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Abstract— This paper presents an optimal control scheme
based on model-based predictive control (MPC) for a wheeled
mobile robot (WMR) with nonholonomic constraints. It is shown
that, by using MPC, some advantages can be obtained, such as
the ability to handle constraints due to state or input limitations
and performance improvement. To solve some problems with
other MPCs for WMRs, this paper proposes to formulate a
cost function in polar coordinates. Considerations regarding the
computational effort of the MPC are developed with the purpose
of analysing the viability of the proposed technique in real-time.

Index Terms— Nonholonomic systems, wheeled mobile robots,
model-based predictive control.

I. INTRODUCTION

The field of mobile robot control has been the focus of

active research in the past decades. Despite the apparent

simplicity of the kinematic model of a wheeled mobile robot

(WMR), the design of stabilizing control laws for those

systems can be considered a challenge due to the existence of

nonholonomic constraints. Due to Brockett’s conditions [1],

a smooth static state feedback control law cannot be used

to stabilize a nonholonomic system at a given configuration.

To overcome these limitations traditional techniques use non-

smooth or time-varying control laws [2]–[6].

However, in realistic implementations, the traditional tech-

niques for the control of nonholonomic WMRs often do not

present good results, due to constraints on inputs or states that

naturally arise. Also, in general, the resulting closed-loop tra-

jectory presents unnecessary oscillatory motions. Furthermore,

tuning parameters are difficult to choose in order to achieve

good performance since the control laws are not intuitively

obtained.

In this paper we show that, by using model-based predictive

control (MPC), these disadvantages can be overcome: the

tuning parameters are easy to deal with; a cost function is

minimized, which makes the control law optimal according

to the optimization criterion; constraints on state and control

inputs can be considered in a straightforward way. Note that

for a WMR the latter is an important feature, since the position

of the robot can be restricted to belong to a safe region.

Control actions that respect actuators limits can be generated.

Furthermore, a control law that respects Brockett’s conditions

can be implicitly obtained.

On the other hand, the main drawback of MPC schemes is

related to its computational burden which, in the past years,

had limited its applications only to sufficient slow dynamic

systems. However, with the development of increasingly faster

processors and efficient numerical algorithms, the use of MPC

in faster applications which is the case of WMRs becomes

possible.

Although MPC is not a new control method, works dealing

with MPC of WMRs are sparse. In [7], [8], GPC (General-

ized Predictive Control) is used to solve the path following

problem. A linear model is used to compute the distance

between the robot and a reference path. The control acts

only in the angular velocity, while the linear velocity is

constant. In [9] a nonlinear model of the WMR is used

for trajectory tracking. The problem is solved considering

unknown obstacles in the configuration space. A neural net-

work is used in the optimization problem. In [10] the path

following problem is solved. Neural networks are used in

the kinematic model which predicts the future behavior of

a car-like WMR. The modeling errors are corrected on-line

with the neural network model. Using a nonlinear model of

the robot, in [11] a nonlinear MPC (NMPC) algorithm in

state-space representation is developed, which is applied to

both problems of point stabilization and trajectory tracking.

A steady-state error is identified and a modified cost function

to be minimized is proposed. The disadvantages of the above

cited works is that, with a linear model, the problem of point

stabilization can not be solved. Furthermore, this model is

only valid when the robot is close enough to the reference

path. Techniques using neural networks depends on training.

Then, the feasibility of the control law can not be guaranteed

for all possible situations. By using the controller proposed

by [11], it can be noted that the steady-state error can not be

totally eliminated.

In this paper a NMPC strategy is developed to solve the

problem of point stabilization for a nonholonomic WMR. By

using a standard quadratic cost function in the optimization

problem, a large steady-state error in the final configuration

of the WMR is identified, caused by a coupling between the

position states of the kinematic model. By using the idea devel-

oped in [11] which uses a modified cost function, this error is

reduced but not eliminated, since the coupling of the position
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states remains. Therefore, in order to eliminate this steady-

state error and also to improve the performance of the closed-

loop trajectories, a transformation to polar coordinates which

promotes the decoupling of the position states is introduced in

the cost function to be minimized. Also, computational effort

analysis are carried out to study the viability of the application

of the proposed algorithms in real-time.

II. KINEMATIC MODEL OF THE WMR

A mobile robot made up of a rigid body and non deforming

wheels is considered (Fig. 1). It is assumed that the vehicle

moves without slipping on a plane, i.e., there is a pure rolling

contact between the wheels and the ground. The kinematic

model of the WMR is then given by [12]:⎧⎪⎨
⎪⎩

ẋ = v cos θ

ẏ = v sin θ

θ̇ = w

(1)

where x = [x y θ]T describes the configuration (position and

orientation) of the center of the axis of the wheels, C, with

respect to a global inertial frame {O,X, Y }. u = [v w]T is

the control input, where v and w are the linear and the angular

velocities, respectively.

Since the MPC scheme used here is computed in discrete-

time, it is necessary to discretize the kinematic model. Consid-

ering a sampling period T , a sampling instant k and applying

the Euler’s approximation to (1), we obtain the following

discrete-time model for the robot dynamics:⎧⎪⎨
⎪⎩

x(k + 1) = x(k) + v(k) cos θ(k)T

y(k + 1) = y(k) + v(k) sin θ(k)T

θ(k + 1) = θ(k) + w(k)T

(2)

or, in the compact representation,

x(k + 1) = fd(x(k),u(k)), (3)

III. THE MPC ALGORITHM

MPC is an optimal control strategy that uses the model

of the system to obtain an optimal control sequence by

minimizing an objective function. At each sampling instant,

the model is used to predict the behavior of the system over a

prediction horizon. Based on these predictions, the objective

Fig. 1. Coordinate system of the WMR.

function is minimized with respect to the future sequence of

inputs, thus requiring the solution of a constrained optimiza-

tion problem for each sampling instant. Although prediction

and optimization are performed over a future horizon, only

the values of the inputs for the current sampling interval are

used and the same procedure is repeated at the next sampling

instant using the updated process measurements and a shifted

horizon. This mechanism is known as moving or receding

horizon strategy, in reference to the way in which the time

window shifts forward from one sampling instant to the next

one.

Considering a robot described by (3), the following predic-

tion model can be formulated:

x(k+ j +1|k) = fd(x(k+ j|k),u(k+ j|k)), j ∈ [0, N −1],

where j ∈ [0, N − 1] and the notation a(m|n) indicates the

value of a at the instant m predicted at instant n. Furthermore,

we consider the existence of bounds on the amplitude of state

and control variables:

x ≤ x(k + j|k) ≤ x, j ∈ [0, N ], (4)

u ≤ u(k + j|k) ≤ u, j ∈ [0, N − 1], (5)

where x and u stand for lower bounds and x and u stands for

the upper bounds1.

The cost function to be minimized can be stated as a

quadratic function of the states and control inputs:

Φ(k) =

N∑
j=1

xT (k + j|k)Qx(k + j|k)+

+ uT (k + j − 1|k)Ru(k + j − 1|k), (6)

which will be called hereafter the original cost function in

cartesian coordinates, where N is the prediction horizon and

Q ≥ 0, R > 0 are weighting matrices used to penalize the

state error and the control effort, respectively.

The optimization problem can therefore be stated as to find

a sequence of states and controls such that:

x�,u� = arg min
x,u

{Φ(k)} (7)

s. a.

x(k|k) = x0, (8)

x(k + j + 1|k) = fd(x(k + j|k),u(k + j|k)), j ∈ [0, N − 1]
(9)

Cx(k + j|k) ≤ c, j ∈ [0, N ] (10)

Du(k + j|k) ≤ d, j ∈ [0, N − 1] (11)

where x0 in (8) is the initial condition which corresponds to

the value of the states measured at the current instant.

Constraint (9) represents the prediction model and (10)-

(11) are a general form to represent linear bounds in the state

and control variables, and they may be present or not in the

1The symbol ≤ stands for componentwise inequalities in this case.
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optimization problem. Note that we can rewrite (10)-(11) in

the form of (4)-(5) with:

C = D =

[
I

−I

]
, c =

[
x

−x

]
, d =

[
u

−u

]
(12)

The optimization problem (7)–(11) is then solved at

each time step k, yielding a sequence of optimal states

{x�(k|k + 1), · · · ,x�(k + N |k)}, optimal control inputs

{u�(k|k), · · · ,u�(k +N − 1|k)} and the optimal cost Φ�(k).
The MPC control law is implicitly given by the first control

action of the sequence of optimal control, u�(k|k), and the

remaining portion of this sequence is discarded.

IV. MPC WITH COST FUNCTION IN CARTESIAN

COORDINATES

In this section we focus on the formulation of MPC for the

WMR considering a cost function in cartesian coordinates. In

order to evaluate the performance of the approach, simulation

results are shown2. As a case study, let us consider the robot

Twil [13], which have the following limits in the amplitude of

the control variables [14]:

u =

[
−0.47 m/s
−3, 77 rad/s

]
u =

[
0.47 m/s
3.77 rad/s

]
(13)

Initially, the cost function to be minimized is that showed

in (6). Then, a second case with some modifications to the cost

function, proposed in [11], is shown. In both cases, constraints

only in the amplitude of the control inputs based on the robot

Twil, Eq. (13) will be taken into account.

A. Original Cost Function in Cartesian Coordinates.

The weighting matrices used here are Q = diag(1, 1, 0.5)
(equal penalty in the position states and a half of the penalty

in the orientation) and R = diag(0.1, 0.1) (less penalty in the

control effort). The prediction horizon is N = 5. The initial

configuration is x0 = [0 6 0]T , and the goal is the origin.

The obtained simulation results are shown in Figures 2-3.
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Fig. 2. Trajectory in the XY-plane.

2All the optimization problems of this paper has been solved with the
MATLAB routine fmincon.
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Fig. 3. Control inputs.

Fig. 2 shows the trajectory of the robot in the XY-plane

and Fig. 3 shows that the generated control signals respect

the imposed constraints. It is easy to note that there is a large

steady-state error in one of the position variables (y-state, in

this case). Notice also that the robot has already stopped since

both control inputs converge to zero. The final configuration is

xf = [0 1.47 0]T . This steady-state error can be explained by

the fact that both states, x and y, depends on the same control

variable, the linear velocity v, as seen in (1). Thus, when the

optimization algorithm minimizes with respect to v and x, it

can no more minimize with respect to y, since the cost function

obeys a monotonic decreasing behavior. In [14] is shown that,

by increasing considerably the prediction horizon, this problem

can be reduced. However, long prediction horizons are in

general undesirable since the computational effort is directly

related to it.

B. Modified Cost Function in Cartesian Coordinates.

The steady-state error presented in Section IV-A was also

identified in [11]. In the attempt of eliminating it, a modified

cost functions have been proposed in order to increase the state

penalty over the horizon, thus forcing the states to converge

to an acceptable solution. Hence, the idea of exponentially in-

creasing state weighting has been introduced. Also, a terminal

state cost has been added to the cost function to be minimized.

From these modifications the cost function assumes therefore

the following form:

Φ(k) =

N−1∑
j=1

xT (k + j|k)Q(j)x(k + j|k)+

+

N−1∑
j=0

uT (k + j|k)Ru(k + j|k) + Ω(x(k + N |k)), (14)

where Ω(x(k + N |k)) = xT (k + N |k)Px(k + N |k) and

Q(j) = 2j−1Q. Using the same tuning parameters and the

same initial condition as in Section IV-A, and with a terminal

state weighting of P = 50Q(N), the simulation results are

shown in Figures 4-5.
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Fig. 4. Trajectory in the XY plane.
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Fig. 5. Control inputs.

It can be seen in Fig. 4 that the large steady-state error

in y-state has disappeared. Also, notice in Fig. 5 that the

convergence rate is higher. In the example of Section IV-A the

stabilization time is about 40 s, while here it is 21 s. Again,

the control signals respect the imposed constraints.

However, even if it can be considered small, the final y-state

still presents a persistent steady-state error since the coupling

between the states x and y remains. The final configuration is

xf = [0 0.006 0]T .

V. MPC WITH COST FUNCTION IN POLAR COORDINATES

Hence, a possible way to overcome the state steady-state

error would be the use of some coordinate transformation able

to decouple the position states x and y from the same control

input, v. This idea is developed here, by using the following

state transformations to polar coordinates, as proposed in [15]:

e =
√

x2 + y2, φ = atan2(y, x), α = θ − φ,

In [15], it can be seen that, if one of the state variables

converges to the origin, the other ones will also converge

to the origin. Then the objective here is to incorporate this

behavior in the cost function to be minimized. By defining

xp = [e φ α]T , the following cost function can be formulated:

Φp(k) =

N∑

j=1

xT
p (k + j|k)Qxp(k + j|k)+

+ uT (k + j − 1|k)Ru(k + j − 1|k) (15)

A. NMPC with Constraints only in Control Variables.

Changing the cost function in (7) by (15) and considering

the same tuning parameters and initial condition used in

Section IV, the following results shown in Figures 6-7 are

obtained. Once more, constraints in the amplitude of the

control inputs described by (13) are taken into account.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

4

5

6

x (m)

y 
(m

)

Fig. 6. Trajectory in the XY plane.
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Fig. 7. Control inputs.

Comparing the results above with the results obtained

in Section IV, significative performance improvements with

respect to both state and control trajectories can be noted. The

robot needs about 16 s to achieve its objective, against 40 s

and 21 s of the previous two cases, respectively. It can be

seen in Fig. 6 that the x-state presents a maximum amplitude

of about 0.3 m, while for the example in Section IV-B the x-

state needs almost 3 m to maneuver towards the origin (Fig. 4).
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Furthermore, in Fig. 7 the control inputs are smoother than the

ones presented in Fig. 5.

Also note that, with the transformation to polar coordinates,

the decoupling between the position states x and y in the

cost function has been possible. Now the final configuration is

xf = [0 0 0]T . Furthermore, it has been possible to improve

the overall performance without the inclusion of another terms

in the cost function or a longer prediction horizon.

B. NMPC with Constraints in Control and State Variables.

In this section, we show an illustrative example of the

WMR following a corridor. For such a task, the inclusion of

constraints in the amplitude of the states such as (4) will be

now considered in the optimization problem.

Then, by using the cost function in polar coordinates (15)

and the same control constraint and tuning parameters used

in the previous examples and an initial condition of x0 =
[−4 4 π]T , we obtain the results shown in Fig. 8.
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Fig. 8. Trajectory in the XY plane.

Fig. 8 shows the trajectory of the robot in the XY-plane,

where the gray polygons stands for the walls of the corridor.

It is straightforward to note that the configuration space is non-

convex which, for an optimization problem such the one solved

here, is unacceptable [16]. This problem can be overcome by

splitting the configuration space in two convex half-spaces

and applying a via-point strategy. Thus, different optimization

problems are considered depending on the value of x(k|k). In

the case presented here, x = −1 defines the limit between

the two half-spaces. For each half-space we consider the

problem (7)-(11) with different state constraints and reference

point xr as follows:

if x(k|k) < −1 :

⎧⎪⎨
⎪⎩

x(k + j|k) ≤ 1,

5 ≤y(k + j|k) ≤ 3,

xr = [0 4 0]T

if x(k|k) ≥ −1 :

⎧⎪⎨
⎪⎩

−1 ≤x(k + j|k) ≤ 1,

y(k + j|k) ≤ 5,

xr = [0 0 0]T

where xr is the reference point which the robot must converge

to.

C. Comparison with Classical Approaches.

As pointed out in Section I, classical approaches to the

control of nonholonomic WMRs include non-smooth and

time-varying control laws. In this section a comparative anal-

ysis between the NMPC proposed here and some of these

approaches are therefore carried out. The goal is once again the

origin. For instance, let us consider the time-varying control

of [3] and the non-smooth control of [4]. Thus, with a initial

condition of x0 = [−1 3 0]T and considering control

constraints (13) in the NMPC, we have the results in Figures 9-

10, where the continuous line stands for the NMPC, the dashed

line stands for the time-varying control law and the dash-dotted

line stands for the non-smooth control law.
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Fig. 9. Trajectory in the XY plane.
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Fig. 10. Control inputs.

It is straightforward to note the typical features of the time-

varying control law: low convergence rate and oscillatory

movements. With the use of the non-smooth control, these

problems can be avoided. However, the performance achieved

with NMPC is even better. Furthermore, note in Fig. 10 that the
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classical control laws violate the amplitude control constraints,

while with the NMPC proposed here they are respected.

VI. COMPUTATIONAL EFFORT

The use of MPC for real-time control of systems with

fast dynamics such as a WMR has been hindered for some

time due to its numerical intensive nature. However, with the

development of increasingly faster processors the use of MPC

in demanding applications can be possible.

In order to evaluate the real-time implementability of the

proposed MPC, we consider, as measurement criterion, the

number of floating point operations per second (flops). With

this aim we consider that the computations run in an Athlon

XP 2600+ which is able to perform a peak performance

between 576 and 1100 Mflops accordingly to [17], a de-facto

standard for floating point performance measurement.

The data presented in Table I refers to the mean value of

floating point operations per sampling period along the devel-

oped trajectory for the three examples above for a sampling

period of T = 100 ms. Case 1 refers to the NMPC with the

original cost function in cartesian coordinates (6); Case 2 is

the NMPC with the cost function (14) of [11]; and Case 3

is the NMPC with the proposed cost function (15), in polar

coordinates.

TABLE I

COMPUTATIONAL EFFORT.

Mflops

Horizon Case 1 Case 2 Case 3

5 6.41 14 8.17

10 114 384 128

12 246 926 434

15 626 6077 1392

The data in Table I provides enough evidence that a standard

of-the-shelf computer is able to run a MPC-based controller

for a WMR. Note that for N = 5 all of the examples are

feasible in real-time. However, results presented in Section IV-

A show the existence of steady-state error and the results

in Section IV-B show poor performance. Thus, among all of

them, the approach that performs the best results with respect

to state and control trajectories and computational effort is the

one proposed in Section V, the NMCP with cost function in

polar coordinates.

VII. CONCLUSION

This paper has presented an application of model predictive

control to the problem of point stabilization of a nonholonomic

wheeled mobile robot. A steady-state error in one of the

position variable has been identified and a transformation of

the configuration variables into polar coordinates has been

proposed and successfully solved the problem. Through some

examples, it was shown an important advantage of MPC: it

can handle constraints in a straightforward way. The obtained

control signals were such that the constraints imposed on the

control variables were respected.

Furthermore, considerations regarding the computational

effort of the MPC were developed with the purpose of

speculating the viability of the proposed technique in a real

implementation. It has been shown that with the proposed

technique the NMPC can be potentially applied to WMRs in

real-time.
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