_8(&X[0], &X[16]);
+ salsa20_8(&X[16], &X[0]);
}
- /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
- PBKDF2_SHA256((const uint8_t*)input, 80, B, p * 128 * r, 1, (uint8_t*)output, 32);
+ return PBKDF2_SHA256_80_128_32(input, X);
}
int scanhash_scrypt(int thr_id, unsigned char *pdata, unsigned char *scratchbuf,
const unsigned char *ptarget,
uint32_t max_nonce, unsigned long *hashes_done)
{
- unsigned char data[80];
- unsigned char tmp_hash[32];
- uint32_t *nonce = (uint32_t *)(data + 64 + 12);
+ uint32_t data[20];
+ uint32_t tmp_hash7;
uint32_t n = 0;
- uint32_t Htarg = *(uint32_t *)(ptarget + 28);
+ uint32_t Htarg = ((const uint32_t *)ptarget)[7];
int i;
work_restart[thr_id].restart = 0;
- for (i = 0; i < 80/4; i++)
- ((uint32_t *)data)[i] = swab32(((uint32_t *)pdata)[i]);
+ be32enc_vect(data, (const uint32_t *)pdata, 19);
while(1) {
n++;
- *nonce = n;
- scrypt_1024_1_1_256_sp(data, tmp_hash, scratchbuf);
+ data[19] = n;
+ tmp_hash7 = scrypt_1024_1_1_256_sp(data, scratchbuf);
- if (*(uint32_t *)(tmp_hash+28) <= Htarg) {
- *(uint32_t *)(pdata + 64 + 12) = swab32(n);
+ if (tmp_hash7 <= Htarg) {
+ ((uint32_t *)pdata)[19] = byteswap(n);
*hashes_done = n;
return true;
}
Please sign in to comment.
Something went wrong with that request. Please try again.