
1 / 81

MEF Standard

MEF 99

LSO Service Ordering Management API -

Developer Guide

October 2023

2 / 81

Disclaimer

© MEF Forum 2023. All Rights Reserved.

The information in this publication is freely available for reproduction and use by any recipient
and is believed to be accurate as of its publication date. Such information is subject to change
without notice and MEF Forum (MEF) is not responsible for any errors. MEF does not assume
responsibility to update or correct any information in this publication. No representation or
warranty, expressed or implied, is made by MEF concerning the completeness, accuracy, or
applicability of any information contained herein and no liability of any kind shall be assumed by
MEF as a result of reliance upon such information.

The information contained herein is intended to be used without modification by the recipient or
user of this document. MEF is not responsible or liable for any modifications to this document
made by any other party.

The receipt or any use of this document or its contents does not in any way create, by implication
or otherwise:

(a) any express or implied license or right to or under any patent, copyright, trademark or
trade secret rights held or claimed by any MEF member which are or may be associated with
the ideas, techniques, concepts or expressions contained herein; nor

(b) any warranty or representation that any MEF member will announce any product(s)
and/or service(s) related thereto, or if such announcements are made, that such announced
product(s) and/or service(s) embody any or all of the ideas, technologies, or concepts
contained herein; nor

(c) any form of relationship between any MEF member and the recipient or user of this
document.

Implementation or use of specific MEF standards, specifications or recommendations will be
voluntary, and no Member shall be obliged to implement them by virtue of participation in MEF
Forum. MEF is a non-profit international organization to enable the development and worldwide
adoption of agile, assured and orchestrated network services. MEF does not, expressly or
otherwise, endorse or promote any specific products or services.

Copyright

© MEF Forum 2023. Any reproduction of this document, or any portion thereof, shall contain the
following statement: "Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

3 / 81

Table of Contents

List of Contributing Members
1. Abstract
2. Terminology and Abbreviations
3. Compliance Levels
4. Introduction

4.1. Description
4.2. Conventions in the Document
4.3. Relation to Other Documents
4.4. Approach
4.5. High-Level Flow

5. API Description
5.1. High-level Use Cases
5.2. API Endpoints and Operations Summary

5.2.1. SOF Service Ordering API Endpoints
5.2.2. BUS Service Ordering API Endpoints

5.3. Integration of Service Specifications into Service Order Management API
5.4. Sample Service Specification
5.5. Model structure and validation
5.6. Security Considerations

6. API Interactions and Flows
6.1. Use case 1: Create Service Order

6.1.1. Interaction flow
6.1.2. Create Service Order Request
6.1.3. Create Service Order Response
6.1.4. Use Case 1a: Service Order Item to Add Service
6.1.5. Use case 1b: Service Order Item to Modify Existing Service
6.1.6. Use case 1c: Service Order Item to Delete Existing Service
6.1.7. Service Order and Service Order Items State Machine
6.1.8. Specifying Place Details

6.1.8.1. Fielded Address
6.1.8.2. Formatted Address
6.1.8.3. Geographic Point
6.1.8.4. Geographic Address Label
6.1.8.5. Geographic Site Reference
6.1.8.6. Geographic Address Reference

6.2. Use Case 2: Retrieve List of Service Orders
6.3. Use Case 3: Retrieve Service Order by Service Order Identifier
6.4. Use case 4: Register for Notifications
6.5. Use case 5: Send Notification
6.6. Service Lifecycle

4 / 81

7. API Details
7.1. API patterns

7.1.1. Indicating errors
7.1.1.1. Type Error
7.1.1.2. Type Error400
7.1.1.3. enum Error400Code
7.1.1.4. Type Error401
7.1.1.5. enum Error401Code
7.1.1.6. Type Error403
7.1.1.7. enum Error403Code
7.1.1.8. Type Error404
7.1.1.9. Type Error422
7.1.1.10. enum Error422Code
7.1.1.11. Type Error500

7.2. Management API Data model
7.2.1. ServiceOrder

7.2.1.1 Type ServiceOrder_Common
7.2.1.2. Type ServiceOrder_Create
7.2.1.3. Type ServiceOrder
7.2.1.4. enum ServiceOrderStateType
7.2.1.5. Type ServiceOrderRef
7.2.1.6. Type ServiceOrderRelationship

7.2.2. Service Order Item
7.2.2.1 Type ServiceOrderItem_Common
7.2.2.2. Type ServiceOrderItem_Create
7.2.2.3. Type ServiceOrderItem
7.2.2.4. enum ServiceActionType
7.2.2.5. Type ServiceOrderItemRef
7.2.2.6. Type ServiceOrderItemRelationship

7.2.3. Service representation
7.2.3.1. Type ServiceValue
7.2.3.2. Type MefServiceConfiguration
7.2.3.3. Type ServiceRelationship
7.2.3.4. enum ServiceStateType
7.2.3.5. Type ServiceRef

7.2.4. Place representation
7.2.4.1. Type RelatedPlaceRefOrValue
7.2.4.2. Type FieldedAddress
7.2.4.3. Type FieldedAddressValue
7.2.4.4. Type FormattedAddress
7.2.4.5. Type GeographicPoint
7.2.4.6. Type GeographicAddressLabel

5 / 81

7.2.4.7. Type GeographicSubAddress
7.2.4.8. Type GeographicSubAddressUnit
7.2.4.9. Type GeographicAddressRef
7.2.4.10. Type GeographicSiteRef

7.2.5. Notification registration
7.2.5.1. Type EventSubscriptionInput
7.2.5.2. Type EventSubscription

7.2.6. Common
7.2.6.1. Type OrderCoordinatedAction
7.2.6.2. Type OrderItemCoordinatedAction
7.2.6.3. enum OrderItemCoordinationDependencyType
7.2.6.4. Type Note_BusSof
7.2.6.5. Type RelatedContactInformation
7.2.6.6. Type TerminationError
7.2.6.7. enum TimeUnit

7.3. Notification API Data model
7.3.1. Type Event
7.3.2. Type ServiceOrderEvent
7.3.3. Type ServiceOrderEventPayload
7.3.4. enum ServiceOrderEventType

8. References
Appendix A Acknowledgments

6 / 81

List of Contributing Members

The following members of the MEF participated in the development of this document and have
requested to be included in this list.

Member

Amartus

Cisco

Lumen

Verizon

Table 1. Contributing Members

7 / 81

1. Abstract

This standard is intended to assist the implementation of the Application Programming Interfaces
(APIs) for the Service Provisioning function of the Service Orchestration Functionality at the
LSO Legato Interface Reference Point. The Legato Interface Reference Point is defined in the
MEF 55.1 [MEF55.1] at the interface between the Business Application Systems layer and
Service Orchestration Functionality layer.

This standard normatively incorporates the following files by reference as if they were part of this
document from the GitHub repository:

MEF-LSO-Legato-SDK

commit id: 0e83943f529e87c036a083926a1b28a0a3523c5e

serviceApi/order/serviceOrderingManagement.api.yaml

serviceApi/order/serviceOrderingNotification.api.yaml

https://github.com/MEF-GIT/MEF-LSO-Legato-SDK
https://github.com/MEF-GIT/MEF-LSO-Legato-SDK/tree/0e83943f529e87c036a083926a1b28a0a3523c5e
https://github.com/MEF-GIT/MEF-LSO-Legato-SDK/blob/0e83943f529e87c036a083926a1b28a0a3523c5e/serviceApi/order/serviceOrderingManagement.api.yaml
https://github.com/MEF-GIT/MEF-LSO-Legato-SDK/blob/0e83943f529e87c036a083926a1b28a0a3523c5e/serviceApi/order/serviceOrderingNotification.api.yaml

8 / 81

2. Terminology and Abbreviations

This section defines the terms used in this document. In many cases, the normative definitions to
terms are found in other documents. In these cases, the third column is used to provide the
reference that is controlling, in other MEF or external documents.

In addition, terms defined in the following documents are included in this document by reference,
and are not repeated in the tables below.

MEF 55.1, Lifecycle Service Orchestration (LSO): Reference Architecture and Framework
February 2021 [MEF 55.1]

Term Definition Source

API Endpoint

The endpoint of a communication channel (the complete
URL of an API Resource) to which the HTTP-REST
requests are addressed in order to operate on the API
Resource

rapidapi.com
This document

API Resource

A REST Resource. In REST, the primary data
representation is called Resource. In this document, API
Resource is defined as a OAS SchemaObject with
specified API Endpoints

restfulapi.net
This document

Business
Applications

The Service Provider functionality supporting Business
Management Layer functionality

MEF 55.1

OAS
Document

An API description document in the OpenAPI
specification format.

openapis.org

OpenAPI
The OpenAPI 3.0 Specification, formerly known as the
Swagger specification is an API description format for
REST APIs.

spec.openapis.org

Operation
An interaction between the BUS and SOF, potentially
involving multiple back and forth transactions.

This document

SchemaObject
The construct that allows the definition of input and output
data types. These types can represent object classes, as
well as primitives and arrays. specification

spec.openapis.org

https://rapidapi.com/blog/api-glossary/endpoint/
https://restfulapi.net/resource-naming/
https://www.openapis.org/faq/style-guide
http://spec.openapis.org/oas/v3.0.3
http://spec.openapis.org/oas/v3.0.3#schema-object

9 / 81

Term Definition Source

Service
Orchestration
Functionality

The set of service management layer functionality
supporting an agile framework to streamline and automate
the service lifecycle in a sustainable fashion for
coordinated management supporting design, fulfillment,
control, testing, problem management, quality
management, usage measurements, security management,
analytics, and policy-based management capabilities
providing coordinated end-to-end management and control
of Services

MEF 55.1

Table 2. Terminology

Term Definition Source

API
Application Programming Interface. In this document, API is used
synonymously with REST API.

This
document

BUS Business Applications MEF 55.1

IRP Interface Reference Point
This
document

OAS OpenAPI Specification openapis.org

SOF Service Orchestration Functionality MEF 55.1

Table 3. Abbreviations

https://www.openapis.org/faq/style-guide

10 / 81

3. Compliance Levels

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED",
"MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14
(RFC 2119 [RFC 2119], RFC 8174 [RFC8174]) when, and only when, they appear in all capitals,
as shown here. All key words must be in bold text.

Items that are REQUIRED (contain the words MUST or MUST NOT) are labeled as [Rx] for
required. Items that are RECOMMENDED (contain the words SHOULD or SHOULD NOT)
are labeled as [Dx] for desirable. Items that are OPTIONAL (contain the words MAY or
OPTIONAL) are labeled as [Ox] for optional.

A paragraph preceded by [CRa]< specifies a conditional mandatory requirement that MUST be
followed if the condition(s) following the "<" have been met. For example, "[CR1]<[D38]"
indicates that Conditional Mandatory Requirement 1 must be followed if Desirable Requirement
38 has been met. A paragraph preceded by [CDb]< specifies a Conditional Desirable
Requirement that SHOULD be followed if the condition(s) following the "<" have been met. A
paragraph preceded by **[COc]<**specifies a Conditional Optional Requirement that MAY be
followed if the condition(s) following the "<" have been met.

11 / 81

4. Introduction

This standard specification document describes the Application Programming Interface (API) for
Service Order Management functionality of the LSO Legato Interface Reference Point (IRP) as
defined in the MEF 55.1 Lifecycle Service Orchestration (LSO): Reference Architecture and
Framework [MEF55.1]. The LSO Reference Architecture is shown in Figure 1 with the IRP
highlighted.

Figure 1. The LSO Reference Architecture

4.1. Description

This standard is scoped to cover APIs for following Service Orchestration Functionalities:

Service Ordering and Fulfillment
Includes Service Configuration & Activation functions

Service Notification
Includes Event Subscription/Hub and Listener notification functions

Other Service Orchestration Functionalities not addressed in this standard include (but not limited
to):

Service Inventory Management
Service Catalog Management
Service Qualification
Service Activation Testing
Service Problem Management
Service Quality Management
Service Usage measurements and Reporting (in support of billing)
License Management

12 / 81

This document primarily supports the requirements defined in section 8.2 (Order Fulfillment and
Service Control) of MEF 55.1, LSO Reference Architecture for interactions over the Legato
interface within a single operator. Both the Business Applications (BUS) and Service
Orchestration Functionality (SOF) systems use the information contained within this document.

This standard is intended to support the design of API implementations that enable inter-operable
SOF operations (in scope of this standard) across the Legato IRP.

This standard is based on TMF Open API (v4.1.0) for Service Ordering (TMF 641) TMF641.

4.2. Conventions in the Document

Code samples are formatted using code blocks. When notation << some text >> is used in
the payload sample it indicates that a comment is provided instead of an example value and it
might not comply with the OpenAPI definition.
Model definitions are formatted as in-line code (e.g. ServiceOrder).
In UML diagrams the default cardinality of associations is 0..1. Other cardinality markers
are compliant with the UML standard.
In the API details tables and UML diagrams required attributes are marked with a * next to
their names.
In UML sequence diagrams {{variable}} notation is used to indicate a variable to be
substituted with a correct value.

4.3. Relation to Other Documents

The API definition builds on TMF641 Service Order Management API REST Specification v4.1.0
[TMF641]. Service Order Use Cases must support the use of any of MEF service specifications as
payload, in particular those defined in:

LSO Legato Service Specification - SD-WAN Schema Guide in MEF W100 [MEF W100].
LSO Legato Service Specification - Carrier Ethernet Schema Guide in MEF W101 [MEF
W101].
LSO Legato Service Specification - IP/IP-VPN Schema Guide in MEF W102 [MEF W102].

4.4. Approach

As presented in Figure 2. the Legato API frameworks consist of three structural components:

Generic API framework
Service-independent information (Function-specific information and Function-specific
operations)
Service-specific information (MEF service specification data model)

13 / 81

Figure 2. Legato API Structure

The essential concept behind the framework is to decouple the common structure, information,
and operations from the specific service information content.
Firstly, the Generic API Framework defines a set of design rules and patterns that are applied
across all Legato APIs.
Secondly, the service-independent information of the framework focuses on a model of a
particular Legato functionality and is agnostic to any of the service specifications. For example,
this standard is describing the Service Order model and operations that allow ordering of any
service that is aligned with either MEF or custom service specifications.
Finally, the service-specific information part of the framework focuses on MEF service
specifications that define business-relevant attributes and requirements for trading MEF
subscriber and MEF operator services.

This Developer Guide is not defining MEF service specifications but can be used in combination
with any service specifications defined by or compliant with MEF. Examples of MEF Service
Model (MSM) schema include:

MEF W100: SD-WAN Services based on MEF 70 [MEF70]
MEF W101: Carrier Ethernet services based on MEF 10.4 [MEF10.4] and MEF 26.2
[MEF26.2]
MEF W102: IP Services based on MEF 61.1 [MEF61.1] and MEF 61.1.1 [MEF61.1.1]

Figure 3 presents the relations between the Legato API components and the Service Model. A
Service Order contains one or more Service Order Items. Each Service Order Item is an intent of
action on a given Service (add, modify or delete). A Service references Service Specification to
identify the Service Type. The Service specification points to the schema of the Service, as
provided by (but not limited to) MEF Standard. The Service also has the
MefServiceConfiguration attribute, which provides an instance of the configuration of a given
Service (attributes of MEF Service model populated with desired values)

14 / 81

Figure 3. Legato and MSM Schema

4.5. High-Level Flow

The Legato Service Catalog, Service Order, Service Inventory, and Service Notification APIs in
essence allow the BUS to request SOF to configure and activate one or more services as part of
an order fulfillment process. Figure 4 presents a high-level flow of use of all of the above-
mentioned APIs.

15 / 81

Figure 4. High-Level Flow

The following steps describe the high-level flow:

The BUS system registers for notifications.
As part of the ordering flow, the BUS system receives the product order (through Cantata or
Sonata) which triggers the fulfillment processes in the BUS system.
The BUS system first queries the Service Catalog to retrieve the ServiceSpecifications
supported by the SOF
Note1: Service Catalog and the process of mapping and decomposing a product order to

16 / 81

identify appropriate ServiceSpecifications is out of scope for this standard. Note2: The
mechanisms to design, construct and populate the ServiceSpecifications into SOF Service
Catalog is out of scope for this standard.

Each specific instance of a ServiceSpecification (retrieved from the Service Catalog)
minimally contains a reference to target Service schema. A Service schema describes the
set of properties that characterize that service and are exchanged over Legato IRP.

During the service configuration and activation phase, the BUS system uses the Service
Order API to instantiate the Service utilizing the ServiceSpecifications (retrieved from the
Service Catalog).

The BUS achieves this by creating a ServiceOrder which contains a one or more
ServiceOrderItems.
Each ServiceOrderItem carries some ServiceConfiguration data and the type of
operation (add/modify/delete) to be performed (instructions to SOF).
The SOF utilizes Service schema referenced in the ServiceSpecification to validate the
ServiceConfiguration data passed in by the BUS.
The ServiceOrder / ServiceOrderItem is processed by the SOF as per the state transition
rules described in 6.1.7. Service Order and Service Order Items State Machine
The SOF reports the ServiceOrder and ServiceOrderItem state changes
The SOF performs the actions (add/modify/delete) specified in a ServiceOrderItem on
the specified target Service instance in the Service Inventory as per the state transition
rules described in 6.6. Service Lifecycle
The SOF reports the Service instance state changes

The BUS system uses the same Service Order API to create new Service instances as well as
update existing Service instance's properties or trigger state transitions, and delete existing
Service instance.

17 / 81

5. API Description

This section presents the API structure and design patterns. It starts with the high-level use cases
diagram. Then it describes the REST endpoints with use case mapping. Next, it gives an
explanation of the design pattern that is used to combine service-agnostic and service-specific
parts of API payloads. Finally, payload validation and API security aspects are discussed.

5.1. High-level Use Cases

Figure 5. presents a high-level use case diagram. It aims to help understand the endpoint
mapping. Use cases are described extensively in chapter 6

Figure 5. Use cases

5.2. API Endpoints and Operations Summary

5.2.1. SOF Service Ordering API Endpoints

Base URL: https://{{serverBase}}:{{port}}

{{?/sof_prefix}}/mefApi/legato/serviceOrderingManagement/v5/

The following API Endpoints are used by BUS to create and query for ServiceOrder instances
and to subscribe/unsubscribe to ServiceOrder notifications. The endpoints and corresponding
data model are defined in serviceApi/order/serviceOrderingManagement.api.yaml

API Endpoint Description
Use Case
mapping

18 / 81

API Endpoint Description
Use Case
mapping

POST /serviceOrder

A request initiated by the BUS to create new
Service instances as well as update Service

instance's properties or trigger their state transitions
and/or delete existing Service instance.

UC 1: Create
Service Order

GET /serviceOrder

A request initiated by the BUS to retrieve a list of
ServiceOrders from the service order management
system in SOF, that match the filter criteria provided
as query parameters

UC 2: Retrieve
List of Service
Orders

GET

/serviceOrder/{{id}}

A request initiated by the BUS to retrieve a specific
ServiceOrder from the service order management
system in SOF, that match the id provided as path
parameter

UC 3: Retrieve
Service Order
by Service
Order Identifier

POST /hub
A request initiated by the BUS to instruct the SOF to
send notification

UC 4: Register
for
Notifications

GET /hub/{{id}}

A request initiated by the BUS to retrieve a specific
EventSubscription from the service order
management system in SOF, that matches the
provided id provided as path parameter

UC 4: Register
for
Notifications

DELETE /hub/{{id}}
A request initiated by the BUS to instruct the SOF to
stop sending notifications

UC 4: Register
for
Notifications

Table 4. SOF Service Ordering API Endpoints

[R1] SOF MUST support all API endpoints listed in Table 4.

5.2.2. BUS Service Ordering API Endpoints

Base URL: https://{{serverBase}}:{{port}}

{{?/bus_prefix}}/mefApi/legato/serviceOrderingNotification/v5/

The following API Endpoints are used by SOF to post notifications to registered BUS listeners.
The endpoints and corresponding data model are defined in
serviceApi/order/serviceOrderingNotification.api.yaml

API Endpoint Description
Use Case
mapping

19 / 81

API Endpoint Description
Use Case
mapping

POST /listener/serviceOrderCreateEvent

A request initiated by the
SOF to notify BUS on
ServiceOrder instance
creation

5. Send
Notifications

POST

/listener/serviceOrderInformationRequiredEvent

A request initiated by the
SOF to notify BUS that
additional information is
required for given
ServiceOrder instance

5. Send
Notifications

POST /listener/serviceOrderStateChangeEvent

A request initiated by the
SOF to notify BUS on
ServiceOrder instance
state change

5. Send
Notifications

POST

/listener/serviceOrderItemStateChangeEvent

A request initiated by the
SOF to notify BUS on
ServiceOrderItem

instance state change

5. Send
Notifications

Table 5. BUS Service Ordering API Endpoints

[O1] The BUS MAY support API endpoints listed in Table 5.

[O2] The BUS MAY register to receive service notifications.

[R2] The SOF MUST support sending notification to API endpoints listed in Table 5 to
registered BUS.

5.3. Integration of Service Specifications into Service Order Management API

Service specifications are defined using JsonSchema (draft 7) format JSON Schema draft 7 and
are integrated into the ServiceOrder using the TMF extension pattern.

The extension hosting type in the API data model is MefServiceConfiguration. The @type
attribute of that type must be set to a value that uniquely identifies the service specification. A
unique identifier for MEF standard service specifications is in URN format and is assigned by
MEF. This identifier is provided as root schema $id and in service specification documentation.
Use of non-MEF standard service definitions is allowed. In such a case the schema identifier must
be agreed upon between the BUS and the SOF.

The example below shows a header of a Service Specification schema, which is describing the IP
Uni, where "$id": urn:mef:lso:spec:legato:ip-uni:v0.0.1:all is the above-mentioned URN:

20 / 81

"$schema": http://json-schema.org/draft-07/schema#
"$id": $id": urn:mef:lso:spec:legato:ip-uni:v0.0.1:all
title: MEF LSO Legato - IP UNI Specification

Service specifications are provided as Json schemas without the MefServiceConfiguration
context.

Service-specific attributes are introduced via the ServiceValue (defined by the BUS). This entity
has the serviceConfiguration attribute of type MefServiceConfiguration which is used as an
extension point for service-specific attributes.

Implementations might choose to integrate selected service specifications to data model during
development. In such a case an integrated data model is built and service specifications are in an
inheritance relationship with MefServiceConfiguration as described in the OAS specification.
This pattern is called Static Binding. The SDK is additionally shipped with a set of API
definitions that statically bind all service-related APIs (POQ, Quote, Order, Inventory) with all
corresponding service specifications available in the release. The snippets below present an
example of a static binding of the envelope API with several MEF service specifications, from
both MefServiceConfiguration and service specification point of view:

MefServiceConfiguration:
 description:
 MefServiceConfiguration is used as an extension point for MEF-specific
 service payload. The `@type` attribute is used as a discriminator
 discriminator:
 mapping:
 urn:mef:lso:spec:legato:ip-enni:v0.0.1:all: '#/components/schemas/IpEnni'
 urn:mef:lso:spec:legato:ipvc-endpoint:v0.0.1:all: '#/components/schemas/IpvcEndpoint'
 urn:mef:lso:spec:legato:ip-uni:v0.0.1:all: '#/components/schemas/IpUni'
 urn:mef:lso:spec:legato:ethernet-uni-access-link-trunk:0.0.1:all:
'#/components/schemas/EthernetUniAccessLinkTrunk'
 urn:mef:lso:spec:legato:ip-uni-access-link:0.0.1:all: '#/components/schemas/IpUniAccessLink'
 urn:mef:lso:spec:legato:ipvc:v0.0.1:all: '#/components/schemas/Ipvc'
 urn:mef:lso:spec:legato:ip-uni-access-link-trunk.0.1:all: '#/components/schemas/IpUniAccessLinkTrunk'
 urn:mef:lso:spec:legato:ip-enni-link:v0.0.1:all: '#/components/schemas/IpEnniLink'
 propertyName: '@type'
 properties:
 '@type':
 description:
 The name of the type, defined in the JSON schema specified above, for
 the service that is the subject of the Request. The named type must be
 a subclass of MefServiceConfiguration.
 type: string

IpvcEndpoint:
 allOf:
 - $ref: '#/components/schemas/MefServiceConfiguration'
 - description:
 'An IPVC End Point is a logical entity at an EI, to which a subset of
 packets that traverse the EI is mapped. Reference MEF 61.1 Section 7.4
 IP Virtual Connections and IPVC End Points.'

Alternatively, implementations might choose not to build an integrated model and choose a
different mechanism allowing runtime validation of service-specific fragments of the payload.
The system can validate a given service against a new schema without redeployment. This pattern
is called Dynamic Binding.

21 / 81

Regardless of chosen implementation pattern, the HTTP payload is exactly the same. Both
implementation approaches must conform to the requirements specified below.

[R3] MefServiceConfiguration type is an extension point that MUST be used to integrate service
specifications' properties into a request/response payload.

[R4] The @type property of MefServiceConfiguration MUST be used to specify the type of the
extending entity.

[R5] Service attributes specified in the payload must conform to the service specification
specified in the @type property.

Figure 6. The Extension Pattern with Sample Service-Specific Extensions

Figure 6 presents two MEF <<ServiceSpecifications>> that represent IPVC and IPVC Endpoint
services. When these services are used as a Service Order payload the @type of
MefServiceConfiguration takes "urn:mef:lso:spec:legato:ipvc:v0.0.1:all" or
"urn:mef:lso:spec:legato:ipvc-endpoint:v0.0.1:all" value to indicate which service
specification should be used to interpret a set of service-specific attributes included in the
payload. An example of a service definition inside the ServiceOrderItem is presented in Section
6.1.4.

The all suffix after the service type name in the URN comes from the approach that the service
schemas may differ depending on the function (POQ, Quote, Order, or Inventory) they are used
with. The value all means that one version of the schema is shared by all functions.

5.4. Sample Service Specification

The Legato SDK contains service specification definitions, from which IPVC and IPVC End
Point are used in the payload samples in this section. The schemas are located in the SDK
package at:

22 / 81

serviceSchema\ip\ipvc.yaml

serviceSchema\ip\ipvcEndPoint.yaml

The service specification data model definitions are available as JsonSchema (version draft 7)
documents. Figures 7 and 8 depict simplified UML views on these data models in which:

the mandatory attributes are marked with *,
the mandatory relations have a cardinality of 1 or 1..*,
some relations and attributes that are not essential to the understanding of the service
specification model are omitted.

The red color in Figures 7 and 8 below highlights the data model of services. Some parts of the
model are skipped for examples clarity. This is denoted by the <<skipped>> text in diagrams and
in json snippets later in the document. Please note that this document uses service specifications
just for the sake of example on how to use the Service Order API together with the Service
payload. The detailed examples of any service specification are not in the scope of this document.

Figure 7. A simplified view of IPVC service specification data model

Figure 8. A simplified view of IPVC End Point service specification data model

23 / 81

Service specifications define several service-related and envelope-related requirements. For
example:

for an IPVC End Point service two mandatory relationships must be specified, one toward the
IPVC (IPUNI_ENDPOINT_OF_IPVC), and a second towards the IP UNI (CONNECTS_TO_IPUNI) for
the add action.
in the case of a modify action, service relationships must have the same value as in the add
action. They must not be changed
for an IP UNI Access Link Trunk service a place relationship (INSTALL_LOCATION) must be
specified
in the case of a modify action, place relationships must have the same value as in the add
action. They must not be changed

In case, some of these requirements are violated the SOF returns an error response to the BUS
that indicates specific functional errors. These errors are listed in the response body (a list of
Error422 entries) for HTTP 422 response.

Figure 9. Example use case configuration

Figure 9 shows a setup of service configuration used by the example. The Advanced Internet
Access is built from 5 services:

IPVC
IPVC End Point
IP UNI
IP UNI Access Link
IP UNI Access Link Trunk

The example assumes a situation, where IP UNI, IP UNI Access Link, and IP UNI Access Link
Trunk are already provisioned and are available in Service Inventory. They are marked with black
lines. The Service Order includes requests to create 2 services: IPVC and IPVC End Point
(marked with red lines). This means there are 2 Service Order Items with action=add. As

24 / 81

mentioned earlier, there are 2 mandatory relations to be provided with IPVC End Point. In this
case:

IPUNI_ENDPOINT_OF_IPVC is provided with the use of serviceOrderItemRelationship as
pointing to the Ipvc being part of the same Service Order,
CONNECTS_TO_IPUNI is provided with the use of serviceRelationship as pointing to an IpUni
service that is already provisioned and available in Service Inventory.

5.5. Model structure and validation

The structure of the payloads exchanged via Legato Service API endpoints is defined using:

OpenAPI version 3.0 for the service-agnostic part of the payload
JsonSchema (draft 7) for the service-specific part of the payload

[R6] Implementations MUST use payloads that conform to these definitions.

[R7] A service specification may define additional consistency rules and requirements that
MUST be respected by implementations. These are defined for:

required relation type, multiplicity to other items within the same or another Service Order
request
required relation type, multiplicity to entities in the SOF's service inventory
related contact information roles that are to be defined at the Service Order Item level
relations to places (locations) and their roles that are to be defined at the order item level

5.6. Security Considerations

Although the Legato IRP is internal to a Service Provider/Operator business boundary, it is
expected that some minimal security mechanisms are in place for any communication over this
IRP. There must also be authorization mechanisms in place to control what a particular BUS or
SOF is allowed to do and what information may be obtained. However, the definition of the exact
security mechanism and configuration is outside the scope of this document. The LSO Security
mechanisms are defined by MEF 128 LSO API Security Profiles [MEF128].

25 / 81

6. API Interactions and Flows

This section provides a detailed insight into the API functionality, use cases, and flows. It starts
with Table 6 presenting a list and short description of all business use cases then presents the
variants of end-to-end interaction flows, and in the following subchapters describes the API usage
flow and examples for each of the use cases.

Use
Case
#

Use Case
Name

Use Case Description

1
Create
Service
Order

A request initiated by the BUS to order a new service or service
component(s). A Service Order must contain at least one Service Order
Item (Use Case # 1-a, 1-b, or 1-c) as shown below. A Service Order may
contain more than one Service Order Item and Service Order Items
within a Service Order are not required to have relationships between
them.

1-a

Service
Order Item
to Add
Service

Service Order Item adds a new Service.

1-b

Service
Order Item
to Modify
Existing
Service

Service Order Item modifies attributes of a specific active Service.

1-c

Service
Order Item
to Delete
Existing
Service

Service Order Item disconnects an active Service.

2
Retrieve List
of Service
Orders

A request initiated by the BUS to retrieve a list of Service Orders that
match the provided filter criteria

3

Retrieve
Service
Order by
Service
Order
Identifier

A request initiated by the BUS to retrieve the details associated with a
specific Service Order with the given Service Order Identifier.

26 / 81

Use
Case
#

Use Case
Name

Use Case Description

4
Register for
Notifications

The BUS requests to subscribe to notifications.

5
Send
Notification

A notification initiated by the SOF to the BUS

Table 6. Use cases description

6.1. Use case 1: Create Service Order

This is the initial step for Service Order processing.

6.1.1. Interaction flow

The flow of this use case is very simple and is described in Figure 10.

Figure 10. Use Case 1 - Service Order create request flow

The BUS sends a request with a ServiceOrder_Create type in the body. The SOF performs
request validation, assigns an id, and returns ServiceOrder type in the response body, with a
state set to acknowledged. From this point, the Service Order is ready for further processing. The
BUS can track the progress of the process either by subscribing for notifications or by
periodically polling the ServiceOrder. The two patterns are presented in the following two
diagrams.

27 / 81

Figure 11. Service Order progress tracking - Notifications

Figure 12. Service Order progress tracking - Polling

Note: The context of notifications is not a part of the considered use case itself. It is presented to
show the big picture of end-to-end flow. This applies also to all further use case flow diagrams
with notifications.

so to all further use case flow diagrams with notifications.

6.1.2. Create Service Order Request

Figure 13 presents the most important part of the data model used during the Create Service
Order request (POST /serviceOrder) and response. The model of the request message -

28 / 81

ServiceOrder_Create is a subset of the ServiceOrder model and contains only attributes that can
(or must) be set by the BUS. The SOF then enriches the entity in the response with additional
information.

Note: ServiceOrder_Create and ServiceOrderItem_Create are entities used by the BUS to make
a request. ServiceOrder and ServiceOrderItem are entities used by the SOF to provide a
response. The request entities have a subset of attributes of the response entities. Thus for
visibility of these shared attributes ServiceOrder_Common and ServiceOrderItem_Common have
been introduced. Though, these are not to be used directly in the exchange.

A ServiceOrderItem_Create defines details of the service(s) being subject of the ordering (in
ServiceValue structure) and allows for the definition of additional information like related parties
(RelatedContactInformation) or relations to other items (ServiceOrderItemRelationship,
ServiceOrderRelationship).

ServiceValue allows for the introduction of service-specific properties as the Service Order
payload. The extension mechanism is described in detail in Section 5.3. ServiceValue may be
also used to specify relations to places (using specializations of RelatedPlaceOrValue, as
described in Section 6.1.8.) and/or to a service that exists in the SOF's inventory (using
ServiceRelationship).

The full list of attributes is available in Section 7 and in the API specification which is an integral
part of this standard.

Figure 13. Service Order Key Entities

29 / 81

To send a Service Order request the BUS uses the createServiceOrder operation from the API:
POST /serviceOrder. For clarity, some of the Service Order payload's attributes might be omitted
to improve examples' readability. The ServiceOrder_Create is a simple structure that is common
for all types of requests (add, modify, delete), most of the information is in the
ServiceOrderItem_Create.

Service Order Create Request

{
 "description": "Example Service Order",
 "externalId": "busOrder-101",
 "requestedCompletionDate": "2023-01-28T20:45:23.796Z",
 "requestedStartDate": "2023-01-02T00:00:00.000Z",
 "relatedContactInformation": [
 {
 "emailAddress": "john.example@example.com",
 "name": "John Example",
 "number": "12-345-6789",
 "numberExtension": "1234",
 "organization": "Example Co.",
 "role": "serviceOrderContact"
 }
],
 "note": [
 {
 "author": "John Example",
 "date": "2022-12-28T20:45:23.796Z",
 "id": "note-001",
 "source": "bus",
 "text": "This is an example text"
 }
],
 "serviceOrderItem": [
 {
 "id": "item-001",
 "action": "add",
 "service": {
 "description": "IP Virtual Connection",
 "externalId": "BUS_IPVC-0001",
 "serviceType": "Internet Access",
 "name": "IPVC",
 "state": "feasibilityChecked",
 "relatedContactInformation": [
 {
 "emailAddress": "BUS.ServiceOrderItemContact@example.com",
 "name": "BUS Service Order Item Contact",
 "number": "+12-345-678-90",
 "role": "busServiceOrderItemContact"
 }
],
 "serviceConfiguration": {
 "@type": "urn:mef:lso:spec:legato:ipvc:v0.0.1:all",
 "administrativeState": {
 "state": "UNLOCKED"
 },
 "operationalState": {
 "state": "ENABLED"
 },
 "ipvcIdentifier": "IPVC-0000-0001",
 "ipvcTopology": "CLOUD_ACCESS",
 "packetDelivery": "STANDARD_ROUTING",
 "maximumNumberOfIpv4Routes": 1,
 "maximumNumberOfIpv6Routes": 0,
 "dscpPreservation": "ENABLED",
 "serviceLevelSpecification": {}, <<skipped>>
 "maximumTransferUnit": 1522,
 "pathMtuDiscovery": "ENABLED",
 "fragmentation": "DISABLED",
 "cloud": {}, <<skipped>>
 "reservedPrefixes": {}, <<skipped>>
 "listOfClassOfServiceNames": ["low"]
 }
 }

30 / 81

 },
 {
 "id": "item-002",
 "action": "add",
 "serviceOrderItemRelationship": [
 {
 "orderItem": { << Relationship to IPVC in the same Service Order >>
 "itemId": "item-001"
 },
 "relationshipType": "IPUNI_ENDPOINT_OF_IPVC"
 }
],
 "service": {
 "description": "IPVC End Point",
 "externalId": "BUS_IPVC_END_POINT-0001",
 "serviceType": "Internet Access",
 "name": "IPVCEndpoint",
 "serviceRelationship": [
 { << Relationship to already configured IP UNI in Service Inventory >>
 "relationshipType": "CONNECTS_TO_IPUNI",
 "service": {
 "id": "IP_UNI_0000-0001"
 }
 }
],
 "relatedContactInformation": [
 {
 "emailAddress": "BUS.ServiceOrderItemContact@example.com",
 "name": "BUS Service Order Item Contact",
 "number": "+12-345-678-90",
 "role": "busServiceOrderItemContact"
 }
],
 "serviceConfiguration": {
 "@type": "urn:mef:lso:spec:legato:ipvc-end-point:v0.0.1:all",
 "administrativeState": {
 "state": "UNLOCKED"
 },
 "operationalState": {
 "state": "ENABLED"
 },
 "identifier": "IPVC-EndPoint-0000-0001",
 "eiType": "UNI",
 "role": "ROOT",
 "prefixMapping": {},
 "maximumNumberOfIpv4Routes": 1,
 "maximumNumberOfIpv6Routes": 0,
 "ingressClassOfServiceMap": {}, <<skipped>>
 "egressClassOfServiceMap": {}, <<skipped>>
 "ingressBwpEnvelope": {}, <<skipped>>
 "egressBwpEnvelope": {} <<skipped>>
 }
 }
 }
]
}

[R8] The BUS's request MUST contain requestedStartDate, requestedCompletionDate and at
least one serviceOrderItem.

[R9] The BUS's request MUST contain at least one serviceOrderItem.

[D1] The BUS and SOF SHOULD agree on using specific contact roles.

Note: During the onboarding the SOF may require to provide an additional contact role.

Note: It is up to SOF's discretion on how to react in case the BUS provides a contact role that is
not agreed upon during the onboarding. Preferably the SOF should return an error with a message
stating which roles are accepted. It may also be ignored

31 / 81

For each serviceOrderItem:

[R10] The BUS's Create Service Order request MUST contain:

id

action

service

[R11] When adding a note, BUS MUST add a note only with source=bus.

6.1.3. Create Service Order Response

Entities use for providing a response to Create Service Order request are presented in Figure 13.
The main types used for response are ServiceOrder and ServiceOrderItem, which add attributes
set by SOF (like id or state) ServiceOrder is the root entity of a response. The response echoes
back all attributes as provided by the BUS and contains the same number of ServiceOrderItems
as in the request.

The following snippet presents the SOF's response.

Service Order Create Response

{
 "id": "00000000-3333-4444-5555-000000004567", << added by SOF >>
 "href": "{{baseUrl}}/serviceOrder/00000000-3333-4444-5555-000000004567", << added by SOF >>
 "state": "acknowledged", << added by SOF >>
 "orderDate": "2022-12-28T20:45:24.796Z", << added by SOF >>
 "expectedCompletionDate": "2023-01-25T20:00:00.000Z", << added by SOF >>
 "description": "Example Service Order",
 "externalId": "busOrder-101",
 "requestedCompletionDate": "2023-01-28T20:45:23.796Z",
 "requestedStartDate": "2023-01-02T00:00:00.000Z",
 "relatedContactInformation": [
 {
 "emailAddress": "john.example@example.com",
 "name": "John Example",
 "number": "12-345-6789",
 "numberExtension": "1234",
 "organization": "Example Co.",
 "role": "serviceOrderContact"
 },
 { << added by SOF >>
 "emailAddress": "ella.sof@example.com",
 "name": "Ella SOF",
 "number": "98-765-4321",
 "organization": "SOF Co.",
 "role": "sofContact"
 }
],
 "note": [
 {
 "id": "note-001",
 "author": "John Example",
 "date": "2022-12-28T20:45:23.796Z",
 "source": "bus",
 "text": "This is an example text"
 },
 { << added by SOF >>
 "id": "note-002",
 "author": "Ella SOF",
 "date": "2022-12-28T20:45:24.796Z",
 "source": "sof",
 "text": "This is an example response text"
 }

32 / 81

],
 "serviceOrderItem": [
 {
 "id": "item-001",
 "action": "add",
 "state": "acknowledged", << added by SOF >>
 "service": {
 "id": "00000000-5555-6666-7777-000000008888", << added by SOF >>
 "href": "{{baseUrl}}/service/00000000-5555-6666-7777-000000008888", << added by SOF >>
 "state": "feasibilityChecked",
 "description": "IP Virtual Connection",
 "externalId": "BUS_IPVC-0001",
 "serviceType": "Internet Access",
 "name": "IPVC"
 ...
 << skipped, as provided by BUS >>
 }
 },
 {
 "id": "item-002",
 "action": "add",
 "state": "acknowledged", << added by SOF >>
 "serviceOrderItemRelationship": [
 {
 "orderItem": {
 "itemId": "item-001",
 "serviceOrderHref": "string",
 "serviceOrderId": "string"
 },
 "relationshipType": "IPUNI_ENDPOINT_OF_IPVC"
 }
],
 "service": {
 "id": "00000000-5555-6666-7777-000000009999", << added by SOF >>
 "href": "{{baseUrl}}/service/00000000-5555-6666-7777-000000009999", << added by SOF >>
 "state": "feasibilityChecked",
 "description": "IPVC End Point",
 "externalId": "BUS_IPVC_END_POINT-0001",
 "serviceType": "Internet Access",
 "name": "IPVCEndpoint",
 "serviceRelationship": [
 {
 "relationshipType": "CONNECTS_TO_IPUNI",
 "service": {
 "id": "IP_UNI_0000-0001"
 }
 }
]
 ...
 << skipped, as provided by BUS >>

 }
 }
]
}

Attributes that are set by the SOF in the response are marked with the << added by SOF >> tag.
The response to the create request does not contain all possible attributes. Some of them are valid
only in the future lifecycle of the ServiceOrder (e.g. completionDate, startDate).

[R12] The SOF's response MUST include all and unchanged attributes' values as provided by
BUS in the request.

The SOF might append related contact information or notes if required, but cannot modify items
set by the BUS.

[R13] The SOF MUST specify the following attributes in a response:

id

33 / 81

state

orderDate

[R14] The id MUST remain the same value for the life of the Service Order.

[R15] When adding a note, SOF MUST add a note only with source=sof.

[R16] Notes MUST NOT be modified or deleted once entered.

For each serviceOrderItem:

[R17] The response MUST have the state attribute set.

[R18] If the Service Order Item state in the SOF's response is not completed, the response
MUST NOT contain the expectedCompletionDate.

6.1.4. Use Case 1a: Service Order Item to Add Service

When requesting a new service installation (action equal to add) the BUS needs to provide all of
its configuration information. The example for add action is already provided in the snippets
above.

The following requirements apply when serviceOrderItem.action is add:

[R19] The BUS MUST provide:

service.state

service.serviceConfiguration

[R20] If there is a relationship with a Service Order Item within the same Service Order, the
serviceOrderItemRelationship.itemId MUST be specified.

[R21] If there is a relationship with a Service Order Item within the same Service Order, the
serviceOrderItemRelationship.itemId and serviceOrderItemRelationship.serviceOrderId

MUST NOT be specified.

[R22] If there is a relationship with a Service Order Item of another Service Order, the
serviceOrderItemRelationship.itemId and serviceOrderItemRelationship.serviceOrderId

MUST be specified.

[R23] The BUS MUST NOT specify the serviceOrderItem.service.id in the request. It is the
SOF who assigns this id.

Note: The service.id might not be assigned yet at the moment the SOF provides a response for the
Create Service Order Request.

6.1.5. Use case 1b: Service Order Item to Modify Existing Service

34 / 81

The following example shows a request for an order for an existing IPVC End Point Service
modification (action equal to modify). In particular, a change to maximumNumberOfIpv4Routes is
introduced.
The IPVC End Point service exists in SOF's inventory and is identified as 00000000-5555-6666-
7777-000000009999, as provided in SOF response presented in Chapter 6.1.3.

The following requirements apply to serviceOrderItem when action is modify:

[R24] The modify request MUST specify a reference (provide service.id) to an existing service
that is a subject of this order and provide the desired service.serviceConfiguration.

[R25] The modify request MUST provide:

service.id - a reference to an existing service that is a subject of this order
service.state

service.serviceConfiguration

[R26] The modify request MUST repeat the same values (specified or empty) of
service.serviceRelationship, and service.place as they are available in the inventory for a
given service instance. These values cannot be updated or deleted.

[R27] If there is a relationship with another Service Order Item, the
serviceOrderItemRelationship MUST be also specified unchanged.

There is no possibility to send an update to single attributes. The BUS must send a full service
description (the whole service.serviceConfiguration section and if set previously or to be set:
service.serviceRelationship and service.place), which means all attributes that represent the
desired state, even if some of them do not change.
If SOF does not allow for some of the attributes to change an appropriate error response (422)
must be returned to the BUS.

Please also note, that in the add case, a reference to the IPVC service used the
serviceOrderItemRelationship pointing to another serviceOrderItem in the same Service Order
Request. This is because the IPVC did not exist at that moment and was also a part of the order.
In the case of ordering the update of an existing IPVC End Point, the IPVC is also existing and it
must be referenced with the use of serviceRelationship. This example assumes that the IPVC
service is available in SOF's Inventory with the id equals "00000000-5555-6666-7777-

000000008888" (as provided in SOF response presented in Chapter 6.1.3.

Service Order Item to Modify Existing Service

{
 "description": "Example Service Order to Modify IPVC End Point service",
 "externalId": "busOrder-102",
 "requestedCompletionDate": "2023-02-03T20:45:23.796Z",
 "requestedStartDate": "2023-02-02T00:00:00.000Z",
 "relatedContactInformation": [
 {
 "emailAddress": "john.example@example.com",

35 / 81

 "name": "John Example",
 "number": "12-345-6789",
 "numberExtension": "1234",
 "organization": "Example Co.",
 "role": "serviceOrderContact"
 }
],
 "serviceOrderItem": [
 {
 "id": "item-001",
 "action": "modify",
 "service": {
 "id": "00000000-5555-6666-7777-000000009999", << id to point to service instance >>
 "description": "IPVC End Point",
 "externalId": "BUS_IPVC_END_POINT-0001",
 "serviceType": "Internet Access",
 "name": "IPVCEndpoint",
 "state": "active",
 "serviceRelationship": [
 { << relation to IP UNI - not changed >>
 "relationshipType": "CONNECTS_TO_IPUNI",
 "service": {
 "id": "IP_UNI_0000-0001"
 }
 },
 { << relation to IPVC - not changed, but provided with serviceRelationship instead of
serviceOrderItemRelationship >>
 "relationshipType": "IPUNI_ENDPOINT_OF_IPVC",
 "service": {
 "id": "00000000-5555-6666-7777-000000008888"
 }
 }
],
 "serviceConfiguration": {
 "@type": "urn:mef:lso:spec:legato:ipvc-end-point:v0.0.1:all",
 "administrativeState": {
 "state": "UNLOCKED"
 },
 "operationalState": {
 "state": "ENABLED"
 },
 "identifier": "IPVC-EndPoint-0000-0001",
 "eiType": "UNI",
 "role": "ROOT",
 "prefixMapping": {},
 "maximumNumberOfIpv4Routes": 2, << modified value >>
 "maximumNumberOfIpv6Routes": 0,
 "ingressClassOfServiceMap": {},
 "egressClassOfServiceMap": {},
 "ingressBwpEnvelope": {},
 "egressBwpEnvelope": {}
 }
 }
 }
]
}

6.1.6. Use case 1c: Service Order Item to Delete Existing Service

The example below represents a single Service Order request for deletion (action=delete) of an
existing IPVC End Point service.

Service Order to Delete Existing Service

{
 "description": "Example Service Order to Delete IPVC End Point service",
 "externalId": "busOrder-103",
 "requestedCompletionDate": "2023-03-03T20:45:23.796Z",
 "requestedStartDate": "2023-03-02T00:00:00.000Z",
 "serviceOrderItem": [
 {
 "id": "item-001",
 "action": "delete",

36 / 81

 "service": {
 "id": "00000000-5555-6666-7777-000000009999" << id to point to service instance >>
 }
 }
]
}

The following requirements apply to serviceOrderItem when action is delete:

[R28] service.id MUST be provided.

[R29] The BUS MUST NOT provide any service attributes other than service.id.

6.1.7. Service Order and Service Order Items State Machine

Figure 14. Service Order and Service Order Items State Machine

Service Order and Service Order Item share the same list of possible states and states' transitions.
They are presented in Figure 14.

After receiving the request, the SOF performs basic checks of the message. If any problem is
found an Error response is provided. If the validation passes a response is provided with
ServiceOrder and all ServiceOrderItems in the acknowledged state. Before moving the order to
the inProgress state, the BUS performs all the remaining business and time-consuming
validations. At this point, an Error response cannot be provided anymore so the order moves to a
rejected state if some issues are found. The serviceOrderItem.terminationError acts as a
placeholder to provide a detailed description of what caused the problem.

Table 7 presents the states' descriptions.

37 / 81

State DescriptionState Description

acknowledged
A ServiceOrder request has been received and has passed message and basic
validations and a Success Response has been sent.

rejected

This state indicates that:
- Invalid information is provided through the ServiceOrder /
ServiceOrderItem request
- The request fails to meet validation rules for Service delivery (processing)
If one ServiceOrderItem is rejected, then the entire ServiceOrder request is
rejected and a Error Response is sent.

inProgress

This state indicates that all ServiceOrderItems have successfully passed the
validations checks and the scheduled Service delivery/processing has started.
The ServiceOrder will be in inProgress state if at least one ServiceOrderItem
is in inProgress state

pending

This state indicates that a ServiceOrderItem is currently in a waiting stage for
an action/activity to be completed before the order-processing can progress
further, pending order amend or cancel assessment.
A pending state can lead into auto cancellation of an ServiceOrderItem, if no
action is taken within the agreed timeframe.
The ServiceOrder will be in pending state if at least one ServiceOrderItem is
in pending state

held

This state indicates that a ServiceOrderItem cannot be progressed due to an
issue. The Service delivery (processing) has been temporarily delayed to
resolve an infrastructure shortfall to facilitate the supply of order. Upon
resolution of the issue, the ServiceOrderItem will continue to progress.
A held state can lead into auto cancellation of a ServiceOrderItem if no action
is taken within the agreed timeframe.
The ServiceOrder will be in held state if at least one ServiceOrderItem is in
held state

failed

This state indicates that Service delivery (processing) associated with a
ServiceOrderItem has failed. This indicates an irrecoverable error as opposed
to held or pending issues.
The ServiceOrder will be in failed state if at ALL ServiceOrderItems are in
failed state

completed

This state indicates that Service delivery (processing) associated with a
ServiceOrderItem has completed.
The ServiceOrder will be in completed state if at ALL ServiceOrderItems are
in completed state

partial
This state indicates that some ServiceOrderItem are in completed state while
others are in cancelled and/or failed states, so the entire ServiceOrder is in a
partial state.

38 / 81

Table 7. Service Order and Service Order Item states

6.1.8. Specifying Place Details

Some service specifications may define requirements concerning place definition in case add or
modify action is used. For example, an IP UNI Access Link Trunk service specification requires
an INSTALL_LOCATION place definition.

There are different formats in which place information may be provided: MEFGeographicPoint,
FieldedAddress, FormattedAddress, GeographicAddressLabel, GeographicSiteRef,
GeographicAddressRef. The first four of them can be used to provide place description by value.
The site and address reference allow specifying the place information as a reference to previously
validated address or site available through SOF's Addressing and Site API endpoints, which
definition is provided in the SDK:

productApi/serviceability/address/geographicAddressManagement.api.yaml

productApi/serviceability/site/geographicSiteManagement.api.yaml

The Address Validation and Site APIs are standardized by:

Address, Service Site, and Product Offering Qualification Management, Requirements and
Use Cases MEF 79
Amendment to MEF 79: Address, Service Site, and Product Offering Qualification
Management, Requirements, and Use Cases MEF 79.0.1
Amendment to MEF 79: Address Validation MEF 79.0.2
LSO Cantata and LSO Sonata Address Management API - Developer Guide MEF 121
LSO Cantata and LSO Sonata Site Management API - Developer Guide MEF 122

The superclass for all address types is the RelatedPlaceRefOrValue which adds the role to add
more context to the specified address. To distinguish between place types the @type discriminator
is used.

Note: The RefOrValue stands for a pattern where an address can be provided either by id (using
GeographicSiteRef or GeographicAddressRef) OR by value (with use of MEFGeographicPoint,
FieldedAddress, FormattedAddress, GeographicAddressLabel). There is no way to specify an
address with use both ref AND value at the same time.

39 / 81

Figure 15. The data model for place representation

Examples of different place specification formats are provided below.

6.1.8.1. Fielded Address

{
 "@type": "FieldedAddress",
 "streetType": "ul.",
 "streetName": "Edmunda Wasilewskiego",
 "streetNr": "20",
 "streetNrSuffix": "14",
 "city": "Kraków",
 "stateOrProvince": "Lesser Poland",
 "postcode": "30-305",
 "country": "Poland",
 "geographicSubAddress": {
 "levelType": "floor",
 "levelNumber": "4"
 },
 "role": "INSTALL_LOCATION"
}

Fielded address example of a place specification. The type discriminator has the value
FieldedAddress. A subset of available attributes is used to describe the place. The fielded address
has an optional geographicSubAddress structure that defines several attributes that can be used in
case precise address information has to be provided. In the example above, a floor in the building
at the given address is specified using this structure. The role of the place is assigned according to
the requirements of the Operator UNI service specification.

6.1.8.2. Formatted Address

40 / 81

{
 "@type": "FormattedAddress",
 "addrLine1": "ul. Edmunda Wasilewskiego 20/14",
 "addrLine2": "Floor 4",
 "city": "Kraków",
 "stateOrProvince": "Lesser Poland",
 "postcode": "30-305",
 "country": "Poland",
 "role": "INSTALL_LOCATION"
}

Place information in a form of a formatted address. The type discriminator has the value
FormattedAddress. This example contains the same information as the previous FieldedAddress
example.

6.1.8.3. Geographic Point

{
 "@type": "MEFGeographicPoint",
 "spatialRef": "EPSG:4326 WGS 84",
 "x": "50.048868",
 "y": "19.929523",
 "role": "INSTALL_LOCATION"
}

Place information in a form of a geographic point. spatialRef determines the standard that has to
be used to interpret coordinates provided in the required x (latitude), y (longitude), and optional z
(elevation) values.

This type allows only providing a point. It cannot carry more detailed information like the floor
number from previous examples.

[R30] The spatialRef value that can be used MUST be agreed between BUS and SOF.

6.1.8.4. Geographic Address Label

{
 "@type": "GeographicAddressLabel",
 "externalReferenceType": "CLLI",
 "externalReferenceId": "PLTXCL01",
 "role": "INSTALL_LOCATION"
}

The Geographic Address Label represents a unique identifier controlled by a generally accepted
independent administrative authority that specifies a fixed geographical location. The example
above is a place that represents a CLLI (Common Language Location Identifier) identifier which
is commonly used to refer locations in North America for network equipment installations.

6.1.8.5. Geographic Site Reference

41 / 81

{
 "@type": "GeographicSiteRef",
 "id": "18d3bb74-997a-4a62-8198-84250766765a",
 "role": "INSTALL_LOCATION"
}

GeographicSiteRef type is used to specify a GeographicSite by reference in the request. In the
above example, a GeographicSite identified as 18d3bb74-997a-4a62-8198-84250766765a in the
SOFs Service Site API is used.

6.1.8.6. Geographic Address Reference

{
 "@type": "GeographicAddressRef",
 "id": "8198bb74-18d3-9ef0-4913-66765a842507",
 "role": "INSTALL_LOCATION"
}

GeographicAddressRef type is used to specify a GeographicAddress by reference in the request. In
the above example, a GeographicAddress identified as 8198bb74-18d3-9ef0-4913-66765a842507
in the SOFs Service Site API is used.

6.2. Use Case 2: Retrieve List of Service Orders

The BUS can retrieve a list of ServiceOrders by using a GET /serviceOrder operation with
desired filtering criteria.

[O3] The BUS's request MAY contain none or more of the following attributes:

state

orderDate.gt

orderDate.lt

completionDate.gt

completionDate.lt

expectedCompletionDate.gt

expectedCompletionDate.lt

startDate.gt

startDate.lt

A response to retrieve a list of results can be paginated. The BUS can specify following query
attributes related to pagination:

limit - number of expected list items
offset - offset of the first element in the result list

The filtering and pagination attributes must be specified in URI query format RFC3986. The SOF
returns a list of elements that comply with the requested limit. If the requested limit is higher

42 / 81

than the supported list size the smaller list result is returned. In that case, the size of the result is
returned in the header attribute X-Result-Count. The SOF can indicate that there are additional
results available using:

X-Total-Count header attribute with the total number of available results
X-Pagination-Throttled header set to true

https://serverRoot/mefApi/legato/serviceOrderingManagement/v5/serviceOrder?state=completed&limit=10&offset=0

The example above shows a BUS's request to get all ServiceOrders that are in the completed
state. Additionally, the BUS asks only for a first (offset=0) pack of 10 results (limit=10) to be
returned. The correct response (HTTP code 200) in the response body contains a list of
ServiceOrder objects matching the criteria.

[R31] In case no items matching the criteria are found, the SOF MUST return a valid response
with an empty list.

6.3. Use Case 3: Retrieve Service Order by Service Order Identifier

The BUS can get detailed information about the Service Order from the SOF by using a GET
/serviceOrder/{{id}} operation. The payload returned in the response includes all attributes the
BUS has provided while sending a Service Order create request. The attributes provided by the
SOF depend on the status of the ServiceOrder and may require some time to be set.

Both Get List and Get by Identifier operations return the same ServiceOrder representation, so a
response to a get by id for a ServiceOrder with id=00000000-3333-4444-5555-000000004567
would return exactly sae response as presented in section 6.1.3.

[R32] In case id does not allow finding a ServiceOrder in SOF's system, an error response
Error404 MUST be returned.

[R33] Once the service identifier (serviceOrder.serviceOrderItem.service.id) is assigned, it
MUST be provided in the SOF's response.

6.4. Use case 4: Register for Notifications

The SOF communicates with the BUS with Notifications provided that:

BUS supports a notification mechanism
BUS has registered to receive notifications from the SOF

[O4] BUS MAY register for Notifications.

Supporting Notification is mandatory for SOF.

43 / 81

To register for notifications the BUS uses the registerListener operation from the API: POST
/hub. The request contains only 2 attributes:

callback - mandatory, to provide the callback address the events will be notified to,
query - optional, to provide the required types of event.

Figure 16 shows all entities involved in the Notification use cases.

Figure 16. Service Ordering Notification Data Model

By using a simple request:

{
 "callback": "https://bus.com/listenerEndpoint"
}

The BUS subscribes for notification of all types of events. Those are:

serviceOrderCreateEvent

serviceOrderStateChangeEvent

serviceOrderItemStateChangeEvent

serviceOrderInformationRequiredEvent

If the BUS wishes to receive only notifications of a certain type, a query must be added:

{
 "callback": "https://bus.com/listenerEndpoint",
 "query": "eventType=serviceOrderStateChangeEvent"
}

If the BUS wishes to subscribe to 2 different types of events, there are 2 possible syntax variants
[TMF630]:

44 / 81

eventType=serviceOrderStateChangeEvent,serviceOrderItemStateChangeEvent

or

eventType=serviceOrderStateChangeEvent&eventType=serviceOrderItemStateChangeEvent

The query formatting complies with RFC3986 RFC3986. According to it, every attribute defined
in the Event model (from notification API) can be used in the query. However, this standard
requires only eventType attribute to be supported.

[R34] eventType is the only attribute that the SOF MUST support in the query.

The SOF responds to the subscription request by adding the id of the subscription to the message
that must be further used for unsubscribing.

{
 "id": "00000000-0000-0000-0000-000000000678",
 "callback": "https://bus.com/listenerEndpoint",
 "query": "eventType=serviceOrderStateChangeEvent"
}

Example of a final address that the Notifications will be sent to (for
serviceOrderStateChangeEvent):

https://bus.com/listenerEndpoint/mefApi/legato/serviceOrderingNotification/v5/list

ener/serviceOrderStateChangeEvent

6.5. Use case 5: Send Notification

Notifications are used to asynchronously inform the BUS about the respective objects and
attributes changes.

For sake of readability, all previous flow diagrams presented only cases of using only the
serviceOrderStateChangeEvent. Figure 17 presents the an end-to-end sequence of
communication in Use Case 1 - Create Service Order with BUS's subscription to both
serviceOrderStateChangeEvent and serviceOrderItemStateChangeEvent event types.

45 / 81

Figure 17. Use Case 1 - Create Service Order with all Notifications

46 / 81

After a successful Notification subscription, the BUS sends a Service Order create request. The
SOF responds with Service Order and all items in acknowledged state. Creation of Service Order
is notified with a serviceOrderCreateEvent. When the first Service Order Item moves to
inProgress, a serviceOrderItemStateChangeEvent is sent. Immediately the Service Order also
changes its state to inProgress and the serviceOrderStateChangeEvent is sent. Then the rest (if
any) of the Service Order Items are processed. When particular items are done processing they
reach the completed state. Once all are successfully done, the Service Order also changes state to
completed. The BUS will likely now ask for the Service Order details.

Note: The state change notification are sent only when the state attribute actually changes it's
value. There are no status change notifications sent upon Service Order or Service Order Item
creation.

[R35] The SOF MUST NOT send Notifications to BUS that have not registered for them.

[R36] The SOF MUST send Notifications to BUS that have registered for them.

Following snippets present examples of serviceOrderStateChangeEvent and
serviceOrderItemStateChangeEvent:

{
 "eventId": "event-001",
 "eventType": "serviceOrderStateChangeEvent",
 "eventTime": "2022-12-28T20:45:24.796Z",
 "event": {
 "id": "00000000-3333-4444-5555-000000004567"
 }
}

[R37] An event triggered by the Service Order Item (serviceOrderItemStateChangeEvent)
MUST additionally contain the relative orderItemId.

{
 "eventId": "event-002",
 "eventType": "serviceOrderItemStateChangeEvent",
 "eventTime": "2023-01-15T20:45:24.796Z",
 "event": {
 "id": "00000000-3333-4444-5555-000000004567",
 "orderItemId": "item-001"
 }
}

Note: the body of the event carries only the source object's id. The BUS needs to query it later by
id to get details.

To stop receiving events, the BUS has to use the unregisterListener operation from the DELETE
/hub/{id} endpoint. The id is the identifier received from the SOF during the listener
registration.

47 / 81

6.6. Service Lifecycle

Above chapters focus on the requirements and the lifecycle of ServiceOrder and
ServiceOrderItem. It is also very important to understand the lifecycle of the Service itself and
how to manage it with the Service Ordering.

Figure 18. Service Lifecycle

Figure 18 depicts the Service available states and their transitions.

The service lifecycle starts with the state provided in the add request. All but terminated can be
the initial state.

BUS can order Service state transition by placing a ServiceOrderItem with action=modify and
providing the desired service.state attribute. Transitions triggered by the same desired state
form sort of use cases that can be performed on a Service. They are gathered in Table 8 together
with requirements on the Service state they are applicable for.

Use case action state pre-condition

checkFeasibility add feasibilityChecked N/A

designService add designed N/A

modify designed
feasibilityChecked
reserved

48 / 81

Use case action state pre-condition

reserveService add reserved N/A

modify reserved
feasibilityChecked
designed

provisionService add inactive N/A

modify inactive
feasibilityChecked
designed
reserved

activateService add active N/A

modify active

feasibilityChecked
designed
reserved
inactive

deactivate modify inactive active

terminateService modify terminated
inactive
active

Table 9. Service Life Use Cases

A Service in state=terminated can be retired (deleted) with a ServiceOrderItem with
action=delete.

Table 10 summarizes the states and their descriptions:

State Description

feasibilityChecked
Initial check whether the necessary resources are available and sufficient
for the installation of a given service.

designed
The Service is designed. The resources are identified and/or allocated, but
not reserved.

reserved All required resources for given service are reserved and ready.

inactive The service is deactivated and is no longer available.

active The service is fully available and active

terminated
The service is 'logically deleted'. All associated resources are freed and
made available for service to other users.

Table 10. Service states

49 / 81

7. API Details

7.1. API patterns

7.1.1. Indicating errors

Erroneous situations are indicated by appropriate HTTP responses. An error response is indicated
by HTTP status 4xx (for client errors) or 5xx (for server errors) and appropriate response payload.
The Service Order API uses the error responses as depicted and described below.

Implementations can use HTTP error codes not specified in this standard in compliance with rules
defined in RFC 7231 [RFC7231]. In such a case, the error message body structure might be
aligned with the Error.

Figure 19. Data model types to represent an erroneous response

7.1.1.1. Type Error

Description: Standard Class used to describe API response error Not intended to be used directly.
The code in the HTTP header is used as a discriminator for the type of error returned in runtime.

Name Type Description

message string
Text that provides mode details and corrective actions related to the
error. This can be shown to a client user.

reason* string
Text that explains the reason for the error. This can be shown to a client
user.

referenceError uri URL pointing to documentation describing the error

7.1.1.2. Type Error400

Description: Bad Request. (https://tools.ietf.org/html/rfc7231#section-6.5.1)

Inherits from:

Error

50 / 81

Name Type DescriptionName Type Description

code* Error400Code

One of the following error codes: - missingQueryParameter: The URI
is missing a required query-string parameter - missingQueryValue: The
URI is missing a required query-string parameter value - invalidQuery:
The query section of the URI is invalid. - invalidBody: The request has
an invalid body

7.1.1.3. enum Error400Code

Description: One of the following error codes:

missingQueryParameter: The URI is missing a required query-string parameter
missingQueryValue: The URI is missing a required query-string parameter value
invalidQuery: The query section of the URI is invalid.
invalidBody: The request has an invalid body

Value

missingQueryParameter

missingQueryValue

invalidQuery

invalidBody

7.1.1.4. Type Error401

Description: Unauthorized. (https://tools.ietf.org/html/rfc7235#section-3.1)

Inherits from:

Error

Name Type Description

code* Error401Code
One of the following error codes: - missingCredentials: No credentials
provided. - invalidCredentials: Provided credentials are invalid or
expired

7.1.1.5. enum Error401Code

Description: One of the following error codes:

missingCredentials: No credentials provided.
invalidCredentials: Provided credentials are invalid or expired

51 / 81

ValueValue

missingCredentials

invalidCredentials

7.1.1.6. Type Error403

Description: Forbidden. This code indicates that the server understood the request but refuses to
authorize it. (https://tools.ietf.org/html/rfc7231#section-6.5.3)

Inherits from:

Error

Name Type Description

code* Error403Code

This code indicates that the server understood the request but refuses
to authorize it because of one of the following error codes: -
accessDenied: Access denied - forbiddenRequester: Forbidden
requester - tooManyUsers: Too many users

7.1.1.7. enum Error403Code

Description: This code indicates that the server understood the request but refuses to authorize it
because of one of the following error codes:

accessDenied: Access denied
forbiddenRequester: Forbidden requester
tooManyUsers: Too many users

Value

accessDenied

forbiddenRequester

tooManyUsers

7.1.1.8. Type Error404

Description: Resource for the requested path not found.
(https://tools.ietf.org/html/rfc7231#section-6.5.4)

Inherits from:

Error

52 / 81

Name Type DescriptionName Type Description

code* string
The following error code: - notFound: A current representation for the target
resource not found

7.1.1.9. Type Error422

The response for HTTP status 422 is a list of elements that are structured using the Error422 data
type. Each list item describes a business validation problem. This type introduces the
propertyPath attribute which points to the erroneous property of the request, so that the BUS may
fix it easier. It is highly recommended that this property should be used, yet remains optional
because it might be hard to implement.

Description: Unprocessable entity due to a business validation problem.
(https://tools.ietf.org/html/rfc4918#section-11.2)

Inherits from:

Error

Name Type Description

code* Error422Code

One of the following error codes: - missingProperty: The
property that was expected is not present in the payload -
invalidValue: The property has an incorrect value -
invalidFormat: The property value does not comply with the
expected value format - referenceNotFound: The object
referenced by the property cannot be identified in the target
system - unexpectedProperty: Additional, not expected property
has been provided - tooManyRecords: the number of records to
be provided in the response exceeds the threshold. - otherIssue:
Other problem was identified (detailed information provided in
a reason)

propertyPath string

A pointer to a particular property of the payload that caused the
validation issue. It is highly recommended that this property
should be used. Defined using JavaScript Object Notation
(JSON) Pointer (https://tools.ietf.org/html/rfc6901).

7.1.1.10. enum Error422Code

Description: One of the following error codes:

missingProperty: The property that was expected is not present in the payload
invalidValue: The property has an incorrect value
invalidFormat: The property value does not comply with the expected value format

53 / 81

referenceNotFound: The object referenced by the property cannot be identified in the target
system
unexpectedProperty: Additional, not expected property has been provided
tooManyRecords: the number of records to be provided in the response exceeds the threshold.
otherIssue: Other problem was identified (detailed information provided in a reason)

Value

missingProperty

invalidValue

invalidFormat

referenceNotFound

unexpectedProperty

tooManyRecords

otherIssue

7.1.1.11. Type Error500

Description: Internal Server Error. (https://tools.ietf.org/html/rfc7231#section-6.6.1)

Inherits from:

Error

Name Type Description

code* string
The following error code: - internalError: Internal server error - the server
encountered an unexpected condition that prevented it from fulfilling the
request.

7.2. Management API Data model

Figure 20 presents the whole Service Order Management data model. The data types are
discussed later in this section.

54 / 81

Figure 20. Service Order Management Data Model

7.2.1. ServiceOrder

7.2.1.1 Type ServiceOrder_Common

Description: A Service Order is used to request operations on a Service instance. A Service
Order groups one or more one Service Order Items - one per specific action on a Service instance.
The Action associated with the Service Order Item describes the operation (add, modify, delete)
to be applied on the specified Service instance.The Service Order Item and its associated Action
can operate on both existing (modify, delete) as well as future (add) Service instance.The Service
Order is triggered from the Business Application (BA) system in charge of the Service Order
management to the Service Orchestration Function (SOF) system that will orchestrate the Service
fulfillment.

This type defines all attributes common to objects used in request and response.

Name Type Multiplicity Description

coordinatedAction OrderCoordinatedAction[] 0..*

The interval after the
completion of one or
more related Service
Order Items that this
Service Order Item can be
started or completed

description string 0..1
A free-text description of
the service order

externalId string 0..1
ID given by the consumer
to facilitate searches

55 / 81

Name Type Multiplicity Description

note Note_BusSof[] 0..*

Extra-information about
the order; e.g. useful to
add extra delivery
information that could be
useful for a human
process

orderRelationship ServiceOrderRelationship[] 0..*

A list of service orders
related to this order (e.g.
prerequisite, dependent
on)

relatedContactInformation RelatedContactInformation[] 0..*

Contact information of an
individual or organization
playing a role for this
Service Order. For
providing Notification
Contact,
`role=notificationContact`
MUST be used.

requestedCompletionDate* date-time 1
Requested delivery date
from the requestors
perspective

requestedStartDate* date-time 1
Order start date wished
by the requestor

7.2.1.2. Type ServiceOrder_Create

Description: A Service Order is used to request operations on a Service instance. A Service
Order groups one or more one Service Order Items - one per specific action on a Service instance.
The Action associated with the Service Order Item describes the operation (add, modify, delete)
to be applied on the specified Service instance.The Service Order Item and its associated Action
can operate on both existing (modify, delete) as well as future (add) Service instance.The Service
Order is triggered from the Business Application (BA) system in charge of the Service Order
management to the Service Orchestration Function (SOF) system that will orchestrate the Service
fulfillment. This type extends ServiceOrder_Common and adds attributes specific to the request
response.

Inherits from:

ServiceOrder_Common

56 / 81

Name Type Multiplicity DescriptionName Type Multiplicity Description

serviceOrderItem* ServiceOrderItem_Create[] 1..*
A list of service order items to
be processed by this order

7.2.1.3. Type ServiceOrder

Description: A Service Order is used to request operations on a Service instance. A Service
Order groups one or more one Service Order Items - one per specific action on a Service instance.
The Action associated with the Service Order Item describes the operation (add, modify, delete)
to be applied on the specified Service instance.The Service Order Item and its associated Action
can operate on both existing (modify, delete) as well as future (add) Service instance.The Service
Order is triggered from the Business Application (BA) system in charge of the Service Order
management to the Service Orchestration Function (SOF) system that will orchestrate the Service
fulfillment.

Inherits from:

ServiceOrder_Common

Name Type Multiplicity Description

href uri 0..1 Hyperlink reference

id* string 1 unique identifier

completionDate date-time 0..1
Effective delivery date
amended by the provider

expectedCompletionDate date-time 0..1
Expected delivery date
amended by the provider

serviceOrderItem* ServiceOrderItem[] 1..*
A list of service order items
to be processed by this
order

startDate date-time 0..1
Date when the order was
started for processing

state* ServiceOrderStateType 1
The state of the Service
Order

orderDate* date-time 1

Date when the Service
Order was created in the
SOF's system and a Service
Order Identifier was
assigned

7.2.1.4. enum ServiceOrderStateType

57 / 81

Description: Possible values for the state of a Service Order

State Description

acknowledged
A ServiceOrder request has been received and has passed message and basic
validations and a Success Response has been sent.

rejected

This state indicates that:
- Invalid information is provided through the ServiceOrder /
ServiceOrderItem request
- The request fails to meet validation rules for Service delivery (processing)
If one ServiceOrderItem is rejected, then the entire ServiceOrder request is
rejected and a Error Response is sent.

inProgress

This state indicates that all ServiceOrderItems have successfully passed the
validations checks and the scheduled Service delivery/processing has started.
The ServiceOrder will be in inProgress state if at least one ServiceOrderItem
is in inProgress state

pending

This state indicates that a ServiceOrderItem is currently in a waiting stage for
an action/activity to be completed before the order-processing can progress
further, pending order amend or cancel assessment.
A pending state can lead into auto cancellation of an ServiceOrderItem, if no
action is taken within the agreed timeframe.
The ServiceOrder will be in pending state if at least one ServiceOrderItem is
in pending state

held

This state indicates that a ServiceOrderItem cannot be progressed due to an
issue. The Service delivery (processing) has been temporarily delayed to
resolve an infrastructure shortfall to facilitate supply of order. Upon resolution
of the issue, the ServiceOrderItem will continue to progress.
A held state can lead into auto cancellation of an ServiceOrderItem, if no
action is taken within the agreed timeframe.
The ServiceOrder will be in held state if at least one ServiceOrderItem is in
held state

failed

This state indicates that Service delivery (processing) associated with a
ServiceOrderItem has failed. This indicates an irrecoverable error as opposed
to held or pending issues.
The ServiceOrder will be in failed state if at ALL ServiceOrderItems are in
failed state

completed

This state indicates that Service delivery (processing) associated with a
ServiceOrderItem has completed.
The ServiceOrder will be in completed state if at ALL ServiceOrderItems are
in completed state

58 / 81

State Description

partial
This state indicates that some ServiceOrderItem are in completed state while
others are in cancelled and/or failed states, so the entire ServiceOrder is in a
partial state.

7.2.1.5. Type ServiceOrderRef

Description: Reference to a Service Order instance.

Name Type Multiplicity Description

href string 0..1 A hyperlink to the related order

id* string 1 The id of the related order

7.2.1.6. Type ServiceOrderRelationship

Description: Reference to a related Service Order and the type of that association.

Name Type Multiplicity Description

serviceOrder* ServiceOrderRef 1 A reference to a Service Order

relationshipType* string 1

Specifies the type (nature) of the
relationship to the related Service. The
nature of required relationships varies for
Services of different types. For example,
a UNI or ENNI Service may not have any
relationships, but an Access E-Line may
have two mandatory relationships (related
to the UNI on one end and the ENNI on
the other). More complex Services such
as multipoint IP or Firewall Services may
have more complex relationships. As a
result, the allowed and mandatory
`relationshipType` values are defined in
the Service Specification.

7.2.2. Service Order Item

7.2.2.1 Type ServiceOrderItem_Common

Description: An identified part of the order. A service order is decomposed into one or more
order items. This type holds the attributes common to request and response representation of the
Service Order Item.

59 / 81

Name Type Multiplicity Description

id* string 1

Identifier of the
order item
(generally it is a
sequence number
01, 02, 03, ...)

action* ServiceActionType 1

Action to be
applied to the
Service referred
by this Service
Order Item

coordinatedAction OrderItemCoordinatedAction[] 0..*

The interval after
the completion of
one or more
related Service
Order Items that
this Service Order
Item can be
started or
completed

note Note_BusSof[] 0..*

Extra-information
about the order
item; e.g. useful
to add extra
delivery
information that
could be useful
for a human
process

service* ServiceValue 1

A description of
the service that is
the subject of this
service order
item.

serviceOrderItemRelationship ServiceOrderItemRelationship[] 0..* Specifies the type
(nature) of the
relationship to the
related Service.
The nature of
required

60 / 81

Name Type Multiplicity Description

relationships
varies for
Services of
different types.
For example, a
UNI or ENNI
Service may not
have any
relationships, but
an E-Line may
have two
mandatory
relationships
(related to the
UNI on one end
and the ENNI on
the other). More
complex Services
such as multipoint
IP or Firewall
Services may
have more
complex
relationships. As
a result, the
allowed and
mandatory
`relationshipType`
values are defined
in the Service
Specification.
Related items can
be both from
within the same
Service Order or
from other one.
When referencing
item within the
same Service
Order,

61 / 81

7.2.2.2. Type ServiceOrderItem_Create

Description: An identified part of the order. A service order is decomposed into one or more
order items. This type is used in the request.

Inherits from:

ServiceOrderItem_Common

7.2.2.3. Type ServiceOrderItem

Description: An identified part of the order. A service order is decomposed into one or more
order items. The modelling pattern introduces the Common supertype to aggregate attributes that
are common to both ServiceOrderItem and ServiceOrderItem_Create. The Create type has a
subset of attributes of the response type and does not introduce any new, thus the Create type has
an empty definition

Inherits from:

ServiceOrderItem_Common

Name Type Multiplicity Description

state* ServiceOrderStateType 1 State of the Service Order Item

terminationError TerminationError[] 0..*
When the SOF cannot process the
request, the SOF returns a text-
based list of reasons here.

7.2.2.4. enum ServiceActionType

Description: Action to be applied to the Service referred by this Service Order Item

Value

add

modify

delete

7.2.2.5. Type ServiceOrderItemRef

Description: A reference to a Service Order Item. When referencing item from within the same
Service Order, the serviceOrderId and serviceOrderHref MUST be empty.

Name Type Multiplicity Description

62 / 81

Name Type Multiplicity Description

itemId* string 1
Identifier of referenced item within the referenced
Service Order

serviceOrderHref string 0..1
Link to the order to which the referenced item
belongs to

serviceOrderId string 0..1
Identifier of the order to which the referenced item
belongs to

7.2.2.6. Type ServiceOrderItemRelationship

Description: Specifies the type (nature) of the relationship to the related Service. The nature of
required relationships varies for Services of different types. For example, a UNI or ENNI Service
may not have any relationships, but an E-Line may have two mandatory relationships (related to
the UNI on one end and the ENNI on the other). More complex Services such as multipoint IP or
Firewall Services may have more complex relationships. As a result, the allowed and mandatory
relationshipType values are defined in the Service Specification. Related item can be both from
within the same Service Order or from other one. When referencing item from within the same
Service Order, the orderItem.serviceOrderId and orderItem.serviceOrderHref MUST be
empty.

Name Type Multiplicity Description

orderItem* ServiceOrderItemRef 1 A reference to a Service Order Item

relationshipType* string 1

Specifies the nature of the
relationship to the related Service
Order Item. A string that is one of
the relationship types specified in the
Service Specification.

7.2.3. Service representation

7.2.3.1. Type ServiceValue

Description: ServiceValue is a base class for defining the Service.

Name Type Multiplicity Description

href string 0..1
Hyperlink reference to a
Service

id string 0..1
unique identifier of a
Service

63 / 81

Name Type Multiplicity Description

description string 0..1
Free-text description of
the service

externalId string 0..1
ID given by the consumer
to facilitate searches

startDate date-time 0..1
Date when the service
starts

endDate date-time 0..1
Date when the service
ends

state ServiceStateType 0..1
Represent the state of
lifecycle of the Service
Order.

note Note_BusSof[] 0..*
A list of notes made on
this service

serviceType string 0..1
Business type of the
service

name string 0..1 Name of the service

64 / 81

Name Type Multiplicity Description

serviceRelationship ServiceRelationship[] 0..*

Specifies the type (nature)
of the relationship to the
related Service. The
nature of required
relationships varies for
Services of different
types. For example, a UNI
or ENNI Service may not
have any relationships,
but an Access E-Line may
have two mandatory
relationships (related to
the UNI on one end and
the ENNI on the other).
More complex Services
such as multipoint IP or
Firewall Services may
have more complex
relationships. As a result,
the allowed and
mandatory
`relationshipType` values
are defined in the Service
Specification.

relatedContactInformation RelatedContactInformation[] 0..*

Contact information of an
individual or organization
playing a role for this
Service

place RelatedPlaceRefOrValue[] 0..*

The relationships between
this Service Order Item
and one or more Places as
defined in the Service
Specification.

65 / 81

Name Type Multiplicity Description

serviceConfiguration MefServiceConfiguration 0..1

MEFServiceConfiguration
is used to specify the
MEF specific service
payload. This field MUST
be populated for all item
'actions' other than
'delete'. It MUST NOT be
populated when an item
`action` is `delete`. The
@type is used as a
discriminator.

7.2.3.2. Type MefServiceConfiguration

Description: MEFServiceConfiguration is used as an extension point for MEF specific service
payload. The @type attribute is used as a discriminator

Name Type Multiplicity Description

@type* string 1
The value of the "$id" as defined in the JSON schema of the
service.

7.2.3.3. Type ServiceRelationship

Description: A relationship to an existing Service. The requirements for usage for given Service
are described in the Service Specification.

Name Type Multiplicity Description

relationshipType* string 1

Specifies the type (nature) of the relationship to
the related Service. The nature of required
relationships varies for Services of different
types. For example, a UNI or ENNI Service
may not have any relationships, but an Access
E-Line may have two mandatory relationships
(related to the UNI on one end and the ENNI
on the other). More complex Services such as
multipoint IP or Firewall Services may have
more complex relationships. As a result, the
allowed and mandatory `relationshipType`
values are defined in the Service Specification.

service* ServiceRef 1 A reference to a Service

66 / 81

7.2.3.4. enum ServiceStateType

Description: Valid values for the lifecycle state of the Service.

State Description

feasibilityChecked
Initial check whether the necessary resources are available and sufficient
for the installation of a given service.

designed
The Service is designed. The resources are identified and/or allocated, but
not reserved.

reserved All required resources for given service are reserved and ready.

inactive The service is deactivated and is no longer available.

active The service is fully available and active

terminated
The service is 'logically deleted'. All associated resources are freed and
made available for service to other users.

7.2.3.5. Type ServiceRef

Description: Reference to a Service instance.

Name Type Multiplicity Description

href string 0..1 Hyperlink reference to Service

id* string 1 unique identifier of Service

7.2.4. Place representation

There are several formats in which place information can be introduced to the Service Order
request. They are described in Section 6.1.8.

7.2.4.1. Type RelatedPlaceRefOrValue

Description: A Place provided either by value or by reference

Name Type Multiplicity Description

@type* string 1

This field is used as a discriminator and is used
between different place representations. This type
might discriminate for additional related place as
defined in '@schemaLocation'.

@schemaLocation uri 0..1 A URI to a JSON-Schema file that defines
additional attributes and relationships. May be used
to define additional related place types.

67 / 81

Name Type Multiplicity Description

role* string 1 Role of this place

7.2.4.2. Type FieldedAddress

Description: A type of Address that has a discrete field and value for each type of boundary or
identifier down to the lowest level of detail. For example "street number" is one field, "street
name" is another field, etc. Reference: MEF 79 (Sn 8.9.2)

Inherits from:

RelatedPlaceRefOrValue

Name Type Multiplicity Description

city* string 1 The city that the address is in

country* string 1 Country that the address is in

geographicSubAddress GeographicSubAddress 0..1
Additional fields used to
specify an address, as
detailed as possible.

locality string 0..1
The locality that the address
is in

postcode string 0..1

Descriptor for a postal
delivery area, used to speed
and simplify the delivery of
mail (also known as zip code)

postcodeExtension string 0..1

An extension of a postal
code. E.g. the part following
the dash in a US urban
property address

stateOrProvince string 0..1
The State or Province that the
address is in

streetName* string 1
Name of the street or other
street type

68 / 81

Name Type Multiplicity Description

streetNr string 0..1

Number identifying a specific
property on a public street. It
may be combined with
streetNrLast for ranged
addresses. MEF 79 defines it
as required however as in
certain countries it is not used
we make it optional in API.

streetNrLast string 0..1
Last number in a range of
street numbers allocated to a
property

streetNrLastSuffix string 0..1
Last street number suffix for
a ranged address

streetNrSuffix string 0..1 The first street number suffix

streetSuffix string 0..1
A modifier denoting a
relative direction

streetType string 0..1

The type of street (e.g., alley,
avenue, boulevard, brae,
crescent, drive, highway,
lane, terrace, parade, place,
tarn, way, wharf)

7.2.4.3. Type FieldedAddressValue

Description: A type of Address that has a discrete field and value for each type of boundary or
identifier down to the lowest level of detail. For example "street number" is one field, "street
name" is another field, etc. Reference: MEF 79 (Sn 8.9.2)

Name Type Multiplicity Description

city* string 1 The city that the address is in

country* string 1 Country that the address is in

geographicSubAddress GeographicSubAddress 0..1
Additional fields used to
specify an address, as
detailed as possible.

locality string 0..1
The locality that the address
is in

69 / 81

Name Type Multiplicity Description

postcode string 0..1

Descriptor for a postal
delivery area, used to speed
and simplify the delivery of
mail (also known as zip code)

postcodeExtension string 0..1

An extension of a postal
code. E.g. the part following
the dash in a US urban
property address

stateOrProvince string 0..1
The State or Province that the
address is in

streetName* string 1
Name of the street or other
street type

streetNr string 0..1

Number identifying a specific
property on a public street. It
may be combined with
streetNrLast for ranged
addresses. MEF 79 defines it
as required however as in
certain countries it is not used
we make it optional in API.

streetNrLast string 0..1
Last number in a range of
street numbers allocated to a
property

streetNrLastSuffix string 0..1
Last street number suffix for
a ranged address

streetNrSuffix string 0..1 The first street number suffix

streetSuffix string 0..1
A modifier denoting a
relative direction

streetType string 0..1

The type of street (e.g., alley,
avenue, boulevard, brae,
crescent, drive, highway,
lane, terrace, parade, place,
tarn, way, wharf)

7.2.4.4. Type FormattedAddress

Description: A type of Address that has discrete fields for each type of boundary or identifier
with the exception of street and more specific location details, which are combined into a

70 / 81

maximum of two strings based on local postal addressing conventions. Reference: MEF 79 (Sn
8.9.3)

Inherits from:

RelatedPlaceRefOrValue

Name Type Multiplicity Description

addrLine1* string 1 The first address line in a formatted address

addrLine2 string 0..1 The second address line in a formatted address

city* string 1 The city that the address is in

country* string 1 Country that the address is in

locality string 0..1
An area of defined or undefined boundaries within a
local authority or other legislatively defined area,
usually rural or semi-rural in nature

postcode string 0..1
Descriptor for a postal delivery area, used to speed
and simplify the delivery of mail (also known as
ZIP code)

postcodeExtension string 0..1
An extension of a postal code. E.g. the part
following the dash in an US urban property address

stateOrProvince string 0..1 The State or Province that the address is in

7.2.4.5. Type GeographicPoint

Description: A GeographicPoint defines a geographic point through coordinates. Reference:
MEF 79 (Sn 8.9.5)

Inherits from:

RelatedPlaceRefOrValue

Name Type Multiplicity Description

spatialRef* string 1

The spatial reference system used to determine the
coordinates (e.g. "WGS84"). The system used and the
value of this field are to be agreed during the onboarding
process.

x* string 1
The latitude expressed in the format specified by the
`spacialRef`

y* string 1
The longitude expressed in the format specified by the
`spacialRef`

71 / 81

Name Type Multiplicity Description

z string 0..1
The elevation expressed in the format specified by the
`spacialRef`

7.2.4.6. Type GeographicAddressLabel

Description: A unique identifier controlled by a generally accepted independent administrative
authority that specifies a fixed geographical location. Reference: MEF 79 (Sn 8.9.4)

Inherits from:

RelatedPlaceRefOrValue

Name Type Multiplicity Description

externalReferenceId* string 1 A reference to an address by id

externalReferenceType* string 1

Uniquely identifies the authority that specifies
the addresses reference and/or its type (if the
authority specifies more than one type of
address). The value(s) to be used are to be
agreed during the onboarding. For North
American providers this would normally be
CLLI (Common Language Location
Identifier) code.

7.2.4.7. Type GeographicSubAddress

Description: Additional fields used to specify an address, as detailed as possible.

Name Type Multiplicity Description

buildingName string 0..1

Allows for identification
of places that require
building name as part of
addressing information

levelNumber string 0..1

Used where a level type
may be repeated e.g.
BASEMENT 1,
BASEMENT 2

levelType string 0..1
Describes level types
within a building

72 / 81

Name Type Multiplicity Description

privateStreetName string 0..1

"Private streets internal to
a property (e.g. a
university) may have
internal names that are
not recorded by the land
title office

privateStreetNumber string 0..1
Private streets numbers
internal to a private street

subUnit GeographicSubAddressUnit[] 0..*

Representation of a
MEFSubUnit It is used
for describing subunit
within a subAddress e.g.
BERTH, FLAT, PIER,
SUITE, SHOP, TOWER,
UNIT, WHARF.

7.2.4.8. Type GeographicSubAddressUnit

Description: Allows for sub unit identification

Name Type Multiplicity Description

subUnitNumber* string 1
The discriminator used for the subunit, often just a
simple number but may also be a range.

subUnitType* string 1
The type of subunit e.g.BERTH, FLAT, PIER,
SUITE, SHOP, TOWER, UNIT, WHARF.

7.2.4.9. Type GeographicAddressRef

Description: A reference to a Geographic Address resource available through Address Validation
API.

Inherits from:

RelatedPlaceRefOrValue

Name Type Multiplicity Description

href string 0..1
Hyperlink to the referenced GeographicAddress. Hyperlink
MAY be provided by the SOF in responses. Hyperlink MUST be
ignored by the SOF in case it is provided by the BA in a request

73 / 81

Name Type Multiplicity Description

id* string 1
Identifier of the referenced Geographic Address. This identifier
is assigned during a successful address validation request
(Geographic Address Validation API)

7.2.4.10. Type GeographicSiteRef

Description: A reference to a Geographic Site resource available through Service Site API

Inherits from:

RelatedPlaceRefOrValue

Name Type Multiplicity Description

href string 0..1
Hyperlink to the referenced GeographicSite. Hyperlink MAY be
provided by the SOF in responses. Hyperlink MUST be ignored
by the SOF in case it is provided by the BA in a request

id* string 1 Identifier of the referenced Geographic Site.

7.2.5. Notification registration

Notification registration and management are done through /hub API endpoint. The below
sections describe data models related to this endpoint.

7.2.5.1. Type EventSubscriptionInput

Description: This class is used to register for Notifications.

Name Type Multiplicity Description

callback* string 1

This callback value must be set to *host* propert
(serviceOrderNotification.api.yaml). This property is appended with th
in that API to construct an URL to which notification is sent. E.g. fo
service order state change event no
`https://bus.com/listenerEndpoint/mefApi/legato/serviceOrderingMana

query string 0..1

This attribute is used to define to which type of events t
serviceOrderStateChangeEvent". To subscribe for more than one
`eventType=serviceOrderStateChangeEvent,serviceOrderItemStateCh
'serviceOrderEventType' in serviceOrderNotification.api.yaml. An em
in subscription for all event types.

7.2.5.2. Type EventSubscription

74 / 81

Description: This resource is used to respond to notification subscriptions.

Name Type Multiplicity Description

callback* string 1
The value provided by in `EventSubscriptionInput` during
notification registration

id* string 1
An identifier of this Event Subscription assigned when a
resource is created.

query string 0..1
The value provided by the `EventSubscriptionInput` during
notification registration

7.2.6. Common

Types described in this subsection are shared among two or more Cantata and Sonata APIs.

7.2.6.1. Type OrderCoordinatedAction

Description: The interval after the completion of one or more related Order that this Order can be
started or completed

Name Type Multiplicity Description

coordinatedActionDelay* Duration 1

The period
of time for
which the
coordinated
action is
delayed.

coordinationDependency* OrderItemCoordinationDependencyType 1

A
dependency
between the
Order and a
related
Order

orderId* string 1

Specifies
Order that
is to be
coordinated
with this
Order.

7.2.6.2. Type OrderItemCoordinatedAction

75 / 81

Description: The interval after the completion of one or more related Order Items that this Order
Item can be started or completed

Name Type Multiplicity Description

coordinatedActionDelay* Duration 1

The period
of time for
which the
coordinated
action is
delayed.

coordinationDependency* OrderItemCoordinationDependencyType 1

A
dependency
between the
Order Item
and a
related
Order Item

itemId* string 1

Specifies
Order Item
that is to be
coordinated
with this
Order Item.

7.2.6.3. enum OrderItemCoordinationDependencyType

Description: Possible values of the Order Item Coordination Dependency

OrderItemCoordinationDependencyType Description

startToStart
Work on the Specified Order Item can only be
started after the Coordinated Order Items are
started

startToFinish
The Coordinated Order Items must complete
before work on the Specified Order Item begins

finishToStart
Work on the Related Order Items begins after the
completion of the Specified Order Item

finishToFinish
Work on the Related Order Items completes at
the same time as the Specified Order Item

7.2.6.4. Type Note_BusSof

76 / 81

Description: Extra information about a given entity. Only useful in processes involving human
interaction. Not applicable for an automated process.

Name Type Multiplicity Description

author* string 1 Author of the note

date* date-time 1 Date of the note

id* string 1
Identifier of the note within its containing entity (may or
may not be globally unique, depending on provider
implementation)

source* BusSofType 1 Indicates if this Note was added by BUS or SOF.

text* string 1 Text of the note

7.2.6.5. Type RelatedContactInformation

Description: Contact information of an individual or organization playing a role for this Order
Item. The rule for mapping a represented attribute value to a role is to use the lowerCamelCase
pattern

Name Type Multiplicity Description

emailAddress* string 1 Email address

name* string 1 Name of the contact

number* string 1 Phone number

numberExtension string 0..1 Phone number extension

organization string 0..1
The organization or company that the
contact belongs to

postalAddress FieldedAddressValue 0..1
Identifies the postal address of the
person or office to be contacted.

role* string 1
A role the party plays in a given
context.

The role attribute is used to provide a reason the particular party information is used. It can result
from business requirements (e.g. SOF Contact Information) or from the Service Specification
requirements.

The rule for mapping a represented attribute value to a role is to use the lowerCamelCase pattern
e.g.

BUS Contact: role equal to busInformation
SOF Contact: role equal to sofContact

77 / 81

7.2.6.6. Type TerminationError

Description: This indicates an error that caused an Item to be terminated. The code and
propertyPath should be used like in Error422.

Name Type Description

code Error422Code

One of the following error codes: - missingProperty: The
property the SOF has expected is not present in the payload -
invalidValue: The property has an incorrect value -
invalidFormat: The property value does not comply with the
expected value format - referenceNotFound: The object
referenced by the property cannot be identified in the SOF
system - unexpectedProperty: Additional property, not expected
by the SOF has been provided - tooManyRecords: the number
of records to be provided in the response exceeds the SOF's
threshold. - otherIssue: Other problem was identified (detailed
information provided in a reason)

propertyPath string

A pointer to a particular property of the payload that caused the
validation issue. It is highly recommended that this property
should be used. Defined using JavaScript Object Notation
(JSON) Pointer (https://tools.ietf.org/html/rfc6901).

value string Text to describe the reason of the termination.

7.2.6.7. enum TimeUnit

Description: Represents a unit of time.

Value

calendarMonths

calendarDays

calendarHours

calendarMinutes

businessDays

businessHours

businessMinutes

7.3. Notification API Data model

Figure 21 presents the Service Order Management Notification data model.

78 / 81

Figure 21. Service Order Management Notification Data Model

This data model is used to construct requests and responses of the API endpoints described in
Section 5.2.2.

7.3.1. Type Event

Description: Event class is used to describe information structure used for notification.

Name Type Multiplicity Description

eventId* string 1 Id of the event

eventTime* date-time 1 Date-time when the event occurred

7.3.2. Type ServiceOrderEvent

Description:

Inherits from:

Event

Name Type Multiplicity Description

eventType* ServiceOrderEventType 1 Indicates the type of the event.

event* ServiceOrderEventPayload 1
A reference to the Service Order that
is source of the notification.

7.3.3. Type ServiceOrderEventPayload

Description: The identifier of the Service Order and Order Item being subject of this event.

Name Type Multiplicity Description

79 / 81

Name Type Multiplicity Description

orderItemId string 0..1
ID of the Service Order Item (within the Service Order)
which state change triggered the event. Mandatory for
`serviceOrderItemStateChangeEvent`.

id* string 1 ID of the Service Order

href string 0..1 Hyperlink to access the Service Order

7.3.4. enum ServiceOrderEventType

Description: Indicates the type of Service Order event.

Value

serviceOrderCreateEvent

serviceOrderStateChangeEvent

serviceOrderItemStateChangeEvent

serviceOrderInformationRequiredEvent

80 / 81

8. References

JSON Schema draft 7, JSON Schema: A Media Type for Describing JSON Documents and
associated documents, by Austin Wright and Henry Andrews, March 2018. Copyright ©
2018 IETF Trust and the persons identified as the document authors. All rights reserved.
MEF 10.4, Subscriber Ethernet Services Attributes, December 2018
MEF 26.2, External Network Network Interface (ENNI) and Operator Service Attributes,
August 2016
MEF 55.1 Lifecycle Service Orchestration (LSO): Reference Architecture and Framework,
February 2021
MEF 61.1, IP Service Attributes, May 2019
MEF 61.1.1, Amendment to MEF 61.1: UNI Access Link Trunks, IP Addresses, and Mean
Time to Repair Performance Metric, July 2022
MEF 70, SD-WAN Service Attributes and Services, July 2019
MEF 79, Address, Service Site, and Product Offering Qualification Management,
Requirements and Use Cases, November 2019
MEF 79.0.1, Amendment to MEF 79: Address, Service Site, and Product Offering
Qualification Management, Requirements, and Use Cases, December 2020
MEF 79.0.2, Amendment to MEF 79: Address Validation, July 2021
[MEF W100], LSO Legato Service Specification - SD-WAN Schema Guide
[MEF W101], LSO Legato Service Specification - Carrier Ethernet Schema Guide
[MEF W102], LSO Legato Service Specification - IP/IP-VPN Schema Guide
MEF 121, LSO Cantata and LSO Sonata Address Management API - Developer Guide, May
2022
MEF 122, LSO Cantata and LSO Sonata Site Management API - Developer Guide, May
2022
MEF 128, LSO API Security Profile, July 2022
RFC2119, Key words for use in RFCs to Indicate Requirement Levels, by S. Bradner, March
1997
RFC3986 Uniform Resource Identifier (URI): Generic Syntax, January 2005
RFC8174, Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words, by B. Leiba,
May 2017, Copyright (c) 2017 IETF Trust and the persons identified as the document
authors. All rights reserved.
RFC7231, Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content, June 2014
https://tools.ietf.org/html/rfc7231
TMF630 TMF630 API Design Guidelines 4.2.0
TMF641 TMF641 Service Order Management API REST Specification v4.1.0

https://json-schema.org/specification-links.html#draft-7
https://www.mef.net/wp-content/uploads/2018/12/MEF-10-4.pdf
https://www.mef.net/wp-content/uploads/2016/08/MEF-26-2.pdf
https://www.mef.net/wp-content/uploads/2021/02/MEF-55.1.pdf
https://www.mef.net/wp-content/uploads/2019/05/MEF-61-1.pdf
https://www.mef.net/wp-content/uploads/MEF-61.1.1.pdf
https://www.mef.net/wp-content/uploads/2019/07/MEF-70.pdf
https://www.mef.net/wp-content/uploads/2019/11/MEF-79.pdf
https://www.mef.net/wp-content/uploads/2020/12/MEF-79-0-1.pdf
https://www.mef.net/wp-content/uploads/MEF-79.0.2.pdf
https://www.mef.net/wp-content/uploads/MEF-121.pdf
https://www.mef.net/wp-content/uploads/MEF-122.pdf
https://www.mef.net/wp-content/uploads/MEF-128.pdf
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc3986#section-3
https://tools.ietf.org/html/rfc8174
https://tools.ietf.org/html/rfc7231
https://www.tmforum.org/resources/specification/tmf630-rest-api-design-guidelines-4-2-0/
https://www.tmforum.org/resources/specification/tmf641-service-ordering-api-user-guide-v4-1-0/

81 / 81

Appendix A Acknowledgments

The following contributors participated in the development of this document and have requested
to be included in this list.

Mike BENCHECK

Michał ŁĄCZYŃSKI

Jack PUGACZEWSKI

Karthik SETHURAMAN

Mehmet TOY

