-
Notifications
You must be signed in to change notification settings - Fork 79
/
elligator.py
370 lines (346 loc) · 13.1 KB
/
elligator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
#! /usr/bin/env python3
# This file is dual-licensed. Choose whichever licence you want from
# the two licences listed below.
#
# The first licence is a regular 2-clause BSD licence. The second licence
# is the CC-0 from Creative Commons. It is intended to release Monocypher
# to the public domain. The BSD licence serves as a fallback option.
#
# SPDX-License-Identifier: BSD-2-Clause OR CC0-1.0
#
# ------------------------------------------------------------------------
#
# Copyright (c) 2020, Loup Vaillant and Andrew Moon
# All rights reserved.
#
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the
# distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# ------------------------------------------------------------------------
#
# Written in 2020 by Loup Vaillant and Andrew Moon
#
# To the extent possible under law, the author(s) have dedicated all copyright
# and related neighboring rights to this software to the public domain
# worldwide. This software is distributed without any warranty.
#
# You should have received a copy of the CC0 Public Domain Dedication along
# with this software. If not, see
# <https://creativecommons.org/publicdomain/zero/1.0/>
####################
# Field arithmetic #
####################
class fe:
"""Prime field over 2^255 - 19"""
p = 2**255 - 19
def __init__(self, x):
self.val = x % self.p
# Basic arithmetic operations
def __neg__ (self ): return fe(-self.val )
def __add__ (self, o): return fe( self.val + o.val )
def __sub__ (self, o): return fe( self.val - o.val )
def __mul__ (self, o): return fe((self.val * o.val ) % self.p)
def __truediv__ (self, o): return fe((self.val * o.invert().val) % self.p)
def __floordiv__(self, o): return fe( self.val // o )
def __pow__ (self, s): return fe(pow(self.val, s , self.p))
def invert (self ): return fe(pow(self.val, self.p-2, self.p))
def __eq__(self, other): return self.val % self.p == other.val % self.p
def __ne__(self, other): return self.val % self.p != other.val % self.p
def is_positive(self) : return self.val % self.p <= (p-1) // 2
def is_negative(self) : return self.val % self.p > (p-1) // 2
def abs(self):
if self.is_positive(): return self
else : return -self
def print(self):
"""prints a field element in little endian"""
m = self.val % self.p
for _ in range(32):
print(format(m % 256, '02x'), end='')
m //= 256
if m != 0: raise ValueError('number is too big!!')
print(':')
def print_raw(raw):
"""prints a raw element in little endian"""
for _ in range(32):
print(format(raw % 256, '02x'), end='')
raw //= 256
if raw != 0: raise ValueError('number is too big!!')
print(':')
########################
# Curve25519 constants #
########################
p = fe.p
A = fe(486662)
# B = 1
###############
# Square root #
###############
# Legendre symbol:
# - 0 if n is zero
# - 1 if n is a non-zero square
# - -1 if n is not a square
# We take for granted that n^((p-1)/2) does what we want
def chi (n): return n**((p-1)//2)
def is_square(n): return n == fe(0) or chi(n) == fe(1)
# square root of -1
sqrtm1 = (fe(2)**((p-1) // 4)).abs()
if sqrtm1 * sqrtm1 != fe(-1): raise ValueError('Wrong sqrtm1')
# The square root of n, if n is a square.
#
# Note that p is congruent to 5 modulo 8, so (p+3)/8 is an integer.
# If n is zero, then n^((p+3)/8) is zero (zero is its own square root).
# Otherwise:
# (n^((p+3)/8))^4 = n^((p+3)/2)
# (n^((p+3)/8))^4 = n^((p-1)/2) * n^2
# (n^((p+3)/8))^4 = chi(n) * n^2 -- chi(n) == 1
# (n^((p+3)/8))^4 = n^2 -- because n is a non-zero square
# (n^((p+3)/8))^2 = n or -n
# case n:
# (n^((p+3)/8))^2 = n
# n^((p+3)/8) = sqrt(n) or -sqrt(n)
# case -n:
# (n^((p+3)/8))^2 = -n
# -1 * (n^((p+3)/8))^2 = n
# sqrt(-1) * n^((p+3)/8) = sqrt(n) or -sqrt(n)
#
# We then choose the positive square root, between 0 and (p-1)/2
def sqrt(n):
if not is_square(n) : raise ValueError('Not a square!')
root = n**((p+3) // 8)
if root * root != n: root = (root * sqrtm1)
if root * root != n: raise ValueError('Should be a square!!')
return root.abs()
###########################
# Elligator 2 (reference) #
###########################
# Elligator: Elliptic-curve points indistinguishable from uniform random strings
# by Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange
# 2013
# https://elligator.cr.yp.to/
# Arbitrary non square, typically chosen to minimise computation.
# 2 and sqrt(-1) both work fairly well, but 2 seems to be more popular.
# We stick to 2 for compatibility.
non_square = fe(2)
# Representative to curve point, straight from the paper.
# Unlike the paper, curve coordinates are called (u, v) to follow
# established conventions. Thus, "v" in the paper is called "w" here.
def hash_to_curve(r):
w = -A / (fe(1) + non_square * r**2)
e = chi(w**3 + A*w**2 + w)
u = e*w - (fe(1)-e)*(A//2)
v = -e * sqrt(u**3 + A*u**2 + u)
return (u, v)
# Test whether a point has a representative, straight from the paper.
def can_curve_to_hash(u):
return u != -A and is_square(-non_square * u * (u+A))
# Computes the representative of a point, straight from the paper.
def curve_to_hash(u, v_is_negative):
if not can_curve_to_hash(u):
raise ValueError('cannot curve to hash')
sq1 = sqrt(-u / (non_square * (u+A)))
sq2 = sqrt(-(u+A) / (non_square * u ))
if v_is_negative: return sq2
else : return sq1
#####################
# Elligator2 (fast) #
#####################
# Inverse square root.
# Returns (0 , True ) if x is zero.
# Returns (sqrt(1/x) , True ) if x is non-zero square.
# Returns (sqrt(sqrt(-1)/x), False) if x is not a square.
# We do not guarantee the sign of the square root.
#
# Notes:
# Let quartic = x^((p-1)/4)
#
# x^((p-1)/2) = chi(x)
# quartic^2 = chi(x)
# quartic = sqrt(chi(x))
# quartic = 1 or -1 or sqrt(-1) or -sqrt(-1)
#
# Note that x is a square if quartic is 1 or -1
# There are 4 cases to consider:
#
# if quartic = 1 (x is a square)
# then x^((p-1)/4) = 1
# x^((p-5)/4) * x = 1
# x^((p-5)/4) = 1/x
# x^((p-5)/8) = sqrt(1/x) or -sqrt(1/x)
#
# if quartic = -1 (x is a square)
# then x^((p-1)/4) = -1
# x^((p-5)/4) * x = -1
# x^((p-5)/4) = -1/x
# x^((p-5)/8) = sqrt(-1) / sqrt(x)
# x^((p-5)/8) * sqrt(-1) = sqrt(-1)^2 / sqrt(x)
# x^((p-5)/8) * sqrt(-1) = -1/sqrt(x)
# x^((p-5)/8) * sqrt(-1) = -sqrt(1/x) or sqrt(1/x)
#
# if quartic = sqrt(-1) (x is not a square)
# then x^((p-1)/4) = sqrt(-1)
# x^((p-5)/4) * x = sqrt(-1)
# x^((p-5)/4) = sqrt(-1)/x
# x^((p-5)/8) = sqrt(sqrt(-1)/x) or -sqrt(sqrt(-1)/x)
#
# Note that the product of two non-squares is always a square:
# For any non-squares a and b, chi(a) = -1 and chi(b) = -1.
# Since chi(x) = x^((p-1)/2), chi(a)*chi(b) = chi(a*b) = 1.
# Therefore a*b is a square.
#
# Since sqrt(-1) and x are both non-squares, their product is a
# square, and we can compute their square root.
#
# if quartic = -sqrt(-1) (x is not a square)
# then x^((p-1)/4) = -sqrt(-1)
# x^((p-5)/4) * x = -sqrt(-1)
# x^((p-5)/4) = -sqrt(-1)/x
# x^((p-5)/8) = sqrt(-sqrt(-1)/x)
# x^((p-5)/8) = sqrt( sqrt(-1)/x) * sqrt(-1)
# x^((p-5)/8) * sqrt(-1) = sqrt( sqrt(-1)/x) * sqrt(-1)^2
# x^((p-5)/8) * sqrt(-1) = sqrt( sqrt(-1)/x) * -1
# x^((p-5)/8) * sqrt(-1) = -sqrt(sqrt(-1)/x) or sqrt(sqrt(-1)/x)
def invsqrt(x):
isr = x**((p - 5) // 8)
quartic = x * isr**2
if quartic == fe(-1) or quartic == -sqrtm1:
isr = isr * sqrtm1
is_square = quartic == fe(1) or quartic == fe(-1) or x == fe(0)
return isr, is_square
# From the paper:
# w = -A / (fe(1) + non_square * r^2)
# e = chi(w^3 + A*w^2 + w)
# u = e*w - (fe(1)-e)*(A//2)
# v = -e * sqrt(u^3 + A*u^2 + u)
#
# Note that e is either 0, 1 or -1
# if e = 0
# (u, v) = (0, 0)
# if e = 1
# u = w
# v = -sqrt(u^3 + A*u^2 + u)
# if e = -1
# u = -w - A = w * non_square * r^2
# v = sqrt(u^3 + A*u^2 + u)
#
# Let r1 = non_square * r^2
# Let r2 = 1 + r1
# Note that r2 cannot be zero, -1/non_square is not a square.
# We can (tediously) verify that:
# w^3 + A*w^2 + w = (A^2*r1 - r2^2) * A / r2^3
# Therefore:
# chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3))
# chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3)) * 1
# chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3)) * chi(r2^6)
# chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3) * r2^6)
# chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * A * r2^3)
# Corollary:
# e = 1 if (A^2*r1 - r2^2) * A * r2^3) is a non-zero square
# e = -1 if (A^2*r1 - r2^2) * A * r2^3) is not a square
# Note that w^3 + A*w^2 + w (and therefore e) can never be zero:
# w^3 + A*w^2 + w = w * (w^2 + A*w + 1)
# w^3 + A*w^2 + w = w * (w^2 + A*w + A^2/4 - A^2/4 + 1)
# w^3 + A*w^2 + w = w * (w + A/2)^2 - A^2/4 + 1)
# which is zero only if:
# w = 0 (impossible)
# (w + A/2)^2 = A^2/4 - 1 (impossible, because A^2/4-1 is not a square)
#
# Let isr = invsqrt((A^2*r1 - r2^2) * A * r2^3)
# isr = sqrt(1 / ((A^2*r1 - r2^2) * A * r2^3)) if e = 1
# isr = strt(sqrt(-1) / ((A^2*r1 - r2^2) * A * r2^3)) if e = -1
#
# if e = 1
# let u1 = -A * (A^2*r1 - r2^2) * A * r2^2 * isr^2
# u1 = w
# u1 = u
# let v1 = -(A^2*r1 - r2^2) * A * isr
# v1 = -sqrt((A^2*r1 - r2^2) * A / r2^3)
# v1 = -sqrt(w^3 + A*w^2 + w)
# v1 = -sqrt(u^3 + A*u^2 + u) (because u = w)
# v1 = v
#
# if e = -1
# let ufactor = -non_square * sqrt(-1) * r^2
# let vfactor = sqrt(ufactor)
# let u2 = -A * (A^2*r1 - r2^2) * A * r2^2 * isr^2 * ufactor
# u2 = w * -1 * -non_square * r^2
# u2 = w * non_square * r^2
# u2 = u
# let v2 = (A^2*r1 - r2^2) * A * isr * vfactor
# v2 = sqrt(non_square * r^2 * (A^2*r1 - r2^2) * A / r2^3)
# v2 = sqrt(non_square * r^2 * (w^3 + A*w^2 + w))
# v2 = sqrt(non_square * r^2 * w * (w^2 + A*w + 1))
# v2 = sqrt(u (w^2 + A*w + 1))
# v2 = sqrt(u ((-u-A)^2 + A*(-u-A) + 1))
# v2 = sqrt(u (u^2 + A^2 + 2*A*u - A*u -A^2) + 1))
# v2 = sqrt(u (u^2 + A*u + 1))
# v2 = sqrt(u^3 + A*u^2 + u)
# v2 = v
ufactor = -non_square * sqrtm1
vfactor = sqrt(ufactor)
def fast_hash_to_curve(r):
t1 = r**2 * non_square # r1
u = t1 + fe(1) # r2
t2 = u**2
t3 = (A**2 * t1 - t2) * A # numerator
t1 = t2 * u # denominator
t1, is_square = invsqrt(t3 * t1)
u = r**2 * ufactor
v = r * vfactor
if is_square: u = fe(1)
if is_square: v = fe(1)
v = v * t3 * t1
t1 = t1**2
u = u * -A * t3 * t2 * t1
if is_square != v.is_negative(): # XOR
v = -v
return (u, v)
# From the paper:
# Let sq = -non_square * u * (u+A)
# if sq is not a square, or u = -A, there is no mapping
# Assuming there is a mapping:
# if v is positive: r = sqrt(-u / (non_square * (u+A)))
# if v is negative: r = sqrt(-(u+A) / (non_square * u ))
#
# We compute isr = invsqrt(-non_square * u * (u+A))
# if it wasn't a square, abort.
# else, isr = sqrt(-1 / (non_square * u * (u+A))
#
# If v is positive, we return isr * u:
# isr * u = sqrt(-1 / (non_square * u * (u+A)) * u
# isr * u = sqrt(-u / (non_square * (u+A))
#
# If v is negative, we return isr * (u+A):
# isr * (u+A) = sqrt(-1 / (non_square * u * (u+A)) * (u+A)
# isr * (u+A) = sqrt(-(u+A) / (non_square * u)
def fast_curve_to_hash(u, v_is_negative):
t = u + A
r = -non_square * u * t
isr, is_square = invsqrt(r)
if not is_square:
return None
if v_is_negative: u = t
r = u * isr
r = r.abs()
return r