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In the context of Bayesian parameter inference, it is common practice to model the error associated
with the observed data as additive Gaussian distributed white noise with zero mean and certain
precision (inverse variance) [1]:

y(t) = g(·) + ε with ε ∼ N (0, p−1), (1)

where y(t) is the observed data, g(·) the observation function, ε the Gaussian distributed measure-
ment error and p its precision. In a fully Bayesian treatment of all parameters, this precision is
often modelled as being Gamma distributed with shape and rate parameters a and b, respectively.

p ∼ Ga(a, b) for a, b > 0 (2)

a and b are so called hyperparameters of p and are used to define its prior distribution. They are
updated during parameter inference and subsequently also define the posterior distribution of p.
The use of a Gamma distribution over p is justified by the fact that like the precision, the Gamma
distribution is defined over positive values only. It furthermore forms a conjugate prior to the
Gaussian distributed likelihood, therefore leading to analytically tractable posterior distributions
and update rules [1, 2]. An example of this approach can be found in a variational Bayesian method
for the identification stochastic nonlinear models [1, 3].
The prior for p is often chosen to be weak and uninformative [4]. However, in a number of practical
applications, the collection of data is a known process and information on the measurement error
ε can be found in literature. Here, it is common practice to quantify the measurement error in
the form of e.g. a mean absolute deviation, a mean absolute relative deviation or a coefficient of
variation. All of these quantities typically provide information on the standard deviation of ε, not
its precision p. This leads to two important questions:
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• How can the posterior distribution of p be interpreted in the context of the information on
the measurement error found in literature?

• How can we characterize the prior distribution over p based on the information on the mea-
surement error?

In this work we answer those questions by presenting a method for relating a Gamma distributed
precision parameter to the associated standard deviation by utilizing the inferred hyperparameters
a and b.

The Gamma distribution over p is defined by the following probability density function (PDF) of
shape and rate parameters a and b, respectively [5].

fp(p|a, b) =
ba

Γ(a)
pa−1 exp(−pb) for p > 0, (3)

where Γ(·) is the Gamma function. The standard deviation s of the measurement error ε and its
precision p are related as follows:

s =
1
√
p

(4)

In order to determine the distribution of s from the distribution of p using relationship (4), we can
use the following theorem [5].
If fx is a PDF over the random variable x and we assume the mapping of y = h(x), the PDF over
the random variable y is given by:

fy(y) = fx(h−1(y))

∣∣∣∣dh−1(y)

dy

∣∣∣∣ (5)

If we define s = h(p) = 1/
√
p from (4) and therefore h−1(s) = 1/s2, we can use (5) to determine

the PDF fs over s as follows:

fs(s|a, b) = fp(
1

s2
|a, b)

∣∣∣∣ dds 1

s2

∣∣∣∣
=

ba

Γ(a)

(
1

s2

)a−1

exp

(
− b

s2

)
2

s3

=
2ba

Γ(a)
s−2a−1 exp

(
− b

s2

) (6)

This new probability distribution can be characterized by the following expression for the mean µs
and the standard deviation σs, valid for a > 1:

µs = E[s]fs =
√
b
Γ(a− 1

2)

Γ(a)
, (7)

σ2s = E[s2]fs − E[s]2fs = b

[
1

a− 1
−

Γ(a− 1
2)2

Γ(a)2

]
, (8)
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where E[s]fs is the expected value of s with respect to fs. The mode of this new PDF over s can
be specified as well for a > 1:

ms =

√
2b

1 + 2a
(9)

An example of the PDFs for fp and fs is displayed in Figure 1.

Figure 1: Examples of the two PDFs of fp and fs for a = b = 2. The dashed vertical lines display
the values of the respective means.

In order to facilitate the numerical calculation of these values, it is helpful to use the natural
logarithm of the Gamma function ln Γ(·) instead of the fast growing Gamma function itself. This
alters expressions (7) and (8) as follows:

µs =
√
b exp

[
ln Γ(a− 1

2
)− ln Γ(a)

]
(10)

σ2s = b

[
1

a− 1
− exp

[
ln Γ(a− 1

2
)2 − ln Γ(a)2

]]
(11)

These expressions are the answer to the first question and provide a straightforward way of cal-
culating the sufficient statistics of the inferred measurement error standard deviation s from the
hyperparameters a and b.

This leaves us to find the answer to the second question, which poses the inverse problem of finding
the values for a0 and b0, given µs and σs for the definition of a prior distribution for the precision
p.
For that system of equations defined by (10) and (11) have to solved for a and b, respectively. We
start by introducing the substitution:
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S(a) =
Γ(a− 1

2)2

Γ(a)2
= exp

[
ln Γ(a− 1

2
)2 − ln Γ(a)2

]
, (12)

followed by the combination and reformulation of (10) and (11) into the following expression:

D(a) =
µ2s
S(a)

− σ2s
1

a− 1
− S(a)

(13)

It is now possible to find a0 by solving the equation D(a0) = 0 and subsequently finding b0 using
the following expression:

b0 =
µ2s

S(a0)
(14)

To the author’s knowledge, there is no exact analytical solution for a0. However we can find a
numerical approximation by reformulation this problem into a constrained optimization task:

a0 = min
a

ln
[
D(a)2 + 1

]
for a > 1 (15)

The natural logarithm facilitates numerical calculations as the values of D(a)2 grow rapidly as a
increases. The square operation and subtraction of one within the logarithm ensures a minimum
at D(a0) = 0 and also ln

[
D(a0)

2 + 1
]

= 0. Examples of the function ln
[
D(a)2 + 1

]
for different

values of µs and σs are displayed in Figure 2.

Figure 2: Examples of the function ln
[
D(a)2 + 1

]
for different values of µs and σs. In the left

figure, the ratios between µs and σs are kept constant, leading to the same minimum.

In order to solve this constraint minimization problem, an algorithm based on a interior-point
approach was used. In our case the was constraint to a search space a > 1. In order to set an initial
value based on the given parameters µs and σs the function S(a) in (12) can be approximated with
the first two terms of its power series expansion for a→∞:

Ŝ(a) =
1

a
+

3

4a2
+O

(
1

a

)5/2

(16)
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Using this approximation we can find an exact solution for D(â0) = 0:

â0 =
1

8

1 +

√
49 +

µ4s
σ4s

+ 50
µ2s
σ2s

+
µ2s
σ2s

 (17)

This expression for â0 is subsequently used as a initial value.
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