
1 / 110

Working Draft 
MEF W142 v0.1 

LSO Cantata and LSO Sonata Product
Catalog API - Developer Guide 

This draft represents MEF work in progress and is subject to change.

February 2023
EXPORT CONTROL: This document contains technical data. The download, export,

re-export or disclosure of the technical data contained in this document may be
restricted by applicable U.S. or foreign export laws, regulations and rules and/or

applicable U.S. or foreign sanctions ("Export Control Laws or Sanctions"). You agree
that you are solely responsible for determining whether any Export Control Laws or

Sanctions may apply to your download, export, reexport or disclosure of this
document, and for obtaining (if available) any required U.S. or foreign export or

reexport licenses and/or other required authorizations.



2 / 110

Disclaimer

© MEF Forum 2023. All Rights Reserved.

The information in this publication is freely available for reproduction and use by any
recipient and is believed to be accurate as of its publication date. Such information is subject
to change without notice and MEF Forum (MEF) is not responsible for any errors. MEF
does not assume responsibility to update or correct any information in this publication. No
representation or warranty, expressed or implied, is made by MEF concerning the
completeness, accuracy, or applicability of any information contained herein and no liability
of any kind shall be assumed by MEF as a result of reliance upon such information.

The information contained herein is intended to be used without modification by the
recipient or user of this document. MEF is not responsible or liable for any modifications to
this document made by any other party.

The receipt or any use of this document or its contents does not in any way create, by
implication or otherwise:

(a) any express or implied license or right to or under any patent, copyright, trademark
or trade secret rights held or claimed by any MEF member which are or may be
associated with the ideas, techniques, concepts or expressions contained herein; nor

(b) any warranty or representation that any MEF member will announce any product(s)
and/or service(s) related thereto, or if such announcements are made, that such
announced product(s) and/or service(s) embody any or all of the ideas, technologies, or
concepts contained herein; nor

(c) any form of relationship between any MEF member and the recipient or user of this
document.

Implementation or use of specific MEF standards, specifications or recommendations will
be voluntary, and no Member shall be obliged to implement them by virtue of participation
in MEF Forum. MEF is a non-profit international organization to enable the development
and worldwide adoption of agile, assured and orchestrated network services. MEF does not,
expressly or otherwise, endorse or promote any specific products or services.

Copyright

© MEF Forum 2023. Any reproduction of this document, or any portion thereof, shall
contain the following statement: "Reproduced with permission of MEF Forum." No user of
this document is authorized to modify any of the information contained herein.



3 / 110

Table of Contents

List of Contributing Members
1. Abstract
2. Terminology and Abbreviations
3. Compliance Levels
4. Introduction

4.1. Conventions in the Document
4.2. Relation to Other Documents
4.3. Approach
4.4. General concept

4.4.1. General concept introduction
4.4.2 JSON Subschema
4.4.3 Product Specification and Product Offering Schemas

4.5. High-Level Flow
5. API Description

5.1. High-level use cases
5.2. API Endpoint and Operation Description

5.2.1. Seller side API Endpoints
5.2.2. Buyer side API Endpoints

5.3. Specifying the Buyer ID and the Seller ID
5.4. Model Structural Validation
5.5. Security Considerations

6. API Interactions and Flows
6.1. Product Category Use Cases
6.1.1 Product Category - Model

6.1.2 Product Category - Lifecycle
6.1.3 Use case 1: Retrieve Product Category List

6.1.3.1 Interaction flow
6.1.3.2. Retrieve Product Category List - Request
6.1.3.3. Retrieve Product Category List - Response

6.1.4 Use case 2: Retrieve Product Category by Identifier
6.1.4.1 Interaction flow
6.1.4.2. Retrieve Product Category by Identifier - Request
6.1.4.3. Retrieve Product Category by Identifier - Response

6.2. Product Offering Use Cases
6.2.1 Product Offering - Model

6.2.1.1 Introduction to the model
6.2.1.2 Product Offering Specification Schema
6.2.1.3 Product Offering Contextual Info

6.2.2 Product Offering - Lifecycle
6.2.3 Use case 3: Retrieve Product Offering List



4 / 110

6.2.3.1 Interaction flow
6.2.3.2. Retrieve Product Offering List - Request
6.2.3.3. Retrieve Product Offering List - Response

6.2.4 Use case 4: Retrieve Product Offering by Identifier
6.2.4.1 Interaction flow
6.2.4.2. Retrieve Product Offering by Identifier - Request
6.2.4.3. Retrieve Product Offering by Identifier - Response

6.3. Product Specification Use Cases
6.3.1 Product Specification - Model
6.3.2 Product Specification - Lifecycle
6.3.3 Use case 5: Retrieve Product Specification List

6.3.3.1 Interaction flow
6.3.3.2. Retrieve Product Specification List - Request
6.3.3.3. Retrieve Product Specification List - Response

6.3.4 Use case 6: Retrieve Product Specification by Identifier
6.3.4.1 Interaction flow
6.3.4.2. Retrieve Product Specification by Identifier - Request
6.3.4.3. Retrieve Product Specification by Identifier - Response

6.9. Use case 7: Register for Event Notifications
6.9.1. Register for Event Notifications - Request
6.9.2. Register for Event Notifications - Response
6.9.3. Unregister for Event Notifications - Request
6.9.4. Unregister for Event Notifications - Response

6.10. Use case 8: Send Event Notification
7. API Details

7.1. API patterns
7.1.1. Indicating errors

7.1.1.1. Type Error
7.1.1.2. Type Error400
7.1.1.3. enum Error400Code
7.1.1.4. Type Error401
7.1.1.5. enum Error401Code
7.1.1.6. Type Error403
7.1.1.7. enum Error403Code
7.1.1.8. Type Error404
7.1.1.9. Type Error500
7.1.1.10. Type Error501

7.1.2. Response pagination
7.2. API Data model

7.2.1 Product Category
7.2.1.1 Type ProductCategory
7.2.1.2 enum CategoryLifecycleStatusType



5 / 110

7.2.1.3 Type CategoryRef
7.2.1.4 Type ProductOfferingRef

7.2.2 Product Offering
7.2.2.1 Type ProductOffering_Common
7.2.2.2 Type ProductOffering
7.2.2.3 Type ProductOffering_Find
7.2.2.4 enum ProductOfferingLifecycleStatusType
7.2.2.5 Type ProductOfferingLifecycleStatusTransition
7.2.2.6 Type ProductSpecificationRef
7.2.2.7 Type MEFItemTerm
7.2.2.8 enum MEFEndOfTermAction
7.2.2.9 Type ProductOfferingContextualInfo
7.2.2.10 Type Context
7.2.2.11 enum MEFProductAction
7.2.2.12 enum MEFBusinessFunction
7.2.2.13 Type Region
7.2.3 Product Specification
7.2.3.1 Type ProductSpecification_Common
7.2.3.2 Type ProductSpecification
7.2.3.3 Type ProductSpecification_Find
7.2.3.4 enum ProductSpecificationLifecycleStatusType
7.2.3.5 Type ProductSpecificationRelationship
7.2.4 Common types
7.2.4.1 Type AttachmentValue
7.2.4.2 Type MEFByteSize
7.2.4.3 enum DataSizeUnit
7.2.4.4 enum MEFBuyerSellerType
7.2.4.5 Type RelatedContactInformation
7.2.4.6 Type FieldedAddress
7.2.4.7 Type GeographicSubAddress
7.2.4.8 Type MEFSubUnit
7.2.4.9 Type Note
7.2.4.10 Type SchemaRefOrValue
7.2.4.11 Type Duration
7.2.4.12 enum TimeUnit
7.2.5 Notification Registration
7.2.8.1. Type EventSubscriptionInput
7.2.8.2. Type EventSubscription

7.3. Notification API Data model
7.3.1. Type Event
7.3.2. Type ProductCategoryEvent
7.3.3. Type ProductCategoryEventPayload



6 / 110

7.3.4. enum ProductCategoryEventType
7.3.5. Type ProductOfferingEvent
7.3.6. Type ProductOfferingEventPayload
7.3.7. enum ProductOfferingEventType
7.3.8. Type ProductSpecificationEvent
7.3.9. Type ProductSpecificationEventPayload
7.3.10. enum ProductSpecificationEventType

8. References



7 / 110

List of Contributing Members

The following members of the MEF participated in the development of this document and
have requested to be included in this list.

Member

Table 1. Contributing Members



8 / 110

1. Abstract

This standard is intended to assist implementation of the Product Catalog functionality
defined for the LSO Cantata and LSO Sonata Interface Reference Points (IRPs), for which
requirements and use cases are defined in MEF 127 Product Catalog Requirements and Use
Cases [MEF127]. This standard consists of this document and complementary API
definitions for Product Catalog Querying and Product Catalog Notifications.

This standard normatively incorporates the following files by reference as if they were part
of this document, from the GitHub repository

https://github.com/MEF-GIT/MEF-LSO-Sonata-SDK

productApi/catalog/productCatalog.api.yaml

productApi/catalog/productCatalogNotification.api.yaml

https://github.com/MEF-GIT/MEF-LSO-Cantata-SDK

productApi/catalog/productCatalog.api.yaml

productApi/catalog/productCatalogNotification.api.yaml

The Product Catalog API is defined using OpenAPI 3.0 [OAS-V3]

https://github.com/MEF-GIT/MEF-LSO-Sonata-SDK
https://github.com/MEF-GIT/MEF-LSO-Cantata-SDK


9 / 110

2. Terminology and Abbreviations

This section defines the terms used in this document. In many cases, the normative
definitions of terms are found in other documents. In these cases, the third column is used to
provide the reference that is controlling, in other MEF or external documents.

In addition, terms defined in the standards referenced below are included in this document
by reference and are not repeated in the table below:

MEF 55.1.1 Lifecycle Service Orchestration (LSO): Reference Architecture and
Framework [MEF 55.1.1]
MEF 57.2 Product Order Management Requirements and Use Cases [MEF57.2]
MEF 127 Product Catalog Requirements and Use Cases [MEF127]
MEF 79 Address, Service Site, and Product Offering Qualification Management,
Requirements and Use Cases, November 2019 [MEF79]

Term Description Reference JSON subschema JSON schema A is called the subschema of
schema B when every JSON that is valid against schema A is valid against schema B. This
document (Chapter 4.4.2)



10 / 110

3. Compliance Levels

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED",
"MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14
(RFC 2119 [RFC2119], RFC 8174 [RFC8174]) when, and only when, they appear in all
capitals, as shown here. All key words must be in bold text.

Items that are REQUIRED (contain the words MUST or MUST NOT) are labeled as [Rx]
for required. Items that are RECOMMENDED (contain the words SHOULD or SHOULD
NOT) are labeled as [Dx] for desirable. Items that are OPTIONAL (contain the words
MAY or OPTIONAL) are labeled as [Ox] for optional.

A paragraph preceded by [CRa]< specifies a conditional mandatory requirement that
MUST be followed if the condition(s) following the "<" have been met. For example, "
[CR1]<[D38]" indicates that Conditional Mandatory Requirement 1 must be followed if
Desirable Requirement 38 has been met. A paragraph preceded by [CDb]< specifies a
Conditional Desirable Requirement that SHOULD be followed if the condition(s) following
the "<" have been met. A paragraph preceded by **[COc]<**specifies a Conditional
Optional Requirement that MAY be followed if the condition(s) following the "<" have
been met.



11 / 110

4. Introduction

The Product Catalog API allows the Buyer to retrieve Product Specifications, Product
Offerings, and Product Categories they are assigned to. The API defines notifications related
to the lifecycle of these entities. This allows the establishment of commercial
synchronization between the Seller and potential Buyers by the possibility of zero-touch
introduction of the new Product Specifications and Product Offerings to the market.

This standard specifies the Application Programming Interface (API) for Product Catalog
functionality of the LSO Cantata IRP and LSO Sonata IRP as defined in the MEF 55.1
Lifecycle Service Orchestration (LSO): Reference Architecture and Framework [MEF55.1].
The LSO Reference Architecture is shown in Figure 1 with both IRPs highlighted.

Figure 1. The LSO Reference Architecture

Cantata and Sonata IRPs define pre-ordering and ordering functionalities that allow an
automated exchange of information between business applications of the Buyer (Customer
or Service Provider) and Seller (Service Provider or Partner) Domains. Those are:

Product Catalog
Address Validation
Site Retrieval
Product Offering Qualification
Product Quote
Product Inventory
Product Ordering
Trouble Ticketing
Billing



12 / 110

The business requirements and use cases for Product Catalog are defined in MEF 127
Product Catalog Requirements and Use Cases [MEF127].

Note: [TMF620] Product Catalog API covers use cases related to Product Catalog
management as well. Whereas the goal of this API (specified in this document) is to allow
the publishing of Product Offerings and Product Specifications and onboarding of them (by
the Buyer) in a fast and efficient way (inter-carrier read-only API ).

This document is structured as follows:

Chapter 4 provides an introduction to Product Catalog and its description in a broader
context of Cantata and Sonata and their corresponding SDKs.
Chapter 5 gives an overview of endpoints, resource model and design patterns.
Use cases and flows are presented in Chapter 6.
And finally, Chapter 7 complements previous sections with a detailed API description.

4.1. Conventions in the Document

Code samples are formatted using code blocks. When notation << some text >> is used in
the payload sample it indicates that a comment is provided instead of an example value
and it might not comply with the OpenAPI definition.
Model definitions are formatted as in-line code (e.g. ProductOffering).
In UML diagrams the default cardinality of associations is 0..1. Other cardinality
markers are compliant with the UML standard.
In the API details tables and UML diagrams required attributes are marked with a * next
to their names.
In UML sequence diagrams `` notation is used to indicate a variable to be substituted
with a correct value.

4.2. Relation to Other Documents

This API implements the Product Catalog related requirements and use cases that are
defined in MEF 127 [MEF127]. The API definition builds on TMF620 Product Catalog API
REST Specification 4.1.0 [TMF620].

4.3. Approach

As presented in Figure 2. both Cantata and Sonata API frameworks consist of three
structural components:

Generic API framework
Product-independent information (Function-specific information and Function-specific
operations)



13 / 110

Product-specific information (MEF product specification data model)

Figure 2. Cantata and Sonata API framework

The essential concept behind the framework is to decouple the common structure,
information and operations from the specific product information content.
Firstly, the Generic API Framework defines a set of design rules and patterns that are
applied across all Cantata or Sonata APIs.
Secondly, the product-independent information of the framework focuses on a model of a
particular Cantata or Sonata functionality and is agnostic to any of the product
specifications.
Finally, the product-specific information part of the framework focuses on MEF product
specifications that define business-relevant attributes and requirements for trading MEF
subscriber and MEF operator services.

In this framework, Product Catalog is a central system that hosts Product-specific
definitions. Every product-related operation starts in Product Catalog, firstly by defining the
product then each actor in the flow reads and interprets the retrieved product to use it for the
purposes defined by its responsibility.

4.4. General concept

4.4.1. General concept introduction

Product Catalog introduces three main types: Product Specification, Product Offering, and
Product Category. Modeling starts with the introduction of the Product Specification type
which defines the Product's attributes (with their types, cardinalities, and allowable values)
and relationships that defines how the Product may be related to other Products. Once
Product Specifications are defined, they should be available for marketing purposes.
Because terms and conditions which define whether a Product is available on the market are
usually organized by different business processes, the Product Offering type has been



14 / 110

introduced. Product Offering may further constrain or concretize the attributes values, and
cardinalities of the relations to define the desired offer with a settled price.

In short, Product Specification is the definition of the Product, and Product Offering is its
exposition on the market.

Product Specification may be exposed on the market by many Product Offerings, at the
same time Product Offerings based on the different Product Specifications may be related
e.g. by the technology variant. To organize the catalog (by organizing loosely defined
Product Offerings) Product Categories have been introduced. Product Category allows
grouping of Product Offerings and names this group by its purpose. To make the
categorizing reusable it is allowed to group Product Categories as well.

4.4.2 JSON Subschema

JSON Subschema term has been introduced to allow defining specialization of particular
JSON Schema. Specialization should be understood as narrowing the set of JSONs that are
valid against the given JSON Schema.

JSON Subschema definition is formalized as:

JSON schema A is called the subschema of schema B when every JSON that is valid
against schema A is valid against schema B.

The rules that are used to constrain or restrict the JSON Schema are described in the chapter
[Product Offering Specification Schema].

Let's consider exemplary JSON Schema (this is the reduced JSON Schema of
AccessElineOvc for exemplary purposes):

{ 
   "$schema":"http://json-schema.org/draft-07/schema#", 
   "$id":"https://mef.com/product.schema.json", 
   "title":"AccessELineOvc", 
   "type":"object", 
   "properties":{ 
      "maximumFrameSize":{ 
         "type":"integer", 
         "minimum":1526 
      }, 
      "ceVlanIdPreservation":{ 
         "type":"string", 
         "enum":[ 
            "PRESERVE", 
            "STRIP", 
            "RETAIN" 
         ] 
      } 
   } 
} 

JSON Subschema of the schema above could be constructed as:



15 / 110

{ 
   "$schema":"http://json-schema.org/draft-07/schema#", 
   "$id":"https://mef.com/product.schema.json", 
   "title":"AccessELineOvc", 
   "type":"object", 
   "properties":{ 
      "maximumFrameSize":{ 
         "type":"integer", 
         "minimum":1526 
      }, 
      "ceVlanIdPreservation":{ 
         "type":"string", 
         "enum":[ 
            "PRESERVE", 
            "STRIP", 
         ] 
      } 
   }, 
   "required": ["maximumFrameSize"] 
} 

Considering two following JSON payloads:

Payload A:

{  
  "maximumFrameSize": 1526, 
  "ceVlanIdPreservation" : "STRIP" 
} 

Payload B:

{  
  "maximumFrameSize": 1526, 
  "ceVlanIdPreservation" : "RETAIN" 
} 

we see that Payload A can is compliant with both schemas. Payload B is valid only against
the first schema. Thus schema two, as more restrictive, is a subschema of the first schema.

4.4.3 Product Specification and Product Offering Schemas

The chapters above introduced the Product Specification as the type which defines the
attributes of the Product. Those attributes are organized as [JSON Schema] which is called
Source Schema.

Product Offering as the type which exposes Product Specification to the market may
constraint the attributes defined in the Source Schema which produces another JSON Schema
specific for the Product Offering which is called the Intermediate Schema. This schema is the
JSON Sub-schema of the Source Schema.

Additionally, it may be required to constrain the Intermediate Schema in the context of a
particular Business Function and Product Action (e.g. some attributes are not relevant for
the Product Offering Qualification business function). It is possible to define such cases by



16 / 110

Contextual Schema for a given Business Function and Product Action context. This schema is the
JSON Sub-schema of the Intermediate Schema.

JSON Subschema is still JSON Schema.

Summarizing, three types of schemas may be distinguished:

Source Schema which is the definition of the Product itself,
Intermediate Schema which is constraint usage of the Source Schema for Product Offering
purposes [Intermediate Schema],
Contextual Schema which defines the contextual usage of the Intermediate Schema in the given
context of Business Function and Product Action [Contextual Schema].

The below diagram depicts the above summary in graphical form.

Figure 3. Relation between Source Schema, Intermediate Schema and Contextual
Schema

4.5. High-Level Flow

Product Catalog is part of a broader Cantata and Sonata End-to-End flow. Figure 4 shows a
high-level diagram to get a good understanding of the whole process and Product Catalog's
position within it.



17 / 110

Figure 4. Cantata and Sonata End-to-End Function Flow

Product Catalog:
Allows the Buyer to retrieve Product Offerings and Product Specifications
describing the Products available for ordering.

Address Validation:
Allows the Buyer to retrieve address information from the Seller, including exact
formats, for addresses known to the Seller.

Site Retrieval:
Allows the Buyer to retrieve Geographic Site information including exact formats
for Geographic Sites known to the Seller.

Product Offering Qualification (POQ):
Allows the Buyer to check whether the Seller can deliver a product or set of
products from among their product offerings at the geographic address or a
Geographic Site specified by the Buyer; or modify a previously purchased product.

Quote:
Allows the Buyer to submit a request to find out how much the installation of an
instance of a Product Offering, an update to an existing Product, or a disconnect of
an existing Product will cost.

Product Order:
Allows the Buyer to request the Seller to initiate and complete the fulfillment
process of an installation of a Product Offering, an update to an existing Product, or
a disconnect of an existing Product at the address defined by the Buyer.

Product Inventory:
Allows the Buyer to retrieve the information about the existing Product instances
from Seller's Product Inventory.

Trouble Ticketing:
Allows the Buyer to create, retrieve, and update Trouble Tickets as well as receive
notifications about Incidents' and Trouble Tickets' updates. This allows managing
issues and situations for a Product provided by the Seller.

Billing:
Allows the Buyer to retrieve the Billing (Invoice) information, download it as a
document, and receive notifications of document creation.



18 / 110

5. API Description

This section presents the API structure and design patterns. It starts with the high-level use
cases diagram. Then it describes the REST endpoints with use case mapping. Next, it gives
an overview of the API resource model.

5.1. High-level use cases

Figure 5 presents a high-level use case diagram as specified in MEF 127 [MEF127] in
section 8. This picture aims to help understand the endpoint mapping. Use cases are
described extensively in chapter 6.

Figure 5: Use cases

5.2. API Endpoint and Operation Description

5.2.1. Seller side API Endpoints



19 / 110

Base URL for Cantata: https://{{serverBase}}:{{port}}{{?/seller_prefix}}/mefApi/cantata/productCatalog/v1/

Base URL for Sonata: https://{{serverBase}}:{{port}}{{?/seller_prefix}}/mefApi/sonata/productCatalog/v1/

The following API endpoints are implemented by the Seller and allow the Buyer to retrieve
Product Categories, Product Offerings, and Product Specifications. As well as register for
Notifications. The endpoints and corresponding data model are defined in

productApi/productCatalog/productCatalog.api.yaml.

API endpoint Description
MEF 127
Use Case
mapping

GET /productCategory

The Buyer requests a list of Product Categories
from the Seller based on a set of specified filter
criteria. The Seller returns a summarized list of
Product Categories.

UC 1:
Retrieve
Product
Category List

GET /productCategory/{{id}}

The Buyer requests detailed information about a
single Product Category based on a Product
Category Identifier.

UC 2:
Retrieve
Product
Category by
Identifier

GET /productOffering

The Buyer requests a list of Product Offerings
from the Seller based on a set of specified filter
criteria. The Seller returns a summarized list of
Product Offerings.

UC 3:
Retrieve
Product
Offering List

GET /productOffering/{{id}}

The Buyer requests detailed information about a
single Product Offering based on a Product
Offering Identifier.

UC 4:
Retrieve
Product
Offering by
Identifier

GET /productSpecification

The Buyer requests a list of Product
Specifications from the Seller based on a set of
specified filter criteria. The Seller returns a
summarized list of Product Specifications.

UC 5:
Retrieve
Product
Specification
List

GET

/productSpecification/{{id}}

The Buyer requests detailed information about a
single Product Specification based on a Product
Specification Identifier.

UC 6:
Retrieve
Product
Specification
by Identifier



20 / 110

Table 2. Seller side mandatory API endpoints

[R1] The Seller MUST implement all API endpoints listed in Table 2. [MEF127 R16]

API
endpoint

Description
MEF 127 Use Case
mapping

POST /hub
The Buyer requests to subscribe to Product Catalog
notifications.

UC 7: Register for
Product Catalog
Notifications

GET

/hub/{{id}}

A request initiated by the Buyer to retrieve the
details of the notification subscription with given
Identifier.

UC 7: Register for
Product Catalog
Notifications

DELETE

/hub/

A request initiated by the Buyer to instruct the Seller
to stop sending notifications.

UC 7: Register for
Product Catalog
Notifications

Table 3. Seller side optional API endpoints

[O1] The Seller MAY implement API endpoints listed in Table 3. [MEF127 O3]

[CR1]<[O1] If any of the endpoints defined in Table 3 is implemented, then The Seller
MUST return 501 HTTP code for not not implemented endpoints.

[CR2]<[O1] If any of endpoints defined in table 3 is implemented, then all of the endpoints
listed in Table 3 MUST be implemented

[CR3]<[O1] The Seller MUST support at least one group of Notification Types. Where the
group of Notification Types is understood as all events related to the Product Offering or
Product Specification or Product Category. [MEF127 C01]

[CR4]<[O1] The Seller MUST support sending notifications for all notification types that
are available for the listener registration. The notifications MUST be send to Buyer's API
endpoint provided in the registration [MEF127] [MEF127 C02, MEF127 CO3, MEF127
CO4]

5.2.2. Buyer side API Endpoints

Base URL for Cantata: https://:/mefApi/cantata/productCatalogNotification/v1/

Base URL for Sonata: https://:/mefApi/cantata/productCatalogNotification/v1/

The following API Endpoints are used by the Seller to post notifications to registered
listeners. The endpoints and corresponding data model are defined in

productApi/catalog/productCatalogNotification.api.yaml



21 / 110

API Endpoint Description
MEF 127
Use Case
Mapping

POST /listener/productCategoryCreateEvent

A request initiated by the
Seller to notify the Buyer on
new ProductCategory creation.

UC 08:
Send
Product
Catalog
Notification

POST /listener/productCategoryAttributeValueChangeEvent

A request initiated by the
Seller to notify the Buyer on
ProductCategory attribute value
change.

UC 08:
Send
Product
Catalog
Notification

POST /listener/productCategoryStatusChangeEvent

A request initiated by the
Seller to notify the Buyer on
ProductCategory.lifecycleStatus

status change.

UC 08:
Send
Product
Catalog
Notification

POST /listener/productOfferingCreateEvent

A request initiated by the
Seller to notify the Buyer on
new ProductOffering creation.

UC 08:
Send
Product
Catalog
Notification

POST /listener/productOfferingAttributeValueChangeEvent

A request initiated by the
Seller to notify the Buyer on
ProductOffering attribute value
change.

UC 08:
Send
Product
Catalog
Notification

POST /listener/productOfferingStatusChangeEvent

A request initiated by the
Seller to notify the Buyer on
ProductOffering.lifecycleStatus

status change.

UC 08:
Send
Product
Catalog
Notification

POST /listener/productSpecificationCreateEvent

A request initiated by the
Seller to notify the Buyer on
new ProductSpecification
creation.

UC 08:
Send
Product
Catalog
Notification



22 / 110

API Endpoint Description
MEF 127
Use Case
Mapping

POST

/listener/productSpecificationAttributeValueChangeEvent

A request initiated by the
Seller to notify the Buyer on
ProductSpecification attribute
value change.

UC 08:
Send
Product
Catalog
Notification

POST /listener/productSpecificationStatusChangeEvent

A request initiated by the
Seller to notify the Buyer on
ProductSpecification.lifecycleStatus

status change.

UC 08:
Send
Product
Catalog
Notification

Table 4. Buyer side optional API endpoints

[O2] The Buyer MAY support API endpoints listed in Table 4. [MEF127 O3]

[CR5]<([O1], [O2]) If endpoints listed in Table 3 are supported (for any of Notification
Type) and the Buyer registered a subscription for any Notification Type then the Buyer
MUST support corresponding endpoints from Table 4.

5.3. Specifying the Buyer ID and the Seller ID

A business entity willing to represent multiple Buyers or multiple Sellers must follow
requirements of MEF 79.1 [MEF79.1] chapter 8.8, which states:

For requests of all types, there is a business entity that is initiating an Operation
(called a Requesting Entity) and a business entity that is responding to this request
(called the Responding Entity). In the simplest case, the Requesting Entity is the
Buyer and the Responding Entity is the Seller. However, in some cases, the
Requesting Entity may represent more than one Buyer and similarly, the Responding
Entity may represent more than one Seller.

While it is outside the scope of this specification, it is assumed that the Requesting
Entity and the Responding Entity are aware of each other and can authenticate
requests initiated by the other party. It is further assumed that both the Buying Entity
and the Requesting Entity know:

a) the list of Buyers the Requesting Entity represents when interacting with this
Responding Entity; and
b) the list of Sellers that this Responding Entity represents to this Requesting Entity.



23 / 110

In the API the buyerId and sellerId are represented as query parameters in each operation
defined in productCatalog.api.yaml and as attributes of events as described in
productCatalogNotification.api.yaml.

[R2] If the Requesting Entity has the authority to represent more than one Buyer the request
MUST include buyerId query parameter that identifies the Buyer being represented [MEF79
R80]

[R3] If the Requesting Entity represents precisely one Buyer with the Responding Entity,
the request MUST NOT specify the buyerId [MEF79 R81]

[R4] If the Responding Entity represents more than one Seller to this Buyer the request
MUST include sellerId query parameter that identifies the Seller with whom this request is
associated [MEF79 R82]

[R5] If the Responding Entity represents precisely one Seller to this Buyer, the request
MUST NOT specify the sellerId [MEF79 R83]

[R6] If buyerId or sellerId attributes were specified in the request same attributes MUST be
used in the notification payload.

5.4. Model Structural Validation

The structure of the HTTP payloads exchanged via Product Catalog API endpoints is
defined using OpenAPI version 3.0.

[R7] Implementations MUST use payloads that conform to these definitions.

5.5. Security Considerations

There must be an authentication mechanism whereby a Seller can be assured who a Buyer is
and vice-versa. There must also be authorization mechanisms in place to control what a
particular Buyer or Seller is allowed to do and what information may be obtained. However,
the definition of the exact security mechanism and configuration is outside the scope of this
document. It is specified by a separate MEF Project ([MEF128]).



24 / 110

6. API Interactions and Flows

This section provides a detailed insight into the API functionality, use cases, and flows. It
starts with Table 5 presenting a list and short description of all business use cases then
presents the variants of end-to-end interaction flows, and in the following subchapters
describes the API usage flow and examples for each of the use cases.

Table 5. lists the use cases supported by Product Catalog API (use case numbers as in MEF
127 for mapping):

Use
Case
#

Use Case Name Use Case Description

1
Retrieve Product
Category List

The Buyer requests a list of Product Categories from the
Seller based on a set of specified filter criteria. The Seller
returns a summarized list of Product Categories.

2
Retrieve Product
Category by Product
Category Identifier

The Buyer requests detailed information about a single
Product Category based on a Product Category Identifier.

3
Retrieve Product
Offering List

The Buyers requests a list of Product Offerings from the
Seller based on a set of specified filter criteria. The Seller
returns a summarized list of Product Offering.

4
Retrieve Product
Category by Product
Offering Identifier

The Buyer requests detailed information about a single
Product Offering based on a Product Offering Identifier.

5
Retrieve Product
Specification List

The Buyers requests a list of Product Specifications from
the Seller based on a set of specified filter criteria. The
Seller returns a summarized list of Product
Specifications.

6

Retrieve Product
Specification by
Product
Specification
Identifier

The Buyer requests detailed information about a single
Product Specification based on a Product Specification
Identifier.

7
Register for Event
Notifications

The Buyer requests to subscribe to Product Categories,
Product Offerings and Product Specifications
Notifications.



25 / 110

Use
Case
#

Use Case Name Use Case Description

8
Send Event
Notification

Send Event Notification The Seller sends a notification
regarding a Product Category, Product Offering, or
Product Specification to the Buyer.

Table 5. Use cases description

Figure 6 presents an example of the flow of ProductOffering lifecycle and possible related
requests.



26 / 110

Figure 6. Exemplary API flow for Product Offering

Registration for events is optional, so all sequences on the diagram related to notification
exchange were framed as optional, so as the below description of the sequence diagram.

(optional) The Buyer registers the listener by sending the request (1) with specified
eventType as productOfferingCreateEvent, productOfferingStatusChangeEvent, and
productOfferingAttributeValueChangeEvent.
(optional) (2) The Seller responds with success.
The Seller publishes new ProductOffering with lifecycleStatus=active (3).



27 / 110

(optional) What causes sending notification to the Buyer (4-5) with the type
productOfferingCreateEvent.
The Seller decides to make the previously created offering available for ordering by
changing lifecycleStatus to orderable (6).
(optional) What causes sending notification to the Buyer (7-8) with type the
productOfferingStatusChangeEvent.
The Buyer decides to ask for offerings available for ordering by sending a request (9)
providing in query parameters required lifecycleStatus as orderable.
(10) The Seller responds with the list of orderable offerings.
(11) The Buyer asks for details of the retrieved offering by sending a request (12) with
the specified identifier of the offering.
(13) The Seller responds with detailed offering information.
The Seller decides to end selling previously published offering by changing lifecycleStatus
to endOfSale (14).
(optional) What causes sending notification to the Buyer (15-16) with the type
productOfferingStatusChangeEvent.
The Buyer asks again for offerings available for ordering by sending a request (17)
providing in query parameters required lifecycleStatus as orderable.
Because there is no offering that is available for sale, the Seller responds with empty list
(18).

The detailed business requirements of each of the use cases are described in section 8 of
MEF 127 [MEF127].

6.1. Product Category Use Cases

6.1.1 Product Category - Model

Product Categories are designed to be used for technological segregation e.g. grouping
Product Offerings delivered via Fiber medium.

Figure 7. Product Category Model



28 / 110

[O3] The Seller MAY update the following Product Category attributes:

description

lastUpdate

lifecycleStatus

parentCategory

subCategory

productOffering

[R8] If the Product Category's lifecycleStatus reached active status, then the changes introduced
by the Seller MUST respect the backward compatibility for Product Category, which is
defined as:

description may be changed to any other text,
lifecycleStatus may be changed accordingly to the state machine,
parentCategory category reference may be changed,
subCategory adding and removing of category's references is allowed,
productOffering adding and removing of offering's references is allowed.

[R9] After a Product Category has been created, the attributes id and name MUST NOT be
modified. [MEF127 R22]

[R10] In the case of a change of any attribute defined in [O3], the Seller MUST update the
lastUpdate attribute with the date of the most recent modification. [MEF127 R21]

[R11] If a Product Category has a parent category, then its id MUST be in the subCategory list
of the referenced Product Category. Consequently, if a Product Category A is specified in
the subCategory list of Product Category B, then the id of Product Category B MUST be
included in the parentCategory attribute of Product Category A. [MEF127 R17, MEF127 R19]

[R12] If a Product Category has no parent Category, then its id MUST NOT be in the
subCategory list for any Product Category. [MEF127 R18]

[R13] The productOffering attribute MUST contain all Product Offerings that reference this
Product Category. [MEF127 R20]

6.1.2 Product Category - Lifecycle

Figure 8 presents the Product Category state machine:



29 / 110

Figure 8. Product Category State Machine

The Product Category State Machine is very simple and this state machine aims to make
Product Categories available for querying purposes or not.

Table 6 presents the mapping between API lifecycleStatus values (aligned with TMF) and
MEF127 naming together with its descriptions.

lifecycleStatus
MEF 127
name

Description

active AVAILABLE
The Product Category can be used by the Buyer to
retrieve Product Offerings.

obsolete OBSOLETE

The Product Category is obsolete when it can no longer be
used by the Buyer to retrieve Product Offerings. The
Product Category with this state may be removed from
the Product Catalog. This is a final state.

Table 6. Product Category lifecycle statuses

[R14] The Seller MUST support all statuses for Product Category and the associated state
transitions [MEF127 R65].

[O4] The Seller MAY update the Product Category (see chapter [6.1.1] to find updatable
attributes) when the Product Category lifecycleStatus is equal to active.

[R15] The Seller MUST NOT update the Product Category when it is in the final status -
obsolete.

6.1.3 Use case 1: Retrieve Product Category List

6.1.3.1 Interaction flow

The flow of this use case is very simple and is described in Figure 9.



30 / 110

Figure 9: Use Case 1 - Retrieve Product Category List

The Buyer wants to retrieve the list of Product Categories that match the given filtering
criteria. Later on, the result is used to query Product Offerings by category.

6.1.3.2. Retrieve Product Category List - Request

[O5] The Buyer MAY retrieve the list of Product Categories by using a GET /productCategory
operation with desired filtering criteria. The attributes that are available to be used are
[MEF127 O4]:

name

lastUpdate.gt

lastUpdate.lt

lifecycleStatus

parentCategory.id

[CR5]<[O5] The Seller MUST reject the request if the attributes requested by the Buyer are
not supported value defined in[O5]. [MEF127 R4]

The Buyer may also ask for pagination with the use od the offset and limit parameters. The
filtering and pagination attributes must be specified in URI query format RFC3986. Section
7.1.2. provides details about the implementation of pagination mechanism.

https://serverRoot/mefApi/sonata/productCatalog/v1/category?status=active&limit=10&offset=0 

The example above shows a Buyer's request to get the first ten Product Categories that are
in active status. The correct response (HTTP code 200) in the response body contains a list of
ProductCategory objects matching the criteria. To get more details (e.g. the list of Product
Offerings in the given Product Category), the Buyer has to query a specific ProductCategory by
id.

6.1.3.3. Retrieve Product Category List - Response

The snippet below presents an example of the Retrieve Product Category List response:



31 / 110

Retrieve ProductCategory List Response

Headers:

X-Result-Count=1 
X-Total-Count=1 
X-Pagination-Throttled=false

Body:

[ 
    { 
        "id": "productCategory-2", 
        "href": "http://mef.com:8080/mefApi/sonata/productCatalog/v1/productCategory/productCategory-2", 
        "name": "Access E-Lines Product Offerings", 
        "description": "This category groups are available Access E-Line Product Offerings", 
        "lastUpdate": "2023-01-19T16:33:20.324Z", 
        "lifecycleStatus": "active", 
        "parentCategory": { 
            "id": "productCategory-1", 
            "href": "http://mef.com:8080/mefApi/sonata/productCatalog/v1/category/productCategory-1" 
        }, 
        "productOffering": [ 
            { 
                "id": "productOffering-1", 
                "href": 
"http://mef.com:8080/mefApi/sonata/productCatalog/v1/productOffering/productOffering-1" 
            }, 
            { 
                "id": "productOffering-2", 
                "href": 
"http://mef.com:8080/mefApi/sonata/productCatalog/v1/productOffering/productOffering-2" 
            } 
        ] 
    } 
] 

[R16] The Seller MUST put the following attributes into the ProductCategory object in the
response [MEF127 R23, MEF127 25]:

id

name

description

lastUpdate

lifecycleStatus

[R17] The Seller response MUST include the following attributes into the ProductCategory if
they are set by the Seller [MEF127 R24, MEF127 R25]:

productOffering

parentCategory

subCategory

[R18] If case no items matching the criteria are found, the Seller MUST return a valid
response with an empty list. [MEF127 R26]



32 / 110

The full list of attributes is available in Section 7 and in the API specification which is an
integral part of this standard.

6.1.4 Use case 2: Retrieve Product Category by Identifier

6.1.4.1 Interaction flow

The flow of this use case is very simple and is described in Figure 10.

Figure 10: Use Case 2 - Retrieve Product Category by Identifier

The Buyer wants to retrieve detailed information about a single Product Category with a
given id.

6.1.4.2. Retrieve Product Category by Identifier - Request

[R19] The Buyer must provide the id of the Product Category that originates from the Seller.
[MEF127 R27]

https://mef.com:8080/mefApi/sonata/productCatalog/v1/category/productCategory-2 

The example above shows a Buyer's request to get the Product Category with id equal to
productCategory-2. The correct response (HTTP code 200) in the response body contains a single
ProductCategory object matching the given id.

6.1.4.3. Retrieve Product Category by Identifier - Response

The snippet below presents an example of the Retrieve Product Category Request:

Retrieve ProductCategory by Identifier Response

{ 
    "id": "productCategory-2", 
    "href": "http://mef.com:8080/mefApi/sonata/productCatalog/v1/productCategory/productCategory-2", 
    "name": "Access E-Lines Product Offerings", 
    "description": "This category groups are available Access E-Line Product Offerings", 
    "lastUpdate": "2023-01-19T16:33:20.324Z", 
    "lifecycleStatus": "active", 



33 / 110

    "parentCategory": 
    { 
        "id": "productCategory-1", 
        "href": "http://mef.com:8080/mefApi/sonata/productCatalog/v1/category/productCategory-1" 
    }, 
    "productOffering": 
    [ 
        { 
            "id": "productOffering-1", 
            "href": "http://mef.com:8080/mefApi/sonata/productCatalog/v1/productOffering/productOffering-1" 
        }, 
        { 
            "id": "productOffering-2", 
            "href": "http://mef.com:8080/mefApi/sonata/productCatalog/v1/productOffering/productOffering-2" 
        } 
    ] 
} 

[R20] The Seller MUST put the following attributes into the ProductCategory object in the
response: [MEF127 R28, MEF127 R30]:

id

name

description

lastUpdate

lifecycleStatus

[R21] The Seller response MUST include the following attributes into the ProductCategory if
they are set by the Seller: [MEF127 R29, MEF127 R30]:

parentCategory

subCategory

productOffering

The full list of attributes is available in Section 7 and in the API specification which is an
integral part of this standard.

6.2. Product Offering Use Cases

6.2.1 Product Offering - Model

6.2.1.1 Introduction to the model

Figure 11 presents the data model of the Product Offering. The model of the retrieve list
response (ProductOffering_Find) is a subset of the ProductOffering model and contains only those
attributes that can (or must) be returned by the Seller. For visibility of these differences, the
ProductOffering_Common has been introduced. Though, it is not to be used directly in the response
to any endpoint

The full list of attributes is available in Section 7 and in the API specification which is an
integral part of this standard.



34 / 110

Figure 11. Product Offering Model

[O6] The Seller MAY update the following Product Offering attributes:

description

lifecycleStatus

parentCategory

channel

agreement

marketSegment

region

category

statusTransitions

productOfferingStatusReason

attachment

relatedContactInformation

productOfferingTerm

note

[CR6]<[O5] In the case of a change of any attribute defined in [O5], the Seller MUST
update the lastUpdate attribute with the date of the modification. [MEF127 R31]

[CD1]<[O5] If the Product Offering's lifecycleStatus reached active status, then the changes
introduced by the Seller SHOULD respect the backward compatibility for Product
Offerings, which is defined as:

description may be changed to any other text,
lifecycleStatus may be changed accordingly to the state machine,



35 / 110

parentCategory category reference may be changed,
channel only adding new channels is allowed,
agreement may be changed to any other text,
marketSegment only adding new market segments is allowed,
region only adding new regions is allowed,
category adding and removing of categories is allowed,
statusTransitions only adding new records is allowed,
productOfferingStatusReason may be updated to other text, but only when the lifecycleStatus is
being changed
attachment only adding new attachments is allowed,
relatedContactInformation all types of operations are allowed,
productOfferingTerm only adding new terms is allowed,
note only adding new notes is allowed.

If the Product Offering hasn't reached active status, which implies that is still in the testing
phase, then any kind of changes are allowed regarding the list defined in [O5].

[CR7]<[O5] The Buyer MUST update the productOfferingStatusReason attribute whenever the
lifecycleStatus attribute is changed.

[R22] The Seller MUST NOT update the following Product Offering attributes in any of
the Product Offering statuses [MEF127 R34]:

id

productSpecification

Product Offerings are designed to be used for exposing the particular Product Specification
to the market, therefore Product Specification related attributes must not change.

[R23] Because attributes defined in [R22] are not allowed to be changed, the Seller MUST
create a new Product Offering (with new id) to introduce a new version of the considered
Product Offering that modifies those attributes. [MEF127 R32]

It's at the Seller's discretion to transition the older version of Product Offering to the state
that prevents using that offering for ordering.

[R24] The following attributes of statusTransitions entities MUST be set [MEF127 R35]:

transitionDate

transitionLifecycleStatus

[D1] Whenever the transitionDate has passed but the transition has not taken place, then the
Seller SHOULD update the transitionDate with the new date of transition.

[R25] When the planned transition took place, then the Seller MUST NOT remove the
corresponding record from the statusTransitions list.



36 / 110

The statusTransitions records are used for historical log purposes.

[R26] The following attributes of region entities MUST be set [MEF127 R36]:

country

[R27] The following attributes of productOfferingTerm entities MUST be set [MEF127 R37]:

name

duration

endOfTermAction

[R28] If the endOfTermAction attributes of productOfferingTerm is set to roll then attribute rollInternal
MUST be set. [MEF127 R38]

6.2.1.2 Product Offering Specification Schema

The concept of subschema was introduced to allow defining the Product Specification
schema in the context of a particular Product Offering which is expressed as the
productOfferingSpecification attribute. The JSON subschema term is introduced in [Chapter 2] of this
document.

Recall, that by the definition all attributes in the Product Specification schema are optional,
some of them are enumerated, some of them should satisfy the given regular expression, etc.
For Product Offering purposes some attributes may be restricted to be mandatory (especially
for particular business functions and product actions), the set of enumerated values may be
constrained, etc. Subschema was introduced to express such constraints in an unambiguous
form.

The below table defines the list of changes that could be applied to the schema and the rules
for expressing them:

The change on
attribute

How to express in schema
Reference
requirement

Remarks

Make required
Add attribute name to
required array.

[MEF127 R5]

Make not applicable Remove from the schema. --not covered--

Fix the value Set fixed value as const. [MEF127 R10]

Fix the already
enumerated value

Remove enum array, set fixed
value as const

[MEF127 R10]

Apply enumeration
Set enumerated values as
enum array.

--not covered--



37 / 110

The change on
attribute

How to express in schema
Reference
requirement

Remarks

Narrow existing
enumeration

Set narrowed enumerations
as enum array.

--not covered--

Set default value Set default value as default.
[MEF127 R3],
[MEF127 R8]

If it's not set
already.

Table 7. Schema modifications rules

[R29] The Seller MUST respect the rules defined in Table 7 for the productOfferingSpecification
schema. [MEF127 R1], [MEF127 R2], [MEF127 R3]

[R30] The Seller MUST apply the agreed default value for an Optional Product-Specific
Attribute if a value is not included by the Buyer in the corresponding API request. [MEF127
R8]

Let's consider the JSON Schema of Product Specification AccessElineOvc as the schema that
will be used to construct productOfferingSpecification JSON Subschema (the below schema is just
part of the AccessElineOvc schema for readability purposes):

{ 
    "$schema": "http://json-schema.org/draft-07/schema#", 
    "allOf": [ 
        { 
            "$ref": "#/definitions/AccessElineOvcCommon" 
        }, 
        { 
            "type": "object", 
            "properties": { 
                "uniEp": { 
                    "$ref": "#/definitions/AccessElineOvcEndPoint", 
                    "description": "MEF 26.2 sec. 16 - The OVC EP object for the OVC EP at the UNI. The UNI 
OVC End Point must be included in the Access E-Line Product." 
                }, 
                "enniEp": { 
                    "$ref": "#/definitions/AccessElineOvcEndPoint", 
                    "description": "MEF 26.2 sec. 16 - The OVC EP object for the OVC EP at the ENNI. The 
ENNI OVC End Point must be included in the Access E-Line Product." 
                } 
            }, 
            "required": [ 
                "enniEp", 
                "uniEp" 
            ] 
        } 
    ], 
    "definitions": { 
        "AccessElineOvcCommon": { 
            "type": "object", 
            "description": "..", 
            "properties": { 
                "maximumFrameSize": { 
                    "type": "integer", 
                    "minimum": 1526, 
                    "description": "..." 
                }, 
                "ceVlanIdPreservation": { 
                    "type": "string", 
                    "enum": [ 
                        "PRESERVE", 
                        "STRIP", 
                        "RETAIN" 
                    ], 



38 / 110

                    "description": "..." 
                }, 
                "cTagPcpPreservation": { 
                    "$ref": "#/definitions/EnabledDisabled", 
                    "description": "..." 
                }, 
                "cTagDeiPreservation": { 
                    "$ref": "#/definitions/EnabledDisabled", 
                    "description": "..." 
                }, 
                "listOfClassOfServiceNames": { 
                    "type": "array", 
                    "items": { 
                        "type": "string" 
                    }, 
                    "minItems": 1, 
                    "uniqueItems": true, 
                    "description": "..." 
                }, 
                "carrierEthernetSls": { 
                    "type": "array", 
                    "items": { 
                        "$ref": "#/definitions/CarrierEthernetSls" 
                    }, 
                    "maxItems": 1, 
                    "minItems": 0, 
                    "uniqueItems": true, 
                    "description": "..." 
                }, 
                "frameDisposition": { 
                    "$ref": "#/definitions/FrameDisposition", 
                    "description": "..." 
                }, 
                "availableMegLevel": { 
                    "$ref": "#/definitions/AvailableMegList", 
                    "description": "..." 
                }, 
                "ovcL2cpAddressSet": { 
                    "$ref": "#/definitions/L2cpAddressSet", 
                    "description": "..." 
                } 
            } 
        }, 
        ... // the rest of the schema 
    } 
} 

For example, the task is to create a Product Offering of the AccessElineOvc with the following
assumptions:

class of service is constrained to the only value Excellence,
attribute maximumFrameSize is fixed to 9100,
attribute ceVlanIdPreservation is forbidden to be used,
attributes cTagPcpPreservation, frameDisposition are mandatory

The assumptions above may be expressed as the JSON Subschema of the Product
Specification AccessElineOvc i.e. productOfferingSpecification JSON Schema:

{ 
    "$schema": "http://json-schema.org/draft-07/schema#", 
    "allOf": [ 
        { 
            "$ref": "#/definitions/AccessElineOvcCommon" 
        }, 
        { 
            "type": "object", 
            "properties": { 
                "uniEp": { 
                    "$ref": "#/definitions/AccessElineOvcEndPoint", 
                    "description": "MEF 26.2 sec. 16 - The OVC EP object for the OVC EP at the UNI. The UNI 



39 / 110

OVC End Point must be included in the Access E-Line Product." 
                }, 
                "enniEp": { 
                    "$ref": "#/definitions/AccessElineOvcEndPoint", 
                    "description": "MEF 26.2 sec. 16 - The OVC EP object for the OVC EP at the ENNI. The 
ENNI OVC End Point must be included in the Access E-Line Product." 
                } 
            }, 
            "required": [ 
                "enniEp", 
                "uniEp" 
            ] 
        } 
    ], 
    "definitions": { 
        "AccessElineOvcCommon": { 
            "type": "object", 
            "description": "..", 
            "properties": { 
                "maximumFrameSize": { 
                    "type": "integer", 
                    "minimum": 1526, 
                    "const": 9100, 
                    "description": "..." 
                }, 
                "cTagPcpPreservation": { 
                    "$ref": "#/definitions/EnabledDisabled", 
                    "description": "..." 
                }, 
                "cTagDeiPreservation": { 
                    "$ref": "#/definitions/EnabledDisabled", 
                    "description": "..." 
                }, 
                "listOfClassOfServiceNames": { 
                    "type": "array", 
                    "items": { 
                        "type": "string" 
                    }, 
                    "minItems": 1, 
                    "uniqueItems": true, 
                    "description": "...", 
                    "const": "Excellence" 
                }, 
                "carrierEthernetSls": { 
                    "type": "array", 
                    "items": { 
                        "$ref": "#/definitions/CarrierEthernetSls" 
                    }, 
                    "maxItems": 1, 
                    "minItems": 0, 
                    "uniqueItems": true, 
                    "description": "..." 
                }, 
                "frameDisposition": { 
                    "$ref": "#/definitions/FrameDisposition", 
                    "description": "..." 
                }, 
                "availableMegLevel": { 
                    "$ref": "#/definitions/AvailableMegList", 
                    "description": "..." 
                }, 
                "ovcL2cpAddressSet": { 
                    "$ref": "#/definitions/L2cpAddressSet", 
                    "description": "..." 
                } 
            }, 
            "required": ["cTagPcpPreservation","frameDisposition"] 
        }, 
        ... // the rest of the schema 
    } 
} 

[R31] Attribute productOfferingSpecification MUST be the subschema of the sourceSchema of
ProductSpecification.

6.2.1.3 Product Offering Contextual Info



40 / 110

Product Offering Contextual Info was introduced to express how the productOfferingSpecification
JSON Schema should be applied to particular Business Functions and Product Actions in
the meaning of attributes maturity.

It's driven by the business need to not provide attributes that are redundant for particular
Business Functions and Product Actions.

For better understanding, the below examples show potential use cases:

attribute is not required during the Product Order Qualification, because it does not
impact the result. At the same time, this attribute is required by the Product Ordering
function,
attribute must not be changed during the modification of the existing product.

Product Offering Contextual Info is expressed as a pair:

contextSchema which is a JSON Schema,
context which is a businessFunction and productAction pair.

Notice that contextSchema is JSON Subschema of sourceSchema just as productOfferingSpecification
schema.

[R32] The following attributes of productOfferingContextualInfo entities MUST be set [MEF127
R39]:

businessFunction

productAction

productOfferingContextualSchema

[R33] For each productOfferingContextualInfo, attribute contextSchema MUST be the subschema of the
sourceSchema of the corresponding Product Specification.

[R34] For each productOfferingContextualInfo, attribute contextSchema MUST be the subschema of the
productOfferingSpecification of the corresponding Product Offering.

[R35] The Seller MUST respect the rules defined in Table 7 for each contextSchema schema.

Continuing the example from the [Chapter 6.1.1.2], the task is to express that for Product
Offering Qualification:

attribute cTagDeiPreservation becomes required,
attributes availableMegLevel, ovcL2cpAddressSet, carrierEthernetSls, cTagDeiPreservation, cTagPcpPreservation
are not applicable and
for other cases productOfferingSpecification JSON Schema should be applied.

The snippet below presents the above use case.



41 / 110

For the clarity of the example the embedded schemas (i.e. contextSchema attributes) were
replaced with references that are placed below this example. Additionally, the embedded
schemas were unescaped.

{ 
    ... 
    "productOfferingContextualInfo": 
    [ 
        { 
            "contextSchema": { 
                // "#context-schema-1" 
            }, 
            "context": 
            { 
                "productAction": "all", 
                "businessFunction": "all" 
            } 
        }, 
        { 
            "contextSchema": { 
                // "#context-schema-2" 
            }, 
            "context": 
            { 
                "productAction": "all", 
                "businessFunction": "productOfferingQualification" 
            } 
        } 
    ] 
    ...  
} 

The above example presents the list of the productOfferingContextualInfo that express that #context-
schema-1 should be used for any combination of businessFunction and productAction except the case
where businessFunction=productOfferingQualification then #context-schema-2 should be used instead.

Embedded schemas:

#context-schema-1

{ 
    "$schema": "http://json-schema.org/draft-07/schema#", 
    "allOf": [ 
        { 
            "$ref": "#/definitions/AccessElineOvcCommon" 
        }, 
        { 
            "type": "object", 
            "properties": { 
                "uniEp": { 
                    "$ref": "#/definitions/AccessElineOvcEndPoint", 
                    "description": "MEF 26.2 sec. 16 - The OVC EP object for the OVC EP at the UNI. The UNI 
OVC End Point must be included in the Access E-Line Product." 
                }, 
                "enniEp": { 
                    "$ref": "#/definitions/AccessElineOvcEndPoint", 
                    "description": "MEF 26.2 sec. 16 - The OVC EP object for the OVC EP at the ENNI. The 
ENNI OVC End Point must be included in the Access E-Line Product." 
                } 
            }, 
            "required": [ 
                "enniEp", 
                "uniEp" 
            ] 
        } 
    ], 
    "definitions": { 
        "AccessElineOvcCommon": { 



42 / 110

            "type": "object", 
            "description": "..", 
            "properties": { 
                "maximumFrameSize": { 
                    "type": "integer", 
                    "minimum": 1526, 
                    "const": 9100, 
                    "description": "..." 
                }, 
                "cTagPcpPreservation": { 
                    "$ref": "#/definitions/EnabledDisabled", 
                    "description": "..." 
                }, 
                "cTagDeiPreservation": { 
                    "$ref": "#/definitions/EnabledDisabled", 
                    "description": "..." 
                }, 
                "listOfClassOfServiceNames": { 
                    "type": "array", 
                    "items": { 
                        "type": "string" 
                    }, 
                    "minItems": 1, 
                    "uniqueItems": true, 
                    "description": "...", 
                    "const": "Excellence" 
                }, 
                "carrierEthernetSls": { 
                    "type": "array", 
                    "items": { 
                        "$ref": "#/definitions/CarrierEthernetSls" 
                    }, 
                    "maxItems": 1, 
                    "minItems": 0, 
                    "uniqueItems": true, 
                    "description": "..." 
                }, 
                "frameDisposition": { 
                    "$ref": "#/definitions/FrameDisposition", 
                    "description": "..." 
                }, 
                "availableMegLevel": { 
                    "$ref": "#/definitions/AvailableMegList", 
                    "description": "..." 
                }, 
                "ovcL2cpAddressSet": { 
                    "$ref": "#/definitions/L2cpAddressSet", 
                    "description": "..." 
                } 
            }, 
            "required": ["cTagPcpPreservation","frameDisposition"] 
        }, 
        ... // the rest of the schema 
    } 
} 

Schema #context-schema-1 is equal to theproductOfferingSpecification schema. That means that for
every use case (exceptbusinessFunction=productOfferingQualification) schema is unchanged.

#context-schema-2

{ 
    "$schema": "http://json-schema.org/draft-07/schema#", 
    "allOf": [ 
        { 
            "$ref": "#/definitions/AccessElineOvcCommon" 
        }, 
        { 
            "type": "object", 
            "properties": { 
                "uniEp": { 
                    "$ref": "#/definitions/AccessElineOvcEndPoint", 
                    "description": "MEF 26.2 sec. 16 - The OVC EP object for the OVC EP at the UNI. The UNI 
OVC End Point must be included in the Access E-Line Product." 



43 / 110

                }, 
                "enniEp": { 
                    "$ref": "#/definitions/AccessElineOvcEndPoint", 
                    "description": "MEF 26.2 sec. 16 - The OVC EP object for the OVC EP at the ENNI. The 
ENNI OVC End Point must be included in the Access E-Line Product." 
                } 
            }, 
            "required": [ 
                "enniEp", 
                "uniEp" 
            ] 
        } 
    ], 
    "definitions": { 
        "AccessElineOvcCommon": { 
            "type": "object", 
            "description": "..", 
            "properties": { 
                "maximumFrameSize": { 
                    "type": "integer", 
                    "minimum": 1526, 
                    "const": 9100, 
                    "description": "..." 
                }, 
                "listOfClassOfServiceNames": { 
                    "type": "array", 
                    "items": { 
                        "type": "string" 
                    }, 
                    "minItems": 1, 
                    "uniqueItems": true, 
                    "description": "...", 
                    "const": "Excellence" 
                }, 
                "frameDisposition": { 
                    "$ref": "#/definitions/FrameDisposition", 
                    "description": "..." 
                }, 
                "cTagDeiPreservation": { 
                    "$ref": "#/definitions/EnabledDisabled", 
                    "description": "..." 
                }, 
                "cTagPcpPreservation": { 
                    "$ref": "#/definitions/EnabledDisabled", 
                    "description": "..." 
                } 
            }, 
            "required": ["cTagPcpPreservation", "frameDisposition", "cTagDeiPreservation"] 
        }, 
        ... // the rest of the schema 
    } 
} 

The above example is the realization of the [O7].

Schema #context-schema-2 is modified according to the example described above. Below list
summarizes the modifications applied to the productOfferingSpecification schema that results with
#context-schema-2:

attribute cTagDeiPreservation is required, therefore is added to the required array,
attributes availableMegLevel, ovcL2cpAddressSet, carrierEthernetSls, cTagPcpPreservation are not
applicable, therefore were removed from the schema

[R36] The Seller MUST return productOfferingContextualInfo list that covers all possible variants
of Business Functions and Product Actions. [MEF127 R33]

It doesn't mean that the cartesian product of possibilities must be returned. Wildcards are
recommended to be used to cover the whole group of possibilities, as is done in the example



44 / 110

above.

[O7] The Seller MAY use the productAction=all, businessAction=all wildcards to cover all use cases
and extend the productOfferingContextualInfo by adding specific use cases.

[R37] If the Buyer sends the request for any combination of businessFunction and productAction,
the request MUST be valid against the schema defined in the corresponding
productOfferingContextualInfo attribute of referred ProductOffering.

[R38] The Buyer and the Seller MUST agree on whether the Buyer can include in an API
request Product-Specific Attributes that have been classified as Fixed. [MEF127 R10]

[R39] If the Buyer and Seller agree that Product-Specific Attributes classified as Fixed
cannot be included in API request, the Buyer and Seller MUST agree on whether the Seller
includes Product-Specific Attributes classified as Fixed in the corresponding API responses.
[MEF127 R11]

[R40] If the Buyer and Seller agree that Product-Specific Attributes classified as Fixed
cannot be included in an API request, the Seller MUST reject an API request from the
Buyer if it includes a Product-Specific Attribute that has been classified as Fixed for the
Business Function (POQ, Quote, Order), Product Action (add, modify), and Product
Offering. [MEF127 R12]

[R41] If the Buyer and Seller agree that Product-Specific Attributes classified as Fixed
cannot be included in an API request, and if a Product-Specific Attribute is classified to be
Fixed for Inventory for a Product Offering, then the Seller MUST NOT include a value for
the attribute in the corresponding API response. [MEF127 R13]

[R42] If the Buyer and Seller agree that Product-Specific Attributes classified as Fixed can
be included in an API request, the Seller MUST reject an API request from the Buyer if it
includes a Product-Specific Attribute that has been classified as Fixed for the Business
Function (POQ, Quote, Order), Product Action (add, modify), and Product Offering and
includes a value that is different than the agreed-on fixed value. [MEF127 R14]

[R43] If the Buyer and Seller agree that Product-Specific Attributes classified as Fixed can
be included in API request, and if a Product-Specific Attribute is agreed to be Fixed for
Inventory for a Product Offering, then the Seller MUST include a value for the Product-
Specific attribute in the Inventory API response. [MEF127 R15]

6.2.2 Product Offering - Lifecycle

Figure 12 presents the Product Offering state machine:



45 / 110

Figure 12. Product Offering State Machine

The Product Offering State Machine is simpler than the one proposed by TMF [TMF620]
because it focuses on exposing Product Offerings to the Buyers, not the whole Product
Offering Management. The specific states and notifications are managed by the Seller.

[O8] The Seller MAY decide for agreed Buyers being part of beta test process to expose the
Product Offerings in inTest state.

Table 6 presents the mapping between API lifecycleStatus values (aligned with TMF) and
MEF127 naming together with states' descriptions.

lifecycleStatus MEF 127 name Description

active ACTIVE
When a Product Offering has been defined and
will be made available for ordering; however, it
is not yet generally available.

endOfSale END_OF_SALE

The endOfSale status means the Product Offering
cannot be Installed by any new or existing
Buyers, but Buyers may still have Products in
use and may Change or Disconnect them, and
receive support.



46 / 110

lifecycleStatus MEF 127 name Description

endOfSupport END_OF_SUPPORT

When a Product Offering in the endOfSale status is
no longer supported, the status transitions to
endOfSupport. Any existing products can no longer
be Changed, with the only Order action allowed
is Disconnect.

obsolete OBSOLETE

After a Product Offering that is no longer
available it transitions to obsolete and may be
removed at the Seller�s discretion from the
Product Catalog . This is a final state.

onHold ON_HOLD

A Product Offering that has been orderable, but is
currently not available for Buyers due to supply
constraints, product recall, or other issues
preventing it to be offered.

orderable ORDERABLE
A new Product Offering is in the orderable state
when it is available for ordering by Buyers.

inTest PILOT_BETA
When a Product Offering starts Pilot/Beta
testing, it starts in the inTest state.

rejected REJECTED
When Pilot/Beta testing fails the Product
Offering or Product Specification transitions to
the rejected state. This is a final state.

Table 8. Product Offering lifecycle statuses

[R44] The Seller MUST support all Statuses for Product Offering and the associated state
transitions [MEF127 R66].

It is one the Seller discretion whether the inTest and rejected state will be used.

[O9] The Seller MAY update the Product Offering (see chapter [6.2.1] to find updatable
attributes) when the Product Offering lifecycleStatus is not equal to endOfSale, endOfSupport, obsolete.

[R45] The Seller MUST NOT update the Product Offering when it is in the final state
obsolete.

[O10] The Seller MAY remove a Product Offering that is in the obsolete state from the
Product Catalog. [MEF127 O9]

Removing obsoleted Product Offerings is on the Seller's discretion. Nevertheless it must be
consulted with the Buyer for the reasons when the Buyer still uses their definitions for
historical purposes.



47 / 110

[O11] The Seller MAY remove a Product Offering that is in the rejected state from the
Product Catalog. [MEF O10]

6.2.3 Use case 3: Retrieve Product Offering List

6.2.3.1 Interaction flow

The flow of this use case is very simple and is described in Figure 13.

Figure 13: Use Case 3 - Retrieve Product Offering List

6.2.3.2. Retrieve Product Offering List - Request

[O12] The Buyer MAY retrieve the list of Product Categories by using a GET /productOffering
operation with desired filtering criteria. The attributes that are available to be used are:
[MEF127 O6]:

name

lastUpdate.gt

lastUpdate.lt

lifecycleStatus

agreement

channel

marketSegment

region.country

category.id

[CR8]<[O12] The Seller MUST reject the request if the attributes requested by the Buyer
are not supported value defined in [O12]. [MEF127 R4]

The Buyer may also ask for pagination with the use od the offset and limit parameters. The
filtering and pagination attributes must be specified in URI query format RFC3986. Section
7.1.2. provides details about the implementation of pagination mechanism.

Attributes marketSegment and channel are collections of primitive types (in this particular case
List<String>). For implementation purposes, the strategy of querying interpretation is settled
as:



48 / 110

Requesting Entity may provide any number of desired values in filtering criteria
provided as query parameters (RFC3986 with the standard limitation of URIs length)
respecting the following notation:

?marketSegment=Wholesale&marketSegment=Federal&...  

Provided values are interpreted as the alternatives,
Resource is matched if any of provided values match any value from the collection.

[R46] If the Buyer provides more than one value in filtering criteria for the array type
attributes, then the Seller MUST return all Product Offerings whose corresponding
attributes contain any of provided values.

Regarding [R46], if the Buyer provides e.g. marketSegment=Federal&marketSegment=Financial then the
Seller uses that values as alternatives i.e. result matches if at least one of the provided values
is contained by the Product Offering's marketSegment list.

http://mef.com:8080/mefApi/sonata/productCatalog/v1/productOffering?
status=orderable&marketSegment=Federal&marketSegment=Financial&limit=10&offset=0 

The example above shows a Buyer's request to get the first ten Product Offerings that are in
orderable status and are available for the Federal or Financial markets. The correct response
(HTTP code 200) in the response body contains a list of ProductOffering_Find objects matching the
criteria. To get more details (e.g. the list of 'Product Offering Terms'), the Buyer has to query
a specific ProductOffering by id.

6.2.3.3. Retrieve Product Offering List - Response

The snippet below presents an example of the Retrieve Product Offering Lis response:

Retrieve ProductOffering List Response

Headers:

X-Result-Count=1 
X-Total-Count=1 
X-Pagination-Throttled=false

Body:

[ 
    { 
        "id": "productOffering-1", 
        "href": "http://mef.com:8080/mefApi/sonata/productCatalog/v1/productOffering/productOffering-1", 
        "name": "Access E-line OVC Basic", 
        "lastUpdate": "2023-01-19T16:33:20.324Z", 
        "lifecycleStatus": "orderable", 



49 / 110

        "agreement": "Official agreement no 4", 
        "channel": [ 
            "DirectSales", 
            "Distribution" 
        ], 
        "marketSegment": [ 
            "Federal", 
            "Financial" 
        ], 
        "region": [ 
            { 
                "stateOrProvince": "Malopolskie", 
                "country": "Poland" 
            } 
        ], 
        "category": [ 
            { 
                "id": "productCategory-2", 
                "href": "http://mef.com:8080/mefApi/sonata/productCatalog/v1/category/productCategory-2" 
            } 
        ] 
    }, 
    { 
        "id": "productOffering-2", 
        "href": "http://mef.com:8080/mefApi/sonata/productCatalog/v1/productOffering/productOffering-2", 
        "name": "Access E-line OVC Excellence", 
        "lastUpdate": "2023-01-19T16:33:20.324Z", 
        "lifecycleStatus": "orderable", 
        "agreement": "string", 
        "channel": [ 
            "DirectSales" 
        ], 
        "marketSegment": [ 
            "Federal" 
        ], 
        "region": [ 
            { 
                "stateOrProvince": "Malopolskie", 
                "country": "Poland" 
            } 
        ], 
        "category": [ 
            { 
                "id": "productCategory-2", 
                "href": "http://mef.com:8080/mefApi/sonata/productCatalog/v1/category/productCategory-2" 
            } 
        ] 
    } 
] 

[R47] When the Buyer queries by category.id attribute, then the Seller MUST include every
Product Offering that is the direct member and indirect member of this category. [MEF127
R44]

By indirect member of the Product Category should be understood the member that its
category is in subcategories list of that category. This rule applies recursively.

Assume that Category C is the subcategory of Category B and Category B is the
subcategory of Category A. Then the Product Offering that is categorized by Category C is:

a direct member of Category C,
an indirect member of Category B (because Category C is a subcategory of Category
B),
an indirect member of Category A (because Category C is a subcategory of Category A
by recursiveness).



50 / 110

[R48] The Seller MUST put the following attributes into the ProductOffering_Find object in the
response: [MEF127 R40, MEF127 R45]:

id

name

lastUpdate

lifecycleStatus

agreement

channel

marketSegment

region

category

[R49] The Seller response MUST include every Product Offering where the channel filter
criteria match one of the Product Offering's channel or the Product Offering's channel is an
empty list [MEF127 R41]:

[R50] The Seller response MUST include every Product Offering where the marketSegment
filter criteria match one of the Product Offering's marketSegment or the Product Offering's
marketSegment is an empty list [MEF127 R42].

[R51] The Seller response MUST include every Product Offering where the region.country
filter criteria match one of the Product Offering's region.country or the Product Offering's
region.country is an empty list [MEF127 R43].

[R52] If case no items matching the criteria are found, the Seller MUST return a valid
(HTTP code 200) response with an empty list. [MEF127 R46]

The full list of attributes is available in Section 7 and in the API specification which is an
integral part of this standard.

Note: The Product Offering model for this use case is the subset of the model from the
chapter [6.2.1].



51 / 110

Figure 14: Use Case 3 - Product Offering Find Model

6.2.4 Use case 4: Retrieve Product Offering by Identifier

6.2.4.1 Interaction flow

The flow of this use case is very simple and is described in Figure 14.

Figure 15: Use Case 4 - Retrieve Product Offering by Identifier

The Buyer wants to retrieve detailed information about a single Product Offering with the
given id.

6.2.4.2. Retrieve Product Offering by Identifier - Request

[R53] The Buyer must provide the id of the Product Offering that originates from the Seller.
[MEF127 R47]

http://mef.com:8080/mefApi/sonata/productCatalog/v1/productOffering/productOffering-1 



52 / 110

The example above shows a Buyer's request to get the Product Category with id equal to
productOffering-1. The correct response (HTTP code 200) in the response body contains a single
ProductOffering object matching the given id.

6.2.4.3. Retrieve Product Offering by Identifier - Response

The snippet below presents an example of the Retrieve Product Offering Request (the
schemas were not provided intentionally due to the example's clarity reasons):

Retrieve ProductOffering by Identifier Response

{ 
    "id": "productOffering-1", 
    "href": "http://mef.com:8080/mefApi/sonata/productCatalog/v1/productOffering/productOffering-1", 
    "name": "Access E-line OVC Basic", 
    "lastUpdate": "2023-01-19T16:33:20.324Z", 
    "lifecycleStatus": "orderable", 
    "agreement": "Official agreement no 4", 
    "channel": [ 
        "DirectSales", 
        "Distribution" 
    ], 
    "marketSegment": [ 
        "Federal", 
        "Financial" 
    ], 
    "region": [ 
        { 
            "stateOrProvince": "Malopolskie", 
            "country": "Poland" 
        } 
    ], 
    "category": [ 
        { 
            "id": "productCategory-2", 
            "href": "http://mef.com:8080/mefApi/sonata/productCatalog/v1/category/productCategory-2" 
        } 
    ], 
    "statusTransitions": [ 
        { 
            "transitionDate": "2024-01-19T16:33:20.324Z", 
            "transitionLifecycleStatus": "obsolete" 
        } 
    ], 
    "productOfferingStatusReason": "Ready to be used for ordering.", 
    "attachment": [ 
        { 
            "attachmentId": "4e5b3701-47f8-47a7-bcf8-d3d740b4cd60", 
            "author": "John Doe", 
            "creationDate": "2023-01-19T16:33:20.324Z", 
            "description": "Signed contract", 
            "mimeType": "application/pdf", 
            "name": "Customers contract", 
            "size": { 
                "amount": 105.0, 
                "units": "KBYTES" 
            }, 
            "source": "buyer", 
            "url": "http://some-domain.com/attachment/file/4e5b3701-47f8-47a7-bcf8-d3d740b4cd60" 
        } 
    ], 
    "productOfferingTerm": [ 
        { 
            "description": "Basic Term", 
            "duration": { 
                "amount": 12, 
                "units": "calendarMonths" 
            }, 
            "endOfTermAction": "roll", 
            "name": "Basic", 
            "rollInterval": { 



53 / 110

                "amount": 6, 
                "units": "calendarMonths" 
            } 
        } 
    ], 
    "note": [ 
        { 
            "author": "John Doe", 
            "date": "2023-01-19T16:33:20.324Z", 
            "id": "43072c06-34ac-4713-b0b1-371cb7479400", 
            "source": "buyer", 
            "text": "Lorem ipsum" 
        } 
    ], 
    "productSpecification": { 
        "id": "productSpecification-1", 
        "href": 
"http://mef.com:8080/mefApi/sonata/productCatalog/v1/productSpecification/productSpecification-1" 
    }, 
    "productOfferingContextualInfo": 
    [ 
        { 
            "contextSchema": { 
                // here should be the schema 
            }  
            "context": 
            { 
                "productAction": "all", 
                "businessFunction": "all" 
            } 
        } 
    ] 
} 

[R54] The Seller MUST put the following attributes into the ProductOffering object in the
response: [MEF127 R48, MEF127 R50]:

id

name

description

lastUpdate

lifecycleStatus

productOfferingSpecification

productSpecification

[R55] The Seller response MUST include the following attributes in the ProductOffering if they
are set by the Seller: [MEF127 R49, MEF127 R50]:

statusTransitions

productOfferingStatusReason

agreement

attachment

relatedContactInformation

channel

marketSegment

region

productOfferingTerm

note

category



54 / 110

productOfferingContextualInfo

[R56] The Seller response MUST include exactly one of the productOfferingSpecification
attributes:

schema

schemaLocation

[R57] The Seller response MUST include exactly one of the contextSchema attributes:

schema

schemaLocation

Attributes schema and schemaLocation are modeled as mutually exclusive to avoid the dualistic
representation of productOfferingSpecification or contextSchema.

[R58] If the attachment is provided, either the attachment.url or (attachment.content and
attachment.mimeType) MUST be specified.

[R59] For Product Offerings, the Seller MUST set the respective source=seller attribute when
adding any item to one of the following lists: note, attachment.

The source of the notes is always the Seller (note[?].source=seller) because API doesn't allow
for any modifications that could be initiated by the Buyer.

Note: The Product Offering model for this use case is the full set of the model from the
chapter [6.2.1]. To see the model go to the mentioned chapter.

The full list of attributes is available in Section 7 and in the API specification which is an
integral part of this standard.

6.3. Product Specification Use Cases

6.3.1 Product Specification - Model

Figure 16 presents the data model of the Product Specification. The model of the retrieve
list response (ProductSpecification_Find) is a subset of the ProductSpecification model and contains
only those attributes that can (or must) be returned by the Seller. For visibility of this
differences the ProductSpecification_Common has been introduced. Though, it is not to be used
directly in the response of any endpoint.

The full list of attributes is available in Section 7 and in the API specification which is an
integral part of this standard.



55 / 110

Figure 16. Product Specification Model

[O13] The Seller MAY update the following Product Specification attributes:

description

lifecycleStatus

attachment

note

productSpecificationRelationship

[CR9]<[O8] In the case of a change of any attribute defined in [O8], the Seller MUST
update the lastUpdate attribute with the date of the modification. [MEF127 R51]

[CR10]<[O8] If the Product Specification's lifecycleStatus reached active status, then the
changes introduced by the Seller MUST respect the backward compatibility for Product
Specification, which is defined as:

description may be changed to any other text,
lifecycleStatus may be changed accordingly to the state machine,
attachment only adding new attachments is allowed,
note only adding new notes is allowed,
productSpecificationRelationship adding new relationships whose minCardinality attribute is equal
to 0 is allowed only.

[R60] The Seller MUST NOT update the Product Specification attributes:

id

name



56 / 110

brand

productNumber

sourceSchema

[R61] The following attributes of productSpecificationRelationship list elements MUST be set
[MEF127 R52]:

id

relationshipType

minCardinality

maxCardinality

Product Specifications are designed to be used for decoration of the Product Schema
(represented by sourceSchema) by the business attributes to publish them for commercial usage.
Related sourceSchema defines the JSON schema (JSONSchema) of a prospective Product
instance. At the very beginning, by definition all attributes in the sourceSchema are optional and
during integration between the Buyer and Seller must be negotiated and defined in
ProductOffering as productOfferingSpecification and productOfferingContextualInfo attributes.

6.3.2 Product Specification - Lifecycle

Figure 17 presents the Product Specification state machine:



57 / 110

Figure 17. Product Offering State Machine

The Product Specification State Machine is consistent wih the State Machine of Product
Offering and it is simplification of the one proposed by TMF [TMF620] because it focuses
on exposing Product Specification to the Buyers, not the whole Product Specifications
Management. The specific states and notifications are managed by the Seller.

[O14] The Seller MAY decide for agreed Buyers being part of beta test process to expose
the Product Specifications in inTest state.

Table 6 presents the mapping between API lifecycleStatus values (aligned with TMF) and
MEF127 naming together with states'description.

lifecycleStatus MEF 127 name Description

active ACTIVE
When a Product Specification has been defined
and will be made available for ordering;
however, it is not yet generally available.

endOfSale END_OF_SALE

The endOfSale status means that Product
Specification cannot be used for the creation of
new Product Offerings. Existing Product
Offerings related to a given Product
Specification must change their status to endOfSale
too (to read more about Product Offering endOfSale
status go to chapter [6.2.2] of this document)

endOfSupport END_OF_SUPPORT

When a Product Specification in the endOfSale
status is no longer supported, the status
transitions to endOfSupport. Any existing products
can no longer be Changed, the only Order action
allowed is Disconnect.

obsolete OBSOLETE

After a Product Specification that is no longer
available, it transitions to obsolete and may be
removed at the Seller�s discretion from the
Product Catalog. This is a final state.

onHold ON_HOLD

A Product Specification that has been orderable,
but is currently not available for Buyers due to
supply constraints, product recall, or other issues
preventing it to be offered.

orderable ORDERABLE
A new Product Specification is in the orderable
state when it is available for ordering by Buyers.

inTest PILOT_BETA
When a Product Specification starts Pilot/Beta
testing, it starts in the inTest state.



58 / 110

lifecycleStatus MEF 127 name Description

rejected REJECTED
When Pilot/Beta testing fails the Product
Specification to the rejected state. This is a final
state.

Table 9. Product Specification lifecycle statuses

[R62] The Seller MUST support all Statuses for Product Specification and the associated
state transitions [MEF127 R66].

[O15] The Seller MAY update the Product Specification (see chapter [6.3.1] to find
updatable attributes) when the Product Specification lifecycleStatus is not final i.e. rejected or
obsolete.

[R63] The Seller MUST NOT update the Product Specification when it is in the final state
rejected or obsolete.

States are compared according to the following rules:

because the State Machine of the Product Specification and Product Offering is the
same, by equality of states we understood the lifecycleStatus with the same values,
inTest is prior to any other state,
active is prior to orderable, endOfSale, endOfSupport, obsolete,
onHold is prior to orderable, endOfSale, endOfSupport, obsolete but it cannot be compared to active,
orderable is prior to endOfSale, endOfSupport, obsolete,
endOfSale is prior to endOfSupport, obsolete
endOfSupport is prior to obsolete
obsolete and rejected are final state and are ahead of any other states.

[R64] The Seller MUST NOT create a Product Offering related to the Product Specification
that lifecycleStatus is equal to endOfSale, endOfSupport or obsolete.

[R65] Product Offering lifecycleStatus MUST be compliant with the lifecycleStatus of related
Product Specification i.e. according to the State Machine Product Offering lifecycleStatus
must be prior or equal to the Product Specification lifecycleStatus that is prior to orderable and
must be ahead of Product Specification lifecycleStatus that is ahead of equal orderable.

Above requirement assures that Product Offerings cannot be transitioned to the states that
allowed them to be used for marketing purposes when the related Product Specification is
not ready for marketing. And at the same time assures that Product Offering that is already
available for marketing can be obsolete.

[R66] If the statuses of Product Offering and related Product Specification are the same, and
the Seller changes the Product Specification state, the Seller MUST update the Product
Offering state to preserve compliance.



59 / 110

The same rule is not applying to the state modifications on Product Offerings i.e. Product
Offering state may be changed and it doesn't imply a change of state of related Product
Specification. At the same time, the requirements described above must be applied.

[R67] If the Seller moves Product Specification to obsolete state, then the Seller MUST move
all related Product Offerings to obsolete state too.

[O16] The Seller MAY remove a Product Specification from the Product Catalog. that is
only in the obsolete state. [MEF127 O9]

[CR11]<[O16] When the Seller is removing the obsolete Product Specifications, then the
Seller MUST remove all related Product Offerings too.

Removing obsoleted Product Specifications is on the Seller's discretion. Nevertheless it
must be consulted with the Buyer for the reasons when the Buyer still uses their definitions
for historical purposes.

[O17] The Seller MAY remove a Product Specification from the Product Catalog, that is in
the rejected state. [MEF O10]

6.3.3 Use case 5: Retrieve Product Specification List

6.3.3.1 Interaction flow

The flow of this use case is very simple and is described in Figure 18.

Figure 18: Use Case 5 - Retrieve Product Specification List

6.3.3.2. Retrieve Product Specification List - Request

[O18] The Buyer MAY retrieve the list of Product Specifications by using a GET
/productSpecification operation with desired filtering criteria. The attributes that are available to
be used are: [MEF127 O7]:

name

lastUpdate.gt

lastUpdate.lt



60 / 110

lifecycleStatus

brand

[CR12]<[O18] The Seller MUST reject the request if the attributes requested by the Buyer
are not supported value defined in [O18]. [MEF127 R4]

The Buyer may also ask for pagination with the use of the offset and limit parameters. The
filtering and pagination attributes must be specified in URI query format RFC3986. Section
7.1.2. provides details about the implementation of pagination mechanism.

http://mef.com:8080/mefApi/sonata/productCatalog/v1/productSpecification?
lifecycleStatus=orderable&limit=3&offset=8 

The example above shows a Buyer's request to omit first seven and get next two Product
Specifications that are in orderable status. The correct response (HTTP code 200) in the
response body contains a list of ProductSpecification_Find objects matching the criteria. To get
more details (e.g. sourceSchema), the Buyer has to query a specific ProductSpecification by id.

6.3.3.3. Retrieve Product Specification List - Response

The snippet below presents an example of the Retrieve Product Specification List response:

Retrieve ProductSpecification List Response

Headers:

X-Result-Count=2 
X-Total-Count=10 
X-Pagination-Throttled=true

Body:

[ 
    { 
        "id": "productSpecification-11", 
        "href": 
"http://mef.com:8080/mefApi/sonata/productCatalog/v1/productSpecification/productSpecification-11", 
        "name": "Ethernet Virtual Private Tree EVC", 
        "lifecycleStatus": "orderable", 
        "lastUpdate": "2023-01-19T16:30:51.626Z" 
    }, 
    { 
        "id": "productSpecification-9", 
        "href": 
"http://mef.com:8080/mefApi/sonata/productCatalog/v1/productSpecification/productSpecification-9", 
        "name": "Ethernet Private Tree EVC EP", 
        "lifecycleStatus": "orderable", 
        "lastUpdate": "2023-01-19T16:30:51.626Z" 
    } 
] 



61 / 110

[R68] The Seller MUST put the following attributes into the ProductSpecification_Find object in
the response: [MEF127 R53, MEF127 R54]:

id

name

lastUpdate

lifecycleStatus

[R69] If case no items matching the criteria are found, the Seller MUST return a valid
response with an empty list. [MEF127 R55]

The full list of attributes is available in Section 7 and in the API specification which is an
integral part of this standard.

Note: The Product Specification model for this use case is the subset of the model from the
chapter [6.3.1].

Figure 19: Use Case 5 - Product Specification Find Model

6.3.4 Use case 6: Retrieve Product Specification by Identifier

6.3.4.1 Interaction flow

The flow of this use case is very simple and is described in Figure 20.

Figure 20: Use Case 6 - Retrieve Product Specification by Identifier



62 / 110

The Buyer wants to retrieve detailed information about a single Product Specification with a
given id.

6.3.4.2. Retrieve Product Specification by Identifier - Request

[R70] The Buyer must provide the id of the Product Specification that originates from the
Seller. [MEF127 R56]

http://127.0.0.1:8080/mefApi/sonata/productCatalog/v1/productSpecification/productSpecification-9 

The example above shows a Buyer's request to get the Product Specification with id equal to
productSpecification-9. The correct response (HTTP code 200) in the response body contains a
single ProductSpecification object matching the given id.

6.3.4.3. Retrieve Product Specification by Identifier - Response

The snippet below presents an example of the Retrieve Product Specification Request (the
schemas were not provided intentionally due to the example's clarity reasons):

Retrieve ProductSpecification by Identifier Response

{ 
    "id": "productSpecification-9", 
    "href": "http://mef.com:8080/mefApi/sonata/productCatalog/v1/productSpecification/productSpecification-
9", 
    "name": "Ethernet Private Tree EVC EP", 
    "lifecycleStatus": "orderable", 
    "lastUpdate": "2023-01-19T16:30:51.626Z", 
    "description": "EP TREE EVC EP", 
    "attachment": [ 
        { 
            "attachmentId": "4e5b3701-47f8-47a7-bcf8-d3d740b4cd60", 
            "author": "John Doe", 
            "creationDate": "2023-01-19T16:33:20.324Z", 
            "description": "EP TREE EVC doc", 
            "mimeType": "application/pdf", 
            "name": "Technical documentation", 
            "size": { 
                "amount": 1050.0, 
                "units": "KBYTES" 
            }, 
            "source": "buyer", 
            "url": "https://lso.mef.net/lso-payload-catalog/ep-tree-ep-product-payload" 
        } 
    ], 
    "note": [ 
        { 
            "author": "John Doe", 
            "date": "2023-01-19T16:33:20.324Z", 
            "id": "43072c06-34ac-4713-b0b1-371cb7479400", 
            "source": "buyer", 
            "text": "Lorem ipsum" 
        } 
    ], 
    "sourceSchema": { 
        "schemaLocation": "http://mef.com:8081/publisher/v1/schema/6346d966-0a9c-4dfe-88f2-86b0e995a8a9" 
    }, 
    "productSpecificationRelationship": [ 
        { 
            "id": "productSpecification-10", 
            "relationshipType": "rootEndpointOfEvc", 
            "minCardinality": 0, 



63 / 110

            "maxCardinality": 1 
        }, 
        { 
            "id": "productSpecification-10", 
            "relationshipType": "leafEndpointOfEvc", 
            "minCardinality": 0, 
            "maxCardinality": 1 
        }, 
        { 
            "id": "productSpecification-6", 
            "relationshipType": "connectsToUni", 
            "minCardinality": 1, 
            "maxCardinality": 1 
        } 
    ] 
} 

[R71] The Seller MUST put the following attributes into the ProductSpecification object in the
response: [MEF127 R57, MEF127 R59]:

id

name

description

lastUpdate

lifecycleStatus

sourceSchema

[R72] The Seller response MUST include the following attributes in the ProductSpecification if
they are set by the Seller: [MEF127 R58, MEF127 R59]:

brand

productNumber

attachment

productSpecificationRelationship

note

The full list of attributes is available in Section 7 and in the API specification which is an
integral part of this standard.

[R73] If the attachment is provided, either the attachment.url or (attachment.content and
attachment.mimeType) MUST be specified.

[R74] For Product Specifications, the Seller MUST set the respective source=seller attribute
when adding any item to one of the following lists: note, attachment.

The source of the notes is always the Seller (note[?].source=seller) because API doesn't allow
for any modifications that could be initiated by the Buyer.

Note: The Product Specification model for this use case is the full set of the model from the
chapter [6.3.1]. To see the model go to the mentioned chapter.

[R75] The Seller response MUST include exactly one of the sourceSchema attributes:



64 / 110

schema

schemaLocation

Attributes schema and schemaLocation are modeled as mutually exclusive to avoid the dual nature
of sourceSchema representation.

6.9. Use case 7: Register for Event Notifications

[O19] The Seller MAY support Product Catalog Event Notifications.

It's in Seller's and Buyer's discretion to decide if registration for Event Notifications is
supported.

[011] The Seller MAY support the following Product Category related Notification Types
(ProductCategoryEventType):

productCategoryCreateEvent

productCategoryAttributeValueChangeEvent

productCategoryAttributeValueChangeEvent

[CR13]<[O11] If the Seller wants to support one of the ProductCategoryEventType, then the Seller
MUST support of all them.

[012] The Seller MAY support the following Product Offering related Notification Types
(ProductOfferingEventType):

productOfferingCreateEvent

productOfferingAttributeValueChangeEvent

productOfferingStatusChangeEvent

[CR14]<[O12] If the Seller wants to support one of the ProductOfferingEventType, then the Seller
MUST support of all them.

[013] The Seller MAY support the following Product Specification related Notification
Types (ProductSpecificationEventType):

productSpecificationCreateEvent

productSpecificationAttributeValueChangeEvent

productSpecificationStatusChangeEvent

[CR15]<[O12] If the Seller wants to support one of the ProductSpecificationEventType, then the
Seller MUST support of all them.

[CR16]<[O10] If the Seller supports the Register for Product Catalog Notification Use
Case, the Seller MUST support at least one Notification Type. [MEF127 C01]

[R76] The Buyer request MUST contain the following attributes [MEF127 R60]:



65 / 110

callback

6.9.1. Register for Event Notifications - Request

To register for notifications the Buyer uses the registerListener operation from the API: POST
/hub. The request model contains only 2 attributes:

callback - mandatory, to provide the callback address the events will be notified to,
query - optional, to provide the required types of event.

By using a simple request:

{ 
  "callback": "https://buyer.mef.com/listenerEndpoint" 
} 

The Buyer subscribes for notification of all types of events [O10, O11, O12]

If the Buyer wishes to receive only notification of a certain type, a query must be added:

{ 
    "callback": "https://buyer.mef.com/listenerEndpoint", 
    "query": "evenType=productOfferingCreateEvent,productOfferingStatusChangeEvent" 
     
} 

If the Buyer wishes to subscribe to 2 different types of events, there are 2 possible syntax
variants [TMF630]:

eventType=productOfferingCreateEvent,productOfferingStatusChangeEvent 

or

eventType=productOfferingCreateEvent&eventType=productOfferingStatusChangeEvent 

The query formatting complies with RCF3986 RFC3986. According to it, every attribute
defined in the Event model (from notification API) can be used in the query. However, this
standard requires only eventType attribute to be supported.

[R77] eventType is the only attribute that the Seller MUST support in the query.

[R78] If the Seller does not support notifications, they MUST return an error message to the
Buyer indicating that notifications are not supported. [MEF127 R62, MEF127 R61]

[R79] If the Seller does not support any of the notification's eventType, they MUST return an
error message to the Buyer indicating that given eventType(s) is not supported, whenever the



66 / 110

Buyer used not supported eventType(s) in the query attribute of the EventSubscription. [MEF127
R62, MEF127 R61]

6.9.2. Register for Event Notifications - Response

The Seller responds to the subscription request by adding the id of the subscription to the
message that must be further used for unsubscribing.

{ 
    "callback": "https://buyer.mef.com/listenerEndpoint", 
    "id": "1659bc83-d334-4de4-aa60-0818e4060ae1", 
    "query": "eventType=productOfferingCreateEvent&eventType=productOfferingStatusChangeEvent" 
} 

Example of a final address that the Notifications will be sent to (for Sonata,
productOfferingCreateEvent):

https://buyer.mef.com/listenerEndpoint/mefApi/sonata/productCatalogNotifications/v1/listener/productOfferingCr

eateEvent

6.9.3. Unregister for Event Notifications - Request

To stop receiving events, the Buyer has to use the unregisterListener operation from the DELETE
/hub/{id} endpoint. The id is the identifier received from the Seller during the listener
registration.

[R80] The Buyer must provide the id of the registered EventSubscription that originates from the
Seller.

The example below shows an exemplary unregister call sent by the Buyer to the Seller:

http://mef.com:8080/mefApi/sonata/productCatalog/v1/hub/1659bc83-d334-4de4-aa60-0818e4060ae1 

6.9.4. Unregister for Event Notifications - Response

[R81] In the successful scenario the Seller MUST respond with an empty body and HTTP
code 204.

The Buyer can unregister only the whole EventSubscription, regardless of the provided query. In
the case when the Buyer e.g. resigns from specific types of events (or changes the callback
address), the previous EventSubscription that includes undesired notification types needs to be
removed and replaced by the new EventSubscription with adjusted query attribute.

Note: The conclusion of the above note is that the Buyer cannot update the existing
EventSubscription. Every kind of update is done by subscription replacement.



67 / 110

6.10. Use case 8: Send Event Notification

Notifications are used to asynchronously inform the Buyer about the respective objects and
attributes changes.

[R82] The Seller MUST send Notifications for eventTypes to Buyers who have registered for
them. [MEF127 C02, C03, C04, R63]

[R83] The Seller MUST NOT send Notifications for eventTypes to Buyers who have not
registered for them. [MEF113 R157]

[O20] If the Seller fail to receive an acknowledgment from the Buyer repeatedly then Seller
MAY mark related EventSubscription as corrupted and stop sending notifications. [MEF127 O8]

[CR17]<[O20] If the Seller marked related EventSubscription as corrupted then unsent
notifications MUST be stored as dead-letters for resending purposes.

It's at the Buyer and Seller's discretion how to inform the Buyer that the listener is out of
service and how to uncheck corrupted EventSubscription when the listener is claimed.

The Figure 21 shows all entities involved in the Notification use cases.

Figure 21: Use Case 8. Notification Data Model

The following snippet presents an example of productOfferingCreateEvent

{ 
    "eventId": "f97ec7b4-050d-44b6-91d1-771ad4151695", 
    "eventTime": "2023-03-06T15:58:51.968Z", 
    "eventType": "productOfferingCreateEvent", 
    "event": 
    { 
        "id": "b1e4ce38-2328-4d10-8801-f277fbed891d" 
    } 
} 

The body of the event carries only the source object's id. The Buyer needs to query it later
by id to get details.



68 / 110

The Seller is always the author of any change in the Product Catalog. This implies that each
kind of event that is sent by the Seller is triggered by the Seller activities. This is because all
the endpoints of the Product Catalog API published to the Buyer are used only for query
purposes.

The table below presents the mapping between the API Notification types' names and the
ones in MEF 127 together with event descriptions. The inconsistencies are caused by the
API naming convention and using the TMF's [TMF620] event types as the base for this API.

API name MEF 127 name Description

categoryCreateEvent PRODUCT_CATEGORY_CREATE

The Seller
has
published a
new Product
Category to
the Buyers.

categoryAttributeValueChangeEvent PRODUCT_CATEGORY_UPDATE

The Seller
settable
attributes for
a Product
Category
were
updated by
the Seller.

categoryStatusChangeEvent PRODUCT_CATEGORY_STATE_CHANGE

A Product
Category
status was
changed by
the Seller.

productOfferingCreateEvent PRODUCT_OFFERING_CREATE

The Seller
has
published a
new Product
Offering to
the Buyers.



69 / 110

API name MEF 127 name Description

productOfferingAttributeValueChangeEvent PRODUCT_OFFERING_UPDATE

The Seller
settable
attributes for
a Product
Offering
were
updated by
the Seller.

productOfferingStatusChangeEvent PRODUCT_OFFERING_STATE_CHANGE

A Product
Offering
status was
changed by
the Seller.

productSpecificationCreateEvent PRODUCT_SPECIFICATION_CREATE

The Seller
has
published a
new Product
Specification
to the
Buyers.

productSpecificationAttributeValueChangeEvent PRODUCT_SPECIFICATION_UPDATE

The Seller
settable
attributes for
a Product
Specification
were
updated by
the Seller.

productSpecificationStatusChangeEvent PRODUCT_SPECIFICATION_STATE_CHANGE

A Product
Specification
status was
changed by
the Seller.

Table 10. Notification types mapping

[R84] The Seller MUST include following attributes when sending an event [MEF127
R64]:

eventId

eventTime



70 / 110

eventType

event

[CR18]<[O10] The Seller MUST send a categoryCreateEvent whenever a new Product Category
has been created (accordingly to the State Machine described in chapter [6.1.2]) and the
Seller supports createCategoryEvent event type.

[CR19]<[O10] The Seller MUST send a categoryAttributeValueChangeEvent whenever the Seller
updates any of the following Product Category attributes and supports
categoryAttributeValueChangeEvent event type:

description

parentCategory

subCategory

productOffering

[R85] The Seller MUST send a categoryStatusChangeEvent whenever a Product Category status
change occurs (accordingly to the State Machine described in chapter [6.1.2]) and the Seller
supports categoryStatusChangeEvent event type.

[CR20]<[O11] The Seller MUST send a productOfferingCreateEvent whenever a new Product
Offering has been created (accordingly to the State Machine described in chapter [6.2.2])
and the Seller supports productOfferingCreateEvent event type.

[CR21]<[O11] The Seller MUST send a productOfferingAttributeValueChangeEvent whenever the
Seller updates any of the following Product Offering attributes and supports
productOfferingAttributeValueChangeEvent event type:

description

channel

agreement

marketSegment

region

category

statusTransitions

attachment

relatedContactInformation

productOfferingTerm

note

[R86] The Seller MUST send a productOfferingStatusChangeEvent whenever a Product Offering
status change occurs (accordingly to the State Machine described in chapter [6.3.2]) and the
Seller supports productOfferingStatusChangeEvent event type.



71 / 110

[CR22]<[O12] The Seller MUST send a productSpecificationCreateEvent whenever a new Product
Specification has been created (accordingly to the State Machine described in chapter
[6.3.2]) and the Seller supports productSpecificationCreateEvent event type.

[CR23]<[O12] The Seller MUST send a productSpecificationAttributeValueChangeEvent whenever the
Seller updates any of the following Product Specification attributes and supports
productSpecificationAttributeValueChangeEvent event type:

description

attachment

note

productSpecificationRelationship Needs to be checked ???

[R87] The Seller MUST send a productSpecificationStatusChangeEvent whenever a Product
Specification status change occurs (accordingly to the State Machine described in chapter
[6.3.2]) and the Seller supports productSpecificationStatusChangeEvent event type.



72 / 110

7. API Details

7.1. API patterns

7.1.1. Indicating errors

Erroneous situations are indicated by appropriate HTTP responses. An error response is
indicated by HTTP status 4xx (for client errors) or 5xx (for server errors) and appropriate
response payload. The Product Order API uses the error responses as depicted and described
below.

Implementations can use HTTP error codes not specified in this standard in compliance with
rules defined in RFC 7231 [RFC7231]. In such a case, the error message body structure
might be aligned with the Error.

Figure 22. Data model types to represent an erroneous response

7.1.1.1. Type Error

Description: Standard Class used to describe API response error Not intended to be used
directly. The code in the HTTP header is used as a discriminator for the type of error returned
in runtime.

Name Type Description

reason*
string
maxLength =

255

Text that explains the reason for the error. This can be shown to a
client user.

message string
Text that provides mode details and corrective actions related to
the error. This can be shown to a client user.

referenceError
uri
format = uri

URL pointing to documentation describing the error

7.1.1.2. Type Error400

Description: Bad Request. (https://tools.ietf.org/html/rfc7231#section-6.5.1)



73 / 110

Inherits from:

Error

Name Type Description

code* Error400Code One of the following error codes:

missingQueryParameter: The URI is missing a required query-string parameter
missingQueryValue: The URI is missing a required query-string parameter value
invalidQuery: The query section of the URI is invalid.
invalidBody: The request has an invalid body

7.1.1.3. enum Error400Code

Description: One of the following error codes:

missingQueryParameter: The URI is missing a required query-string parameter
missingQueryValue: The URI is missing a required query-string parameter value
invalidQuery: The query section of the URI is invalid.
invalidBody: The request has an invalid body

Value MEF 127

missingQueryParameter MISSING_QUERY_PARAMETER

missingQueryValue MISSING_QUERY_VALUE

invalidQuery INVALID_QUERY

invalidBody INVALID_BODY

7.1.1.4. Type Error401

Description: Unauthorized. (https://tools.ietf.org/html/rfc7235#section-3.1)

Inherits from:

Error

Name Type Description

code* Error401Code One of the following error codes:

missingCredentials: No credentials provided.
invalidCredentials: Provided credentials are invalid or expired

7.1.1.5. enum Error401Code



74 / 110

Description: One of the following error codes:

missingCredentials: No credentials provided.
invalidCredentials: Provided credentials are invalid or expired

Value MEF 127

missingCredentials MISSING_CREDENTIALS

invalidCredentials INVALID_CREDENTIALS

7.1.1.6. Type Error403

Description: Forbidden. This code indicates that the server understood the request but
refuses to authorize it. (https://tools.ietf.org/html/rfc7231#section-6.5.3)

Inherits from:

Error

Name Type Description

code* Error403Code
This code indicates that the server understood the request but
refuses to authorize it because of one of the following error
codes:

accessDenied: Access denied
forbiddenRequester: Forbidden requester
tooManyUsers: Too many users

7.1.1.7. enum Error403Code

Description: This code indicates that the server understood the request but refuses to
authorize it because of one of the following error codes:

accessDenied: Access denied
forbiddenRequester: Forbidden requester
tooManyUsers: Too many users

Value MEF 127

accessDenied ACCESS_DENIED

forbiddenRequester FORBIDDEN_REQUESTER

tooManyUsers TOO_MANY_USERS

7.1.1.8. Type Error404



75 / 110

Description: Resource for the requested path not found.
(https://tools.ietf.org/html/rfc7231#section-6.5.4)

Inherits from:

Error

Name Type Description

code* string
The following error code: - notFound: A current representation for the
target resource not found

7.1.1.9. Type Error500

Description: Internal Server Error. (https://tools.ietf.org/html/rfc7231#section-6.6.1)

Inherits from:

Error

Name Type Description

code* string The following error code:

internalError: Internal server error - the server encountered an unexpected condition that
prevented it from fulfilling the request.

7.1.1.10. Type Error501

Description: Not Implemented. Used in case Seller is not supporting an optional operation
(https://tools.ietf.org/html/rfc7231#section-6.6.2)

Inherits from:

Error

Name Type Description

code* string The following error code:

notImplemented: Method not supported by the server

7.1.2. Response pagination

A response to retrieve a list of results (e.g. GET /productOfferingQualification) can be paginated.
The Buyer can specify following query attributes related to pagination:

limit - number of expected list items



76 / 110

offset - offset of the first element in the result list

The Seller returns a list of elements that comply with the requested limit. If the requested
limit is higher than the supported list size the smaller list result is returned. In that case, the
size of the result is returned in the header attribute X-Result-Count. The Seller can indicate that
there are additional results available using:

X-Total-Count header attribute with the total number of available results
X-Pagination-Throttled header set to true

7.2. API Data model

Figure 23 presents the whole Product Catalog data model. The data types, requirements
related to them and mapping to MEF 127 specification are discussed later in this section.

Figure 23. Product Catalog Data Model

7.2.1 Product Category

7.2.1.1 Type ProductCategory

Description: The Product Category is a grouping of Product Offerings in logical containers
defined by the Seller. A Product Category may contain other (sub)Product Categories and/or
Product Offerings.

Name Type M/O Description MEF 127

id string M

Unique identifier
(within the Seller
domain) for the
Product Category.

Product
Category
Identifier



77 / 110

Name Type M/O Description MEF 127

href
uri
format = uri

O
Reference of the
Product Category

Not
represented
in MEF
127

name string M

The name (unique
within the Seller
domain) of the
Product Category

Product
Category
Name

description string M
Description of the
Product Category

Product
Category
Description

lastUpdate
date-time
format = date-time

M

The date and time
the Product
Category was
created or most
recently updated.

Product
Category
Last
Update

lifecycleStatus CategoryLifecycleStatusType M
The current status
of the Product
Category.

Product
Category
State

parentCategory CategoryRef O

Identifier
referencing the
Parent of this
Product Category.

Parent
Category

subCategory CategoryRef[] O

A list of references
to Product
Category, to which
this Product
Category is a
parent of.

Sub
Categories

productOffering ProductOfferingRef[] O

A list of references
to Product Offering
grouped within this
Category

Product
Offerings

7.2.1.2 enum CategoryLifecycleStatusType

Description:



78 / 110

Name
MEF 127
Name

DescriptionName
MEF 127
Name

Description

active AVAILABLE
A Product Category is in the active state when it can be used by
the Buyer to retrieve Product Offerings and Product
Specifications.

obsolete OBSOLETE

A Product Category is obsolete when it can no longer be used by
the Buyer to retrieve Product Offerings or Product
Specifications. The Product Category may be removed from the
Product Catalog. This is a final state.

Value MEF 127

active ACTIVE

obsolete OBSOLETE

7.2.1.3 Type CategoryRef

Description: Represents the reference to Category

Name Type M/O Description MEF 127

id string M
Unique (within the Seller domain)
identifier for the Category

Not represented in
MEF 127

href
uri
format = uri

O Hyperlink to access the Category
Not represented in
MEF 127

7.2.1.4 Type ProductOfferingRef

Description: ProductOffering reference. A product offering represents entities that are
orderable from the provider of the catalog.

Name Type M/O Description MEF 127

id string M
Unique (within the Seller domain)
identifier for the Product Offering.

Not represented
in MEF 127

href
uri
format = uri

O Hyperlink to access the Product Offering
Not represented
in MEF 127

7.2.2 Product Offering

7.2.2.1 Type ProductOffering_Common

Description: The Product Offering represents the Products orderable from a Seller�s
Product Catalog.



79 / 110

Name Type M/O Description MEF 127Name Type M/O Description MEF 127

id string O

Unique
identifier
(within the
Seller domain)
for the Product
Offering. Note
- The Seller
must create a
new Product
Offering
Identifier for
every new
version of a
Product
Offering. The
Seller may
choose to
incorporate the
version
information as
part of the
Offering
Identifier.

Product
Offering
Identifier

href
uri
format = uri

O

Hyperlink
reference to the
Product
Offering

Not
represented
in MEF
127

name string O

The
commercial
name of the
Product
Offering

Product
Offering
Name

description string O
Description of
the Product
Offering

Product
Offering
Description



80 / 110

Name Type M/O Description MEF 127

lastUpdate
date-time
format = date-time

O

The date and
time the
Product
Offering was
created or most
recently
updated.

Product
Offering
Last
Update

lifecycleStatus ProductOfferingLifecycleStatusType O
Product
Offering
State

agreement string O

The name of
the Seller's
offer
arrangement
(such as a
framework
agreement).
This may be a
standard offer
agreement or a
customer
specific
agreement
(e.g., for a
customer
specific
Product
Catalog or
customer
specific
Product
Offering). The
name is unique
within the
Seller domain.

Standard
Framework
Agreement



81 / 110

Name Type M/O Description MEF 127

channel string[] O

The names of
the sales
channel
through which
the Product
Offering is
made available
to the Buyer to
order. The set
of channel
names should
be specified in
the Agreement
or provided
during the
onboarding
process. For
example:
reseller,
distribution,
directSales.
Note: If
channel is an
empty list, it
implies that the
Product
Offering is
available in all
Seller
supported
channels.

Sales
Channels



82 / 110

Name Type M/O Description MEF 127

marketSegment string[] O

The names of
the market
segments
targeted for the
Product
Offering. The
set of market
segment names
should be
specified in the
Agreement or
provided
during the
onboarding
process. For
example:
wholesale,
federal,
financial. Note:
If
marketSegment
is an empty
list, it implies
that the
Product
Offering is
available in all
Seller
supported
market
segments

Market
Segments



83 / 110

Name Type M/O Description MEF 127

region Region[] O

Areas where
the products
are offered by
the Seller to
potential
Buyers. Note:
If region is an
empty list, it
implies that the
Product
Offering is
available in all
Seller
supported
Regions.

Regions

category CategoryRef[] O

The list of
Product
Category
References in
which this
Product
Offering is
grouped
together with
other Product
Offerings
available to the
Buyer.

Product
Offering
Product
Categories

7.2.2.2 Type ProductOffering

Description: Represents entities that are orderable from the provider of the catalog, this
resource included all available information of Product Offering

Inherits from:

ProductOffering_Common

Name Type M/O Description



84 / 110

Name Type M/O Description

statusTransitions ProductOfferingLifecycleStatusTransition[] O

The list of planned
Offering Status tra
including the date 
expected to occur.

productOfferingStatusReason string O

Provides complem
information on the
the Product Offeri
Status is set to a p
value.

attachment AttachmentValue[] O

Complements the 
Offering descriptio
presentation, video
etc.

relatedContactInformation
RelatedContactInformation[]
minItems = 1

O

Defines the contac
role for the related
Product Offering. 
to specify the type
as specified in ME
Reporter Contact
('role=reporterCon
REQUIRED in the
Buyer Technical C
('role=buyerTechn
Seller Ticket Cont
('role=sellerTicket
Seller Technical C
('role=sellerTechn

productOfferingTerm MEFItemTerm[] O

Commitment dura
which a Product O
available to Buyer
instance, a Produc
can be made avail
multiple commitm
of 1, 2 or 3 year te

note Note[] O
A set of comments
additional informa



85 / 110

Name Type M/O Description

productSpecification ProductSpecificationRef M

A Product Specific
Reference to the d
description of the
specifications and 
defining all of the 
Offering character

productOfferingContextualInfo ProductOfferingContextualInfo[] O

Defines additional
on the Product Off
Specification for u
payload for a Prod
for each Business 
and Product Actio

productOfferingSpecification SchemaRefOrValue M

Reference (or valu
Product Offering s
schema that is con
schema of related 
Specification. Eac
must be valid agai
Product Offering s
schema must be va
the original Produ
Specification sche
logical subset).

7.2.2.3 Type ProductOffering_Find

Description: Represents entities that are orderable from the provider of the catalog, this
resource includes pricing information.

Inherits from:

ProductOffering_Common

7.2.2.4 enum ProductOfferingLifecycleStatusType

Description:

Name MEF 127 Name Description



86 / 110

Name MEF 127 Name Description

active ACTIVE

When a Product Offering or Product Specification
has been defined and will be made available for
ordering; however, it is not yet generally
available.

endOfSale END_OF_SALE

The Product Offering or Product Specification
cannot be Installed by any new or existing Buyers,
but Buyers may still have Products in use and may
Change or Disconnect it, and receive support.

endOfSupport END_OF_SUPPORT

When a Product Offering or Product Specification
in the endOfSale state is no longer supported, the
status transitions to endOfSupport. Any existing
products can no longer be modified, with the only
Order action allowed is delete.

obsolete OBSOLETE

After a Product Offering or Product Specification
that is no longer available it transitions to obsolete
and may be removed at the Seller's discretion
from the Product Catalog. This is a final state.

onHold ON_HOLD

A Product Offering or Product Specification that
has been orderable, but is currently not available for
Buyers due to supply constraints, product recall or
other issues preventing it to be offered.

orderable ORDERABLE
A new Product Offering or Product Specification
is in the orderable state when it is available for
ordering by Buyers.

inTest PILOT_BETA
When a Product Offering or Product Specification
starts Pilot/Beta testing, it starts in the pilotBeta
state .

rejected REJECTED
When PILOT_BETA testing fails the Product
Offering or Product Specification transitions to
the rejected state. This is a final state.

Value MEF 127

active ACTIVE

endOfSale END_OF_SALE

endOfSupport END_OF_SUPPORT

obsolete OBSOLETE

onHold ON_HOLD

orderable ORDERABLE



87 / 110

Value MEF 127

inTest IN_TEST

rejected REJECTED

7.2.2.5 Type ProductOfferingLifecycleStatusTransition

Description: The planned Product Offering Status transition, including the date it is
expected to occur.

Name Type M/O Description MEF 127

transitionDate
date-time
format = date-time

O

The Date
and Time
that the
Next
Product
Offering
Status
transition is
planned to
occur.

Transition
Date

transitionLifecycleStatus ProductOfferingLifecycleStatusType O

The status
of the
Product
Offering on
the planned
Transition
Date.

Transition
Product
Offering
State

7.2.2.6 Type ProductSpecificationRef

Description: Product Specification reference.

Name Type M/O Description MEF 127

id string M
Unique (within the Seller domain)
identifier for the Product Specification.

Not represented
in MEF 127

href
uri
format = uri

O
Hyperlink to access the Product
Specification

Not represented
in MEF 127

7.2.2.7 Type MEFItemTerm

Description: The term of the Item



88 / 110

Name Type M/O Description MEF 127

description string O Description of the term Description

duration Duration M Duration of the term Duration

endOfTermAction MEFEndOfTermAction M

The action that needs
to be taken by the
Seller once the term
expires

End Of
Term
Action

name string M Name of the term Name

rollInterval Duration O

The recurring period
that the Buyer is
willing to pay for the
Product after the
original term has
expired.

Roll
Interval

7.2.2.8 enum MEFEndOfTermAction

Description: The action the Seller will take once the term expires. Roll indicates that the
Product's contract will continue on a rolling basis for the duration of the Roll Interval at the
end of the Term.
Auto-disconnect indicates that the Product will be disconnected at the end of the Term.
Auto-renew indicates that the Product's contract will be automatically renewed for the Term
Duration at the end of the Term.

Value MEF 127

roll ROLL

autoDisconnect AUTO_DISCONNECT

autoRenew AUTO_RENEW

7.2.2.9 Type ProductOfferingContextualInfo

Description: Constrained Product Schema that should be used by the Buyer in the defined
Context, where Context is built as pair - a Business Function (e.g. Quote) and Product
Action (e.g. install). Those product schemas are created by applying the constraints to
Product Schemas defined in the Product Specification. Contextual info MUST be provided
for every possible combination of Product Actions and Business Functions (if there are no
differences per function of per action then use wildcard - 'all' - and reuse the value of
Product Offering Specification attribute).

Name Type M/O Description MEF 127



89 / 110

Name Type M/O Description MEF 127

contextSchema SchemaRefOrValue M

Product Schema that is
defined for the given Context.
Scheme **MUST** be
compliant with JSON scheme
standard.

Product
Offering
Contextual
Target
Schema

context Context M

Not
represented
in MEF
127

7.2.2.10 Type Context

Description: Context that is defined as a two-dimensional vector of Business Function and
Product Action.

Name Type M/O Description
MEF
127

productAction MEFProductAction O
Defines Product Action to
which the given context
applies.

Product
Action

businessFunction MEFBusinessFunction O
Defines Business Function
to which the given context
applies.

Business
Function

7.2.2.11 enum MEFProductAction

Description: Action that could be applied to the Product (or future product) during the
execution of the Business Function. Value 'All' is the wildcard - stands for any action.

Value MEF 127

add ADD

modify MODIFY

all ALL

7.2.2.12 enum MEFBusinessFunction

Description: Business Function that could be executed for the given Product accordingly to
LSO Cantata/Sonata IRPs. Value 'All' is the wildcard - stands for any action.

Value MEF 127



90 / 110

Value MEF 127

productOfferingQualification PRODUCT_OFFERING_QUALIFICATION

quote QUOTE

productOrder PRODUCT_ORDER

productInventory PRODUCT_INVENTORY

all ALL

7.2.2.13 Type Region

Description: Specifies a region

Name Type M/O Description
MEF
127

locality string O

An area of defined or undefined present
boundaries within a local authority or
other legislatively defined area, usually
rural or semi-rural in nature.

Locality

stateOrProvince string O
The State or Province that the address is
in

State Or
Province

country string M The Country the region is located. Country

7.2.3 Product Specification

7.2.3.1 Type ProductSpecification_Common

Description: Is the basis for all Production Specification representations.

Name Type M/O Description MEF 127

id string O

Unique
identifier
(within the
Seller
domain) for
the Product
Specification.

Product
Specification
Identifier

href
uri
format = uri

O
Reference of
the Product
Specification

Not
represented
in MEF 127



91 / 110

Name Type M/O Description MEF 127

name string O
Name of the
Product
Specification

Product
Specification
Name

lifecycleStatus ProductSpecificationLifecycleStatusType O

The current
status of the
Product
Offering.

Product
Specification
State

lastUpdate
date-time
format = date-time

O

The date and
time the
Product
Specification
was created
or most
recently
updated.

Product
Specification
Last Update

7.2.3.2 Type ProductSpecification

Description: Is a detailed description of a tangible or intangible object made available
externally in the form of a ProductOffering to customers or other parties playing a party
role.

Inherits from:

ProductSpecification_Common

Name Type M/O Description MEF 1

brand string O

The
manufacturer
or trademark
of the Product
Specification
if the Seller
requires a
CPE on the
Buyer's
premise.

Brand

description string M
Description of
the Product
Specification.

Product
Specific
Descrip



92 / 110

Name Type M/O Description MEF 1

productNumber string O

An identifier
assigned to
the model or
version of the
CPE used in
conjunction
with the
Brand (for
example
hardware
SKU or
software
license key).

Product
Number

attachment AttachmentValue[] O

Complements
the Product
Offering
description
with
presentation,
video,
pictures, etc.
This would
only be
expected to be
used to
provide
additional
information if
there is a CPE
re-quired, for
instance a link
to the website
of the CPE
vendor.

Product
Specific
Attachm

note Note[] O

A set of
comments for
additional
information.

Product
Specific
Notes



93 / 110

Name Type M/O Description MEF 1

sourceSchema SchemaRefOrValue M

A reference to
the schema
that defines
the Product.

Source
Product
Specific
Schema

productSpecificationRelationship ProductSpecificationRelationship[] M

List of
relations
between
defined
Product
Specifications.

Product
Specific
Relation

7.2.3.3 Type ProductSpecification_Find

Description: Is a lightweight version of the Product Specification object used in Get List
use case.

Inherits from:

ProductSpecification_Common

7.2.3.4 enum ProductSpecificationLifecycleStatusType

Description:

Name MEF 127 Name Description

active ACTIVE
When a Product Specification has been defined
and will be made available for ordering; however,
it is not yet generally available.

endOfSale END_OF_SALE
The endOfSale status means that Product
Specification cannot be used for creation of a new
Product Offerings.

endOfSupport END_OF_SUPPORT

When a Product Specification in the endOfSale
status is no longer supported, the status transitions
to endOfSupport. Any existing products can no
longer be Changed, with the only Order action
allowed is Disconnect.

obsolete OBSOLETE

After a Product Specification that is no longer
available it transitions to obsolete and may be
removed at the Seller's discretion from the
Product Catalog. This is a final state.



94 / 110

Name MEF 127 Name Description

onHold ON_HOLD

A Product Specification that has been orderable,
but is currently not available for Buyers due to
supply constraints, product recall or other issues
preventing it to be offered.

orderable ORDERABLE
A Product Specification is in the orderable state
when it is available for ordering by Buyers.

inTest PILOT_BETA
When a Product Specification starts Pilot/Beta
testing, it starts in the inTest state.

rejected REJECTED
When Pilot/Beta testing fails the Product
Specification to the rejected state. This is a final
state.

Value MEF 127

active ACTIVE

endOfSale END_OF_SALE

endOfSupport END_OF_SUPPORT

obsolete OBSOLETE

onHold ON_HOLD

orderable ORDERABLE

inTest IN_TEST

rejected REJECTED

7.2.3.5 Type ProductSpecificationRelationship

Description: Uni-directional relationship between the Products (the owner of the relation is
the Product that defines it). Relation defines the type and the cardinalities.

Name Type M/O Description MEF 127

id string M
Identifier of the targeted Product
Specification

Related
Product
Specification
Identifier

relationshipType string O

Defines the type of the relation or
the role of the relation owner in the
context of this relation e.g. hosts,
aggregates

Relationship
Type



95 / 110

Name Type M/O Description MEF 127

minCardinality
integer
default = 0

minimum = 0

O

The minimal number of the related
Products that must be satisfied. e.g.
Access E-Line requires at least two
End Points.

Min
Cardinality

maxCardinality
integer
default = -1

maximum = -1

O

The maximal number of the related
Products that must be satisfied. e.g.
Endpoint must be related with only
one Access E-Line. `-1` stands for
infinity i.e. any number of
instances of the given type could
be related to the considered
instance.

Max
Cardinality

7.2.4 Common types

This chapter includes common types that are shared between Product Category, Product
Offering, or Product Specification types.

7.2.4.1 Type AttachmentValue

Description: Complements the description of an element (for instance a product) through
video, pictures...

Name Type M/O Description MEF 127

attachmentId string O
locally unique identifier to
distinguish items from the
Attachment list.

Not
represented
in MEF
127

author string M
The name of the person or
organization who added the
Attachment.

Attachment
Author

content string O

The actual contents of the
attachment object, if
embedded, encoded as
base64. Either url or (content
and mimeType) attributes
MUST be provided during
creation.

Content

creationDate
date-time
format = date-time

M
The date the Attachment was
added.

Attachment
Date



96 / 110

Name Type M/O Description MEF 127

description string O
A narrative text describing the
content of the attachment

Description

mimeType string O
Attachment mime type such
as extension file for video,
picture and document

Mime Type

name string M The name of the attachment
Attachment
Name

size MEFByteSize O The size of the attachment. Size

source MEFBuyerSellerType M
Indicates if the attachment
was added by the Buyer or the
Seller.

Attachment
Source

url string O

URL where the attachment is
located. Either url or (content
and mimeType) attributes
MUST be provided during
creation.

URL

7.2.4.2 Type MEFByteSize

Description: A size represented by value and Byte units

Name Type M/O Description MEF 127

amount
float
default = 1

format = float

M Numeric value in a given unit Value

units DataSizeUnit M Byte Unit Unit

7.2.4.3 enum DataSizeUnit

Description: The unit of measure in the data size.

Value MEF 127

BYTES BYTES

KBYTES KBYTES

MBYTES MBYTES

GBYTES GBYTES

TBYTES TBYTES



97 / 110

Value MEF 127

PBYTES PBYTES

EBYTES EBYTES

ZBYTES ZBYTES

YBYTES YBYTES

7.2.4.4 enum MEFBuyerSellerType

Description: An enumeration with buyer and seller values.

Value MEF 127

buyer BUYER

seller SELLER

7.2.4.5 Type RelatedContactInformation

Description: Contact data for a person or organization that is involved in a given context. It
is specified by the Seller (e.g. Seller Contact Information) or by the Buyer.

Name Type M/O Description MEF 127

emailAddress string M Email address Email address

name string M Name of the contact
Name of the
contact

number string M Phone number
Contact
Phone
Number

numberExtension string O Phone number extension

Contact
Phone
Number
Extension

organization string O
The organization or
company that the contact
belongs to

Contact
Organization

postalAddress FieldedAddress O
Identifies the postal address
of the person or office to be
contacted.

Contact
Postal
Address

role string M
A role the party plays in a
given context.

Not
represented in
MEF 127



98 / 110

7.2.4.6 Type FieldedAddress

Description: A type of Address that has a discrete field and value for each type of boundary
or identifier down to the lowest level of detail. For example "street number" is one field,
"street name" is another field, etc. Reference: MEF 79 (Sn 8.9.2)

Name Type M/O Description MEF 127

country string M
Country that the
address is in

Country

streetType string O

The type of street
(e.g., alley,
avenue,
boulevard, brae,
crescent, drive,
highway, lane,
terrace, parade,
place, tarn, way,
wharf)

Street Type

postcodeExtension string O

An extension of a
postal code. E.g.
the part following
the dash in a US
urban property
address

Postal
Code
Extension

city string M
The city that the
address is in

City

streetNr string O

Number
identifying a
specific property
on a public street.
It may be
combined with
streetNrLast for
ranged addresses.
MEF 79 defines it
as required
however as in
certain countries it
is not used we
make it optional
in API.

Street
Number



99 / 110

Name Type M/O Description MEF 127

locality string O
The locality that
the address is in

Locality

postcode string O

Descriptor for a
postal delivery
area, used to
speed and
simplify the
delivery of mail
(also known as zip
code)

Postal
Code

streetNrLast string O

Last number in a
range of street
numbers allocated
to a property

Street
Number
Last

streetNrSuffix string O
The first street
number suffix

Street
Number
Suffix

streetName string M
Name of the street
or other street
type

Street
Name

stateOrProvince string O
The State or
Province that the
address is in

State Or
Province

streetNrLastSuffix string O
Last street number
suffix for a ranged
address

Street
Number
Last Suffix

geographicSubAddress GeographicSubAddress O

Not
represented
in MEF
127

streetSuffix string O
A modifier
denoting a relative
direction

Street
Suffix

7.2.4.7 Type GeographicSubAddress

Description: Additional fields used to specify an address, as detailed as possible.

Name Type M/O Description MEF 127



100 / 110

Name Type M/O Description MEF 127

buildingName string O

Allows for identification of
places that require building
name as part of addressing
information

Building
Name

id string O
Unique Identifier of the
subAddress

Not
represented
in MEF
127

levelNumber string O

Used where a level type may
be repeated e.g.
BASEMENT 1,
BASEMENT 2

Level
Number

levelType string O
Describes level types within
a building

Level Type

privateStreetName string O

"Private streets internal to a
property (e.g. a university)
may have internal names that
are not recorded by the land
title office

Private
Street
Name

privateStreetNumber string O
Private streets numbers
internal to a private street

Private
Street
Number

subUnit MEFSubUnit[] O

Representation of a
MEFSubUnit It is used for
describing subunit within a
subaddress e.g.BERTH,
FLAT, PIER, SUITE, SHOP,
TOWER, UNIT, WHARF.

Not
represented
in MEF
127

7.2.4.8 Type MEFSubUnit

Description: Allows for sub unit identification

Name Type M/O Description
MEF
127

subUnitNumber string M
The discriminator used for the subunit,
often just a simple number but may also
be a range.

Sub
Unit
Number



101 / 110

Name Type M/O Description
MEF
127

subUnitType string M
The type of subunit e.g.BERTH, FLAT,
PIER, SUITE, SHOP, TOWER, UNIT,
WHARF.

Sub
Unit
Type

7.2.4.9 Type Note

Description: Extra information about a given entity. Only useful in processes involving
human interaction. Not applicable for the automated process.

Name Type M/O Description MEF 127

author string M Author of the note
Note
Author

date
date-time
format = date-time

M Date the Note was created Note Date

id string M

Identifier of the note within its
containing entity (may or may not be
globally unique, depending on
provider implementation)

Not
represented
in MEF
127

source MEFBuyerSellerType M
Indicates if the note is from Buyer or
Seller

Note
Source

text string M Text of the note Note Text

7.2.4.10 Type SchemaRefOrValue

Description: Reference to the JSON schema location or the exact value of the JSON
schema. Note: One of the properties must be provided i.e. schemaLocation or schema.

Name Type M/O Description MEF 127

schema string O Raw JSON schema value.
Not
represented
in MEF 127

schemaLocation
uri
format = uri

O
This field provides a link to the
schema describing the target
product

Not
represented
in MEF 127

7.2.4.11 Type Duration

Description: A Duration in a given unit of time e.g. 3 hours, or 5 days.



102 / 110

Name Type M/O Description
MEF
127

Name Type M/O Description
MEF
127

amount integer M
Duration (number of seconds, minutes, hours,
etc.)

Value

units TimeUnit M Time unit type Unit

7.2.4.12 enum TimeUnit

Description: Represents a unit of time. Reference: MEF 57.2 (Sn 9.22)

Value MEF 127

calendarMonths CALENDAR_MONTHS

calendarDays CALENDAR_DAYS

calendarHours CALENDAR_HOURS

calendarMinutes CALENDAR_MINUTES

businessDays BUSINESS_DAYS

businessHours BUSINESS_HOURS

businessMinutes BUSINESS_MINUTES

7.2.5 Notification Registration

Notification registration and management are done through /hub API endpoint. The below
sections describe data models related to this endpoint.

7.2.8.1. Type EventSubscriptionInput

The query attribute is used to constrain the notification types that the Buyer is willing to
receive to the callback endpoint. The query formatting complies to RCF3986 rfc3986 and
TMF620. Every attribute defined in the Event model (from notification API) can be used in
the query. Example:

    "query":"eventType=productOfferingCreateEvent" 

If the Buyer wishes to subscribe to 2 different types of events, there are 2 possible syntax
variants:

eventType=productOfferingCreateEvent,productOfferingStatusChangeEvent or
eventType=productOfferingCreateEvent&eventType=productOfferingStatusChangeEvent

Description: This class is used to register for Notifications.



103 / 110

Name Type M/O DescriptionName Type M/O Description

callback string M

This callback value must be set to *host* property from Buyer Product Catalog
(productCatalogNotification.api.yaml). This property is appended with the base
specified in that API to construct an URL to which notification is sent. E.g. for 
"https://buyer.com/listenerEndpoint", the Product Specification state change ev
`https://buyer.com/listenerEndpoint/mefApi/sonata/productCatalogSpecification

query string O

This attribute is used to define to which type of events to register to. See the `Pr
`ProductSpecificationEventType`, `ProductOfferingEventType` in (productCata
kind of events are supported. To subscribe for more than one event type, put the
`eventType=productOfferingCreateEvent,productOfferingAttributeValueChang
`eventType=productOfferingCreateEvent&eventType=productOfferingAttribut
treated as specifying no filters - ending in subscription for all event types.

7.2.8.2. Type EventSubscription

Description: This resource is used to respond to notification subscriptions.

Name Type M/O Description
MEF
127

callback string M
The value provided by the Buyer in
`EventSubscriptionInput` during notification
registration

id string M
An identifier of this Event Subscription assigned
by the Seller when a resource is created.

query string O
The value provided by the Buyer in
`EventSubscriptionInput` during notification
registration

7.3. Notification API Data model

Figure 24 presents the Product Catalog Notification data model. section.



104 / 110

Figure 24. Product Catalog Notification Notification Data Model

This data model is used to construct requests and responses of the API endpoints described
in Section 5.2.2.

7.3.1. Type Event

Description: Event class is used to describe information structure used for notification.

Name Type M/O Description MEF 127

eventId string M Id of the event

eventTime
date-time
format = date-time

M Datetime when the event occurred

7.3.2. Type ProductCategoryEvent

Description:

Inherits from:

Event

Name Type M/O Description
MEF
127

eventType ProductCategoryEventType M
Indicates the type of the
event.

event ProductCategoryEventPayload M
A reference to the object that
is source of the notification.

7.3.3. Type ProductCategoryEventPayload

Description: The identifier of the Product Category being subject of this event.



105 / 110

Name Type M/O Description
MEF
127

Name Type M/O Description
MEF
127

sellerId string O

The unique identifier of the organization that is
acting as the Seller. MUST be specified in the
request only when requester entity represents more
than one Seller.

id string M ID of the Product Category attributed by the Seller

href
uri
format = uri

O Hyperlink to access the Product Category

buyerId string O

The unique identifier of the organization that is
acting as the a Buyer. MUST be specified in the
request only when the responding represents more
than one Buyer.

7.3.4. enum ProductCategoryEventType

Description: Type of the Product Category event.

API name MEF 127 name Description

categoryCreateEvent PRODUCT_CATEGORY_CREATE

The Seller
has
published
new Product
Category to
the Buyers.

categoryAttributeValueChangeEvent PRODUCT_CATEGORY_UPDATE

The Seller
settable
attributes for
a Product
Category
were updated
by the Seller.

categoryStateChangeEvent PRODUCT_CATEGORY_STATE_CHANGE

A Product
Category
status was
changed by
the Seller.

Value MEF 127

categoryCreateEvent CATEGORY_CREATE_EVENT



106 / 110

Value MEF 127

categoryAttributeValueChangeEvent CATEGORY_ATTRIBUTE_VALUE_CHANGE_EVENT

categoryStateChangeEvent CATEGORY_STATE_CHANGE_EVENT

7.3.5. Type ProductOfferingEvent

Description:

Inherits from:

Event

Name Type M/O Description
MEF
127

eventType ProductOfferingEventType M Indicates the type of the event.

event ProductOfferingEventPayload M
A reference to the object that
is source of the notification.

7.3.6. Type ProductOfferingEventPayload

Description: The identifier of the Product Offering being subject of this event.

Name Type M/O Description
MEF
127

sellerId string O

The unique identifier of the organization that is
acting as the Seller. MUST be specified in the
request only when requester entity represents more
than one Seller.

id string M ID of the Product Offering attributed by the Seller

href
uri
format = uri

O Hyperlink to access the Product Offering

buyerId string O

The unique identifier of the organization that is
acting as the a Buyer. MUST be specified in the
request only when the responding represents more
than one Buyer.

7.3.7. enum ProductOfferingEventType

Description: Type of the Product Offering event.

API name MEF 127 name Description



107 / 110

API name MEF 127 name Description

productOfferingCreateEvent PRODUCT_OFFERING_CREATE

The Seller
has
published
new
Product
Offering to
the Buyers.

productOfferingAttributeValueChangeEvent PRODUCT_OFFERING_UPDATE

The Seller
settable
attributes
for a
Product
Offering
were
updated by
the Seller.

productOfferingStateChangeEvent PRODUCT_OFFERING_STATE_CHANGE

A Product
Offering
status was
changed by
the Seller.

Value MEF 127

productOfferingCreateEvent PRODUCT_OFFERING_CREATE_EVENT

productOfferingAttributeValueChangeEvent PRODUCT_OFFERING_ATTRIBUTE_VALUE_CHAN

productOfferingStateChangeEvent PRODUCT_OFFERING_STATE_CHANGE_EVENT

7.3.8. Type ProductSpecificationEvent

Description:

Inherits from:

Event

Name Type M/O Description
MEF
127

eventType ProductSpecificationEventType M
Indicates the type of the
event.



108 / 110

Name Type M/O Description
MEF
127

event ProductSpecificationEventPayload M
A reference to the object
that is source of the
notification.

7.3.9. Type ProductSpecificationEventPayload

Description: The identifier of the Product Specification being subject of this event.

Name Type M/O Description
MEF
127

id string M
ID of the Product Specification attributed by the
Seller

href
uri
format = uri

O Hyperlink to access the Product Specification

buyerId string O

The unique identifier of the organization that is
acting as the a Buyer. MUST be specified in the
request only when the responding represents more
than one Buyer.

sellerId string O

The unique identifier of the organization that is
acting as the Seller. MUST be specified in the
request only when requester entity represents more
than one Seller.

7.3.10. enum ProductSpecificationEventType

Description: Type of the Product Specification event.

API name MEF 127 name Description

productSpecificationCreateEvent PRODUCT_SPECIFICATION_CREATE

The Seller
has
published
new Product
Specification
to the
Buyers.



109 / 110

API name MEF 127 name Description

productSpecificationAttributeValueChangeEvent PRODUCT_SPECIFICATION_UPDATE

The Seller
settable
attributes for
a Product
Specification
were
updated by
the Seller.

productSpecificationStateChangeEvent PRODUCT_SPECIFICATION_STATE_CHANGE

A Product
Specification
status was
changed by
the Seller.

Value MEF 127

productSpecificationCreateEvent PRODUCT_SPECIFICATION_CREATE_EVENT

productSpecificationAttributeValueChangeEvent PRODUCT_SPECIFICATION_ATTRIBUTE_VALU

productSpecificationStateChangeEvent PRODUCT_SPECIFICATION_STATE_CHANGE_E



110 / 110

8. References

[OAS-v3] Open API 3.0, February 2020
[MEF55.1] MEF 55.1, Lifecycle Service Orchestration (LSO): Reference Architecture
and Framework, February 2021
[MEF79.1] MEF 79.1, Address, Service Site, and Product Offering Qualification
Management, Requirements and Use Cases, November 2019
[MEF57.2] MEF 57.2, Product Order Management Business Requirements and Use
Cases, October 2022
[MEF127] [MEF 127] (https://www.mef.net/wp-content/uploads/MEF-127-Draft-
R1.pdf), Product Catalog Business Requirements and Use Cases, February 2023, Draft
Standard (R1)
[MEF128] [MEF 128] (https://www.mef.net/wp-content/uploads/MEF-128.pdf), LSO
API Security Profile, July 202
[REST] Chapter 5: Representational State Transfer (REST) Fielding, Roy Thomas,
Architectural Styles and the Design of Network-based Software Architectures (Ph.D.).
[RFC2119] RFC 2119, Key words for use in RFCs to Indicate Requirement Levels,
March 1997
[RFC3986] RFC 3986 Uniform Resource Identifier (URI): Generic Syntax, January
2005
[RFC8174] RFC 8174, Ambiguity of Uppercase vs Lowercase in RFC 2119 Key
Words, May 2017
[TMF620] TMF 620, Product Catalog API REST Specification 4.1.0, April 2021
[TMF630] TMF 630 TMF630 API Design Guidelines 4.2.0
[JSONSchema] JSON Schema JSON Schema main page

http://spec.openapis.org/oas/v3.0.3.html
https://www.mef.net/wp-content/uploads/2021/02/MEF-55.1.pdf
http://www.mef.net/resources/technical-specifications/download?id=129&fileid=file1
https://www.mef.net/wp-content/uploads/MEF-57.2.pdf
https://www.mef.net/wp-content/uploads/MEF-127-Draft-R1.pdf
https://www.mef.net/wp-content/uploads/MEF-128.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc3986#section-3
https://tools.ietf.org/html/rfc8174
https://tmf-open-api-table-documents.s3.eu-west-1.amazonaws.com/OpenApiTable/4.1.0/user_guides/TMF620_Product_Catalog_Management_API_REST_Specification_v4-1-0.pdf
https://www.tmforum.org/resources/specification/tmf630-rest-api-design-guidelines-4-2-0/
https://json-schema.org/

