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Traffic4Cast - Data Format

● Traffic movies from GPS data recorded in 8 different cities
● Directional speed and volume information

– Directions quantized: NE, SE, SW, NW

directionality of the 
traffic speed and 
volume features

single pixel
feature vector



Traffic4Cast – Graph Data

● Graph data:

– Nodes: Pixel information

– Edges: Traffic flow information

● Challenges of this graph for GNNs

– Long-range interactions (high graph diameter)

– Encoding full Graph requires hierarchical 
representations

Small window of the 
Graph of Bangkok



Traffic4Cast – Graph Data
● Each Pixel: 100x100m

● Forecasting time: 1 hour

● REALLY large Graph, REALLY long node relations
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An Advantage of Graphs over Images?

300m

Empty areas directly 
influence the 
predictions
of a vision-based model
but contain no explicit 
traffic information

Graph-Based models learn 
traffic development based on 
structure and local 
measurements, which seems 
closer to the way streets work



  

Our Approach

● Goal
–  Spatial generalization → Generalize to unseen cities

● Observations
– U-Net models are amongst the best performing models

– Visual convolutions (CNN) have limited spatial generalization capacity, but have shown very effective in 
recent Traffic4Cast challenges on known cities

– Graph neural networks (GNN) generalize well to unseen cities, but have shown not as effective on known 
cities as CNN [1]

● Hypotheses
– CNNs encode traffic and empty spaces, which are city specific 

→ bad impact on generalization to unseen cities?

– GNNs only encode traffic and thus learn traffic flow pattern on the underlying road network

→ This might lead to better generalization to unseen cities

[1] Martin et. al. 2019 [Arxiv 1910.13824]

http://arxiv.org/abs/1910.13824


  

Our Approach: U-Net-style Architecture

● U-Net style model with GNN layers instead of CNN layers

● Downsampling (DS) / Upsampling (US) were adapted to be applicable to graphs

– We leverage the 2D position of the pixels for these operations

– Up- and Downsampling operations increase the receptive field



  

Summary: Graph Operation [2]

[2] Battaglia et. al. 2018 [Arxiv 1806.01261]

1. Edge Update: 2. Node Update: 3. Global State Update:

= 1-Layer MLPs

http://arxiv.org/abs/1806.01261


  

Summary: Graph Operation [1]

[1] Battaglia et. al. 2018 [Arxiv 1806.01261]

1. Edge Update: 2. Node Update: 3. Global State Update:

= 1-Layer MLPs

The global state vector collects 
information from ALL nodes and 
edges:
● Small values → morning traffic
● High values → rush hour 

http://arxiv.org/abs/1806.01261


  

A Problem of Traffic4Cast with GNNs

The provided information is 
partitioned by global 
directionality

CNN 
captures global directionality
→ Fully Permutation Sensitive Kernel

= ≠

GNN
invariant to global directionality
→ Fully Permutation Invariant Kernel

Indistinguishable
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A Problem of Traffic4Cast with GNNs

The provided information is 
partitioned by global 
directionality

CNN 
captures global directionality
→ Fully Permutation Sensitive Kernel

= ≠

GNN
invariant to global directionality
→ Fully Permutation Invariant Kernel

Indistinguishable

Features of Yellow Node

This is intuitively 
problematic for graph-
based models



  

Our Solution: Graph Partitioning

Full Graph

direction-based

subgraphing

To each subset we apply a 
separate edge update layer

And accumulate them in the 
node features depending on the 
subgraph it belongs to

We first split edge set of 
the graph into four 
directional subsets

Resulting Node Vector



  

Our Solution: Graph Partitioning

Full Graph

direction-based

subgraphing

The node update is then 
sensitive to the global 
direction of neighbors

And accumulate them in the 
node features depending on the 
subgraph it belongs to

We first split edge set of 
the graph into four 
directional subsets

Resulting Node Vector



  

Traffic4Cast with GNN + Subgraphing

The provided information is 
partitioned by global 
directionality

CNN 
captures global directionality
→ Fully Permutation Sensitive Kernel

≠ ≠

GNN + Subgraphing
sensitive to global directionality

Features of Yellow Node

Now the node features 
are sensitive to 
neighborhood 
permutations



  

Evaluation

● The focus is on spatial generalization
● Our evaluation setup involves two evaluation datasets to test spatial generalization

– S1: Subset of the original data (Wed 2019-03-20; all cities)

– S2: Vertically and horizontally flipped version of the evaluation set S1

Istanbul from evaluation set 
S1

Istanbul from evaluation set S2

Structure included in the
training set
Traffic data excluded 
from the training set

Structure and traffic data  
are excluded 
from the training set



  

Quantitative Results

The MSE on both evaluation sets is very similar

→ Indicates good spatial generalization



  

Quantitative Results

● What determines the model performance?

– Population Density?

– Squareness of the road network relevant for performance?



  

Quantitative Results



  

Ablations and comparison to Vanilla U-Net

Presented Model
(+ Subgraphing)

Presented Model
(NO Subgraphing)



  

Ablations and comparison to Vanilla U-Net

On four of the ‘known’ cities, U-Net outperforms our model,
the average difference is very small

Presented Model
(+ Subgraphing)

Presented Model
(NO Subgraphing)



  
Hybrid U-Net generalizes better to the unseen flipped cities

Ablations and comparison to Vanilla U-Net

Presented Model
(+ Subgraphing)

Presented Model
(NO Subgraphing)



  

Qualitative ResultsBerlin
Wed , 20.03.2019

Time:              00:00 06:00      12:00  18:00



  

Thank You!
Any Questions?

Code on GitHub: 
https://github.com/LucaHermes/graph-unet-traffic-prediction

Link To the Paper: 
https://rebrand.ly/nobii5z
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