
1 / 37

Working Draft

MEF W147 v0.2

LSO Allegro, LSO Interlude, and LSO Legato

Streaming Management - Developer Guide

December 2023

This draft represents MEF work in progress and is subject to change.

EXPORT CONTROL: This document contains technical data. The download, export, re-

export or disclosure of the technical data contained in this document may be restricted

by applicable U.S. or foreign export laws, regulations and rules and/or applicable U.S. or

foreign sanctions ("Export Control Laws or Sanctions"). You agree that you are solely

responsible for determining whether any Export Control Laws or Sanctions may apply to

your download, export, reexport or disclosure of this document, and for obtaining (if

available) any required U.S. or foreign export or reexport licenses and/or other required

authorizations.

2 / 37

Disclaimer

© MEF Forum 2023. All Rights Reserved.

The information in this publication is freely available for reproduction and use by any recipient
and is believed to be accurate as of its publication date. Such information is subject to change
without notice and MEF Forum (MEF) is not responsible for any errors. MEF does not assume
responsibility to update or correct any information in this publication. No representation or
warranty, expressed or implied, is made by MEF concerning the completeness, accuracy, or
applicability of any information contained herein and no liability of any kind shall be assumed by
MEF as a result of reliance upon such information.

The information contained herein is intended to be used without modification by the recipient or
user of this document. MEF is not responsible or liable for any modifications to this document
made by any other party.

The receipt or any use of this document or its contents does not in any way create, by implication
or otherwise:

(a) any express or implied license or right to or under any patent, copyright, trademark or
trade secret rights held or claimed by any MEF member which are or may be associated with
the ideas, techniques, concepts or expressions contained herein; nor

(b) any warranty or representation that any MEF member will announce any product(s)
and/or service(s) related thereto, or if such announcements are made, that such announced
product(s) and/or service(s) embody any or all of the ideas, technologies, or concepts
contained herein; nor

(c) any form of relationship between any MEF member and the recipient or user of this
document.

Implementation or use of specific MEF standards, specifications or recommendations will be
voluntary, and no Member shall be obliged to implement them by virtue of participation in MEF
Forum. MEF is a non-profit international organization to enable the development and worldwide
adoption of agile, assured and orchestrated network services. MEF does not, expressly or
otherwise, endorse or promote any specific products or services.

Copyright

© MEF Forum 2023. Any reproduction of this document, or any portion thereof, shall contain the
following statement: "Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

3 / 37

Table of Contents

List of Contributing Members
1. Abstract
2. Terminology and Abbreviations
3. Compliance Levels
4. Introduction

4.1 Description
4.2. Conventions in the Document
4.3. Relation to Other Documents
4.4. Approach
4.5. High-Level Flow

5. API Description
5.1. High-level use cases
5.2. API Endpoint and Operation Description
5.3. Integration of the Service-Specific Models

5.3.1. Streaming Management API Extension
5.3.1.1. Response extension
5.3.1.2. Request extension

5.3.2. Message Data Model Extension
5.4. Model Structural Validation
5.5. Security Considerations

6. API Interactions and Flows
6.1. Use case 1: Retrieve Available Topics List
6.2. Use case 2: Retrieve Available Topic by an Identifier
6.3. Use case 3: Subscribe To a Topic
6.4. Use case 4: Unsubscribe From a Topic
6.5. Use case 5: Retrieve Topic Subscriptions List
6.6. Use case 6: Retrieve Topic Subscription By an Identifier

7. API Details
7.1. Management API Data model

7.1.1. Topic
7.1.1.1. enum Category
7.1.1.2. Type ChannelDescription
7.1.1.3. Type Topic

7.1.2. Subscription
7.1.2.1. Type Channel
7.1.2.2. Type ConnectionConfig
7.1.2.3. Type Subscription
7.1.2.4. Type TopicSubscription
7.1.2.5. Type TopicSubscriptionRequest

7.1.3. Error models

4 / 37

7.1.3.1. Type Error
7.1.3.2. Type Error400
7.1.3.3. enum Error400Code
7.1.3.4. Type Error401
7.1.3.5. enum Error401Code
7.1.3.6. Type Error403
7.1.3.7. enum Error403Code
7.1.3.8. Type Error404
7.1.3.9. Type Error422
7.1.3.10. enum Error422Code
7.1.3.11. Type Error500

7.2. Message model
7.2.1. Message

8. References
Appendix A. Channel binding examples

Kafka binding example
AMQP binding example
Web Socket binding example

5 / 37

List of Contributing Members

The following members of the MEF participated in the development of this document and have
requested to be included in this list.

Member

Table 1. Contributing Members

1. Abstract

This standard is intended to assist implementation of the Streaming Management functionality
defined for the LSO Allegro, Legato, and Interlude Interface Reference Points (IRPs), for which
requirements and use cases are defined in MEF 133.1 (WD) Allegro, Interlude and Legato Fault
Management and Performance Monitoring BR&UC [MEFW133.1]. This standard normatively
incorporates the following files by reference as if they were part of this document, from the
GitHub repository:

MEF-LSO-Legato-SDK

serviceApi/pm/streamingManagement.api.yaml

Note: The repository contains serviceApi/pm/streamingManagement.api.all-in-one.yaml

version of the OAS spec. This version is self-contained and does not use references to external
resources.

The Streaming Management API is defined using OpenAPI 3.0 Specification [OAS-V3].

https://github.com/MEF-GIT/MEF-LSO-Legato-SDK
https://github.com/MEF-GIT/MEF-LSO-Legato-SDK-extended/blob/working-draft/serviceApi/pm/streamingManagement.api.yaml

6 / 37

2. Terminology and Abbreviations

This section defines the terms used in this document. In many cases, the normative definitions of
terms are found in other documents. In these cases, the third column is used to provide the
reference that is controlling, in other MEF or external documents.

Term Description Reference

Application
Program
Interface
(API)

In the context of LSO, API describes one of the Management
Interface Reference Points based on the requirements specified
in an Interface Profile, along with a data model, the protocol that
defines operations on the data, and the encoding format used to
encode data according to the data model. In this document, API
is used synonymously with REST API.

[MEF55.1]

API
Gateway

An API gateway is a software pattern or component that acts as
an intermediary between clients and the backend services of the
server.

This
document

Buyer

In the context of this document denotes the organization or
individual acting as the customer in a transaction over a Cantata
(Customer <-> Service Provider) or Sonata (Service Provider <-
> Partner) Interface. The Buyer consumes streaming
management API exposed through Allegro and Interlude
respectively.

This
document;
adapted from
[MEF80]

Client
In the context of this document, denotes a system that consumes
the uses the stream management functionality.

This
document

Consumer
A component that consumes messages from a data stream. In the
scope of this document, synonymous to `Client`

This
document

Event
A specific occurrence or a state change that is note-worthy to the
system administrator.

[MEFW133.1]

Message

Typically defined as a unit of information exchanged between
components or services in a distributed system. In the context of
this standard, a unit of information, that is a manifestation of an
event exchanged between producer and consumer using an
event-driven architectural pattern.

[MEFW133.1]

Producer
A component that produces messages and exposes them via
message stream to the consumers

This
document

REST API Representational State Transfer. REST provides a set of
architectural constraints that, when applied as a whole,
emphasizes the scalability of component interactions, the
generality of interfaces, the independent deployment of

[REST]

7 / 37

components, and intermediary components to reduce interaction
latency, enforce security, and encapsulate legacy systems.

Seller

In the context of this document, denotes the organization or
individual acting as the supplier in a transaction over a Cantata
(Customer <-> Service Provider) or Sonata (Service Provider <-
> Partner) Interface. The Seller exposes streaming management
API through Allegro and Interlude respectively.

This
document;
adapted from
[MEF80]

Server
In the context of this document, denotes a system that exposes
the stream management functionality and typically produces the
stream messages.

This
document

8 / 37

3. Compliance Levels

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED",
"MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14
(RFC 2119 [RFC2119], RFC 8174 [RFC8174]) when, and only when, they appear in all capitals,
as shown here. All key words must be in bold text.

Items that are REQUIRED (contain the words MUST or MUST NOT) are labeled as [Rx] for
required. Items that are RECOMMENDED (contain the words SHOULD or SHOULD NOT)
are labeled as [Dx] for desirable. Items that are OPTIONAL (contain the words MAY or
OPTIONAL) are labeled as [Ox] for optional.

A paragraph preceded by [CRa]< specifies a conditional mandatory requirement that MUST be
followed if the condition(s) following the "<" have been met. For example, "[CR1]<[D38]"
indicates that Conditional Mandatory Requirement 1 must be followed if Desirable Requirement
38 has been met. A paragraph preceded by [CDb]< specifies a Conditional Desirable
Requirement that SHOULD be followed if the condition(s) following the "<" have been met. A
paragraph preceded by **[COc]<**specifies a Conditional Optional Requirement that MAY be
followed if the condition(s) following the "<" have been met.

9 / 37

4. Introduction

This standard specification document describes the Application Programming Interface (API) for
Service Inventory Management functionality of the LSO Allegro, Interlude, and Legato Interface
Reference Points (IRPs) as defined in the MEF 55.1 Lifecycle Service Orchestration (LSO):
Reference Architecture and Framework [MEF55.1]. The LSO Reference Architecture is shown in
Figure 1 with the IRP highlighted.

Figure 1. The LSO Reference Architecture

This document is structured as follows:

Chapter 4 provides an introduction to Streaming Management in a broader context of
Allegro, Interlude, and Legato APIs and their corresponding SDKs.
Chapter 5 briefly discusses API and the supported use cases along with mapping into MEF
W133.1.
Chapter 6 describes use cases in detail.
Chapter 7 provides an in-detail discussion of the data model defined for the Streaming
Management API

4.1 Description

This standard is scoped to cover APIs for Streaming Management. Although the management API
might be used in different contexts we restrict the description in this standard to use cases that
allow for exchanging performance data as defined in MEF W133.1.

This document supports interactions over the Legato interface within a single operator as well as
interaction with the Customer Domain and Partner Domain through Allegro and Interlude
interfaces respectively.

Streaming Management API is used to:

discover available Topics exposed by the Server
manage subscriptions to these topics

10 / 37

list existing subscriptions

4.2. Conventions in the Document

Code samples are formatted using code blocks. When notation << some text >> is used in
the payload sample it indicates that a comment is provided instead of an example value and it
might not comply with the OpenAPI definition.
Model definitions are formatted as in-line code (e.g. Service).
In UML diagrams the default cardinality of associations is 0..1. Other cardinality markers
are compliant with the UML standard.
In the API details tables and UML diagrams required attributes are marked with a * next to
their names.
In UML sequence diagrams {{variable}} notation is used to indicate a variable to be
substituted with a correct value.

4.3. Relation to Other Documents

This API implements the Performance Monitoring Streaming requirements and use cases that are
defined in [MEFW133.1].

4.4. Approach

As presented in Figure 2. the Allegro, Interlude, and Legato API frameworks consist of three
structural components:

Generic API framework
Service-independent information (Function-specific information and Function-specific
operations)
Service-specific information (MEF service specification data model)

Figure 2. Allegro, Interlude, and Legato API Structure

11 / 37

The essential concept behind the framework is to decouple the common structure, information,
and operations from the specific service information content.

Firstly, the Generic API Framework defines a set of design rules and patterns that are applied
across all Allegro, Interlude, and Legato APIs.

Secondly, the service-independent information of the framework focuses on a model of a
particular Allegro, Interlude, or Legato functionality and is agnostic to any of the service
specifications. For example, this standard describes the Streaming Management model and
operations that allow subscribing to streams of any service.

Finally, the service-specific information part of the framework focuses on service-related
attributes and requirements that are being exchanged between streaming clients and producers.

4.5. High-Level Flow

The Streaming API in essence allows the Client to subscribe to a data stream exposed by the
Server. Figure 3 presents a high-level flow in which a Client:

1. select the topic of interest - Subscribe section;
2. consumes messages - Consume section;
3. finalizes subscription - Unsubscribe section.

Figure 3. End-to-end high-level flow

The Consume section of this flow is not supported by management API as it is specific to the
selected data exchange protocol. However, MEF W133.1[MEFW133.1] defines requirements for
this part of the end-to-end flow.

12 / 37

Please note that the consumption of the data might be realized by various protocols leveraging
broker (e.g., Kafka, AMQP) or broker-less (e.g., Web Socket, SSE) communication patterns.

13 / 37

5. API Description

This section presents the API structure and design patterns. It starts with the high-level use cases
diagram. Then it describes the REST endpoints with use case mapping. Next, it gives an overview
of the API resource model.

5.1. High-level use cases

Figure 4 presents a high-level use case diagram that is relevant for streaming management API.
The mapping to appropriate MEF W133.1 use cases is provided in the bottom part of the ellipse
shape representing the use case.

A full list of the use cases for streaming can be found in MEF W133.1 [MEFW133.1] in section
14. Use cases from Figure 4 are described extensively in Chapter 6.

Figure 4. Use cases

The Service Orchestration Functionality (SOF) that exposes the Streaming management API, and
manages streaming infrastructure and event production is referred to as Server in other parts of
this document.

The Client interacts with the API to obtain information that allows for event consumption. The
Client might be a system from Customer Domain, Partner Domain's SOF, or a Business
Application from SP Domain depending on the considered IRP as presented in Figure 1.

14 / 37

5.2. API Endpoint and Operation Description

Base URL for IRP:

https://{{serverBase}}{{?/seller_prefix}}/mefApi/{{irp}}/streamingManagement/v1/

the supported IPRs for this API are legato, allegro, and interlude.

The following API endpoints are implemented by the Server and allow the client to retrieve
information about available topics and manage subscriptions.

serviceApi/pm/streamingManagement.api.yaml.

Streaming Management API to use case mapping:

API endpoint Description Use Case mapping

GET /topic
List Topics available for
Subscription

UC 1: Retrieve Available Topics
List

GET /topic/{{id}}
Retrieve Topic information by
identifier

UC 2: Retrieve Available Topic
by an Identifier

POST /subscription Subscribe to a Topic UC 3: Subscribe To a Topic

DELETE

/subscription/{{id}}

Remove a Subscription for a
Topic

UC 4: Unsubscribe From a Topic

GET /subscription
List all the Subscriptions to the
Topics

UC 5: Retrieve Topic
Subscriptions List

GET

/subscription/{{id}}

Retrieve information about
Subscription to a Topic

UC 6: Retrieve Topic
Subscription By an Identifier

Table 2. Server-side mandatory Streaming Management API endpoints

[R1] The Server MUST support Streaming Management API endpoints listed in Table 2.

5.3. Integration of the Service-Specific Models

This section provides details on the extension mechanism available for Streaming Management
API as well as the data payload that is exchanged between the Server and Client.

5.3.1. Streaming Management API Extension

Streaming management API allows for subscription to available topics as explained above.

The subscription models for request and response are depicted in Figure 5.

15 / 37

Figure 5. Subscription data model

This data model allows for two types of extensions in the response and request of the API call for
UC 3.

5.3.1.1. Response extension

Response extension allows specifying additional information that is required to consume data
from the stream using the selected protocol. The extension point for this information is
BindingsObject. However, this standard does not specify how the extension should be introduced
into the model. We recommend using AsyncAPI Specification [AsyncAPI] channel binding for
well-known asynchronous protocols, as defined in AsyncApi binding definitions at GitHub
[AsyncApiB].

For example, to provide additional information for Kafka channel configuration [AsyncApiBKC]
can be used.

The listening below provides an example of a simple configuration for Kafka.

{
 "bindings": {
 "kafka": {
 "topic": "metrics-kafka",
 "partitions": 1,
 "topicConfiguration": {
 "cleanup.policy": ["compact"],
 "retention.ms": 604800000
 },
 "bindingVersion": "0.4.0"

16 / 37

 }
 }
}

This sample provides details on Kafka broker configuration for the subscription. It specifically
defines the topic, the number of partitions, and the data retention configuration. The complete
description of configuration options is beyond the scope of this standard. For more details, please
refer to the AsyncAPI bindings configuration and the Kafka documentation.

Appendix A. contains examples of bindings for additional protocols.

5.3.1.2. Request extension

The baseline request payload is very simple as it allows for the selection of a protocol from the
list of protocols defined for a given available topic.

In the case of performance-related messages, the subscription is made for all potential subjects
(e.g., services) and for the full list of performance metrics defined for that topic.

The extension of the TopicSubscriptionRequest serves two purposes:

1. to allow for fine-grained specification of the subject and performance attributes.
2. to allow for the specification of protocol-specific parameters. For example, a Server may

allow a Client to specify the consumer group name for Kafka.

An example model definition that accommodates both purposes is shown in Figure 6. The model
demonstrates the extension to protocol configuration and allows for fine-grained tuning of the
subscription target and performance attributes using the performanceAttributesNames list.

The topicId effectively serves as a discriminator for the extension model of
TopicSubscriptionRequest, and the value of the protocol attribute becomes the discriminator for
the protocol configuration part.

Figure 6. Subscription data model extension example

5.3.2. Message Data Model Extension

17 / 37

In this document, we use the term Message to define a unit of information exchanged via
streaming. The Message is a vessel for Event data and additional meta information. The Message is
defined in [MEF 133.1] and based on [TMF688].

This section uses a simplified Carrier Ethernet Performance Monitoring data model to illustrate
the extension mechanism.

The Message is open for extension using a variant of the TMF extension pattern. The
discriminator attribute name is eventType. Figure 7 demonstrates how the generic Message is
specialized to represent a Carrier Ethernet Performance Monitoring model. In this model,
eventType discriminates a specialized event content. The event content defines two distinct
components. The identifier of an observation subject (OrderedPair) which describes what do we
monitor. In this example, it is an ordered pair of endpoints for a given service. The set of
performance measurements (CePerformanceMetrics) defines what type of measurements we are
interested in for that subject.

Figure 7. Message specialization with an example event model

The listing below presents an example of a simple payload that conforms to the model defined in
Figure 7. In this case, data is encoded using JSON data format. All the attributes of the data
model are sent as part of the payload.

{
 "eventId": "88b6cb2d-e2ca-4093-9550-90c64096be7b",
 "eventTime": "2023-05-30T14:11:42.515835+02:00",
 "priority": "LOW",
 "event": {
 "key": {
 "serviceId": "service1",
 "fromCarrierEthernetServiceEndPoint": "1",
 "toCarrierEthernetServiceEndPoint": "2"
 },

18 / 37

 "metrics": {
 "oneWayHighLossIntervals": {
 "consecutiveNumberP": 38,
 "measuredOneWayChli": 71
 },
 "oneWayFrameDelay": {
 "measuredOneWayFd": 67,
 "oneWayFdPercentile": 0.14565401998011449
 },
 "oneWayAvailability": {
 "oneWayAvailability": 0.9012261669223176
 },
 "oneWayFrameLossRatio": {
 "measuredOneWayFlr": 0.478900647869665
 }
 }
 },
 "eventType": "CePerformanceStatistics"
}

The payload represents a single message taken at a given time for an ordered pair of endpoints for
service1. The message contains four performance-related metrics with their values.

Please note that JSON is one of many possible data formats and the use of a particular one
depends on the particular technology selected for a given subscription. For example, in the case
of Kafka transport, another popular format is Apache Avro [Avro].

5.4. Model Structural Validation

The structure of the HTTP payloads exchanged via the API endpoints is defined using OpenAPI
version 3.0.

[R2] Implementations MUST use payloads that conform to these definitions.

5.5. Security Considerations

There must be an authentication mechanism whereby a Server can be assured who a Client is and
vice-versa. There must also be authorization mechanisms in place to control what a particular
Client is allowed to do and what information may be obtained. However, the definition of the
exact security mechanism and configuration is outside the scope of this document. It is being
worked on by a separate MEF Project (MEF W128).

Please note that to secure access production or consumption of the performance events might
require measures that are not in scope for MEF W128.

19 / 37

6. API Interactions and Flows

This section provides a detailed insight into the API functionality, use cases, and flows. It starts
with Table 6 presenting a list and short description of all business use cases then examples for
each of them.

Use
Case
#

Use Case Name Use Case Description
MEF
W133.1
mapping

UC 1
Retrieve Available
Topics List

A request initiated by the Client to list of all
available topics.

UC 44

UC 2
Retrieve Available
Topic by an Identifier

A request initiated by the Client to retrieve
details for the selected available topic.

UC 43

UC 3 Subscribe To a Topic
A request initiated by the Client to create a
new subscription for the topic of interest.

UC 46

UC 4
Unsubscribe From a
Topic

A request initiated by the Client to remove a
subscription to the topic of interest.

UC 47

UC 5
Retrieve Topic
Subscriptions List

A request initiated by the Client to list of all
existing subscriptions to the topics.

UC 45

UC 6
Retrieve Topic
Subscription By an
Identifier

A request initiated by the Client to retrieve
details for a selected subscription.

n/a

Table 6. Use cases description

The detailed business requirements of each of the use cases are described in section 14 of MEF
W133.1.1 [MEFW133.1]. The requirements from R131 to R145 are covered by this standard as
explained in detail in the next sections. The requirements from R146 to R150 are not covered in
the Streaming Management API.

[R3] The Server MUST support application/json format of information exchange for all the
use cases.

6.1. Use case 1: Retrieve Available Topics List

To get detailed information about the available topics, the Client sends a request using GET
/topic operation with optional filtering criteria.

The flow is a simple request-response pattern, as presented in Figure 8:

20 / 37

Figure 8. Use case 1: Retrieve Service by Service Identifier flow

[O1] Server MAY return all results matching the filtering criteria [MEF W133.1 R133]

[R4] Server MUST return an empty list of Topic entities if there is no topic matching filtering
criteria [MEF W133.1 R133]

The response is a list of Topics where the topic data model is presented in Figure 10.

Figure 10. Topic response model

An example response payload is presented below. There are three available channels defined by
the Server. Each topic can be consumed by a Kafka or WebSocket-capable Client after a
successful subscription.

In this example, it is assumed that modelRef URI points to the JsonSchema resource that describes
the data model introduced in the section above.

[
 {
 "id": "dde8b741-f7d3-483e-8c78-5ae84f0c6bb4",
 "category": "IP",
 "modelRef": "https://example.mef.net:7070/schemas/ip/cePerformanceStatistics.1.0.0.schema.json",
 "availableChannels": [
 {
 "protocol": "kafka",
 "description": "Kafka protocol"
 },
 {
 "protocol": "web-socket",
 "description": "WS protocol"
 }
]
 },
 {

21 / 37

 "id": "963f6664-5f34-4c3b-a769-6fb6d3dc348f",
 "category": "COMPUTING",
 "modelRef": "https://example.mef.net:7070/schemas/computing/resources.1.0.0.schema.json",
 "availableChannels": [
 {
 "protocol": "kafka",
 "description": "Kafka protocol"
 },
 {
 "protocol": "web-socket",
 "description": "WS protocol"
 }
]
 },
 {
 "id": "ae09e5d5-9038-4f90-9531-2ba7c12aa769",
 "category": "COMPUTING",
 "modelRef": "https://example.mef.net:7070/schemas/computing/cpu.1.0.0.schema.json",
 "availableChannels": [
 {
 "protocol": "kafka",
 "description": "Kafka protocol"
 },
 {
 "protocol": "web-socket",
 "description": "WS protocol"
 }
]
 }
]

[R5] The id MUST be unique within the Server domain.

6.2. Use case 2: Retrieve Available Topic by an Identifier

To get detailed information about the selected available topics, the Client sends a request using
GET /topic/{{id}} operation where {{id}} is a unique identifier for that topic.

The flow is a simple request-response pattern, as presented in Figure 10.

Figure 10. Use case 2: Retrieve Available Topic by an Identifier flow

The data model of the response is presented in Figure 10.

An example response payload is presented below.

{
 "id": "dde8b741-f7d3-483e-8c78-5ae84f0c6bb4",
 "category": "IP",
 "modelRef": "https://example.mef.net:7070/schemas/ip/cePerformanceStatistics.1.0.0.schema.json",
 "availableChannels": [
 {
 "protocol": "kafka",
 "description": "Kafka protocol"

22 / 37

 },
 {
 "protocol": "web-socket",
 "description": "WS protocol"
 }
]
}

6.3. Use case 3: Subscribe To a Topic

Figure 11 illustrates the flow of subscribing to a topic and subsequently consuming from the
stream that the client has subscribed to using a broker-based solution.

The specific consumption pattern, whether broker-based (such as Kafka, MQTT, or AMQP) or
broker-less (such as SSE or WebSocket), is transparent to the subscription API.

However, it is important to incorporate transport-specific details in the subscription response, as
explained in section 5.3.1.1. Alternatively, these details can be agreed upon during the onboarding
process between the Client and the Server.

A subscription request might trigger various configurations of broker and/or message producer
infrastructure.

In this version of the standard, it is assumed that the configuration is finished before the Server
returns a response to the Client. The model extension mechanism might be used to provide
additional information that allows for handling the delayed initialization of the infrastructure.

Figure 11. Use case 3: Subscribe To a Topic flow

23 / 37

[R6] The Client request MUST include the topic identifier and the protocol to be used for the
subscription.

[O2] The Client request MAY include additional attributes that are necessary to configure the
communication channel for the specified protocol.

[R7] The Server MUST indicate whether the request was accepted or declined with the
appropriate error code [MEF 133.1 R137]

[R8] The response to the subscription query MUST include all details required to consume
messages from the configured communication channel. [MEF 133.1 R140]

[R9] The Server MUST start streaming if the subscribe operation was successful [MEF 133.1
R140]

Not supported requirements from MEFW133.1

R136 The Buyer/Client's Subscribe to Topic request MUST include the attributes (with
the exception of those set by Seller/Server) shown in Subscribe Topic Attributes Table
70.

The subscription request is initiated by sending a POST request to /subscription endpoint. An
example request payload:

{
 "topicId": "dde8b741-f7d3-483e-8c78-5ae84f0c6bb4",
 "protocol": "kafka"
}

An example response:

{
 "id": "634af680-eca7-499a-8d83-86b61242caeb",
 "connectionConfig": {
 "servers": {
 "kafka-prod": {
 "url": "https://perf.broker.mef.net:9092",
 "protocol": "kafka"
 }
 },
 "channel": {
 "name": "streaming/ce-performance/634af680-eca7-499a-8d83-86b61242caeb",
 "bindings": {
 "kafka": {
 "topic": "ce-performance-metrics-kafka-all",
 "partitions": 1,
 "topicConfiguration": {
 "cleanup.policy": ["compact"],
 "retention.ms": 604800000
 },
 "bindingVersion": "0.4.0"
 }
 }
 }
 },
 "protocol": "kafka",
 "topicId": "dde8b741-f7d3-483e-8c78-5ae84f0c6bb4"
}

24 / 37

6.4. Use case 4: Unsubscribe From a Topic

Figure 12 illustrates the flow of unsubscribing from a topic, using subscription id (sid) obtained
in use case 3.

To unsubscribe, the Client sends a request DELETE request to /subscription/{{sid}}.

An unsubscribe request might trigger various configuration changes in broker and/or message
producer infrastructure.

In this version of the standard, it is assumed that the configuration is finished before the Server
returns a response to the Client.

Figure 12. Use case 4: Unsubscribe From a Topic flow

[R10] The Server MUST indicate whether a request was accepted or declined with the
appropriate error code [MEF 133.1 R142, R143]

[R11] The Server MUST stop streaming if an unsubscribe operation was successful [MEF 133.1
R144]

6.5. Use case 5: Retrieve Topic Subscriptions List

To get detailed information about the active subscriptions, the Client sends a request using GET
/subscription operation with optional filtering criteria.

The flow is a simple request-response pattern, as presented in Figure 13:

25 / 37

Figure 13. Use case 5: Retrieve Topic Subscriptions List flow

[R12] Server MUST return all results matching the filtering criteria [MEF W133.1 R134]

[R13] Server MUST return an empty list of subscriptions if there are no subscriptions matching
filtering criteria [MEF W133.1 R135]

[O3] Server MAY support responses in AsyncAPI response
(application/vnd.aai.asyncapi+json)

Example JSON response:

[
 {
 "id": "31b5485f-cf10-4a82-97f9-c7c1307ef811",
 "priority": "low",
 "connectionConfig": {
 "servers": {
 "kafka": {
 "url": "localhost:29092",
 "protocol": "kafka"
 }
 },
 "channel": {
 "name": "streaming/ce-performance/31b5485f-cf10-4a82-97f9-c7c1307ef811",
 "bindings": {
 "kafka": {
 "topic": "metrics-kafka",
 "partitions": 1,
 "topicConfiguration": {
 "cleanup.policy": ["compact"],
 "retention.ms": 604800000
 },
 "bindingVersion": "0.4.0"
 }
 }
 }
 },
 "protocol": "kafka",
 "topicId": "dde8b741-f7d3-483e-8c78-5ae84f0c6bb4"
 }
]

The above response may be represented as an Async API specification. The Async API response
includes all channels subscribed by the Client and full model definitions. To retrieve that
AsyncAPI response the Client sends a request using GET /subscription operation with Accept
header set to application/vnd.aai.asyncapi+json. If the Server does not support AsyncAPI
response it returns 406 Not Acceptable response.

26 / 37

The above response as Async API payload (JSON encoded):

{
 "asyncapi": "2.6.0",
 "info": {
 "title": "CePerformanceStatistics",
 "version": "1.0.0"
 },
 "servers": {
 "kafka": {
 "url": "localhost:29092",
 "protocol": "kafka"
 }
 },
 "channels": {
 "streaming/ce-performance/31b5485f-cf10-4a82-97f9-c7c1307ef811": {
 "subscribe": {
 "description": "read from the channel",
 "bindings": {
 "kafka": {
 "topic": "metrics-kafka",
 "partitions": 1,
 "topicConfiguration": {
 "cleanup.policy": ["compact"],
 "retention.ms": 604800000
 },
 "bindingVersion": "0.4.0"
 }
 },
 "message": {
 "$ref": "#/components/messages/Event"
 }
 }
 }
 },
 "components": {
 "schemas": {
 "CePerformanceMetrics": {
 <<< truncated content >>>
 },
 "Key": {
 <<< truncated content >>>
 },
 "CePerformanceStatistics": {
 "type": "object",
 "properties": {
 "key": {
 "$ref": "#/components/schemas/Key"
 },
 "metrics": {
 "$ref": "#/components/schemas/CePerformanceMetrics"
 }
 }
 }
 },
 "messages": {
 "Event": {
 "payload": {
 "type": "object",
 "properties": {
 "eventId": {
 "description": "Unique identifier for the event.",
 "type": "string",
 "format": "uuid"
 },
 "eventTime": {
 "description": "Date and time when the event occurred.",
 "type": "string",
 "format": "date-time"
 },
 "priority": {
 "description": "Priority of the event.",
 "type": "string",
 "enum": ["LOW", "MEDIUM", "HIGH"]
 },
 "event": {
 "$ref": "#/components/schemas/CePerformanceStatistics"
 }

27 / 37

 }
 }
 }
 }
 }
}

The model used in the above JSON listing is described in section 5.3.2. Please note that there are
two possible renderings of the base Message Data Model that might be used in AsyncAPI. The
first (presented above) renders all attributes as part of the AsyncAPI message payload. The
second renders some of these attributes (e.g. eventId) in the header part of the AsyncAPI
message.

6.6. Use case 6: Retrieve Topic Subscription By an Identifier

To get detailed information about the subscription to a particular topic, the Client sends a request
using GET /subscription/{{id}} operation where {{id}} is a unique identifier for that
subscription.

The flow is a simple request-response pattern, as presented in Figure 14.

Figure 14. Use case 6: Retrieve Topic Subscription By an Identifier flow

28 / 37

7. API Details

7.1. Management API Data model

7.1.1. Topic

The topic model exposes information about the available topics.

7.1.1.1. enum Category

Description: The category of the topic. This can be used to group topics based on their
characteristics.

Value MEF W133.1

Layer 1 LAYER 1

Ethernet ETHERNET

IP IP

SD-WAN SD-WAN

Computing COMPUTING

Storage STORAGE

Memory MEMORY

7.1.1.2. Type ChannelDescription

Description:

Name Type M/O Description
MEF
W133.1

protocol string M
Name of a technical protocol allowing for
consumption

n/a

description string O Human-friendly description of the protocol n/a

7.1.1.3. Type Topic

Description: Provides metadata describing a topic available for subscription. This object is used
to define available consumption mechanisms and the data model.

Name Type M/O Description
MEF
W133.1

29 / 37

Name Type M/O Description
MEF
W133.1

id string O

An identifier for the topic.
This can be used to uniquely
identify the topic within the
Server system.

Topic
Identifier

category Category O
The category of the topic. This
can be used to group topics
based on their characteristics.

Topic
Category

modelRef
uri
format = uri

O
A reference to a model that
describes the structure of the
data associated with the topic.

Indirect
mapping to
'Service
Specific
Attributes'

availableChannels
ChannelDescription[]
minItems = 1

O

An array of channel
descriptions that provide
information about the
channels through which the
topic can be accessed.

Indirect
mapping to
'Service
Specific
Attributes'

[R14] The modelRef MUST be a valid URI that references a data model that defines a contract
between Client and Server for the data exchange for all subscriptions obtained for this topic via
any of the defined channels.

[R15] Server MUST define at least one available channel for each Topic.

7.1.2. Subscription

The subscription models for request and response are depicted in Figure 5. The model allows
requesting (TopicSubscriptionRequest) consumption of data from an available topic. After a
successful subscription provides all details allowing for consumption (TopicSubscription)

7.1.2.1. Type Channel

Description: Defines the specific protocol bindings and configurations for the channel.

Name Type M/O Description
MEF
W133.1

name
uri-template
minLength = 1

format = uri-template

O
The name of the channel through which the
stream data is transmitted.

30 / 37

Name Type M/O Description
MEF
W133.1

bindings bindingsObject O
Defines the specific protocol bindings and
configurations for the channel. We reuse
AsyncAPI definition of this type

7.1.2.2. Type ConnectionConfig

Description: Configuration settings for establishing a connection to the stream.

Name Type M/O Description
MEF
W133.1

servers servers M
List of the servers through which the subscription is
available. We reuse the AsyncAPI definition of this
type

n/a

channel Channel O n/a

7.1.2.3. Type Subscription

Description: Provides stream metadata information for stream consumption.

Name Type M/O Description MEF W133.1

id string M
A unique identifier for
the stream.

Stream Identifier

description string O
An explanatory
description of the
stream.

Description

priority string O
The priority level of
the stream. Can be
high, medium, or low.

priority

connectionConfig ConnectionConfig O
Addresses connection
configuration concerns
listed in Table 68

7.1.2.4. Type TopicSubscription

Description: Information about the subscription to a specific topic

Inherits from:

TopicSubscriptionRequest

http://asyncapi.com/definitions/2.6.0/bindingsObject.json
http://asyncapi.com/definitions/2.6.0/servers.json

31 / 37

Subscription

7.1.2.5. Type TopicSubscriptionRequest

Description:

Name Type M/O Description
MEF
W133.1

protocol string M
Name of the protocol consumer is intended to use to
consume data from `topicId`. The name of the
protocol must be one of the defined for the topic.

n/a

topicId string M
Identifier of the topic consumer wants to subscribe
to

Topic
Identifier

7.1.3. Error models

7.1.3.1. Type Error

Description: Standard Class used to describe API response error Not intended to be used directly.
The code in the HTTP header is used as a discriminator for the type of error returned in runtime.

Name Type Description

message string
Text that provides mode details and corrective actions related to the
error. This can be shown to a client user.

reason*
string
maxLength =

255

Text that explains the reason for the error. This can be shown to a client
user.

referenceError
uri
format = uri

URL pointing to documentation describing the error

7.1.3.2. Type Error400

Description: Bad Request. (https://tools.ietf.org/html/rfc7231#section-6.5.1)

Inherits from:

Error

Name Type Description

code* Error400Code

7.1.3.3. enum Error400Code

https://tools.ietf.org/html/rfc7231#section-6.5.1

32 / 37

Description: One of the following error codes:

missingQueryParameter: The URI is missing a required query-string parameter
missingQueryValue: The URI is missing a required query-string parameter value
invalidQuery: The query section of the URI is invalid.
invalidBody: The request has an invalid body

Value MEF W133.1

missingQueryParameter MISSING_QUERY_PARAMETER

missingQueryValue MISSING_QUERY_VALUE

invalidQuery INVALID_QUERY

invalidBody INVALID_BODY

7.1.3.4. Type Error401

Description: Unauthorized. (https://tools.ietf.org/html/rfc7235#section-3.1)

Inherits from:

Error

Name Type Description

code* Error401Code

7.1.3.5. enum Error401Code

Description: One of the following error codes:

missingCredentials: No credentials provided.
invalidCredentials: Provided credentials are invalid or expired

Value MEF W133.1

missingCredentials MISSING_CREDENTIALS

invalidCredentials INVALID_CREDENTIALS

7.1.3.6. Type Error403

Description: Forbidden. This code indicates that the server understood the request but refuses to
authorize it. (https://tools.ietf.org/html/rfc7231#section-6.5.3)

Inherits from:

Error

https://tools.ietf.org/html/rfc7235#section-3.1
https://tools.ietf.org/html/rfc7231#section-6.5.3

33 / 37

Name Type Description

code* Error403Code

7.1.3.7. enum Error403Code

Description: This code indicates that the server understood the request but refuses to authorize it
because of one of the following error codes:

accessDenied: Access denied
forbiddenRequester: Forbidden requester
tooManyUsers: Too many users

Value MEF W133.1

accessDenied ACCESS_DENIED

forbiddenRequester FORBIDDEN_REQUESTER

tooManyUsers TOO_MANY_USERS

7.1.3.8. Type Error404

Description: Resource for the requested path not found.
(https://tools.ietf.org/html/rfc7231#section-6.5.4)

Inherits from:

Error

Name Type Description

code* string
The following error code: - notFound: A current representation for the target
resource not found

7.1.3.9. Type Error422

Description: Unprocessable entity due to a business validation problem.
(https://tools.ietf.org/html/rfc4918#section-11.2)

Inherits from:

Error

Name Type Description

code* Error422Code

https://tools.ietf.org/html/rfc7231#section-6.5.4
https://tools.ietf.org/html/rfc4918#section-11.2

34 / 37

Name Type Description

propertyPath string

A pointer to a particular property of the payload that caused the
validation issue. It is highly recommended that this property
should be used. Defined using JavaScript Object Notation
(JSON) Pointer (https://tools.ietf.org/html/rfc6901).

7.1.3.10. enum Error422Code

Description: One of the following error codes:

missingProperty: The property that was expected is not present in the payload
invalidValue: The property has an incorrect value
invalidFormat: The property value does not comply with the expected value format
referenceNotFound: The object referenced by the property cannot be identified in the target
system
unexpectedProperty: Additional, not expected property has been provided
tooLargeDataset: Requested entity will produce too many data
tooManyRecords: The number of records to be provided in the response exceeds the
threshold
tooManyRequests: The number of simultaneous requests from one API client exceeds the
threshold
otherIssue: Other problem was identified (detailed information provided in a reason)

Value MEF W133.1

missingProperty MISSING_PROPERTY

invalidValue INVALID_VALUE

invalidFormat INVALID_FORMAT

referenceNotFound REFERENCE_NOT_FOUND

unexpectedProperty UNEXPECTED_PROPERTY

tooLargeDataset TOO_LARGE_DATASET

tooManyRecords TOO_MANY_RECORDS

tooManyRequests TOO_MANY_REQUESTS

otherIssue OTHER_ISSUE

7.1.3.11. Type Error500

Description: Internal Server Error. (https://tools.ietf.org/html/rfc7231#section-6.6.1)

Inherits from:

https://tools.ietf.org/html/rfc7231#section-6.6.1

35 / 37

Error

Name Type Description

code* string
The following error code: - internalError: Internal server error - the server
encountered an unexpected condition that prevented it from fulfilling the
request.

7.2. Message model

The Message model is not part of the Stream Management API specification. Instead, it is a
model that describes the whole data payload exchanged through a stream the Client is subscribed
to.

The Message is open for extension. The details of the extension mechanism are described above.

7.2.1. Message

The Message is produced by the Server and consumed by the Client. The object is meant to be
extended. By convention, a specialization of the Message should introduce an event attribute
whose structure conforms to the data model definition indicated by eventType.

Note: The eventType is a discriminator and plays an analogous role to @type attribute used in
other MEF API. We use eventType to be compatible with the model definition from [TMF688].

Name Type Description
MEF
W133.1

eventId* string The unique identifier of the event Event ID

eventTime string Time of the event occurrence Event Time

eventType* string
Event type - discriminator that allows for de-marshaling of
the event-specific data, which is added by event
specialization objects

Event Type

priority string The priority of the event Priority

description string Free text that might be associated with the event Description

[R16] The Message MUST contain mandatory attributes from the table above.

Not supported requirements from MEF W133.1

R134 "The Buyer/Client's Subscribe to Topic request MUST include the attributes
shown in the Subscribe Topic Attributes table." The API standard do not currently
support Stream Identifier and Correlation ID in the payload

36 / 37

8. References

[AsyncApi] AsyncAPI Specification v2.6.0, February 2023
[AsyncApiB] AsyncApi binding definitions - Github, accessed June 2023
[AsyncApiBKC] AsyncApi binding definitions for kafka channel - JsonSchema, accessed
June 2023
[Avro] Apache Avro v1.11.1, accessed June 2023
[ITU X.734] Information Technology - Open Systems Interconnection - Systems
Management: Event Report Management Function, November 2013
[OAS-v3] Open API 3.0, February 2020
[MEF55.1] MEF 55.1, Lifecycle Service Orchestration (LSO): Reference Architecture and
Framework, February 2021
[MEF79] MEF 79, Address, Service Site, and Product Offering Qualification Management,
Requirements and Use Cases, November 2019
[MEF80] MEF 80, Quote Management Requirements and Use Cases, July 2021
[MEFW133.1] MEF W133.1, Allegro, Interlude and Legato Fault Management and
Performance Monitoring BR&UC, June 2023, Working Draft
[REST] Chapter 5: Representational State Transfer (REST), Fielding, Roy Thomas,
Architectural Styles and the Design of Network-based Software Architectures (Ph.D.).
[RFC2119] RFC 2119, Key words for use in RFCs to Indicate Requirement Levels, March
1997
[RFC3986] RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, January 2005
[RFC8174] RFC 8174, Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words, May
2017
[TMF688] TMF688, TMF688 Event Management API User Guide v4.0.0

https://www.asyncapi.com/docs/reference/specification/v2.6.0
https://github.com/asyncapi/bindings
http://asyncapi.com/bindings/kafka/channel.json
https://avro.apache.org/docs/1.11.1/
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.734-199209-I!!PDF-E&type=items
http://spec.openapis.org/oas/v3.0.3.html
https://www.mef.net/wp-content/uploads/2021/02/MEF-55.1.pdf
http://www.mef.net/resources/technical-specifications/download?id=129&fileid=file1
https://www.mef.net/wp-content/uploads/MEF-80.pdf
https://wiki.mef.net/download/attachments/230622323/L87011_001_MEF%20W133.1_Cfc1_Pugaczewski.docx?version=1&modificationDate=1695038673000&api=v2
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc3986#section-3
https://tools.ietf.org/html/rfc8174
https://www.tmforum.org/resources/standard/tmf688-event-management-api-user-guide-v4-0-0/

37 / 37

Appendix A. Channel binding examples

Appendix A. provides selected examples of binding definitions for various transport protocols.

Kafka binding example

Data model: https://github.com/asyncapi/bindings/blob/master/kafka/json_schemas/channel.json

{
 "bindings": {
 "kafka": {
 "topic": "ce-performance-metrics-kafka-all",
 "partitions": 1,
 "topicConfiguration": {
 "cleanup.policy": ["compact"],
 "retention.ms": 604800000
 },
 "bindingVersion": "0.4.0"
 }
 }
}

AMQP binding example

Data model: https://github.com/asyncapi/bindings/blob/master/amqp/json_schemas/channel.json

{
 "bindings": {
 "amqp": {
 "is": "queue",
 "queue": {
 "name": "ce-performance-metrics-all",
 "durable": true,
 "vhost": "/"
 },
 "bindingVersion": "0.2.0"
 }
 }
}

Web Socket binding example

Data model:
https://github.com/asyncapi/bindings/blob/master/websockets/json_schemas/channel.json

{
 "bindings": {
 "web-socket": {
 "method": "POST",
 "bindingVersion": "0.1.0"
 }
 }
}

The concrete URL for the POST is provided in the servers section not shown in this Appendix.

https://github.com/asyncapi/bindings/blob/master/kafka/json_schemas/channel.json
https://github.com/asyncapi/bindings/blob/master/amqp/json_schemas/channel.json
https://github.com/asyncapi/bindings/blob/master/websockets/json_schemas/channel.json

