Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.

README.md

Travis build status Codecov test coverage CRAN status

tidycode

The goal of tidycode is to allow users to analyze R expressions in a tidy way.

Installation

You can install tidycode from CRAN with:

install.packages("tidycode")

You can install the development version of tidycode from github with:

# install.packages("remotes")
remotes::install_github("LucyMcGowan/tidycode")

Example

Read in existing code

Using the matahari package, we can read in existing code, either as a string or a file, and turn it into a matahari tibble using matahari::dance_recital().

code <- "
library(broom)
library(glue)
m <- lm(mpg ~ am, data = mtcars)
t <- tidy(m)
glue_data(t, 'The point estimate for term {term} is {estimate}.')
"

m <- matahari::dance_recital(code)

Alternatively, you may already have a matahari tibble that was recorded during an R session.

Load the tidycode library.

library(tidycode)

We can use the expressions from this matahari tibble to extract the names of the packages included.

(pkg_names <- ls_packages(m$expr))
#> [1] "broom" "glue"

Create a data frame of your expressions, splitting each into individual functions.

u <- unnest_calls(m, expr)

Add in the function classifications!

u %>%
  dplyr::inner_join(
    get_classifications("crowdsource", include_duplicates = FALSE)
    )
#> Joining, by = "func"
#> # A tibble: 8 x 8
#>   value      error  output   warnings messages func   args   classification
#>   <list>     <list> <list>   <list>   <list>   <chr>  <list> <chr>         
#> 1 <chr [8]>  <NULL> <chr [1… <chr [1… <chr [0… libra… <list… setup         
#> 2 <chr [9]>  <NULL> <chr [1… <chr [1… <chr [0… libra… <list… setup         
#> 3 <lm>       <NULL> <chr [1… <chr [0… <chr [0… <-     <list… data cleaning 
#> 4 <lm>       <NULL> <chr [1… <chr [0… <chr [0… lm     <list… modeling      
#> 5 <lm>       <NULL> <chr [1… <chr [0… <chr [0… ~      <list… modeling      
#> 6 <tibble [… <NULL> <chr [1… <chr [0… <chr [0… <-     <list… data cleaning 
#> 7 <tibble [… <NULL> <chr [1… <chr [0… <chr [0… tidy   <list… modeling      
#> 8 <glue>     <NULL> <chr [1… <chr [0… <chr [0… glue_… <list… communication

We can also remove a list of “stopwords”. We have a function, get_stopfuncs() that lists common “stopwords”, frequently used operators, like %>% and +.

u %>%
  dplyr::inner_join(
    get_classifications("crowdsource", include_duplicates = FALSE)
    ) %>%
  dplyr::anti_join(get_stopfuncs()) %>%
  dplyr::select(func, classification)
#> Joining, by = "func"
#> Joining, by = "func"
#> # A tibble: 5 x 2
#>   func      classification
#>   <chr>     <chr>         
#> 1 library   setup         
#> 2 library   setup         
#> 3 lm        modeling      
#> 4 tidy      modeling      
#> 5 glue_data communication

About

No description, website, or topics provided.

Resources

License

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages

You can’t perform that action at this time.