

DECLARATIEVE TALEN EN ARTIFICIËLE INTELLIGENTIE



# Exposé: An ontology for machine learning experimentation

Joaquin Vanschoren, K.U.Leuven (Belgium), U. Leiden (The Netherlands) Larisa Soldatova, University of Aberystwyth (UK)

**DM Ontology Jamboree 2010** 



DECLARATIEVE TALEN EN ARTIFICIËLE INTELLIGENTIE





# Exposé: An ontology for machine learning experimentation

Joaquin Vanschoren, K.U.Leuven (Belgium), U. Leiden (The Netherlands) Larisa Soldatova, University of Aberystwyth (UK)

**DM Ontology Jamboree 2010** 



Ontology lessons Exposé ontology Use cases

# Ontology lessons

What did we learn from other ontologies

### Ontology design

- Start from accepted classes & properties (top-level ontologies, e.g. OBI, RO)
- If possible, reuse prior ontologies to build on their knowledge/consensus
- Use ontology design patterns: reusable patterns for recurrent problems
  - http://ontologydesignpatterns.org
- Check clarity, consistency, extensibility, minimal commitment

### Ontology recap: OntoDM (Panov et al., '09,'10)

• Aim: unified framework for DM research, builds on BFO



### Ontology recap: OntoDM (Panov et al., '09,'10)

• Aim: unified framework for DM research, builds on BFO



### Ontology recap: DMOP (Hilario et al., '09)

• Model internal structure of learning algorithms



### Ontology recap: DMOP (Hilario et al., '09)

• Model internal structure of learning algorithms











• Reason about KD operators: in/outputs, conditions/effects (SWRL rules)

#### "RapidMiner.ID3":

Superclass:

ClassificationLearning and (uses exactly 1 AttributeValueDataTable) and (produces exactly 1 Model) and

(simpleParameter1(name="minimal size for split") exactly 1 integer) and (simpleParameter2(name="minimal leaf size") exactly 1 integer) ...

#### **Condition:**

(AttributeValueDataTable and MissingValueFreeData and (inputAttribute only (hasAttributeType only Categorial)) and (targetAttribute exactly 1 (hasAttributeType only Categorial)) )(?D), noOfRecords(?D,?Size), **?P1 is ?Size / 100**  $\rightarrow$  uses(this,?D), simpleParameter2(this,?P1)

#### Effect:

uses(this,?D), hasFormat(?D,?F), inputAttribute(?D,?IA),targetAttribute(?D,?TA), → new(?M,?D), DecisionTree(?M), produces(this,?M), hasFormat(?M,?F), inputAttribute(?M,?IA),predictedAttribute(?M,?TA),

# Ontology recap: EXPO (Soldatova and King, '06)

• Make goal and structure of scientific experiments more explicit



### Ontology recap: EXPO (Soldatova and King, '06)

• Make goal and structure of scientific experiments more explicit





#### an ontology for data mining experimentation

### Context

- Giant, public database(s) of data mining experiments
- We need:
  - Common language to share experiments (through DM tools)
  - Intuitive ways to store and query experimental results
- We want:
  - Interoperable ontology: OntoDM for top-level, DMOP for detailed properties of learning algorithms
  - Driven by actual experiments submitted to database
    - New algorithms -> ideally, described by author
    - Instances automatically extracted from database

## Problem I: Experiments

What is a machine learning experiment? What do we need to know about it?

### Exposé: Experiments



### Exposé: Experiments



### **Exposé: Experiments**



## Problem 2: Algorithms

When talking about an algorithm, what is meant?

General algorithm? Specific implementation? Which version? When run, which parameters, components?

### Exposé: Algorithms Specification, implementation, application



### Same for functions and parameters



# Problem 3: Algorithm composition

plug-in functions, kernels, other algorithms

such components play different roles -> Agent-role pattern

### Exposé: Algorithms

hp: has participant hd: has description



### Exposé: Algorithms

hp: has participant hd: has description



### Exposé: Algorithms



## Problem 4:Workflows

Inputs, outputs, operators Hierarchical: workflows within workflows Reuse, parameterize common workflows, e.g. k-fold CV

### Exposé: workflows



### Problem 5: Reuse

How can we make maximal use of existing ontologies?

OBI: top-level OntoDM: top-level DM concepts DMO: operators, learning mechanisms

### BFO: accepted top-level classes



### BFO: accepted top-level classes



### OntoDM: top-level DM concepts



ico = is concretization of hp = has participant

### DMO: operators, learning mechanisms


#### Exposé: top level classes



# Other aspects

#### Datasets







#### Evaluation



#### Experiment context



#### **Experiment context**



#### Exposé: final notes

- In total 860 classes, 32 properties (from RO + DMOP)
- Individuals: all algorithms, preprocessors, evaluation from WEKA
  - actually stored in experiment database
  - should be programmatically added (and updated)
- Written in OWL-DL, using Protégé 4.0
- Can be browsed at:
  - http://expdb.cs.kuleuven.be/expdb/expose.owl
  - <u>http://www.e-lico.eu/OWLBrowser2/manage/</u>

## Use Cases



new algorithm



















- A lot of work, limits depth
- Results cannot be reused by others (have to be repeated)
- Hard to repeat experiments from descriptions in papers!



## Data mining as an e-science Ontologies: experiments shared, run automatically



### Data mining as an e-science Ontologies: experiments shared, run automatically

- Share experiments
  - Internet = large, collaborative workspace



## Data mining as an e-science Ontologies: experiments shared, run automatically

- Share experiments
  - Internet = large, collaborative workspace
- Store them in *experiment databases*
  - Ensure reproducibility
  - Reuse millions of prior experiments
  - Use all info on algorithms, datasets
  - Results universally accessible and useful



#### e-Sciences Astrophysics: Virtual Observatories



#### e-Sciences Bio-informatics: Micro-array Databases

| EMBL-EBI                                       | EB-eve All Databases   Enter Text Here                                                                                | Go Reset ? Gi<br>Advanced Search      | ve us<br>edback    |                                        |             |                 |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------|----------------------------------------|-------------|-----------------|
| Databases Tools                                | EBI Groups Training Industry About                                                                                    | Us Help Site Inde                     | x 🔝 🎒              |                                        |             |                 |
| Experiment, citation<br>rna<br>Match whole wor | , sample and factor annotations [clear] Filter on [res<br>Any species<br>ds Loaded in Gene Expression Atlas Any array | set]<br>s                             | Display op<br>25 🛟 | otions [reset<br>experiments<br>d view | )<br>per pa | <sub>ge</sub> Æ |
| Submitter/reviewer                             | login                                                                                                                 | ment type                             | •                  |                                        |             | Query           |
| ID                                             | Title                                                                                                                 | Assays Species                        | Date 👻             | Processed                              | Raw         | Atlas           |
|                                                | Weighted Gene Coexpression Network Analysis Identifies B                                                              | Biomar 7 Mus musculus                 | 2009-09-25         |                                        |             | - 6             |
| H E-GEOD-14335                                 | Whole genome profiling of fibroblasts from Diamond-Blackf                                                             | fan An 10 Homo sapiens                | 2009-09-25         |                                        |             | -               |
| ⊞ E-GEOD-14561                                 | Expression data of murine GPI-deficient bone marrow cells                                                             | in a 17 Mus musculus                  | 2009-09-25         |                                        |             | -               |
| ∃ E-GEOD-17170                                 | A systems genetics approach implicates USF1, FADS3 and o                                                              | other 70 Homo sapiens                 | 2009-09-25         | (h)                                    |             | -               |
|                                                | Overexpression of USF1 in HEK293T cells                                                                               | 6 Homo sapiens                        | 2009-09-25         |                                        |             | -               |
| ∃ E-GEOD-17994                                 | Expression Profiling of brain samples from wt and SCA3 tg                                                             | anima 19 Mus musculus                 | 2009-09-25         |                                        |             |                 |
| H E-GEOD-17995                                 | Role of ICOS: ICOSL interaction in acute GVHD                                                                         | 7 Mus musculus                        | 2009-09-25         |                                        |             | -               |
| H E-GEOD-18000                                 | Gene expression comparison of drug-resistant Panc1/mock                                                               | cells 2 Homo sapiens                  | 2009-09-25         |                                        | -           |                 |
| H E-GEOD-18026                                 | Analysis of chronic lymphocytic leukemia CLL cells and nor                                                            | mal B 7 Homo sapiens                  | 2009-09-25         | (B)                                    | 1           |                 |
| ∃ E-GEOD-18043                                 | Priming integrin alpha5 promotes human mesenchymal stre                                                               | omal c 12 Homo sapiens                | 2009-09-25         | 0a                                     |             | -               |
| ∃ E-GEOD-13524                                 | Transcription profiling of rat nucleus accumbens of alcohol-                                                          | prefer 29 Rattus norvegicus           | 2009-09-24         |                                        |             | -               |
| ∃ E-GEOD-4773                                  | Transcription profiling of human SK-N-MC cell line model of                                                           | f Parki 21 Homo sapiens               | 2009-09-22         |                                        |             | -               |
| H E-GEOD-6285                                  | Transcription profiling of brains of mice fed four different di                                                       | liets fo 24 Mus musculus              | 2009-09-22         |                                        |             |                 |
| ∃ E-GEOD-10748                                 | Transcription profiling of rat brain treated with D-serine                                                            | 24 Rattus norvegicus                  | 2009-09-22         |                                        |             |                 |
|                                                | Transcription profiling of rat to investigate technical and bic                                                       | ologica 96 Rattus norvegicus          | 2009-09-21         |                                        |             |                 |
| E-BUGS-79                                      | Transcription profiling of Staphylococcus aureus to subinhit                                                          | bitory 30 Staphylococcus aureu        | s 2009-09-18       |                                        | G           |                 |
| ∃ E-GEOD-11974                                 | Re-sequencing of rice seed                                                                                            | 1 Oryza sativa                        | 2009-09-16         |                                        | -           | 3               |
| H E-GEOD-12297                                 | Re-sequencing of human post mortem cerebellum reveals a                                                               | altere 20 Homo sapiens                | 2009-09-16         |                                        |             | -               |
| 🗄 E-GEOD-13750                                 | Re-sequencing of yeast ribosomally bound sequences                                                                    | 8 Saccharomyces cerev                 | is 2009-09-16      |                                        | 12          |                 |
| ∃ E-GEOD-14605                                 | Re-sequencing of mouse single cell - wild-type oocytes, two                                                           | o singl 6 Mus musculus                | 2009-09-16         |                                        | 100         |                 |
| 43                                             | 10 experiments, 100545 assays. Displaying experiments 1 to                                                            | o 25. Pages: 1 2 3 4 5 6 7 8 9 10 173 |                    |                                        |             | L.              |

Terms of Use | EBI Funding | Contact EBI | @ European Bioinformatics Institute 2009. EBI is an Outstation of the European Molecular Biology Laboratory.

#### e-Sciences Bio-informatics: Micro-array Databases

















## Use Case I

Describe experiments in a common language-> sharing or running experiments on grid

#### Use Exposé to define common language: ExpML














#### ExpML: a markup language for DM experiments

appl



• Share DM experiments, XML-based



#### ExpML: a markup language for DM experiments



• Share DM experiments, XML-based

<expml> <dataset id='d1'> <learner evaluation id='e1' input\_data='d1'> <learner\_appl> <learner\_impl name=... version=...> <parameter\_setting name='P' value='100'/> <learner\_appl role= 'base-learner'>

> </learner\_appl> <performance\_estimation\_appl>

. . .

. . .

. . .

appl

<model\_evaluation\_function\_appl>

</learner\_evaluation> <model\_evaluation\_result output\_of='e1'> <evaluation name='accuracy' value= '0.99'>



#### ExpML: a markup language for DM experiments

Share DM experiments, XML-based



| ontology                 | XML                     |
|--------------------------|-------------------------|
| has-part,has-participant | XML subelement          |
|                          | (with role attribute)   |
| has-description          | (required) attribute    |
| has-quality              | `property' subelement   |
| is-concretization-of     | implementation_of attr. |
| part-of                  | attributes              |
| has-specific-input       | input_data attribute    |
| has-specified-output     | output_of attribute     |

appl

<expml>

. . .

. . .

```
<dataset id='d1'>
<learner evaluation id='e1' input_data='d1'>
<learner_appl>
<learner_impl name=... version=...>
<parameter_setting name='P' value='100'/>
```

```
<learner_appl role= 'base-learner'>
```

```
</learner_appl></learner_appl>
```

```
<model_evaluation_function_appl>
```

```
</learner_evaluation>
```

<model\_evaluation\_result output\_of='e1'> <evaluation name='accuracy' value= '0.99'>

## Use Case 2

Collect experiments in a database to query all empirical results



#### ExpDB: a database to share experiments



### **Experiment Database**

>650,000 experiments, 54 algorithms,>87 datasets, 45 evaluation measures,2 data processors, bias-variance analysis



### **Experiment Database**

>650,000 experiments, 54 algorithms,>87 datasets, 45 evaluation measures,2 data processors, bias-variance analysis





Intuitive querying

# Query Interface (YouTube "experiment database") <u>http://expdb.cs.kuleuven.be</u>



### The way ahead

- 3rd generation of tools could make data mining into e-science
  - Experiments shared, reused, run worldwide
  - Repeatable, generalizable, reusable
- Cooperation on a standardized ontology for data mining?
- Automatic ontology extraction: DM paper -> ontology extension
- RDF experiment databases?
- Open problems:
  - Queriable models, auto-population (active meta-learning), quality control

Xie Xie Toda Grazie Efharisto Arigato Tesekkurler Dhanyavaad



Hvala

Danke

Thanks Diolch Merci Spasiba Obrigado Köszönöm Dank U Gracias

http://expdb.cs.kuleuven.be