Skip to content

Official Implementation of Deep-TROJ: An Inference Stage Trojan Insertion Algorithm through Efficient Weight Replacement Attack (CVPR 2024)

Notifications You must be signed in to change notification settings

ML-Security-Research-LAB/Deep-TROJ

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deep-TROJ

Official code repository of Deep-TROJ (CVPR 2024)

Download all weights (post attack optimization) from this link

  1. Carry out attack optimization on CNN models:

    python attack_optimization_new.py --dataset=cifar10 --rounds=10 --n_blocks=5 --device=cuda:0 --exp_path=results_n_blocks_5_new --mixed_precision
    
  2. Carry out attack optimization on Transformer model (DeiT-S):

    python attack_transformer_new.py --dataset=imagenet --rounds=5 --n_blocks=5 --device=cuda:0 --exp_path=results_n_blocks_5_new --mixed_precision
    
  3. Evaluate attack performance on CNN model after optimization

    python evaluate_attack.py --dataset=cifar10 --exp_path=results_n_blocks_5_new --device=cuda:0 --mixed_precision
    
  4. Evaluate attack performance on Transformer model (DeiT-S) after optimization

    python evaluate_transformer.py --dataset=imagenet --exp_path=results_n_blocks_5_new --device=cuda:0 --mixed_precision
    

About

Official Implementation of Deep-TROJ: An Inference Stage Trojan Insertion Algorithm through Efficient Weight Replacement Attack (CVPR 2024)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages