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Question 1.

Calculate the characteristic and minimal polynomials of the following matrices

A =

(
13 0
0 7

)
, B =

(
−i 0
0 −i

)
, C =

1 0 −3
0 4 0
1 0 5


Solution.

(a) The characteristic polynomial for A is just

cA(x) = (x− 13)(x− 7).

So does the minimal polynomial µA(x) as A is a diagonal matrix.

(b) The characteristic polynomial for B is also

cB(x) = (x+ i)2.

Since µB(x)|cB(x), µB(x) = (x+ i)2or(x+ i). By definition of minimal polynomial, it should be
the least degree, so µB(x) = x+ i.

(c) The characteristic polynomial for C is

cC(x) = det(C − xI3)

cC(x) = det

1− x 0 −3
0 4− x 0
1 0 5− x


cC(x) = (4− x)(x2 − 6x+ 8)

cC(x) = −(x− 4)2(x− 2)

cC(x) = −(x− 4)2(x− 2).

Since µC(x)|cC(x), then µC(x) = (x−4)(x−2)or(x−4)2(x−2). Now we can only check µC(C) to
see which one equals to 0. We shall (x−4)(x−2) first since if it is not 0, then µC(C) = (x−4)2(x−2)
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and if it is 0, then µC(C) = (x− 4)(x− 2) since it has less degree:

µC(C) = (C − 4I3)(C − 4I2)

=

−3 0 −3
0 0 0
1 0 1

−1 0 −3
0 2 0
1 0 3


=

0 0 0
0 0 0
0 0 0

 .

Hence, µC(C) = (x− 4)(x− 2).

Question 2.

The characteristic polynomial of

A =


3 −1 −1 −2
1 1 −5 −10

−10 −14 −8 −28
5 7 7 20


is (x− 2)2(x− 6)2.

(a) Find the generalised eigenspaces of A of index i > 0 for the eigenvalue 2. (You may assume that
the full generalised eigenspace for eigenvalue 2 is 2-dimensional, this does follow from Theorem
2.7.4)

(b) Find the generalised eigenspaces of A of index i > 0 for the eigenvalue 6. (You may assume that
the full generalised eigenspace for eigenvalue 6 is 2-dimensional).

(c) Is A diagonalisable?

Solution.

(a) Since we know that the full generalised eigenspace for eigenvalue 2 is 2-dimensional, then it is
sufficient to check (A− 2I4) and (A− 2I4)

2. Therefore we are looking for

N1 =
{
v ∈ R4 : (A− 2I4)v = 0

}
and N2 =

{
v ∈ R4 : (A− 2I4)

2v = 0
}
.

All the vs in N1 are in the form of


1
1
6
−3

 and all the vs in N2 are in the form of


1
−2
0
0

.

(b) Similarly, the full generalised eigenspace for eigenvalue 6 is 2-dimensional, then it is sufficient to
check (A− 6I4) and (A− 6I4)

2. Therefore we are looking for

N1 =
{
v ∈ R4 : (A− 6I4)v = 0

}
and N2 =

{
v ∈ R4 : (A− 6I4)

2v = 0
}
.

All the vs in N1 are in the form of


0
2
0
−1

 and all the vs in N2 are in the form of


0
0
2
−1

.
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(c) No, it is not diagonlisable. If it is diagonalisable, it must have a basis of eigenvectors. For the 4
generalised eigenvectors, we see that the one in N2 is not actually an eigenvector. Check that

A


1
−2
0
0

 ̸= 2


1
−2
0
0

 .

Therefore, there are only 3 eigenvectors which cannot form a basis of eigenvectors for this matrix,
and hence it is not diagonlisable.

Question 3.

Check that the characteristic polynomial of Jλ,n is (λ − x)n and the minimal polynomial of Jλ,n is
(x− λ)n.

Proof.

The characteristic polynomial of Jλ,n comes from the upper triangular matrix from the definition of
Jordan blocks as all the entries on the diagonal are eigenvalues. Therefore,

cJλ,n(x) = (λ− x)n.

We know that minimal polynomial is (x− λ)r for some 1 ≤ r ≤ n. Calculate (Jλ,n − λIn)
r.

(Jλ,n − λIn)
r =




λ 1 0 0 ...
0 λ 1 0 ...
0 0 λ 1 ...
0 0 0 λ ...
...

...
...

...

−


λ 0 0 0 ...
0 λ 0 0 ...
0 0 λ 0 ...
0 0 0 λ ...
...

...
...

...




r

=


0 1 0 0 0 ...
0 0 1 0 0 ...
0 0 0 1 0 ...
...

...
...

...
...


r

.

After performing some powers, we notice that as we take powers of this matrix, we move the diagonal
line of 1s upward by one place. In particular, (Jλ,n − λIn)

n−1 is the matrix with all zeros apart from
the 1, n entry which is a 1. Therefore, the minimal polynomial must be (x− λ)n.

Question 4.

Prove Lemma 2.7.2: Suppose that M = A ⊕ B for matrices A and B with entries in K (i.e. M has
block-diagonal form with blocks A and B along the diagonal.) Then the characteristic polynomial
cM (x) is the product of cA(x) and cB(x), and the minimal polynomial µM (x) is the lowest common
multiple of µA(x) and µB(x).
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Proof.

The first property follows from how we calculate determinants. We need to prove that det(A ⊕ B) =
det(A) det(B). Note that

A⊕B = (A⊕ IB)(IA ⊕B)

where Ix is an identity matrix of the same dimension as X.

Also by expanding via the last row, then the next row up to get 1× 1× 1× ...× det(A).

Therefore we have
det(A⊕ IB) = det(A).

Hence we have det(A ⊕ B) = det(A) det(B) and note that A ⊕ B − xIAB = (A − xIA) ⊕ (B − xIB),
hence

cM (x) = cA(x)cB(x).

For the minimal polynomial, we have to annihilate both A and B in A⊕B, mathematically speaking,

µA⊕B(A⊕B) = µA⊕B(A)⊕ µA⊕B(B).

Therefore,
µA(x)|µM (x) µB(x)|µM (x),

where M = A⊕B.

By division property,
µA(x)µB(x)|µM (x)

and by definition of minimal polynomial,

µM (x) = lcm(µA(x), µB(x)).

Question 5.

Let A be an n× n complex matrix with µA(x) = (−1)ncA(x). Determine the number of blocks in the
JCF of A.

Solution.

Recall Theorem 2.7.4, we have

cA(x) = (−1)n
r∏

i=1

(x− λi)
ai

where ai is the sum of degrees of the Jordan blocks of A of eigenvalue λi and

µA(x) =
r∏

i=1

(x− λi)
bi ,

where bi is the largest among the degrees of the Jordan blocks of A of eigenvalue λi.

Since µA(x) = (−1)ncA(x), we have

r∏
i=1

(x− λi)
ai =

r∏
i=1

(x− λi)
bi .
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Hence, ai = bi, meaning that the sum of all the sizes of Jordan blocks for λi is equal to the size of the
largest one, thus there must be only one block for each eigenvalue of A. Hence, the number of blocks
in the JCF of A is the number of eigenvalues of A.
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