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Ontology lessons
What did we learn from other ontologies



Ontology design

• Start from accepted classes & properties (top-level ontologies, e.g. OBI, RO)

• If possible, reuse prior ontologies to build on their knowledge/consensus

• Use ontology design patterns: reusable patterns for recurrent problems

• http://ontologydesignpatterns.org

• Check clarity, consistency, extensibility, minimal commitment



Ontology recap:	
OntoDM (Panov et al., ’09,’10)

• Aim: unified framework for DM research, builds on BFO

DM algorithm

task

achieves

component

has part

classification, 
pattern mining,...

kernel, 
distance function,...

dataset

data types,
feature types,...

has input

generalization

has output

model, 
pattern, 
clustering,...

constraints

realizes

algo impl algo appl

plan processplan specification



Ontology recap:	
OntoDM (Panov et al., ’09,’10)

• Aim: unified framework for DM research, builds on BFO

DM algorithm

task

achieves

component

has part

classification, 
pattern mining,...

kernel, 
distance function,...

dataset

data types,
feature types,...

has input

generalization

has output

model, 
pattern, 
clustering,...

constraints

realizes

algo impl algo appl

plan processplan specification



classification algorithm

dataset

specifies
input type

model

specifies 
output type

DM object

optimization
problem

optimization
strategy

has opt. 
problem

has optimization
strategy

model complexity
control strategy

has model complexity
control strategy

algorithm
assumption

assumes

constraint

has constraint

induction
cost function loss function

regularization
parameter

p=?
has obj. funct.

operator

implements

model
structure

p=?
model

parameter

+
-

decision
boundary

p=?

hyperparameter

has hyperparameter

Ontology recap:	
DMOP (Hilario et al., ’09)

• Model internal structure of learning algorithms



classification algorithm

dataset

specifies
input type

model

specifies 
output type

DM object

optimization
problem

optimization
strategy

has opt. 
problem

has optimization
strategy

model complexity
control strategy

has model complexity
control strategy

algorithm
assumption

assumes

constraint

has constraint

induction
cost function loss function

regularization
parameter

p=?
has obj. funct.

operator

implements

model
structure

p=?
model

parameter

+
-

decision
boundary

p=?

hyperparameter

has hyperparameter

Ontology recap:	
DMOP (Hilario et al., ’09)

• Model internal structure of learning algorithms



Ontology recap:	
DMWF (Kietz et al., ’09)

• Reason about KD operators: in/outputs, conditions/effects (SWRL rules)
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Ontology recap:	
EXPO (Soldatova and King, ’06)

• Make goal and structure of scientific experiments more explicit
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Exposé
an ontology for data mining experimentation



Context

• Giant, public database(s) of data mining experiments

• We need:

• Common language to share experiments (through DM tools)

• Intuitive ways to store and query experimental results

• We want:

• Interoperable ontology: OntoDM for top-level, DMOP for detailed 
properties of learning algorithms

• Driven by actual experiments submitted to database

• New algorithms -> ideally, described by author

• Instances automatically extracted from database



Problem 1: Experiments
What is a machine learning experiment?

What do we need to know about it?



Exposé: Experiments
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Exposé: Experiments
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Problem 2: Algorithms
When talking about an algorithm, what is meant?

General algorithm?
Specific implementation? Which version?
When run, which parameters, components?



Exposé: Algorithms
Specification, implementation, application
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Problem 3: 
Algorithm composition

plug-in functions, kernels, other algorithms

such components play different roles
-> Agent-role pattern
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Exposé: Algorithms
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Problem 4: Workflows
Inputs, outputs, operators

Hierarchical: workflows within workflows
Reuse, parameterize common workflows, e.g. k-fold CV



Exposé: workflows
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Problem 5: Reuse
How can we make maximal use of existing ontologies?

OBI: top-level
OntoDM: top-level DM concepts

DMO: operators, learning mechanisms
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OntoDM: top-level DM concepts
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DMO: operators, learning mechanisms
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Exposé: top level classes
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Other aspects



KD
workflow

data processing
workflow

hp

dataset

data processing 
appl

has input

has output

Datasets



data role

realizes

dataset

attribute-value 
table

time series

item sequence

relational database

graph

role data mining 
data role

bootstrap bag

test set

training set

optimization set
is concretization of

data specification

has 
quality

data featuredata instance

 has part  has part

target feature

numeric
target feature

class feature

quality data 
property

dataset 
property

feature 
property

instance 
property labeled

labeling unlabeled

has quality has quality

 has part

qualitative 
feature 

property

quantitative 
feature property

feature 
datatype

numeric 
datatype

nominal 
value set

feature entropy

feature kurtosis

quantitative dataset 
property

statistical 
dataset property

information-theoretic 
dataset property landmarker

simple dataset 
property

# features
# instances

# missing values

target skewness
frac1

identifier

data item

name

url

data repository

version

part of

has description

sequence

set of 
instances set of tuples

...

...

KD
workflow

data processing
workflow

hp

data processing 
appl

has input

has output

Datasets



learner
evaluation

evaluation
function appl.

evaluation
function impl.

evaluation
function

hp
hp

ico

Evaluation



learner
evaluation

association 
evaluation measure

binary prediction 
evaluation function

confusion matrix

multi-class prediction
evaluation measure

computational 
evaluation measure

build cpu time

build memory consumption

clustering 
evaluation measure

probabilistic distribution 
evaluation measure

predictive model 
evaluation measure class prediction

evaluation measure

graphical 
evaluation measure

numeric prediction 
evaluation measure

probabilistic model 
distance measure

AUROC

derived measure

f- measure

precision
recall

specificity

support
confidence

lift

leverage

conviction

frequency

density-based 
clustering measure 

distance-based 
clustering measure 

integrated squared error

inter-cluster similarity

intra-cluster variance

integrated average squared error

probability distribution 
scoring function

distribution likelihood

distribution log-
likelihood

class RMSE
predictive accuracy

averaged binary 
prediction measure

kappa statistic

cost curve

lift chart

precision-recall curve

ROC_curve

correlation 
coefficient

probability error-
based measure

error-based 
evaluation measure

RMSE MAD
MAPERRSE

RSS

information 
criterion

AIC BIC

Kullback-Leibner divergence

likelihood ratio

version
name

has 
description

single point AUROC

AUPRC

PRgraph 
point

has  part

has  part

has  participant

has  participant

evaluation
function appl.

evaluation
function impl.

evaluation
function

hp
hp

ico

Evaluation



Experiment context

composite 
experiment

singular 
experiment

hp



experimental
design

experimental 
variable

has participant

has participant

experiment 
conclusion

has part

experimental
goal

has part

experimental
hypothesis

has part

author name

has description

bibliographic 
reference

has description

experiment id

experiment
property

quality

experiment
context

experiment
admin info

experiment
execution status

has description

experiment
error

experiment
priority

active 
learning

exploration 
design

factorial 
design

one factor 
at a time

orthogonal 
design

latin 
hypercube

monte carlo 
design

random 
sampling design

latin square 
design

full factorial 
designfractional 

factorial design

Tagushi matrix

Planckett-
Burman design

controlled 
experimental 

variable

uncontrolled 
experimental 

variable

dependent 
experimental 

variable

task

has description

Experiment context

composite 
experiment

singular 
experiment

hp



Exposé: final notes

• In total 860 classes, 32 properties (from RO + DMOP) 

• Individuals: all algorithms, preprocessors, evaluation from WEKA

• actually stored in experiment database

• should be programmatically added (and updated)

• Written in OWL-DL, using Protégé 4.0

• Can be browsed at:

• http://expdb.cs.kuleuven.be/expdb/expose.owl

• http://www.e-lico.eu/OWLBrowser2/manage/



Use Cases
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Now: small-scale, not repeatable, not reusable

!
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• A lot of work, limits depth

• Results cannot be reused by 
others (have to be repeated)

• Hard to repeat experiments from 
descriptions in papers!  

The journal system is perhaps the most open system 

for the transmission of knowledge that could be built ... 

with 17th century media.       Nielsen (APS Physics 2008)  
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Data mining as an e-science
Ontologies: experiments shared, run automatically

• Store them in experiment databases
• Ensure reproducibility
• Reuse millions of prior experiments
• Use all info on algorithms, datasets
• Results universally accessible and useful

• Share experiments
• Internet = large, collaborative workspace
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e-Sciences
Astrophysics: Virtual Observatories
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Collaborative Experimentation
Why?

Reproducibility
Good science

Quick, easy analysis
Querying: Answer questions 

Test hypotheses

       Reuse                      
Save time & energy 

 (e.g. benchmarking)

Generalizability:
Plug into prior results: larger studies

Integration
Data mining tools

import/export 

Reference
‘Map’ of known approaches
Compare to state-of-the-art

Includes negative results36



Use Case 1
Describe experiments in a common language

-> sharing or running experiments on grid



Use Exposé to define common language: ExpML
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Use Exposé to define common language: ExpML
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ExpML: a markup language for DM experiments

• Share DM experiments, XML-based

39
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ExpML: a markup language for DM experiments

• Share DM experiments, XML-based
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<dataset id=‘d1’>
<learner evaluation id=‘e1’ input_data=‘d1’>

<learner_appl>
<learner_impl name=... version=...>
<parameter_setting name=‘P’ value=‘100’/>
<learner_appl role= ‘base-learner’>

...
</learner_appl>
<performance_estimation_appl>
...
<model_evaluation_function_appl>
...

</learner_evaluation>
<model_evaluation_result output_of=‘e1’>

<evaluation name=‘accuracy’ value= ‘0.99’>
...

appl

appl

p=?
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• Share DM experiments, XML-based
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<expml>
<dataset id=‘d1’>
<learner evaluation id=‘e1’ input_data=‘d1’>

<learner_appl>
<learner_impl name=... version=...>
<parameter_setting name=‘P’ value=‘100’/>
<learner_appl role= ‘base-learner’>

...
</learner_appl>
<performance_estimation_appl>
...
<model_evaluation_function_appl>
...

</learner_evaluation>
<model_evaluation_result output_of=‘e1’>

<evaluation name=‘accuracy’ value= ‘0.99’>
...
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p=?

ontology XML

has-part,has-participant XML subelement

(with role attribute)

has-description (required) attribute

has-quality `property’ subelement

is-concretization-of implementation_of attr.

part-of attributes

has-specific-input input_data attribute

has-specified-output output_of attribute



Use Case 2
Collect experiments in a database 

to query all empirical results



ExpDB: a database to share experiments 
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Experiment Database

>650,000 experiments, 54 algorithms,     
>87 datasets, 45 evaluation measures,                  
2 data processors, bias-variance analysis

42
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Experiment Database

>650,000 experiments, 54 algorithms,     
>87 datasets, 45 evaluation measures,                  
2 data processors, bias-variance analysis

in

out



Use Case 3
Intuitive querying



Query Interface          (YouTube “experiment database”)
http://expdb.cs.kuleuven.be
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The way ahead

• 3rd generation of tools could make data mining into e-science

• Experiments shared, reused, run worldwide

• Repeatable, generalizable, reusable

• Cooperation on a standardized ontology for data mining?

• Automatic ontology extraction: DM paper -> ontology extension

• RDF experiment databases?

• Open problems:

• Queriable models, auto-population (active meta-learning), quality 
control
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http://expdb.cs.kuleuven.be

Thanks

Gracias

Xie Xie
Danke

Dank U

Merci

Efharisto

Dhanyavaad

Grazie
Spasiba

Obrigado

Tesekkurler

Diolch

Köszönöm
Arigato

Hvala

Toda
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