
A Graph-based U-Net Model for Predicting Traffic in
unseen Cities

Traffic4Cast 2021

Authors:
Malte Schilling, Andrew Melnik, Markus Vieth,
Riza Velioglu, Luca Hermes

Traffic4Cast - Data Format

● Traffic movies from GPS data recorded in 8 different cities
● Directional speed and volume information

– Directions quantized: NE, SE, SW, NW

directionality of the
traffic speed and
volume features

single pixel
feature vector

Traffic4Cast – Graph Data

● Graph data:

– Nodes: Pixel information

– Edges: Traffic flow information

● Challenges of this graph for GNNs

– Long-range interactions (high graph diameter)

– Encoding full Graph requires hierarchical
representations

Small window of the
Graph of Bangkok

Traffic4Cast – Graph Data
● Each Pixel: 100x100m

● Forecasting time: 1 hour

● REALLY large Graph, REALLY long node relations

>=
 4

30
 h

op
s

on
 th

e
ro

ad
 g

ra
ph

~4
3

km

~50 km

300m

300m

An Advantage of Graphs over Images?

300m

Empty areas directly
influence the
predictions
of a vision-based model
but contain no explicit
traffic information

Graph-Based models learn
traffic development based on
structure and local
measurements, which seems
closer to the way streets work

Our Approach

● Goal
– Spatial generalization → Generalize to unseen cities

● Observations
– U-Net models are amongst the best performing models

– Visual convolutions (CNN) have limited spatial generalization capacity, but have shown very effective in
recent Traffic4Cast challenges on known cities

– Graph neural networks (GNN) generalize well to unseen cities, but have shown not as effective on known
cities as CNN [1]

● Hypotheses
– CNNs encode traffic and empty spaces, which are city specific

→ bad impact on generalization to unseen cities?

– GNNs only encode traffic and thus learn traffic flow pattern on the underlying road network

→ This might lead to better generalization to unseen cities

[1] Martin et. al. 2019 [Arxiv 1910.13824]

http://arxiv.org/abs/1910.13824

Our Approach: U-Net-style Architecture

● U-Net style model with GNN layers instead of CNN layers

● Downsampling (DS) / Upsampling (US) were adapted to be applicable to graphs

– We leverage the 2D position of the pixels for these operations

– Up- and Downsampling operations increase the receptive field

Summary: Graph Operation [2]

[2] Battaglia et. al. 2018 [Arxiv 1806.01261]

1. Edge Update: 2. Node Update: 3. Global State Update:

= 1-Layer MLPs

http://arxiv.org/abs/1806.01261

Summary: Graph Operation [1]

[1] Battaglia et. al. 2018 [Arxiv 1806.01261]

1. Edge Update: 2. Node Update: 3. Global State Update:

= 1-Layer MLPs

The global state vector collects
information from ALL nodes and
edges:
● Small values → morning traffic
● High values → rush hour

http://arxiv.org/abs/1806.01261

A Problem of Traffic4Cast with GNNs

The provided information is
partitioned by global
directionality

CNN
captures global directionality
→ Fully Permutation Sensitive Kernel

= ≠

GNN
invariant to global directionality
→ Fully Permutation Invariant Kernel

Indistinguishable

A Problem of Traffic4Cast with GNNs

The provided information is
partitioned by global
directionality

CNN
captures global directionality
→ Fully Permutation Sensitive Kernel

= ≠

GNN
invariant to global directionality
→ Fully Permutation Invariant Kernel

Indistinguishable

Features of Yellow Node

A Problem of Traffic4Cast with GNNs

The provided information is
partitioned by global
directionality

CNN
captures global directionality
→ Fully Permutation Sensitive Kernel

= ≠

GNN
invariant to global directionality
→ Fully Permutation Invariant Kernel

Indistinguishable

Features of Yellow Node

This is intuitively
problematic for graph-
based models

Our Solution: Graph Partitioning

Full Graph

direction-based

subgraphing

To each subset we apply a
separate edge update layer

And accumulate them in the
node features depending on the
subgraph it belongs to

We first split edge set of
the graph into four
directional subsets

Resulting Node Vector

Our Solution: Graph Partitioning

Full Graph

direction-based

subgraphing

The node update is then
sensitive to the global
direction of neighbors

And accumulate them in the
node features depending on the
subgraph it belongs to

We first split edge set of
the graph into four
directional subsets

Resulting Node Vector

Traffic4Cast with GNN + Subgraphing

The provided information is
partitioned by global
directionality

CNN
captures global directionality
→ Fully Permutation Sensitive Kernel

≠ ≠

GNN + Subgraphing
sensitive to global directionality

Features of Yellow Node

Now the node features
are sensitive to
neighborhood
permutations

Evaluation

● The focus is on spatial generalization
● Our evaluation setup involves two evaluation datasets to test spatial generalization

– S1: Subset of the original data (Wed 2019-03-20; all cities)

– S2: Vertically and horizontally flipped version of the evaluation set S1

Istanbul from evaluation set
S1

Istanbul from evaluation set S2

Structure included in the
training set
Traffic data excluded
from the training set

Structure and traffic data
are excluded
from the training set

Quantitative Results

The MSE on both evaluation sets is very similar

→ Indicates good spatial generalization

Quantitative Results

● What determines the model performance?

– Population Density?

– Squareness of the road network relevant for performance?

Quantitative Results

Ablations and comparison to Vanilla U-Net

Presented Model
(+ Subgraphing)

Presented Model
(NO Subgraphing)

Ablations and comparison to Vanilla U-Net

On four of the ‘known’ cities, U-Net outperforms our model,
the average difference is very small

Presented Model
(+ Subgraphing)

Presented Model
(NO Subgraphing)

Hybrid U-Net generalizes better to the unseen flipped cities

Ablations and comparison to Vanilla U-Net

Presented Model
(+ Subgraphing)

Presented Model
(NO Subgraphing)

Qualitative ResultsBerlin
Wed , 20.03.2019

Time: 00:00 06:00 12:00 18:00

Thank You!
Any Questions?

Code on GitHub:
https://github.com/LucaHermes/graph-unet-traffic-prediction

Link To the Paper:
https://rebrand.ly/nobii5z

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

