

PARIS

Goal

Robust \nearrow and accurate \nearrow CNNs.

Key Insights

- Robustness/accuracy trade-off
 - High-frequency content X , \nearrow
 - Low-frequency content 7, X
 - Amplitude reliance X , 7
 - Phase reliance 7, X

Contributions

- Augmentations to find the sweet-spot!
- Make the model focus on..
 - ✓ Low-frequency (HA)
 - Phase of low-frequency (HA++). \checkmark

Results

- Robustness /
 - Adversarial 7
 - ✓ Corruption ↗
 - 00D 🗡

Code and pretrained models

Accuracy *∧* Transferability Flexible

✓ Transformers!

✓ No extra data No extra models

No ensembles

HybridAugment++: Unified Frequency Spectra Perturbations for Model Robustness

Mehmet Kerim Yucel¹, Ramazan Gokberk Cinbis², Pinar Duygulu¹

¹ Hacettepe University, Ankara, Turkey

HybridAugment (Paired)

- Take images x_i, x_j in a batch
- 2. Swap HF and LF of x_i, x_i

Use LF image label as the ground-truth

HybridAugment (Single)

- Take image x_{i}
- Get two views of x_{i} .
- 3. Swap HF and LF of two views of x_i

² METU, Ankara, Turkey

\mathcal{HA}_{P}^{++}

HybridAugment++ (Paired)

- Take images x_i, x_j, x_z in a batch
- Take LF of x_i , swap its amplitude with that of x_z
- 3. Merge the resulting image with HF of x_{i}

Use the label of x_i as the ground-truth

A COMPANY OF A COMPANY

 \mathcal{HA}_{S}^{++}

APR

Standard

HA++(P+S)

HybridAugment++ (Single)

- Take image x_i
- Get two views of x_i (e.g. x_{i1} and x_{i2})
- Get two new views of x_{i1} (e.g. x_{i11} and x_{i12})
- 4. Swap phase and amplitude of x_{i11} and x_{i12}
- 5. Merge the resulting image with HF of x_{i2}

Acknowledgement: This work was supported in part by a Google Faculty Research Award.