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Abstract

Multi-modal fusion approaches aim to integrate information from different data sources.
Unlike natural datasets, such as in audio-visual applications, where samples consist of
“paired” modalities, data in healthcare is often collected asynchronously. Hence, requiring
the presence of all modalities for a given sample is not realistic for clinical tasks and signif-
icantly limits the size of the dataset during training. In this paper, we propose MedFuse,
a conceptually simple yet promising LSTM-based fusion module that can accommodate
uni-modal as well as multi-modal input. We evaluate the fusion method and introduce new
benchmark results for in-hospital mortality prediction and phenotype classification, using
clinical time-series data in the MIMIC-IV dataset and corresponding chest X-ray images in
MIMIC-CXR. Compared to more complex multi-modal fusion strategies, MedFuse provides
a performance improvement by a large margin on the fully paired test set. It also remains
robust across the partially paired test set containing samples with missing chest X-ray im-
ages. We release our code for reproducibility and to enable the evaluation of competing
models in the future.

1. Introduction

Humans perceive the world through multi-modal data (Ngiam et al., 2011). To date, most
of the successful models learning from perceptual data in healthcare are uni-modal, i.e. they
rely on a single data modality (Huang et al., 2020a). Multi-modal learning has been widely
explored in the context of audio-visual applications (Vaezi Joze et al., 2020) and natural
image datasets (Zellers et al., 2021; Hayat et al., 2020), but less so in healthcare. The main
goal of multi-modal fusion is to exploit relevant information from different modalities to
improve performance in downstream tasks (Baltrušaitis et al., 2018). Multi-modal fusion
strategies can be characterized as early, joint, or late fusion (Huang et al., 2020a). The joint
fusion paradigm is the most promising, since its core idea is to model interactions between
the representations of the input modalities.
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We highlight two main challenges facing multi-modal joint fusion in healthcare. First,
many of the state-of-the-art approaches make a strong assumption that all modalities are
available for every sample during training, inference, or both (Pölsterl et al., 2021). Al-
though some clinical studies follow suit of this assumption (Huang et al., 2020a), obtaining
paired data is not feasible since daily clinical practice produces heterogeneous data with
varying sparsity. For example, physiological data is more frequently collected than chest X-
ray images in the Intensive Care Unit (ICU) setting. These two modalities are the key focus
of our study because they play a very important role in clinical prediction tasks (Harutyun-
yan et al., 2019; Lohan, 2019). Developing a unified fusion model for those two modalities
also presents its own challenges as they (i) have significantly different input dimensions,
(ii) require modality-specific feature extractors due to differences in information and noise
content (Nagrani et al., 2021), and (iii) are not temporally aligned and hence cannot be
paired easily. Considering those challenges, our primary aim is to propose a fusion archi-
tecture that can deal with partially paired data, in order to achieve favorable performance
in downstream prediction tasks.

The second challenge is that there are no well-studied publicly available multi-modal
clinical benchmarks. Therefore, most studies rely on a single data modality to perform
clinical prediction tasks (Harutyunyan et al., 2019), or use privately curated multi-modal
datasets (Huang et al., 2020a). Here, our secondary aim is to introduce new multi-modal
benchmark results for two popular clinical prediction tasks using the publicly available Med-
ical Information Mart for Intensive Care (MIMIC)-IV (Johnson et al., 2021) and MIMIC-
CXR (Johnson et al., 2019) datasets, and we also release the code for reproducibility. We
compare our approach to vanilla early and joint fusion as well as open-source state-of-the-
art joint fusion approaches (Vaezi Joze et al., 2020; Pölsterl et al., 2021). In summary, we
make the following contributions:

• We propose MedFuse, a new LSTM-based (Hochreiter and Schmidhuber, 1997) multi-
modal fusion approach. Conventional joint fusion strategies concatenate feature rep-
resentations of multiple modalities as a single feature representation, and then process
that concatenated representation for downstream tasks, such as using a classifier. On
the contrary, we treat the multi-modal representation as a sequence of uni-modal
representations (or tokens), such that the fusion module aggregates these representa-
tions through the recurrence mechanism of LSTM. We assume a sequential structure
to leverage the recurrent inductive bias of LSTM and to handle input sequences of
variable length, in case of a missing modality. The fusion module is agnostic to the
architecture of the modality-specific extractors and can handle missing data during
training and inference.

• To evaluate the proposed approach, we link two open-access real-world datasets:
MIMIC-IV (Johnson et al., 2021), which contains clinical time-series data collected in
the ICU, and MIMIC-CXR (Johnson et al., 2019), which contains chest X-ray images.
We pre-process the data and introduce new benchmark results for two tasks (Haru-
tyunyan et al., 2019): in-hospital mortality prediction and phenotype classification.
The results show that the model’s performance remains robust across uni-modal sam-
ples and improves for paired multi-modal samples. The model achieves state-of-the-art
results without imposing any assumptions on correlation between modalities.
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• Considering the lack of multi-modal learning benchmarks in healthcare, we release
our data pre-processing and benchmark code to allow reproducibility of the results
and enable the evaluation of competing models in the future. The code can be found
at: https://github.com/nyuad-cai/MedFuse. An overview of the proposed work is
shown in Figure 1.

Figure 1: Overview of the proposed work. We first extract and link the datasets from MIMIC-
IV and MIMIC-CXR based on the task definition (i.e., inhospital mortality prediction,
or phenotype classification). The data splits of the training, validation, and test sets
are summarized for each task, and the prevalence of positive and negative labels for
in-hospital mortality is shown. Phenotype classification involves 25 labels as shown in
Table 4.

Generalizable Insights about Machine Learning in the Context of Healthcare

State-of-the-art multi-modal fusion approaches typically investigate synchronous sources
of information using natural datasets, such as audio, visual, and textual modalities. In
healthcare, data is often sparse and heterogeneous and hence modalities are not always
paired. Our work overcomes the challenge of missing data by proposing a flexible fusion
approach that is agnostic to the modality-specific encoders. Therefore, it can be used for
other types of input data, beyond chest X-ray images and clinical time-series data. It also
highlights the value of processing a sequence of uni-modal representations, compared to
the conventional concatenation strategy in joint fusion. Overall, the work highlights the
promise of multi-modal fusion in healthcare to improve performance in downstream tasks.
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2. Related Work

Routine clinical practice produces large amounts of data from different sources (i.e. modal-
ities), including medical images, laboratory test results, measurements of vital signs, and
clinical notes (Asri et al., 2015). Advances in deep learning have enabled building predictive
models using subsets of modalities, typically clinical time-series data (Shickel et al., 2017)
and medical images (Litjens et al., 2017). Here, we provide an overview of related work on
multi-modal fusion in healthcare using imaging and non-imaging data.

2.1. Multi-modal Learning

Multi-modal learning has been widely explored for jointly learning representations of mul-
tiple modalities (Baltrušaitis et al., 2018). Example tasks include visual grounding (Chen
et al., 2021), language grounding through visual cues (Zhang et al., 2021b), action recog-
nition (Chen et al., 2015), video classification (Nagrani et al., 2021), image captioning (Yu
et al., 2019), or visual-question answering (Zellers et al., 2021). Since machine learning
studies typically investigate different combinations of audio, visual, and textual modalities,
many of the existing methods are driven by the assumption that the modalities share intrin-
sic and structural information. This is not always true for heterogeneous data in healthcare.
Hence, due consideration should be given to learning with multiple medical data modalities,
since conventional assumptions for non-medical data are not necessarily applicable.

2.2. Multi-modal Fusion with Medical Images

There is an increasing interest in advancing the fusion of multi-modal medical images (Her-
messi et al., 2021). The images usually represent different views of the same organ or lesion
of interest, acquired using one or more sensors, whereby the images share the same set of la-
bels. Proposed methods mainly focus on pixel-level fusion of complementary views acquired
through multiple sensors to obtain a unified composite representation of the raw images (Li
et al., 2021; James and Dasarathy, 2014). Various feature- and prediction-level fusion ap-
proaches were proposed for improved classification (Puyol-Antón et al., 2021; Wu et al.,
2019; Zhang et al., 2021a) or segmentation performance (Hermessi et al., 2021). Since tex-
tual reports are a natural byproduct of radiology exams, they were also used as additional
modalities for tasks like visual-question answering (Li et al., 2020; Sharma et al., 2021),
report generation (Sonsbeek and Worring, 2020), or zero-shot image classification (Hayat
et al., 2021b; Paul et al., 2021).

2.3. Multi-modal Fusion with Clinical Data and Medical Images

Several studies investigated the fusion of medical images and clinical data extracted from
the patient’s Electronic Health Records (EHR) for various applications (Huang et al.,
2020a). For example, a stream of work covers tasks pertaining to cancer, such as recur-
rence prediction (Ho et al., 2021), lesion detection (Shao et al., 2020), or patient survival
prediction (Vale-Silva and Rohr, 2020). Other tasks include detection of pulmonary em-
bolism (Huang et al., 2020b), predicting the progression of Alzheimer’s disease (Lee et al.,
2019), diagnosis of neurological disease (Xin et al., 2021), or diagnosis of cervical dys-
plasia (Xu et al., 2016). While these studies highlight the impact of using multiple data
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fine-tuning during fusion





Figure 2: Overview of network with MedFuse module. First, we pre-train the modality-specific
encoders and classifiers independently for each input modality. Specifically, we train fehr
and gehr using the clinical time-series data and fcxr and gcxr using the chest X-ray images.
Next, we project the chest X-ray latent representation vcxr to v∗

cxr, in order to match
the dimension of vehr. We pass vehr and v∗

cxr as an input sequence to the LSTM-based
ffusion, and we classify its last hidden state hfusion to compute the overall prediction
ŷfusion. ffusion, fehr, fcxr, gfusion, and φ are fine-tuned together for fusion.

modalities on downstream performance, many curate datasets for specific tasks and share
the assumption that the images and selected clinical features are paired.

Some studies specifically focused on the integration of clinical data and chest X-ray
images. For example, the integration of the two modalities showed a favorable impact on the
predictive performance in prognostication tasks among patients with COVID-19 (Shamout
et al., 2021; Jiao et al., 2021). Some studies jointly refine a common latent representation
after aggregating encoded features of each modality (Grant et al., 2021; Jiao et al., 2021),
while others combine predictions computed by each modality through weighted averaging
(i.e., late fusion) (Shamout et al., 2021; Jiao et al., 2021). While late fusion enables the
computation of predictions even for incomplete samples, it requires that the two modalities
are assigned the same labels, which is not always feasible. Closely related to our work is that
of Hayat et al. (2021a), where they propose a dynamic training approach for partially paired
clinical time-series data and chest X-ray images for the task of phenotype classification.
However, their method is not scalable since it incorporates an additional classifier (and
prediction) for every possible combination of input modalities.

3. Methodology

We define a two stage-approach (i) to learn modality-specific perceptual models to extract
the latent features (Section 3.1), and (ii) integrate these features through a joint multi-
modal fusion module, MedFuse (Section 3.2). The overall architecture is shown in Figure 2.
Without loss of generality, we focus here on two modalities only and denote the clinical
time-series data as ehr and the chest X-ray images as cxr when defining the methodology.
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3.1. Modality-specific Encoders

One of the main sources of heterogeneity in healthcare is the varying dimensionality of
the input modalities, which makes it challenging to develop a unified encoder for all in-
put modalities. Another difference is the target space, since we do not assume that the
modalities must be assigned the same set of labels. Hence, we first define modality-specific
encoders as follows.

For a given instance, let xehr ∈ Rt×d represent the clinical time-series data associated
with ground-truth labels yehr, where t is the number of time steps and d is the number
of features derived from the clinical variables. We implement the encoder, fehr, for the
clinical time-series modality as two stacked layers of an LSTM network (Hochreiter and
Schmidhuber, 1997) with a dropout layer. We compute a latent feature representation
vehr ∈ Rm consisting of the last hidden state of the stacked LSTM, where m = 256. We
then apply a classifier, gehr, to compute the predictions, such that ŷehr = gehr(vehr). To
fine-tune the encoder, we optimize the following loss:

Lehr(yehr, ŷehr) = BCE(yehr, ŷehr), (1)

where BCE is the Binary Cross-Entropy loss.
Let xcxr ∈ Rw×h×c represent the chest X-ray image belonging to the same instance

associated with the ground-truth labels ycxr, where w is the width dimension, h is the
height dimension, and c is the number of channels. In all of our experiments, h = 224,
w = 224, and c = 3, as we replicate each image across three channels. We implement
the encoder, fcxr, as a ResNet-34 (He et al., 2016) to compute vcxr ∈ Rn, which is the
feature representation after the average pooling layer of the convolutional network where
n = 512. Similarly, we then apply a classifier, gcxr, to compute the predictions, such that
ŷcxr = gcxr(vcxr) and optimize the following loss to fine-tune the encoder:

Lcxr(ycxr, ŷcxr) = BCE(ycxr, ŷcxr). (2)

The encoders can hence be independently pre-trained using their respective labels and losses.

3.2. The MedFuse Module

To fuse the modalities, we first dismiss the classifiers, gehr and gcxr, and keep the the pre-
trained modality-specific encoders, fehr and fcxr. Since the latent space dimensions of the
two modalities are different, we use a projection layer, φ, that projects vcxr to the same
dimensionality as vehr:

v∗
cxr = φ(vcxr) (3)

such that v∗
cxr ∈ Rm. We then create an input sequence consisting of the the uni-modal

feature representations of the sample:

vfusion = [vehr,v
∗
cxr]. (4)

We parameterize a multi-modal fusion network, ffusion, as a single LSTM layer with input
dimension of 256 and a hidden dimension of 512, that aggregates the multi-modal sequence
through recurrence. The motivation for using an LSTM is two-fold. First, it follows the
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intuition of decision-making, where clinicians examine information from each modality se-
quentially, or one at a time. This allows the LSTM module to initially learn from vehr,
and then update its internal state using information in v∗

cxr. Second, it can handle input
sequences of variable number of modalities, so it inherently deals with missing modalities.
In the case that the chest X-ray image is missing during training or inference, the network
processes a single-element sequence, [vehr].

The last hidden state, hfusion, of ffusion is then processed using a classifier gfusion
that computes the final fusion predictions, such that ŷfusion = gfusion(hfusion). We jointly
train the encoders fehr and fcxr, the projection layer φ, the fusion module ffusion, and the
classifier gfusion, by optimizing the following loss:

Lfusion(yfusion, ŷfusion) = BCE(yfusion, ŷfusion), (5)

where yfusion = yehr, since we assume that the clinical time-series data modality is the
base modality associated with the prediction task of interest, and is always present during
training and inference. All classifiers gehr, gcxr, and gfusion consist of a single linear layer
followed by sigmoid activation.

4. Experiments

4.1. Datasets and Benchmark Tasks

For our experiments, we extract the clinical time-series data from MIMIC-IV (Johnson
et al., 2021) along with the associated chest X-ray images in MIMIC-CXR (Johnson et al.,
2019). Here we describe the two tasks and provide more details on each:

• Phenotype classification: The goal of this multi-label classification task is to pre-
dict whether a set of 25 chronic, mixed, and acute care conditions are assigned to a
patient in a given ICU stay. For a given instance, xehr contains clinical time-series
data collected during the entire ICU record, and yehr is a vector of 25 binary pheno-
type labels. We link each instance with the last chest X-ray image collected during
the same ICU stay. MIMIC-III contains International Classification of Diseases (ICD)
version 9 (ICD-9) codes, whereas MIMIC-IV contains both ICD-9 and ICD-10. In the
original benchmark paper (Harutyunyan et al., 2019), the 25 phenotype labels were
initially defined using the Clinical Classifications Software (CCS) for ICD-9 (WHO
et al., 1988). Since ICD-9 and ICD-10 codes are aggregated to different CCS cate-
gories, we mapped all ICD-10 codes to ICD-9 using the guidelines provided by the
Centers for Medicare & Medicaid Services1, and then map them to CCS categories.
We evaluate this task using the Area Under the Receiver Operating Characteristic
(AUROC) curve and the Area Under the Precision Recall curve (AUPRC).

• In-hospital mortality prediction: The goal of this binary classification task is to
predict in-hospital mortality after the first 48 hours spent in the ICU. Hence, for a
given instance, xehr contains clinical time-series data collected during the first 48 hours
of the ICU record, and yehr is a binary label indicating in-hospital mortality. Since
the task requires a minimum of 48 hours, we exclude ICU stays that are shorter than

1. Centers for Medicare & Medicaid Services, https://www.cms.gov/Medicare/Coding/ICD10/

2018-ICD-10-CM-and-GEMs
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48 hours. Here, we pair each instance with the last chest X-ray image collected during
the first 48 hours of ICU stay. We evaluate this task using AUROC and AUPRC.

4.1.1. Pre-processing of Clinical Time-series Data

We modified the extraction and data pre-possessing pipeline of Harutyunyan et al. (2019),
which was originally implemented in TensorFlow (Abadi et al., 2015), and introduce a new
version for MIMIC-IV using Pytorch (Paszke et al., 2019). To make a fair comparison and
illustrate the efficacy of multi-modal learning, we use the same set of 17 clinical variables.
Amongst those, five are categorical (capillary refill rate, Glasgow coma scale eye opening,
Glasgow coma scale motor response, Glasgow coma scale verbal response, and Glasgow
coma scale total) and 12 are continuous (diastolic blood pressure, fraction of inspired oxygen,
glucose, heart rate, height, mean blood pressure, oxygen saturation, respiratory rate, systolic
blood pressure, temperature, weight, and pH). For all the tasks, we regularly sample the
input every two hours, discretize and standardize the clinical variables to obtain the input
for fehr as in previous work (Harutyunyan et al., 2019). After data pre-processing and
one-hot encoding of the categorical features, we obtain a vector representation of size 76 at
each time-step of the clinical time-series data, such that for a given instance, xehr ∈ Rt×76

and t depends on the instance and task.

4.1.2. Data Splits

Using the patient identifier of the clinical time-series data, we randomly split the dataset into
70% for training, 10% for validation, and 20% for test set, as shown in Figure 1. We report
final results on the test sets and compute 95% confidence intervals with 1000 iterations
via the bootstrap method (Efron and Tibshirani, 1994). Here, we denote the clinical time-
series data as EHR and the chest X-ray images as CXR. (EHR+CXR)PARTIAL contains
paired and partially paired samples (i.e. samples where chest X-ray is missing). (EHR +
CXR)PAIRED contains data samples where both modalities are present. For example,
the (EHR + CXR)PARTIAL training set for patient phenotyping contains 8056 samples
associated with chest X-rays amongst 42628 samples.

We extract from MIMIC-CXR chest X-ray images and split them based on a random
patient split. We then transfer images from the training set to either the validation or test
set, in case are were associated with patients in the validation or test splits of the clinical
time-series data. This procedure resulted with 325188 images in the training set, 15282
images in the validation set, and 36625 images in the test set. We define ycxr as a vector of
14 binary radiology labels extracted from radiology reports through CheXpert (Irvin et al.,
2019). We denote this uni-modal dataset as CXRUNI and it is fixed across all tasks. We
introduce an additional notation for CXRPAIRED, which includes only chest X-ray images
within (EHR+CXR)PAIRED, and EHRPARTIAL, which includes only clinical time-series
data within (EHR + CXR)PARTIAL.

4.2. Training Strategy with the MedFuse Module

The training strategy consists of two steps: pre-training of the modality-specific encoders
followed by jointly fine-tuning the encoders and fusion module. During the pre-training
stage, we train the image encoder using the full uni-modal training dataset CXRUNI with
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concatenate




fine-tuning during fusion
 end-to-end training





Figure 3: Architecture of early and joint fusion baselines. In early fusion (left), the encoders
are first pre-trained. Then, we freeze them and fine-tune the projection layer and fusion
classification module. In joint fusion (right), the encoders and classification module are
randomly initialized and trained end-to-end.

the 14 radiology labels. We also pre-train the clinical time-series data encoder for each
task independently using the training sets EHRPARTIAL, since each task is associated
with its own set of inputs and labels. After pre-training the modality-specific encoders, we
discard the uni-modal classifiers and fine-tune the encoders, projection layer, and MedFuse

using (EHR + CXR)PARTIAL. We compare this training strategy to fine-tuning the fusion
module with randomly initialized feature extractors.

4.3. Baseline Models

We compare the performance of our proposed multi-modal approach to several existing
baselines:

• Early fusion: The vanilla early fusion approach commonly used in recent work (Huang
et al., 2020a) (Figure 3 (left)) assumes the presence of paired data modalities dur-
ing training and inference. We train two versions. In the first version, we pre-train
modality-specific networks independently: fcxr and gcxr with the CXRPAIRED train-
ing set, and fehr and gehr with the EHRPAIRED training set. We then freeze the
encoders fcxr and fehr, concatenate their latent feature representations, and fine-
tune a projection layer and a fully connected classification network, denoted as gcl
using the (EHR + CXR)PAIRED training set. In the second version, we use the
(EHR + CXR)PARTIAL training set for fine-tuning the projection layer and gcl. In-
spired by Kyono et al. (2021), we learn a vector to substitute for missing chest X-ray
images.

• Joint fusion: In this setting, we train a network end-to-end including the modality-
specific encoders (fcxr and fehr) and a classification network applied to the concate-
nated latent representations of the two encoders (Figure 3 (right)). We train two
versions. In the first version, we train a randomly initialized network end-to-end
using (EHR + CXR)PAIRED. In the second version, we train a randomly initial-
ized network end-to-end using (EHR + CXR)PARTIAL with a learnable vector to
substitute for any missing chest X-ray images.

• Multi-modal Transfer Module (MMTM): Originally proposed by Vaezi Joze
et al. (2020), this approach also assumes paired input data. We apply an MMTM

9
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Table 1: Performance results in the uni-modal vs multi-modal setting. Here, we com-
pare the stacked LSTM network for the clinical time-series data only, with our net-
work using MedFuse. In the first four rows, we summarize the AUROC and AUPRC
results in the paired setting with uni-modal (EHRPAIRED) and multi-modal data
((EHR + CXR)PAIRED). In the last two rows, we show the results on the par-
tially paired test set, with the uni-modal subset (EHRPARTIAL) and multi-modal data
((EHR + CXR)PAIRED). All results shown below are for MedFuse (OPTIMAL). Best
results are shown in bold.

Modalities Phenotyping In-hospital mortality

Model Training set Test set AUROC AUPRC AUROC AUPRC

LSTM EHRPAIRED EHRPAIRED 0.716 0.407 0.818 0.460
(0.688, 0.743) (0.367, 0.453) (0.787, 0.845) (0.395, 0.535)

LSTM EHRPARTIAL EHRPAIRED 0.746 0.453 0.825 0.500
(0.720, 0.772) (0.409, 0.502) (0.793, 0.852) (0.428, 0.576)

MedFuse (EHR + CXR)PARTIAL EHRPAIRED 0.740 0.441 0.833 0.514
(0.713, 0.767) (0.398, 0.489) (0.802, 0.861) (0.443, 0.584)

MedFuse (EHR + CXR)PARTIAL (EHR + CXR)PAIRED 0.770 0.481 0.865 0.594
(0.745, 0.795) (0.436, 0.531) (0.837, 0.889) (0.526, 0.655)

LSTM EHRPARTIAL EHRPARTIAL 0.765 0.425 0.861 0.522
(0.754, 0.777) (0.404, 0.447) (0.846, 0.876) (0.482, 0.564)

MedFuse (EHR + CXR)PARTIAL (EHR + CXR)PARTIAL 0.768 0.429 0.874 0.567
(0.756, 0.779) (0.408, 0.452) (0.860, 0.888) (0.529, 0.607)

module after the first LSTM layer in the clinical time-series modality, and either the
third or the fourth ResNet layer. We train a randomly initialized network with the
MMTM module end-to-end using the (EHR+CXR)PAIRED training set, and closely
follow the training strategy described in the original paper.2

• Dynamic Affine Feature Map Transform (DAFT): Also requiring paired input
data, we use the general purpose DAFT module (Pölsterl et al., 2021) to rescale
and shift the feature representations after the first LSTM layer using the chest X-ray
representation computed either through the third or fourth layer of ResNet. Similarly,
we use (EHR+CXR)PAIRED, and follow the training approach in the original work’s
respository.3

We also compare it with a uni-modal two-layer LSTM network trained with clinical time-
series data only, and the method proposed by Hayat et al. (2021a) (Unified) trained with
(EHR + CXR)PARTIAL.

4.4. Model Training and Selection

We perform hyperparameter tuning over 10 runs for our proposed network with MedFuse

and each of the baseline models and their different versions. In each run, we randomly
sample a learning rate between 10−5 and 10−3, and then choose the model and learning
rate that achieve the best AUROC on the respective validation set. For the baselines with
architectural choices (i.e. MMTM and DAFT), we choose the architecture that achieves
the best performance on the validation set, and report its results on the test set. We use
the Adam optimizer (Kingma and Ba, 2014) across all experiments with a batch size of

2. https://github.com/haamoon/mmtm
3. https://github.com/ai-med/DAFT/
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Table 2: Performance results on the (EHR + CXR)PAIRED test set. We show the AUROC
and AUPRC results for our proposed approach with MedFuse and the baseline models. We
include results for early and joint fusion when trained with either (EHR + CXR)PAIRED

or (EHR + CXR)PARTIAL, where the latter uses a learnable vector in the case of a
missing chest X-ray image. We also show results of our proposed approach when we fine-
tune the fusion module with (EHR + CXR)PARTIAL and randomly initialized encoders
(RI) or pre-trained encoders (PT), and the best version of the latter when using the
optimal number of uni-modal samples during fine-tuning (OPTIMAL). Best results are
shown in bold.

Task Phenotyping In-hospital mortality

Method AUROC AUPRC AUROC AUPRC

Early (EHR + CXR)PAIRED 0.753 (0.726, 0.779) 0.453 (0.411, 0.502) 0.827 (0.801, 0.854) 0.485 (0.417, 0.555)
Early (EHR + CXR)PARTIAL 0.739 (0.712, 0.766) 0.435 (0.393, 0.483) 0.818 (0.788, 0.845) 0.467 (0.402, 0.539)

Joint (EHR + CXR)PAIRED 0.747 (0.720, 0.773) 0.446 (0.404, 0.493) 0.825 (0.798, 0.853) 0.506 (0.436, 0.574)
Joint (EHR + CXR)PARTIAL 0.754 (0.727, 0.780) 0.458 (0.415, 0.506) 0.819 (0.785, 0.850) 0.479 (0.413, 0.552)

MMTM (Vaezi Joze et al., 2020) 0.734 (0.707, 0.761) 0.428 (0.387, 0.476) 0.819 (0.788, 0.846) 0.474 (0.402, 0.544)
DAFT (Pölsterl et al., 2021) 0.737 (0.710, 0.764) 0.434 (0.393, 0.482) 0.828 (0.799, 0.854) 0.492 (0.427, 0.572)
Unified (Hayat et al., 2021a) 0.765 (0.742, 0.794) 0.461 (0.417, 0.511) 0.835 (0.808, 0.861) 0.495 (0.424, 0.567)

MedFuse (RI) 0.748 (0.721, 0.774) 0.452 (0.408, 0.501) 0.817 (0.785, 0.846) 0.471 (0.404, 0.545)
MedFuse (PT) 0.756 (0.729, 0.782) 0.466 (0.420, 0.515) 0.841 (0.813, 0.868) 0.544 (0.477, 0.609)
MedFuse (OPTIMAL) 0.770 (0.745, 0.795) 0.481 (0.436, 0.531) 0.865 (0.837, 0.889) 0.594 (0.526, 0.655)

16. We set the maximum number of epochs to 50 and use early stopping if the validation
AUROC does not improve for 15 epochs. We also apply image augmentations as described
in Appendix A.1.

With the best learning rate chosen via hyperparameter tuning, we vary the percentage
of samples with EHR only data in the (EHR + CXR)PARTIAL training set, fine-tune
MedFuse accordingly and evaluate it on the validation set. We select the best model based
on the best AUROC performance on the (EHR + CXR)PARTIAL validation set, and report
its results on the test set. We denote this chosen model as MedFuse (OPTIMAL).

5. Results

In this section, we describe the results for a number of experiments to provide insights on
our proposed approach. The learning rates that achieved the best results are summarized in
Appendix A.2 for all models. The results on the validation set in the experiments where we
vary the percentage of uni-modal samples during training are shown in Appendix A.3. The
optimal percentages are 10% for in-hospital mortality prediction, and 20% for phenotype
classification.

5.1. Performance Results in the Uni-modal & Multi-modal Settings

In Table 1, we compare our proposed approach to the uni-modal stacked LSTM. As ex-
pected, we first observe that the performance of the uni-modal LSTM improves on the
EHRPAIRED test set, in terms of AUROC and AUPRC for both tasks, when using the
larger EHRPARTIAL training set. Our proposed approach using MedFuse achieves the best
performance on the paired test set when the chest X-ray images are used during training
and inference as an auxiliary modality (0.770 AUROC and 0.481 AUPRC for phenotype
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Table 3: Performance results on the (EHR + CXR)PARTIAL test set. We compare
our proposed approach with MedFuse with early and joint fusion when trained with
(EHR + CXR)PARTIAL, including samples with missing chest X-ray images (substituted
with a learnable vector). All methods were trained with the full (EHR + CXR)PARTIAL

training set, except for MedFuse (OPTIMAL) which uses the optimal number of uni-modal
samples during fine-tuning. Best results are shown in bold.

Task Phenotyping In-hospital mortality

Method AUROC AUPRC AUROC AUPRC

Early 0.748 (0.735, 0.760) 0.394 (0.374, 0.416) 0.860 (0.850, 0.877) 0.515 (0.477, 0.556)
Joint 0.754 (0.742, 0.766) 0.410 (0.389, 0.433) 0.841 (0.823, 0.857) 0.482 (0.442, 0.525)
MedFuse 0.758 (0.745, 0.770) 0.418 (0.396, 0.441) 0.861 (0.845, 0.874) 0.501 (0.462, 0.543)

MedFuse (OPTIMAL) 0.768 (0.756, 0.779) 0.429 (0.408, 0.452) 0.874 (0.860, 0.888) 0.567 (0.529, 0.607)

classification, and 0.865 AUROC and 0.594 AUPRC for in-hospital mortality). We note
similar, but less significant trends, in the larger partially paired test set, which may be
due to the fact that only 18.8% and 26.2% of samples are paired in the phenotyping and
in-hospital mortality test sets, respectively.

5.2. Performance Results in the Paired Setting

Since the baseline models were originally designed for paired input, we evaluate all mod-
els on the (EHR + CXR)PAIRED test set as shown in Table 2. First, we observe that
early fusion and joint fusion perform comparably across both tasks when trained with
(EHR + CXR)PAIRED, with early fusion achieving a slightly better performance in terms
of AUROC. We also note that training early fusion using (EHR + CXR)PARTIAL leads
to a drop in AUROC and AUPRC across both tasks, while joint fusion only improves for
phenotype classification. Second, we observe that the Unified approach by Hayat et al.
(2021a) achieves the best performance amongst all baseline approaches, with 0.765 AU-
ROC and 0.461 AUPRC for phenotype classification, and 0.835 AUROC and 0.495 AUPRC
for in-hospital mortality prediction. Third, we observe that our proposed approach with
MedFuse (OPTIMAL) achieves the best performance across both tasks, with 0.770 AUROC
and 0.481 AUPRC for phenotype classification, and 0.865 AUROC and 0.594 AUPRC for
in-hospital mortality prediction. We also performed an ablation study where we randomly
dropped the chest X-ray modality in the paired test set. The results are shown in Ap-
pendix A.4. We also compared the use of substituting the missing modality with zeros or
with a learnable vector for early and joint fusion and the results are shown in Appendix A.5.
The two techniques perform comparably.

5.3. Performance Results in the Partially Paired Setting

In Table 3, we evaluate our proposed approach with MedFuse as well as early and joint
fusion on the partially paired test set. Compared to early fusion, our proposed approach
trained with the full (EHR + CXR)PARTIAL training set achieves a better performance
for phenotype classification (0.758 compared to 0.748 AUROC and 0.418 compared to 0.394
AUPRC). It performs comparably with early fusion in the in-hospital mortality prediction
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Figure 4: Performance results across different subsets of labels for the phenotype clas-
sification task in the (EHR + CXR)PAIRED test set. The multi-modal approach
with MedFuse achieves the highest AUROC and AUPRC gains for the mixed conditions
followed by chronic conditions, compared to the results achieved by the uni-modal stacked
LSTM with EHRPAIRED).

task, although early fusion achieves a better AUPRC. Our approach outperforms joint fusion
in the in-hospital mortality setting (0.861 compared to 0.841 AUROC and 0.501 compared
to 0.482 AUPRC), and performs comparably for phenotype classification. Overall, MedFuse
(OPTIMAL), fine-tuned with paired samples and only 10% of uni-modal samples for in-
hospital mortality prediction and 20% of uni-modal samples for phenotype classification,
achieves the best performance (0.768 AUROC and 0.429 AUPRC for phenotype classifica-
tion and 0.874 AUROC and 0.567 AUPRC for inhospital mortality prediction). We also
performed an ablation study where we varied the percentage of uni-modal samples in the
partially paired setting. The results are shown in Appendix A.6.

We also compared the performance of MedFuse to an ensemble consisting of (i) MedFuse
for paired samples, and (ii) a uni-modal LSTM for samples with missing chest X-rays. While
the results are comparable, as shown in Appendix A.7, the results imply that an ensemble
of strong models may be better suited for some tasks, such as phenotyping. This however
requires the training of two models.

5.4. Phenotype-wise Analysis

In Figure 4, we show the AUROC (left) and AUPRC (right) results across different cat-
egories of phenotype labels: acute, mixed, and chronic conditions. The label types and
their prevalence are listed in Table 4. We note that our approach mostly improves the
performance in terms of AUROC and AUROC for mixed and chronic conditions, which are
generally hard to predict through uni-modal clinical time-series data (Harutyunyan et al.,
2019). In particular, across mixed conditions, the AUROC increases from 0.749 to 0.800,
and the AUPRC increases from 0.458 to 0.565. For chronic conditions, the AUROC in-
creases from 0.717 to 0.745 and the AUPRC increases from 0.487 to 0.512. We observe
relatively smaller improvements for acute conditions, where the AUROC increases from
0.761 to 0.772 and the AUPRC increases from 0.432 to 0.433. In Table 4, we report the
performance across all 25 labels for the paired test set using uni-modal and multi-modal
data. We observe an improvement across a number of thorax-related phenotypes, such as
pneumonia and pleurisy, which are usually clinically assessed using chest imaging (Long
et al., 2017). This further highlights the importance of using the chest X-ray images as
auxiliary information along with the clinical time-series data.
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Table 4: Performance results across the different phenotype labels on (EHR +
CXR)PAIRED test set, compared to the uni-modal stacked LSTM with
EHRPAIRED. We report the performance results for the individual phenotypes using
AUROC and AUPRC, and show the prevalence of labels in the (EHR + CXR)PARTIAL

training set, and the (EHR + CXR)PAIRED test set. The labels and results in bold
indicate that MedFuse achieved a performance improvement.

Prevalence EHRPAIRED (EHR + CXR)PAIRED

Phenotype Type Train Test AUROC AUPRC AUROC AUPRC

Acute and unspecified renal failure acute 0.269 0.321 0.780 (0.759, 0.800) 0.614 (0.573, 0.655) 0.782 (0.760, 0.802) 0.618 (0.579, 0.661)
Acute cerebrovascular disease acute 0.056 0.078 0.903 (0.878, 0.929) 0.501 (0.426, 0.591) 0.888 (0.859, 0.915) 0.496 (0.420, 0.578)
Acute myocardial infarction acute 0.074 0.093 0.729 (0.694, 0.765) 0.267 (0.218, 0.329) 0.766 (0.732, 0.798) 0.297 (0.237, 0.361)
Cardiac dysrhythmias mixed 0.326 0.379 0.664 (0.640, 0.687) 0.552 (0.517, 0.590) 0.708 (0.686, 0.730) 0.581 (0.543, 0.618)
Chronic kidney disease chronic 0.206 0.240 0.748 (0.727, 0.771) 0.457 (0.419, 0.505) 0.768 (0.747, 0.789) 0.485 (0.445, 0.533)
Chronic obstructive pulmonary disease chronic 0.143 0.148 0.673 (0.640, 0.703) 0.272 (0.231, 0.319) 0.747 (0.721, 0.776) 0.344 (0.302, 0.398)
Complications of surgical/medical care acute 0.189 0.226 0.728 (0.703, 0.752) 0.464 (0.420, 0.513) 0.722 (0.698, 0.747) 0.439 (0.395, 0.487)
Conduction disorders mixed 0.100 0.115 0.719 (0.688, 0.750) 0.252 (0.210, 0.304) 0.854 (0.822, 0.882) 0.632 (0.570, 0.692)
Congestive heart failure; nonhypertensive mixed 0.255 0.295 0.760 (0.738, 0.781) 0.592 (0.553, 0.632) 0.823 (0.805, 0.843) 0.679 (0.643, 0.715)
Coronary atherosclerosis and related chronic 0.311 0.337 0.740 (0.719, 0.763) 0.603 (0.563, 0.643) 0.779 (0.760, 0.799) 0.631 (0.593, 0.668)
Diabetes mellitus with complications mixed 0.114 0.120 0.885 (0.866, 0.902) 0.534 (0.473, 0.596) 0.883 (0.862, 0.902) 0.534 (0.473, 0.599)
Diabetes mellitus without complication chronic 0.172 0.211 0.758 (0.731, 0.781) 0.430 (0.386, 0.481) 0.748 (0.724, 0.772) 0.414 (0.370, 0.463)
Disorders of lipid metabolism chronic 0.404 0.406 0.689 (0.666, 0.713) 0.598 (0.562, 0.635) 0.707 (0.685, 0.729) 0.613 (0.577, 0.649)
Essential hypertension chronic 0.418 0.433 0.678 (0.655, 0.699) 0.617 (0.583, 0.650) 0.703 (0.682, 0.725) 0.634 (0.600, 0.667)
Fluid and electrolyte disorders acute 0.371 0.454 0.737 (0.716, 0.757) 0.696 (0.666, 0.727) 0.733 (0.713, 0.754) 0.687 (0.657, 0.720)
Gastrointestinal hemorrhage acute 0.070 0.071 0.751 (0.712, 0.785) 0.194 (0.145, 0.254) 0.747 (0.708, 0.783) 0.221 (0.165, 0.287)
Hypertension with complications chronic 0.215 0.222 0.736 (0.714, 0.758) 0.430 (0.391, 0.475) 0.764 (0.742, 0.786) 0.465 (0.421, 0.511)
Other liver diseases mixed 0.125 0.169 0.716 (0.687, 0.743) 0.359 (0.313, 0.409) 0.730 (0.704, 0.759) 0.398 (0.353, 0.450)
Other lower respiratory disease acute 0.095 0.126 0.610 (0.574, 0.645) 0.194 (0.164, 0.238) 0.599 (0.564, 0.637) 0.176 (0.150, 0.210)
Other upper respiratory disease acute 0.048 0.054 0.746 (0.692, 0.796) 0.254 (0.185, 0.340) 0.753 (0.705, 0.798) 0.204 (0.148, 0.286)
Pleurisy; pneumothorax; pulmonary collapse acute 0.067 0.095 0.627 (0.590, 0.661) 0.152 ( 0.188, 0.121) 0.752 (0.720, 0.783) 0.212 (0.174, 0.262)
Pneumonia acute 0.127 0.185 0.765 (0.738, 0.789) 0.416 (0.374, 0.470) 0.790 (0.766, 0.813) 0.453 (0.407, 0.501)
Respiratory failure; insufficiency; arrest (adult) acute 0.160 0.282 0.845 (0.827, 0.863) 0.678 (0.637, 0.721) 0.836 (0.817, 0.854) 0.653 (0.612, 0.693)
Septicemia (except in labor) acute 0.158 0.227 0.813 (0.794, 0.834) 0.572 (0.528, 0.621) 0.809 (0.790, 0.830) 0.564 (0.522, 0.613)
Shock acute 0.123 0.174 0.865 (0.844, 0.884) 0.617 (0.565, 0.666) 0.864 (0.843, 0.883) 0.604 (0.552, 0.654)

Average all - - 0.746 (0.720, 0.772) 0.453 (0.409, 0.502) 0.770 (0.745, 0.795) 0.481 (0.436, 0.531)

Table 5: Performance of MedFuse across different age groups for in-hospital-mortality on
the (EHR + CXR)PAIRED) test set, compared to the uni-modal stacked LSTM
with EHRPAIRED. We compare the AUROC and AUPRC for the different age groups.
The results in bold indicate improved performance with multi-modal data.

EHRPAIRED (EHR+CXR)PAIRED

Age group Positive fraction AUROC AUPRC AUROC AUPRC

18-40 0.078 (11/141) 0.941 (0.859, 0.988) 0.613 (0.332, 0.883) 0.917 (0.820, 0.980) 0.521 (0.272, 0.841)
40-60 0.119 (44/369) 0.796 (0.719, 0.865) 0.403 (0.277, 0.541) 0.822 (0.751, 0.885) 0.499 (0.360, 0.629)
60-80 0.159 (98/616) 0.846 (0.805, 0.885) 0.576 (0.478, 0.670) 0.868 (0.830, 0.900) 0.583 (0.484, 0.678)
> 80 0.227 (56/247) 0.789 (0.722, 0.850) 0.549 (0.428, 0.677) 0.841 (0.784, 0.891) 0.616 (0.491, 0.731)

5.5. In-hospital Mortality Age-wise Analysis

We evaluate the performance of our approach across different age groups, as shown in
Table 5, and compare it to the uni-modal stacked LSTM. We observe that the AUROC
and AUPRC improve across age groups 40-60, 60-80, and >80 years, while the AUROC
decreases for the 18-40 years. The latter result needs further investigation with a larger
dataset, since the test sets only contain 11 positive samples for the youngest age group.
Additionally, there are variations in the relative improvements. For example, the AUPRC
increases by 24% for the 40-60 years group, compared to 1.3% in the 60-80 years group.
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6. Discussion

In this paper, we present a multi-modal fusion approach, named MedFuse, and new bench-
mark results for integrating partially paired clinical time-series data and chest X-ray images.
We evaluate it for two popular benchmark tasks, namely in-hospital mortality prediction
and phenotype classification, using publicly available datasets MIMIC-IV and MIMIC-CXR.

Our study has several strengths. First, our approach is simple and easy to implement.
The results show that the proposed approach performs better than the uni-modal LSTM
baseline, as it considers chest X-ray images, when available, as an additional source of
information. In addition, the approach outperforms several baselines, and the phenotype-
wise and age-wise analysis provide some insight as to where it improves performance. We
conclude that the proposed method is overall a better choice than the baseline methods
because (i) the LSTM-based fusion module can inherently deal with missingness (i.e., par-
tially paired data), and (ii) the combination of the architecture and the training procedure
provides performance gains. Otherwise, the size of the partially paired training set does not
seem to be correlated with the performance improvements, as illustrated with the validation
set results in Appendix A.3. The results overall highlight the promise of multi-modal fusion
in improving the performance of clinical prediction models. Multi-modal learning is also
generally more closely aligned with the decision-making process of clinicians, who consider
multiple sources of information when assessing a patient.

Moreover, in contrast with conventional multi-modal approaches that assume paired
input, our proposed method is more flexible since it can process samples with missing
chest X-ray images. There is a rising interest in learning cross-modal interactions between
modalities during training time and in reconstructing missing modalities (Ngiam et al.,
2011; Xin et al., 2021; Ma et al., 2021; Sylvain et al., 2021; Ma et al., 2021). In contrast
with natural multi-modal datasets, assuming a high degree of correlation in such settings is
not a trivial task in healthcare especially when the modalities do not necessarily share the
same labels, and this is an area of future work. The difficulty stems from the sparse and
asynchronous nature of medical data, i.e. it would be difficult to use a biopsy report for skin
tissue to reconstruct common thorax diseases features (Hayat et al., 2021a). Additionally,
some of the existing work for learning cross-modal interactions assumes the presence of all
modalities during training (Sylvain et al., 2021).

Another strength is that the approach can be easily scaled to more than two modalities
with no amendments to the fusion loss function, compared to existing work where the
complexity of the computation increases with the number of modalities (Hayat et al., 2021a).
However, this requires evaluation and is an area of future work. We also do not assume any
correlation among the input modalities, in terms of information content or assigned labels.

Furthermore, we formalize and introduce new benchmark results for two popular tasks
that are typically evaluated in the context of clinical time-series data only (Harutyunyan
et al., 2019). By gaining access to the MIMIC-IV and MIMIC-CXR datasets (Johnson
et al., 2021, 2019), researchers can utilize our open-access data pre-processing pipeline and
introduce new results for direct comparison.

Limitations. The study also has its own limitations. To begin with, we focus on tasks
pertaining to the integration of clinical time-series data and chest X-ray images from a single
data source, and we evaluate our work on two benchmark tasks due to limited resources.
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The original work by Harutyunyan et al. (2019) includes two other tasks, decompensation
prediction and length of stay prediction, which we would like to evaluate our method on in
the future. We also do not run any experiments on settings where the clinical time-series
data may be missing, but the chest X-ray image is available. In future work, this requires
the definition of additional benchmark tasks where the chest X-ray image is the primary
modality. Since we currently evaluate our method with two input modalities only, another
interesting next step would be to use more than two to further evaluate the robustness
of the model, considering its scalability. In its current formulation, the model also lacks
interpretability, since we mainly focus on fusion within the scope of this paper. We later
plan to explore incorporating attention layers (Vaswani et al., 2017) at the input level of the
feature encoders to evaluate the importance of features within each modality, and within
the fusion module to evaluate the overall informativeness of each modality. On a related
note, our work can benefit from performing instance-level analysis. However, this requires
clinical expertise that bridges between chest X-ray image and clinical time-series analysis,
which we are currently missing. To realize the full potential of multi-modal learning, there
is more work to be done to understand the clinical underpinnings of multi-modal fusion.
Overall, the study highlights an extremely worthwhile direction to further leverage the value
of multi-modal learning in healthcare, especially as the diversity and quantity of medical
data continues to increase.
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Appendix A.

A.1. Image Augmentations

For the chest X-ray images, we apply a series of transformations during pre-training and
fine-tuning across all experiments and tasks. Specifically, we resize each image to 256× 256
pixels, randomly apply a horizontal flip, and apply a set of random affine transformations,
such as rotation, scaling, shearing, and translation. We then apply a random crop to obtain
an image of size 224× 224 pixels. During validation and testing, we perform image resizing
to 256× 256 and apply a center crop to 224× 224 pixels.

A.2. Hyperparameter Search Results

The results of hyperparameter tuning are shown in Table A1. We summarize the learning
rates that achieved the best performance for each model.

Table A1: Learning rates that achieved the best results during hyperparameter search.
We conducted 10 runs for each model with randomly sampled learning rates between
10−5 and 10−3. For MMTM and DAFT, we additionally selected the version that
achieved the best validation set AUROC.

Task Phenotyping In-hospital mortality

Method Learning rate

LSTM trained with EHRPAIRED 8.866× 10−5 1.000× 10−4

LSTM trained with EHRPARTIAL 5.399× 10−4 5.399× 10−4

Early trained with (EHR + CXR)PARTIAL 9.084× 10−5 3.095× 10−4

Early trained with (EHR + CXR)PAIRED 3.833× 10−5 9.515× 10−5

Joint trained with (EHR + CXR)PARTIAL 3.831× 10−5 7.565× 10−4

Joint trained with (EHR + CXR)PAIRED 5.652× 10−5 4.032× 10−5

MMTM∗ 5.326× 10−5 4.355× 10−5

DAFT∗∗ 6.493× 10−5 6.493× 10−5

Unified 2.042× 10−4 2.606× 10−4

MedFuse (Randomly initialized encoders) 4.741× 10−5 9.382× 10−5

MedFuse (Pre-trained encoders) 7.347× 10−5 1.452× 10−5

∗We trained two versions of MMTM for each task, where the MMTM module is placed after the third or
fourth ResNet layer. Placing it after the fourth layer achieved the best performance for both tasks.
∗∗We trained two versions of DAFT for each task, where we transform the LSTM representation either
after the third or fourth ResNet layer. Placing it after the third layer achieved the best performance
for phenotype classification, whereas placing it after the fourth layer achieved the best performance for
in-hospital mortality.

A.3. Percentage of Uni-modal Samples within the Training Set

We also run experiments where we vary the percentage of uni-modal samples during fine-
tuning. The best AUROC results for both tasks on the validation set are shown in Figure A1.
For in-hospital mortality (shown in red), we notice that a relatively smaller portion of
uni-modal samples (10%) achieves the best performance. For patient phenotyping (shown
in blue), we observe a similar trend where the best AUROC is achieved with only 20%
of uni-modal samples. We fix the sampling percentage that achieves the best validation
AUROC across all experiments, unless noted otherwise. Hence, this highlights that the
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best performance gains of MedFuse are achieved even with a small percentage of uni-modal
samples.

0 10 20 30 40 50 60 70 80 90 100
% of uni-modal training samples

0.70

0.75

0.80

0.85

0.90

AU
RO

C

In-hospital mortality
Phenotyping

Figure A1: Performance on the validation set when varying the sampling percentage
for uni-modal training samples. The plot shows the AUROC on the validation set
for different percentages of randomly selected uni-modal training samples.

A.4. Percentage of Uni-modal Samples within the Paired Test Set

We also performed an ablation study where we randomly dropped the chest X-ray modality
for a percentage of samples in the paired test set. The results are shown in Figure A2. We
observe that the as the percentage of dropping increases, the AUROC decreases for both
tasks.
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Figure A2: Performance on the test set with randomly dropped CXR modality in the
paired test set. The plot shows the AUROC on the paired test set for different
percentages of randomly dropped CXR modality from paired test samples.
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A.5. Missing Modality with Early and Joint Fusion

We also ran initial experiments to compare the learnable vector with imputing zeros for a
missing chest X-ray modality. The results are shown in Table A2. We note that the results
are comparable with no obvious differences.

Table A2: Missing modality with early and joint fusion. We report the AUROC and
AUPRC results on the entire test set (EHRPARTIAL), including samples with
missing chest X-ray images (substituted with a zeros or a learnable vector) All
methods below were pre-trained using the (EHRPARTIAL) training set and a
fixed learning rate of 0.0001.

Task Phenotyping In-hospital mortality

Method Missing Vector AUROC AUPRC AUROC AUPRC

Joint Zeros 0.756 0.406 0.843 0.466
Joint Learnable 0.752 0.402 0.853 0.486
Early Zeros 0.743 0.392 0.842 0.481
Early Learnable 0.742 0.388 0.851 0.489

A.6. Percentage of Uni-modal Samples within the Partially Paired Test Set

We performed another ablation study where we varied the number of uni-modal samples
in the partially paired test set. The results are shown in Figure A3. Hence, including 0%
of uni-modal test samples is equivalent to the fully paired test set. We observe an increase
in the AUROC in the in-hospital mortality task, as the percentage of uni-modal samples
increase, but a more a consistent AUROC in the phenotyping task. We do however observe
that the widths of the confidence intervals decrease as the percentage of uni-modal samples
increases across both tasks.
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Figure A3: Performance on the test set when varying the percentage of uni-modal sam-
ples. The plot shows the AUROC on the partial test set for different percentages of
randomly selected uni-modal samples.
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A.7. Ensemble of uni-modal and multi-modal models

We ran another experiment to compare the performance of MedFuse to that of an ensemble
of two models: an EHR only model that computes predictions for partial input (i.e., not
associated with a chest X-ray) using LSTM, and a paired model that computes predictions
for paired input using MedFuse. The results are shown in Table A3. We observe that the
ensemble slightly outperforms MedFuse for phenotyping only. This implies that an ensemble
of strong models may be better suited for some tasks, such as phenotyping, which however
requires the training of two models.

Table A3: MedFuse compared to an ensemble evaluation. We report the AUROC
and AUPRC results on the partially paired test set.

Task Phenotyping In-hospital mortality

Method AUROC AUPRC AUROC AUPRC

Ensemble 0.770 (0.759, 0.782) 0.431 (0.410, 0.454) 0.870 (0.857, 0.884) 0.547 (0.509, 0.589)
MedFuse 0.768 (0.756, 0.779) 0.429 (0.408, 0.452) 0.874 (0.860, 0.888) 0.567 (0.529, 0.607)
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