
archupgrade.md 2024-04-29

1 / 6

This document proposes a initial reference implementation of archupgrade, a software package that aims

to provide reliable, predictable versioning upgrades for Arch Linux-based distributions

1. Overview

archupgrade system requirements

For system builders:

A build system using archupgrade to perform image-based, read-only system image preparation

for use in deployment should not include archupgrade in the final image. Upgrades should be

handled by the builder's choice of version control/imaging solution.

For client systems:

A system that will be using archupgrade to mandate system updates shall not have any user-

accessible means of installing packages into system repositories by default. This is, by design, so

that the system states remain deterministic before and after an update is executed.

Any such utilities that the user expects shall be symlinked towards the archupgrade binary. This is

so archupgrade can inform the user appropriately when there is an attempt to execute such an

utility.

archupgrade specification requirements

A specification for archupgrade shall includes every single packages that will be installed on a

given system. Do not assume any set of base packages will be available or will be installed as

dependancies

A specification for archupgrade should contain multiple phases, when applicable. After installation

of any given phase, the system being services should remain fully-functional, minimizing the

possiblity of an unexpected error during the following phases causing complete system failures.

archupgrade implementations specfics

An implementation of archupgrade should be able to be executed without using any system-

dependant libraries, ie. the implementation's binary should have all of its dependencies statically

linked.

An implementation of archupgrade shall be able to parse every part of a given specification, unless

said part is marked as "optional"

2. Specification file format

We propose using a machine-parsable format like json or yaml for the specification file format, which shall

specifies as follows:

archupgrade.md 2024-04-29

2 / 6

Versioning

A specification shall declare a version of the specification file format. This is required in order to enforce a

minimum version for any given implementation that shall be used in order to apply said specification

successfully.

The versioning should follow Semantic Versioning. For example:

version: '0.0.1-alpha'

Nesting specifications

A specification may choose to include other specifications as part of itself. This mechanism allows more

modularity and reusability between different shipping configurations.

This is implemented as an array

includes:
 - path/to/specification.yml

Specifications specifics

A specification may nests any arbitrary amount of other specifications. Each nested specifications

may also themselves nests more specifications.

A nested specification shall always be executed before its host.

If multiple sub-specifications nests the same specification file, ie.

main.yml
includes:
 - specification_a.yml
 - specification_b.yml
specification_a.yml
includes:
 - specification_c.yml
specification_b.yml
includes:
 - specification_c.yml

said nested specifications shall only get executed once at the point where they are first imported (in this

example, it gets executed as part of specification_a)

Implementation specifics

An implementation shall execute every nested specifications in the order that they are imported in

https://semver.org/

archupgrade.md 2024-04-29

3 / 6

An implementation shall attempt to detect and abort if nesting loops are detected in nested

specifications.

Package installation and configurations

An upgrade as specified by archupgrade shall run in multiple phases to account for any inconsistencies

that may arise from upgrading from older package revisions. For example, it should handle anything on the

Arch Linux News that would normally requires manual intervention (for example, JDK 21).

While not required, it is recommended that that each phase

For this purpose, we propose the following format:

upgrade:
 phases:
 first:
 backend: libalpm
 message: "Upgrading system libraries..."
 preinstall:
 - some_bash_commands
 - do_some_patching
 packages:
 - package_a:
 url:
'https://archive.archlinux.org/p/package_a.tar.zst'
 hash: 'dQw4w9WgXcQ'
 hash-algorithm: 'sha256'
 - package_b:
 url:
'https://archive.archlinux.org/p/package_b.tar.zst'
 hash: '_xc7tNbjnHM'
 hash-algorithm: 'sha256'
 postinstall:
 - some_more_bash_commands
 - do_some_configurations
 reboot: false
 second:
 backend: libalpm
 message: "Upgrading desktop environment..."
 preinstall:
 - some_bash_commands
 - do_some_patching
 packages:
 - package_c:
 url:
'https://archive.archlinux.org/p/package_c.tar.zst'
 hash: 'dQw4w9WgXcQ'
 hash-algorithm: 'sha256'
 - package_d:
 url:
'https://archive.archlinux.org/p/package_d.tar.zst'
 hash: '_xc7tNbjnHM'

https://archlinux.org/news/
https://archlinux.org/news/incoming-changes-in-jdk-jre-21-packages-may-require-manual-intervention/

archupgrade.md 2024-04-29

4 / 6

 hash-algorithm: 'sha256'
 postinstall:
 - some_more_bash_commands
 - do_some_configurations
 reboot: true

Directives

required-space: Specifies an amount of space that would be necessary on the root directory of

the target system for the upgrade to be performed successfully

phases: Specifies an array of phases that the update shall be performed in, each of which includes:

backend: Specifies the backend that would be used to perform this phase of the upgrade`

message: A message that shall be displayed to the user during the phase of the upgrade

preinstall: An array of shell command that should be run before packages in this phase are

installed

packages: An array of packages that shall be installed on the system. Each package is an

object that specifies

url: A URI to the package archive itself. This may be https:// or file:// for remote

and local archives, respectively.

hash: A hash of the package archive.

hash-algorithm: The algorithm used to generate the package's hash

postinstall: An array of shell command that should be run after packages in this phase are

installed

reboot: A boolean specifying whether or not a system reboot is required before continuing

with the next phase.

Specifications specifics

A single specification shall not have phases with completely matching names.

Packages declared in any given phase shall provide a hash in order to protect the integrity of the

downloaded package.

Implementation specifics

An implementation shall perform installation phases in order that they are specified. Packages within

the same phases may be installed together.

An implementation shall execute the preinstall and postinstall commands in their specific

order before and after package installation, respectively.

archupgrade.md 2024-04-29

5 / 6

An implementation shall display the message as specified by message to the user to indicate the

upgrade progress.

An implementation shall perform hash calculation of the packages after obtaining them from remote

or local sources.

An implementation may attempt to re-download a given package archive which failed verification for

a fixed number of retries. If the amount of retries exceed said fixed amounts, the implementation

shall perform deletion of the archive to prevent accidental reuse.

An implementation shall save its progress in persistent storage, in case of a temporary failure

causing the upgrade process to be restarted.

An implementation should, when possible, use the installed/total package counts along with the

finished/total upgrade phases to provide the user with an approximate progress of installation

An implementation may, when possible, attempt to perform estimations of the user system's state

(eg. required disk space) that may affect the ability to complete an upgrade.

Finalization

After an upgrade is performed by an archupgrade implementation, an optional finalization procedure may

be performed to facilitates any post-upgrade configurations, as well as housekeeping items like cleaning up

package caches or deprecated package removal.

finalize:
 shell:
 - some_shell_command
 file_write:
 - path: /etc/os-release
 content: >
 VERSION="10.0 (Firefly)"
 VERSION_ID=10.0
 VERSION_CODENAME=firefly
 BUILD_ID=20240618
 IMAGE_ID=firefly-shipping-final
 file_remove:
 - /etc/pacman.d/mirrorlist
 clean-caches: true
 reboot: true

Directives

shell: Shell commands that shall be executed after installation has completed

file_write: Files that should be written to the target filesystem after installation

file_remove: Files that should be removed from the target filesystem after installation

archupgrade.md 2024-04-29

6 / 6

clean-caches: Whether or not the implementation should remove the package cache after

installation

reboot: Whether a system reboot shall be issued after installation.

Implementation specifics

An implementation shall run the shell in the order that they appears in.

An implementation shall perform writing and deletion of files in the order that they appears in. If a file

already exist, the implementation shall overwrite said file.

An implementation shall clean the package cache of every backend if they exist and has been in use

when clean-caches is specified.

