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ABSTRACT

The IARALI Traffic4Cast challenge aims at predicting future traffic at the scale of whole cities. The
competitions held in past years have shown that U-Net models perform well on this task. In this work,
we point out the advantages in generalization of applying graph neural networks instead of visual
convolutions and propose a U-Net-like model with graph layers. We further specialize existing graph
operations to be sensitive to geographical topology and generalize pooling and upsampling operations
to be applicable to graphs. We finally show that our model generalizes well to unseen cities.

1 Introduction

In this work, we present our results from participating in the Traffic4Cast Challenge 2021. The goal of this competition
is to predict the development of traffic volume and traffic speed up to one hour into the future. This task is challenging
due to the stochastic nature of moving cars and complex spatio-temporal dependencies. The Traffic4Cast challenge
in this year was subdivided into two challenges with a focus on temporal and spatial transfer, respectively. The exact
settings are described in detail in Sec. [2]

Our approach to this problem is inspired by the well-known U-Net architecture [Ronneberger et al.l |2015]], as used
frequently in the scope of the competition. Although U-Net models have shown to perform well, transfer to unseen
cities has been difficult for such convolution-based approaches. Martin et al.| [2020] provided empirical evidence
that graph-based models generalize better to unseen cities as these allow to leverage prior knowledge about the street
network. Thus, instead of relying on visual convolutions (CNN), we apply graph neural networks (GNN) to integrate
local traffic information using a road graph. A drawback of using GNN-based approaches is limited control over the
receptive field. Expansion of the receptive field onto larger areas of the graph requires deeper models, however, it has
been shown by Zhou et al.|[2020] that performance of GNNs drops at a certain depth. We therefore adapted the visual
pooling and upsampling operation in a way that they can account for long-range spatial relations between different
areas in the road graph. To enable reproducibility, the code will be made publicly availableﬂ

2 Challenge Details and Data

The traffic data is given as a two-dimensional heat-map-like image representation of size 495 x 436 pixels with eight
channels. The channels of the pixel values correspond to directional traffic speed and volume information binned into
four discrete directions (north-east, south-east, south-west, and north-west). The data was sampled in a five minute
interval and was gathered from a fleet of probe vehicles. The measurements are mapped onto a pixel grid using GPS
information to represent traffic movies as shown in Fig. [T} Data was collected over two years (2019 and 2020) in ten
different cities around the world. The traffic situation between 2019 and 2020 is subject to temporal shift caused by
the ongoing COVID-19 pandemic which poses a particular challenge for transfer of models. In addition to the traffic
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Figure 1: Sum over 24 consecutive frames (2 hours) of the traffic movies for six different cities on 24.04.2019 starting
at 13:00. The color values are scaled logarithmically for better visibility. Top row are full size images (495 x 436),
white rectangles mark a 8 x 8 windows. Bottom row shows this 8 x 8 windows with travel directions (green arrows).

movies, a road graph was generated from high-resolution images of the respective street network. The nodes in the
graph correspond to pixels that belong to a street and an edge exists between two nodes if the corresponding pixels are
adjacent and belong to a street. Furthermore, static street map images with a resolution similar to the traffic movies are
also included for each city. These street maps are one-channel images, where the pixel intensities roughly correspond to
street size.

Table 1: The different data subsets used in the core and extended challenge.

Subset 2019 2020 Cities

Cl1 training-data training-data Antwerp, Bangkok, Barcelona, Moscow
C2 training-data - Berlin, Chicaco, Istanbul, Melbourne
C3 - testing-data (core) Berlin, Chicaco, Istanbul, Melbourne
C4 testing-data (extended) testing-data (extended) New York, Vienna

This year’s challenge is divided into a core challenge and an extended challenge. The core challenge puts a focus
on temporal generalization regarding the domain shift caused by COVID, while the extended challenge puts a focus
on spatial generalization to unseen cities. Participants were invited to compete in both independently. Four different
subsets are derived from the data (s. Tab. [T) and define the two challenges. Specifically, both challenges are using
the same training dataset (subsets C1 and C2), but different test sets. The evaluation of the core challenge focuses on
generalization from pre-COVID training data of 2019, to the test set C3 recorded during COVID in 2020. The extended
challenge focuses on generalization across cities. Model evaluation for this challenge uses the test set C4 that consists
of data from two cities that were excluded from the training set. The task in both challenges is to predict the traffic 5,
10, 15, 30, 45, and 60 mins into the future.

3 Traffic Prediction

Our architecture is based on the classical U-Net model [?], which originally relies on series of two-dimensional visual
convolutions. Thus, intermediate feature maps depend not only on the traffic data but also on city-specific empty areas
in the traffic movies. As the road graph provides more specific topological information than just a regular pixel grid,
we generalize this model to graphs by applying GNN layers instead of visual convolutions (CNN). As a consequence,
empty areas are excluded from computations. Thereby, these areas cannot affect the downstream latent representations,
which we assume as beneficial for cross-city generalization.

In contrast to CNNs, GNNs cannot capture the geographical topology of a node neighborhood due to the permutation
invariant accumulation functions. For example, a regular GNN cannot distinguish whether a neighboring node lies
to the north or the south. Invariance to geographical topologies seems like a major drawback, as the traffic features
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Figure 2: Left: Overview of the graph-based U-Net architecture. Dotted lines represent skip connections which are
concatenated to the channels at the end; DS denotes downsampling operations; US denotes upsampling operations.
Right: Computations inside a GNN layer. Data flows from left to right, ;, denotes edge subsets, V' denotes the set of
vertices and u denotes the global state vector. Fig. (b) is inspired by Fig. 4 (a) by Battaglia et al. [2018]]. Our changes
to the original full GN Block are highlighted as colored elements. The operations ¢ are functions that can be learnt.
Elements in (a) that contain the GNN Layer (b) are denoted by yellow boxes.

are directional. We propose a straightforward method to mitigate this drawback and specialize a GNN to be sensitive
to these geographical neighborhood topologies (s. Sec. [3.2). As the edges in the road graph only ever connect nodes
that are also adjacent in the image space, the graph diameter (maximum distance between pixels on the graph) is
d > 495 + 436 = 931. A single-layer GNN can explore a 1-hop neighborhood, thus, long-range relations between
nodes could only be exploited using a very deep GNN. However, it has been shown by Zhou et al.|[2020]] that common
GNNs don’t scale well with model depth and tend to oversmooth in such cases. To still allow information exchange
over the whole graph, we include a global state vector in our GNN layers. This vector can be understood as being
adjacent to every node in the graph. Furthermore, we leverage the unique position in the 2D pixel grid of each node, to
design down- and upsampling operations (s. Sec. [3.3), and thus to expand the receptive field of the GNN. Following
the U-Net schematic depicted in Fig. [2a] we arrange these operations in a down- and an upsampling branch that are
additionally connected via skip-connections. The GNNSs in the downsampling branch consist of a single layer, whereas
the GNNss in the upsampling branch consist of two layers. We will first describe the different types of features used in
our layers and then the computations inside the layers.

3.1 Feature Generation

The input to our model is composed of the given road graph and the static street map images. The road graph is
extended by edge feature vectors e;, € E and one global feature vector u. The node features v; € V correspond to the
pixel values of the traffic movies, where the individual frames are concatenated into a single vector per node. Speed
and volume information is scaled down to values between 0 and 1, i.e. divided by 255. To initialize edge features, a
two-layer CNN generates a feature map with eight channels from the normalized static street map S e RthX“’Xl.

This results in an additional set of node features ) and by concatenating sender and receiver nodes from % yield the
edge features

V = CNN(S) (1)
er = [Vsr || Vir], 2
where V4, and v, are the sender and receiver node of edge k, respectively, and - || - denotes concatenation. The global

state is computed by summing up the node features V and scaling them by a constant A = 1 x 107°. This factor
has to be included, as the sum over all nodes can be large and scaling by A showed empirically to produce suitable
numbers. Next, time and weekday information is encoded in t.,. and d..,., respectively, and concatenated to the global
state vector. Time ¢ is encoded as a 2D position on the unit circle, where the 24-hour interval corresponds to one full
revolution and weekday is one-hot encoded.

u = [V tenc(t) || denc(d)]; V=2 Z Vi tenc(t) = [sint || cost] (3)
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Figure 3: The four directed subgraphs that we extracted from the road graph. The graphs only contain edges in the
respective geographical direction. The plots show a fragment of the road graph of Berlin. Blue pixels denote a street,
gray pixels denote no street.

3.2 Graph Layer

As basis of our graph layer, we use the full GN block proposed by [Battaglia et al.| [2018], as shown in Fig. 2b] It is
composed of parameterized update functions ¢ that are applied to update node, edge, and global graph features, as well
as unparameterized functions p that accumulate sets. These functions are implemented as

¢(a17,...,an) :RCLU(HvaiaiW-i-b) 4
p(A) =" a, ®)
a; €A

where ||va, denotes vector concatenation over all input vectors a;, W is the weight matrix and b is the bias vector.
ReLU [Agarap, [2018]] is used as the activation function.

We adapt the full GN block to make the computations sensitive to the local neighborhood topology (adaptations
highlighted in Fig. 2b). Specifically, we split the road graph into four subgraphs g € G. As shown in Fig. [3] the
subgraphs each contain edges directed into one of the four quadrants north-west, north-east, south-east and south-west.
We choose these four subgraphs, as they reflect the partitioning of the directional traffic speed and volume information
as given in the node features. Note that each subgraph uses the same node features. For each subgraph g, separate edge
transformations ¢y compute the updated edge features eg’ i for each edge k in graph g. Then, the updated node features
v are computed by concatenating the edge features of the four subgraphs and for each node v; € V accumulating the
incident edges. Finally, the global state vector is updated using the accumulated node and edge features, as well as the
prior global state vector as inputs. The update functions are

€, x = 05 (€g.ks Vrk, Vak, 1)

e}, = [lvgec €.k & =p"""({erler € Ni}) ©
V; = st (vivégv u) é/ = pe—>u(El>
u/ — ¢u (ll, \_Il’él) ‘—,/ — pv—)u(v/)

where v, and v, are the sender and receiver node of edge k, respectively, and A; denotes the neighborhood of node i.
The outputs of the graph layer are the new state vectors for nodes v/, edges e, and the global features u'.

3.3 Downsampling and Upsampling

While down- and upsampling operations on graphs are not straightforward, in the current setting we can exploit the
topological information that locates nodes in the pixel grid. Thus, existing visual pooling and upsampling methods can
be adapted to work on the street graph. Our downsampling operation directly corresponds to a regular max-pooling
with a kernel size and a stride of 2. Specifically, we partition the set of nodes ) according to their position in the 2D
grid in a way that each partition contains the nodes in a 2 x 2 window and take the feature-wise maximum. Hence, each
partition is condensed into a new node, resulting in a new set of nodes V’. An edge connects two nodes u’ and v/, if any
two nodes in the corresponding pooling windows were connected by an edge. If multiple such connections are present,
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Figure 4: Pooling operation input (left) and output graph (right). Dashed lines show the pooling windows. Black axis
ticks denote pixel position, blue axis ticks denote pooling window position.
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Figure 5: Upsampling strategy used to transform an input graph G; (left; red nodes) into a target graph G (right; blue
nodes). The node features in the upsampled graph are generated via a graph layer using the upsampling graph (middle).
For better visibility, the input graph has been moved by 0.5 in x- and y-direction.

the feature-wise maximum is taken to yield the new edge features. Finally, the new node position corresponds to the 2D
index of the corresponding pooling window. The edge features are updated by taking the feature-wise maximum over
all edges that are mapped onto the same edge ¢’ € E’.

The upsampling operation relies on a given input graph G; and a target graph structure G;. Fig. [3] visualizes our
upsampling method. First, n; zero-initialized nodes are introduced to the input graph, where n; denotes the number of
nodes in G;. Second, the position of input nodes is scaled by a factor of two. Then, we partition the nodes by their
position in the two dimensional space in a way that each partition contains the nodes in a 2 x 2 window, like in the
downsampling case. Next, edges are created by connecting nodes in GG; to all nodes in G that are in the same partition.
This creates an upsampling graph as shown in Fig. [5] (middle), effectively connecting G; with G;. Our adapted GNN is
applied to the upsampling graph to propagate information from G; to GG;. This results in new node features for the
upsampled graph. Note that the GNN uses the same edge partitioning as described in Sec. [3:2] Hence, the operation is
sensitive to the relative neighborhood topology and will therefore produce different values in the receiving nodes, even
if the sending node is the same.

3.4 Training Setup

We train our model for 800k steps on the provided training data on a standard MSE loss using the ADAM optimizer

Kingma and Ba,[2017]. The learning rate schedule contains 2k steps of warm-up. After warm-up, the learning rate is
0.002 and decays from there exponentially at a rate of 0.98 every 100 steps. The minimal learning rate is 0.0002. At
each step, we sample valid starting frames for the seed sequences (model input), which are frames that correspond to a
time between 00:00 and 22:00 o’clock. We take the average over the gradient of 16 successive samples to update the
model parameters. This effectively corresponds to taking a batch size of 16. We submitted the exact same model to
both competitions. Hence, we consider the temporal generalization problem from the core challenge as a kind of spatial
generalization problem as well. This is possible as data from 2020 is included in the training set, just for different cities
than used in the evaluation.
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Figure 6: Prediction (top) and ground truth (bottom) for Berlin on Wed, 20.03.2019 at different times with logarithmic
scale.
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Figure 7: MSE by city (left) and by time (right) on both evaluation sets. Left: Dashed lines denote total MSE over the
full test sets in the left plot. Right: Shaded areas denote the standard deviation; solid lines denote average; dashed lines
denote median.

4 Results

We evaluate our model using two different evaluation datasets. As the challenge test set is not openly available, we split
the dataset and use a portion of the original training data only during model evaluation. The first evaluation set is a
fraction of the training set (=~ 0.4%) selecting specific points in time. Specifically, for each day in April 2019 (30 days),
we sample the seed data at every full hour between 00:00 and 22:00 for each of the eight given cities. Additionally, for
exactly the same samples, we flip the data vertically and horizontally. This means that we flip the static images, as
well as the dynamic traffic movies, and also rearrange the data channels accordingly. This results in a second dataset
(denoted as mirrored) that is used to evaluate spatial generalization to new cities. The evaluation metric corresponds to
the MSE between prediction and target image that are both scaled by 255 to match the original scale of the given data.

Fig. [6] shows predictions and ground truth images for Berlin. The color values are log-scaled.

Fig. [7]shows the MSE by city (left) and the MSE by time (right) for both evaluation sets. The average performance is
also included (left plot; dashed lines). A high variation of performance across cities is observable. Furthermore, our
model consistently performs better than average on the cities Melbourne and Barcelona, but consistently worse on the
cities Istanbul, Moscow and Berlin.



Table 2: Results taken from the competition leaderboard. The numbers correspond to the MSE, i.e. lower is better.
Graph-ResNet BER was trained only on data from Berlin. The best scoring model is not yet published.

Model Competition Relative Score
Temporal Spatiotemporal

Naive Average 53.406 63.14 0.846
Graph-ResNet BER [Martin et al., 2020] 51.714 61.461 0.841

Vanilla U-Net [Ronneberger et al.;,2015] 51.283 - -

Hybrid U-Net (ours) 50.521 60.222 0.839

" Best Scoring Temporal 448422 - -

Best Scoring Spatiotemporal - 59.559 -

The right plot in Fig. [7]shows that samples drawn at different points in time of a day cause variation in performance.
Overall, predictions of samples drawn at nighttime, between 01:00 and 04:00 show a smaller error compared to
predictions of samples drawn during daytime. This is probably due to the overall traffic activity, that is lower at
nighttime. The difference in performance measured on the two evaluation sets is very small, which demonstrates nicely
the ability of the model to generalize to novel spatial situations.

Table 2] shows an excerpt of the leaderboard of the competition. The naive average corresponds to a model that calculates
the average over the input frames and outputs the result for all future frames. Graph-ResNet by [Martin et al.| [2020] was
used as a more sophisticated baseline by the competition hosts. The graph-creation method was changed from using the
dynamic data to build the graph, to using high-resolution street maps. The Graph-ResNet was trained for a single epoch
only on traffic data from Berlin. We ranked seventh place in the core- and fourth place in the extended challenge. In
both, our model outperformed the baselines significantly. A comparison of performance between the two challenges is
difficult, as different cities are used. However, we can compare the score ratio of our model to the baselines (s. relative
score in Tab. [2)). the Graph-ResNet has a relative score of 0.841, whereas our proposed model has 0.839 relative score,
which suggests better spatial generalization.

4.1 Ablation Study and Comparison to Vanilla U-Net

To assess the effectiveness of the directional subgraphing, we train a model that is applied to the complete input graph
instead of the four subgraphs. This is done simply by removing our modifications from the full GN Block. Thereby, the
graph operations become locally permutation invariant, instead of being sensitive to the neighborhood topology. We
refer to this simplified version of our model as Graph U-Net.

Table 3| shows the MSE measured on the evaluation dataset consisting of cities from the training set and on the mirrored
evaluation dataset (denoted as MSE*). It can be observed that our Hybrid U-Net consistently outperforms the Graph
U-Net on the evaluation dataset, whereas the results measured on the mirrored data are very similar for the two models.
To quantify spatial generalization, we compute the ratio between MSE and MSE* (denoted as rel. MSE). A relative
MSE of 1.0 means that the model produces exactly the same error on the mirrored cities as on the known cities. This
would indicate that the performance is not impacted by the flipping of the data which corresponds to perfect spatial
generalization. The average rel. MSE measured for the Graph U-Net is consistently larger compared to the rel. MSE of
our proposed Hybrid U-Net model. This indicates that Graph U-Net generalizes better to new cities than our Hybrid
U-Net model.

Table 3] also shows the results for a vanilla U-Net. The vanilla U-Net consists of 8 consecutive down- and upsampling
blocks, respectively. The MSE measured on the evaluation set is very close to our proposed model, but on average
performs slightly worse. In contrast the MSE* measured on the flipped cities is significantly worse, which is evidence
for worse spatial generalization capabilities. This is further supported by the considerably worse relative MSE found for
the vanilla U-Net.

5 Discussion and Conclusion

The given problems in the traffic forecast challenge have been approached following two different routes. Either using
a visual model to process whole frames of the traffic movies, or using a GNN and process only pixels that actually
depict a road. Intuitively, a graph-based approach is leveraging prior knowledge on the underlying structure of the street
network, which should provide better generalization and transfer. Additionally, areas without a street are excluded from
the graph and therefore don’t explicitly contribute to the prediction. This is intuitively beneficial as these areas don’t
contain traffic information. This principle has already been demonstrated by Martin et al.|[2020]]. But as a drawback, a



Table 3: MSE by city for the proposed Hybrid U-Net model, the Graph U-Net without subgraphing a vanilla U-Net
model. MSE* is measured on the mirrored dataset and rel. MSE is the ratio of MSE and MSE*. A rel. MSE of 1.0 is
reached if MSE = MSE*, which is an indicator for good spatial generalization. Bold numbers denote best performance
on the respective evaluation dataset.

Hybrid UNet Graph UNet Vanilla UNet
MSE MSE*  rel. MSE MSE MSE*  rel. MSE MSE MSE*  rel. MSE

ANTWERP 48.35  49.034 0.986 48.819 49.186 0.993 48.193 50.712 0.95

BANGKOK 39.466 40.338 0.978 39.729  40.045 0.992 39.444 40908 0.964
BARCELONA  28.742 29.502 0.974 28.968 29.284 0.989 28.609 29.663 0.964
BERLIN 87.047 88.41  0.985 87.798 88.388 0.993 86.95 91.068 0.955
CHICAGO 32.147 32.593 0.986 32.451 32.526 0.998 32.228 32939 0.978
ISTANBUL 61.237 62.028 0.987 6198  62.262 0.995 61.588 64.3 0.958
MELBOURNE 25.325 25.74 0.984 25.626 25.709 0.997 25393 26.091 0.973
MOSCOW 89.628 90.587 0.989 90.44  90.855 0.995 89.846 93.752 0.958

“average ¢ 51.493 52279 0985 51976 52282 0994 51531 533679 096

purely graph based approach is losing information on directionality which is crucial for the traffic forecasting challenge
as the data is provided in such a format.

Here, we introduced a U-Net architecture with graph layers that we adapted to be sensitive to the geographical
neighborhood topology by splitting the roadgraph into four directional dependent subgraphs. Furthermore, we utilize
the 2D node position for graph down- and upsampling which effectively expands the receptive field and allows inference
based on a larger portion of the road network. Although we have shown that the approach works in general, we did not
perform extensive hyperparameter tuning, yet. Investigating the difference in performance between the different cities,
refining the proposed up- and downsampling layers and scaling the complexity of the model are promising directions to
explore in future work.
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