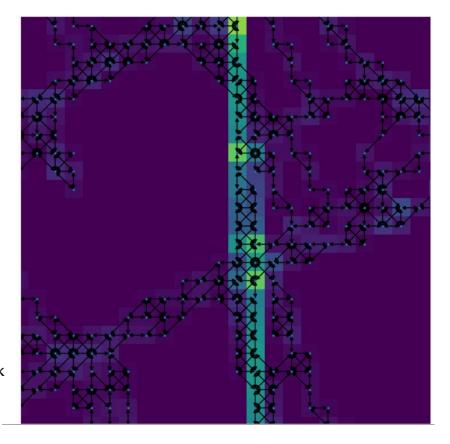

UNIVERSITÄT CITEC datarinja.nrw

Traffic4Cast 2021 A Graph-based U-Net Model for Predicting Traffic in unseen Cities

Authors: Malte Schilling, Andrew Melnik, Markus Vieth, Riza Velioglu, Luca Hermes

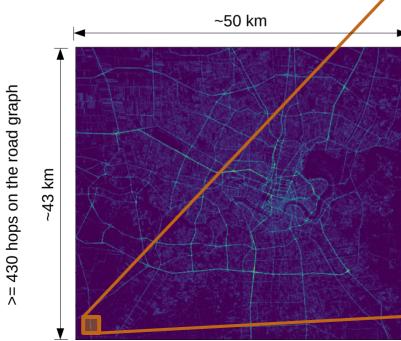
Traffic4Cast - Data Format

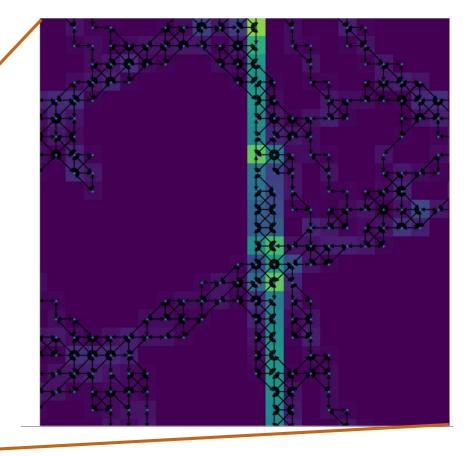
- Traffic movies from GPS data recorded in 8 different cities
- Directional speed and volume information
 - Directions quantized: NE, SE, SW, NW


 $volume_{NW}$ $speed_{NW}$ $volume_{NE}$ $speed_{NE}$ $volume_{SE}$ $speed_{SE}$ $volume_{SW}$ $speed_{SW}$

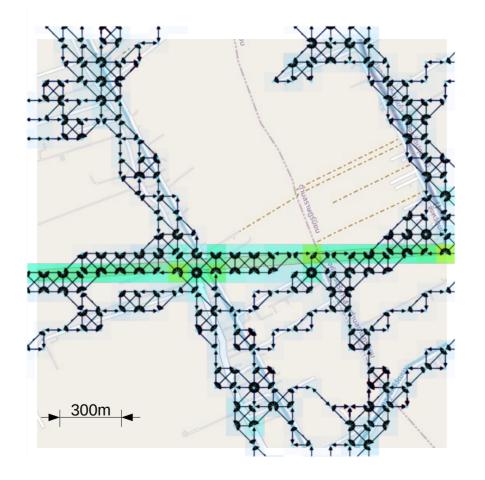
directionality of the traffic speed and volume features single pixel feature vector

Traffic4Cast - Graph Data

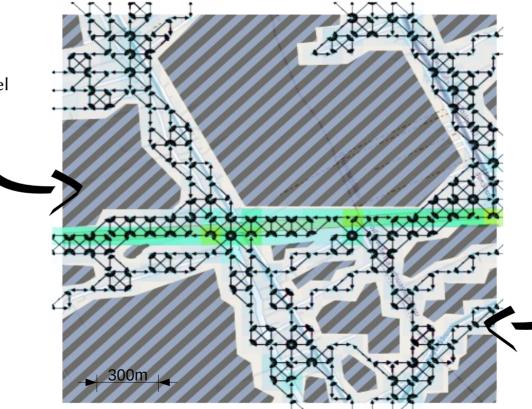

- Graph data:
 - Nodes: Pixel information
 - Edges: Traffic flow information
- Challenges of this graph for GNNs
 - Long-range interactions (high graph diameter)
 - Encoding full Graph requires hierarchical representations


Small window of the Graph of Bangkok




Traffic4Cast – Graph Data

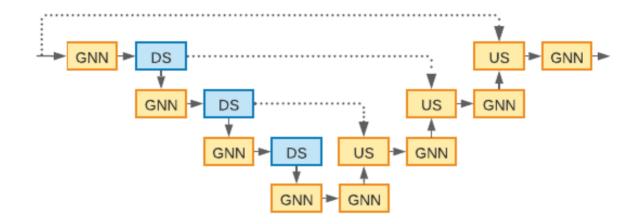
- Each Pixel: 100x100m
- Forecasting time: 1 hour
- REALLY large Graph, REALLY long node relations



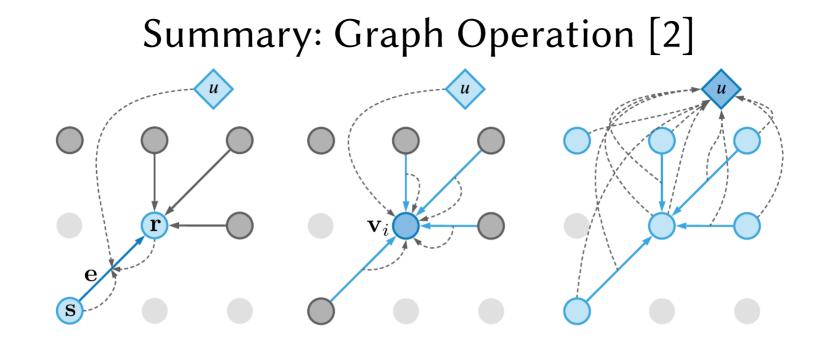
An Advantage of Graphs over Images?

Empty areas directly influence the predictions of a vision-based model but contain no explicit traffic information

Graph-Based models learn traffic development based on structure and local measurements, which seems closer to the way streets work


Our Approach

• Goal


- Spatial generalization \rightarrow Generalize to unseen cities
- Observations
 - U-Net models are amongst the best performing models
 - Visual convolutions (CNN) have limited spatial generalization capacity, but have shown very effective in recent Traffic4Cast challenges on known cities
 - Graph neural networks (GNN) generalize well to unseen cities, but have shown not as effective on known cities as CNN [1]
- Hypotheses
 - CNNs encode traffic and **empty spaces**, which are city specific
 - \rightarrow bad impact on generalization to unseen cities?
 - GNNs only encode traffic and thus learn traffic flow pattern on the underlying road network
 - \rightarrow This might lead to better generalization to unseen cities

[1] Martin et. al. 2019 [Arxiv 1910.13824]

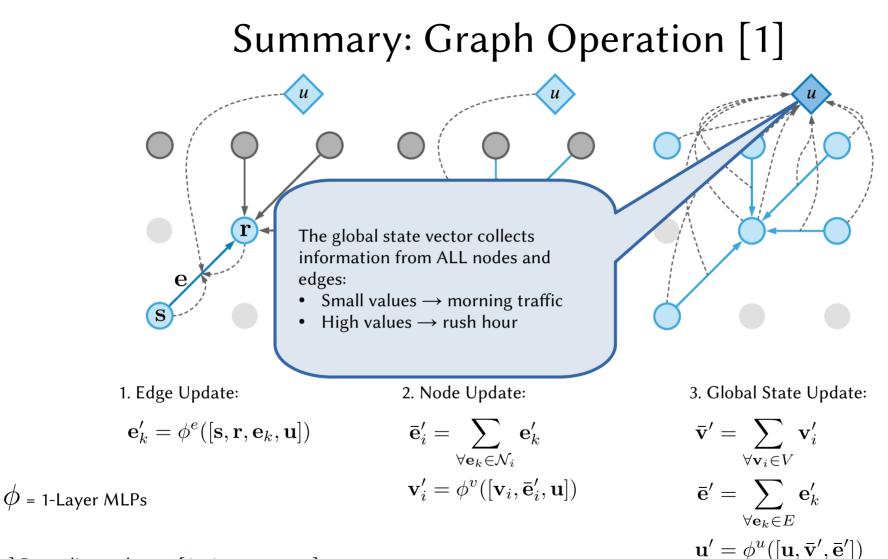
Our Approach: U-Net-style Architecture

- U-Net style model with GNN layers instead of CNN layers
- Downsampling (DS) / Upsampling (US) were adapted to be applicable to graphs
 - We leverage the **2D position of the pixels** for these operations
 - Up- and Downsampling operations increase the receptive field

1. Edge Update:

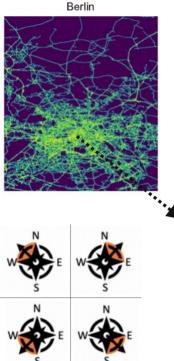
 $\mathbf{e}'_k = \phi^e([\mathbf{s}, \mathbf{r}, \mathbf{e}_k, \mathbf{u}])$

 ϕ = 1-Layer MLPs


[2] Battaglia et. al. 2018 [Arxiv 1806.01261]

2. Node Update:

$$ar{\mathbf{e}}_i' = \sum_{orall \mathbf{e}_k \in \mathcal{N}_i} \mathbf{e}_k'$$
 $\mathbf{v}_i' = \phi^v([\mathbf{v}_i, ar{\mathbf{e}}_i', \mathbf{u}])$

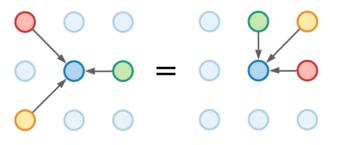

3. Global State Update:

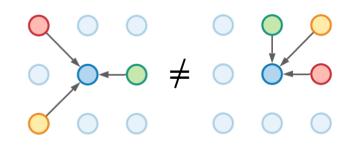
$$\bar{\mathbf{v}}' = \sum_{\forall \mathbf{v}_i \in V} \mathbf{v}'_i$$
$$\bar{\mathbf{e}}' = \sum_{\forall \mathbf{e}_k \in E} \mathbf{e}'_k$$
$$\mathbf{u}' = \phi^u([\mathbf{u}, \bar{\mathbf{v}}', \bar{\mathbf{e}}']$$

[1] Battaglia et. al. 2018 [Arxiv 1806.01261]

A Problem of Traffic4Cast with GNNs

 $\begin{bmatrix} \text{volume}_{NW} \\ \text{speed}_{NW} \\ \text{volume}_{NE} \\ \text{speed}_{NE} \\ \text{volume}_{SE} \\ \text{speed}_{SE} \\ \text{volume}_{SW} \\ \text{speed}_{SW} \end{bmatrix}$


The provided information is **partitioned by global directionality**

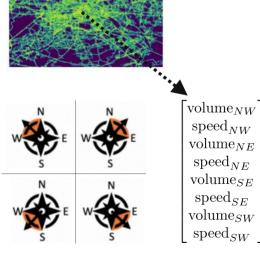

GNN

invariant to global directionality → Fully **Permutation Invariant** Kernel CNN

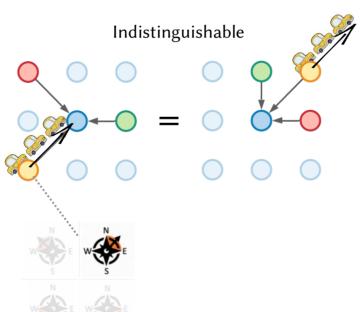
captures global directionality → Fully **Permutation Sensitive** Kernel

Indistinguishable

A Problem of Traffic4Cast with GNNs

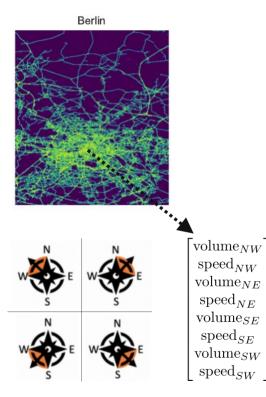


GNN

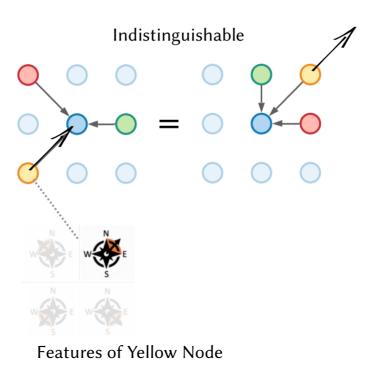

invariant to global directionality → Fully **Permutation Invariant** Kernel

CNN

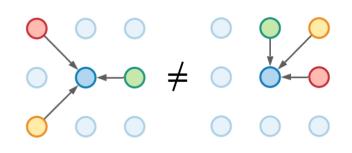
captures global directionality \rightarrow Fully **Permutation Sensitive** Kernel



The provided information is **partitioned by global directionality**

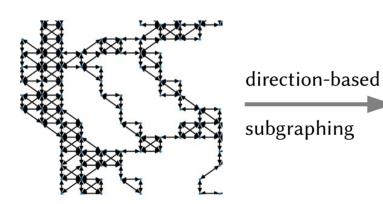

Features of Yellow Node

A Problem of Traffic4Cast with GNNs

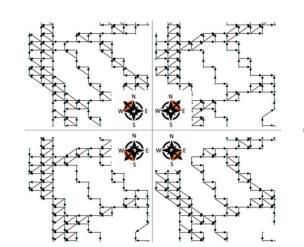


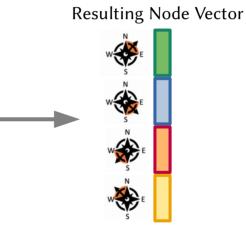
The provided information is partitioned by global directionality

GNN invariant to global directionality → Fully **Permutation Invariant** Kernel


CNN captures global directionality → Fully **Permutation Sensitive** Kernel

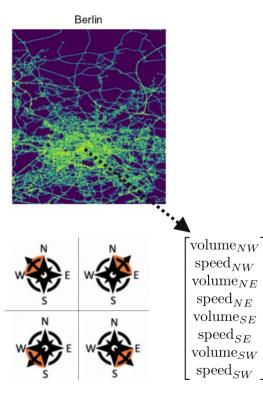
This is intuitively problematic for graphbased models


Our Solution: Graph Partitioning

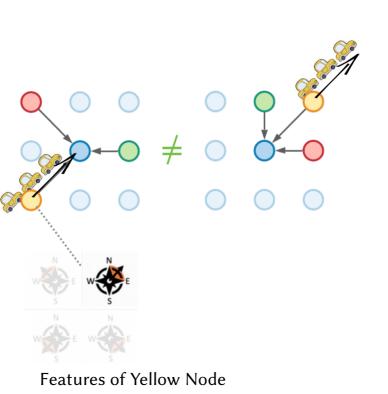

Full Graph

We first split edge set of the graph into four directional subsets To each subset we apply a separate edge update layer

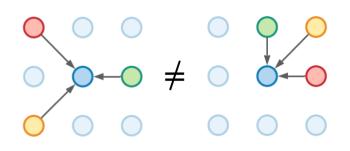
And accumulate them in the node features depending on the subgraph it belongs to


Our Solution: Graph Partitioning

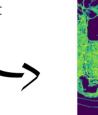
Full Graph direction-based subgraphing direction-based subgraphing

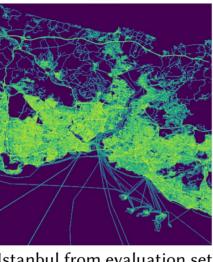

We first split edge set of the graph into four directional subsets The node update is then sensitive to the global direction of neighbors

And accumulate them in the node features depending on the subgraph it belongs to


Traffic4Cast with GNN + Subgraphing

The provided information is partitioned by global directionality GNN + Subgraphing sensitive to global directionality


CNN captures global directionality → Fully **Permutation Sensitive** Kernel



Now the node features are sensitive to neighborhood permutations

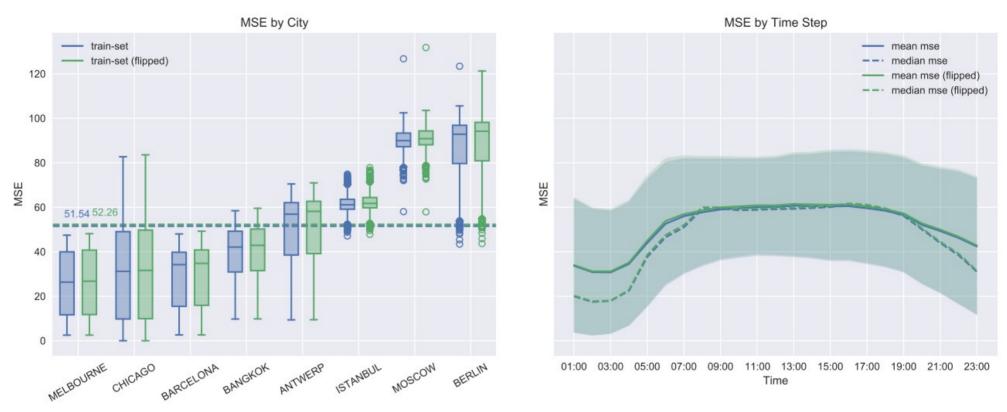
Evaluation

Structure included in the training set Traffic data excluded from the training set

Istanbul

Istanbul from evaluation set **S1**

Structure and traffic data are excluded from the training set



Istanbul from evaluation set S2

- The focus is on **spatial generalization** •
- Our evaluation setup involves two evaluation datasets to test spatial generalization •
 - S1: Subset of the original data (Wed 2019-03-20; all cities)
 - S2: Vertically and horizontally flipped version of the evaluation set S1

Quantitative Results

The MSE on both evaluation sets is very similar \rightarrow Indicates good spatial generalization

Quantitative Results

- What determines the model performance?
 - Population Density?

elbourne

Melbourne

th Wharf wirw

uth Melbourne

Albert Park Middle Park

St Kilda West

Fitzro

Abbotsford

Richmond

Prahran

Cremorne

outh Yarra

Burnley

Toorak Ko

Armadale

Haw

- *Squareness* of the road network relevant for performance?

Chicago


Near South

Antwerpen

Barcelona

N113

Ablations and comparison to Vanilla U-Net

	Presented Model (+ Subgraphing) \$\sqrt{}\$				Presented Model (NO Subgraphing) V						
	Hybrid UNet				Graph UNet			Vanilla UNet			
	MSE	MSE*	rel. MSE	MSE	MSE*	rel. MSE	MSE	MSE*	rel. MSE		
ANTWERP	48.35	49.034	0.986	48.819	49.186	0.993	48.193	50.712	0.95		
BANGKOK	39.466	40.338	0.978	39.729	40.045	0.992	39.444	40.908	0.964		
BARCELONA	28.742	29.502	0.974	28.968	29.284	0.989	28.609	29.663	0.964		
BERLIN	87.047	88.41	0.985	87.798	88.388	0.993	86.95	91.068	0.955		
CHICAGO	32.147	32.593	0.986	32.451	32.526	0.998	32.228	32.939	0.978		
ISTANBUL	61.237	62.028	0.987	61.98	62.262	0.995	61.588	64.3	0.958		
MELBOURNE	25.325	25.74	0.984	25.626	25.709	0.997	25.393	26.091	0.973		
MOSCOW	89.628	90.587	0.989	90.44	90.855	0.995	89.846	93.752	0.958		
average	51.493	52.279	0.985	51.976	$\bar{52.282}$	0.994	51.531	53.679	0.96		

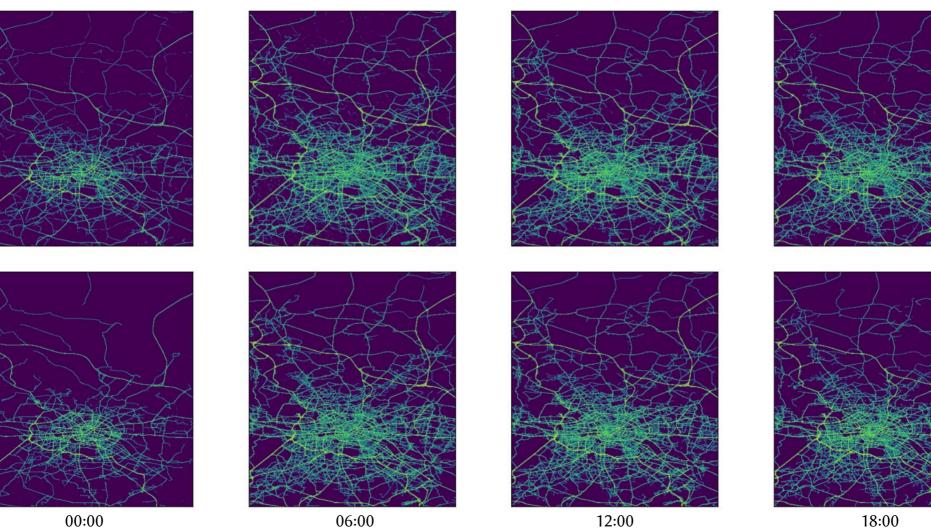
Ablations and comparison to Vanilla U-Net

	Presented Model (+ Subgraphing) ↓				Presented Model (NO Subgraphing) ↓					
	Hybrid UNet				Graph UNet			Vanilla UNet		
	MSE	MSE*	rel. MSE	MSE	MSE*	rel. MSE	MSE	MSE*	rel. MSE	
ANTWERP	48.35	49.034	0.986	48.819	49.186	0.993	48.193	50.712	0.95	
BANGKOK	39.466	40.338	0.978	39.729	40.045	0.992	39.444	40.908	0.964	
BARCELONA	28.742	29.502	0.974	28.968	29.284	0.989	28.609	29.663	0.964	
BERLIN	87.047	88.41	0.985	87.798	88.388	0.993	86.95	91.068	0.955	
CHICAGO	32.147	32.593	0.986	32.451	32.526	0.998	32.228	32.939	0.978	
ISTANBUL	61.237	62.028	0.987	61.98	62.262	0.995	61.588	64.3	0.958	
MELBOURNE	25.325	25.74	0.984	25.626	25.709	0.997	25.393	26.091	0.973	
MOSCOW	89.628	90.587	0.989	90.44	90.855	0.995	89.846	93.752	0.958	
average	51.493	52.279	0.985	- 51.976	$\bar{52.282}$	0.994	51.531	53.679	0.96	

On four of the 'known' cities, U-Net outperforms our model, the average difference is very small

Ablations and comparison to Vanilla U-Net

	Presented Model (+ Subgraphing) \[Presented Model (NO Subgraphing) ↓						
	Hybrid UNet				Graph UNet			Vanilla UNet		
	MSE	MSE*	rel. MSE	MSE	MSE*	rel. MSE	MSE	MSE*	rel. MSE	
ANTWERP	48.35	49.034	0.986	48.819	49.186	0.993	48.193	50.712	0.95	
BANGKOK	39.466	40.338	0.978	39.729	40.045	0.992	39.444	40.908	0.964	
BARCELONA	28.742	29.502	0.974	28.968	29.284	0.989	28.609	29.663	0.964	
BERLIN	87.047	88.41	0.985	87.798	88.388	0.993	86.95	91.068	0.955	
CHICAGO	32.147	32.593	0.986	32.451	32.526	0.998	32.228	32.939	0.978	
ISTANBUL	61.237	62.028	0.987	61.98	62.262	0.995	61.588	64.3	0.958	
MELBOURNE	25.325	25.74	0.984	25.626	25.709	0.997	25.393	26.091	0.973	
MOSCOW	89.628	90.587	0.989	90.44	90.855	0.995	89.846	93.752	0.958	
average	51.493	52.279	0.985	51.976	$\bar{52.282}$	0.994	51.531	53.679	0.96	


Hybrid U-Net generalizes better to the unseen flipped cities

Berlin Wed , 20.03.2019

Prediction

Ground Truth

Qualitative Results

Time: 00:00 06:00

12:00

Thank You!

Any Questions?

Antwerpen

Barcelona

N113

Code on GitHub: https://github.com/LucaHermes/graph-unet-traffic-prediction

Link To the Paper: https://rebrand.ly/nobii5z

Kew-

Hawthorn

Toorak Kooyong

Armadale

Hay

elbourne

th Wharf

uth Melbourne

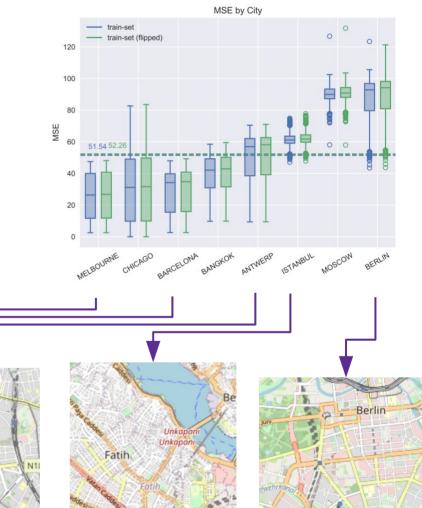
Albert Park Middle Park

St Kilda West

Melbourne.

Fitzroy

Abbotsford


Richmond

Prabran

Cremorne

outh Yarra

Burnley

Istanbul