Find file
07f006e Jul 23, 2015
90 lines (79 sloc) 3.52 KB
from sklearn import cross_validation
from sklearn.metrics import log_loss, accuracy_score
import numpy as np
import pandas as pd
import random
import md5
import json
def blend_proba(clf, X_train, y, X_test, nfolds=5, save_preds="",
save_test_only="", seed=300373, save_params="",
clf_name="XX", generalizers_params=[], minimal_loss=0,
return_score=False, minimizer="log_loss"):
print("\nBlending with classifier:\n\t%s"%(clf))
folds = list(cross_validation.StratifiedKFold(y, nfolds,shuffle=True,random_state=seed))
dataset_blend_train = np.zeros((X_train.shape[0],np.unique(y).shape[0]))
#iterate through train set and train - predict folds
loss = 0
for i, (train_index, test_index) in enumerate( folds ):
print("Train Fold %s/%s"%(i+1,nfolds))
fold_X_train = X_train[train_index]
fold_y_train = y[train_index]
fold_X_test = X_train[test_index]
fold_y_test = y[test_index], fold_y_train)
fold_preds = clf.predict_proba(fold_X_test)
print("Logistic loss: %s"%log_loss(fold_y_test,fold_preds))
dataset_blend_train[test_index] = fold_preds
if minimizer == "log_loss":
loss += log_loss(fold_y_test,fold_preds)
if minimizer == "accuracy":
fold_preds_a = np.argmax(fold_preds, axis=1)
loss += accuracy_score(fold_y_test,fold_preds_a)
#fold_preds = clf.predict(fold_X_test)
#loss += accuracy_score(fold_y_test,fold_preds)
if minimal_loss > 0 and loss > minimal_loss and i == 0:
return False, False
fold_preds = np.argmax(fold_preds, axis=1)
print("Accuracy: %s"%accuracy_score(fold_y_test,fold_preds))
avg_loss = loss / float(i+1)
#predict test set (better to take average on all folds, but this is quicker)
print("Test Fold 1/1"), y)
dataset_blend_test = clf.predict_proba(X_test)
if clf_name == "XX":
clf_name = str(clf)[1:3]
if len(save_preds)>0:
id ="%s"%str(clf.get_params())).hexdigest()
print("storing meta predictions at: %s"%save_preds)"%s%s_%s_%s_train.npy"%(save_preds,clf_name,avg_loss,id),dataset_blend_train)"%s%s_%s_%s_test.npy"%(save_preds,clf_name,avg_loss,id),dataset_blend_test)
if len(save_test_only)>0:
id ="%s"%str(clf.get_params())).hexdigest()
print("storing meta predictions at: %s"%save_test_only)
dataset_blend_test = clf.predict(X_test)
d = {}
d["stacker"] = clf.get_params()
d["generalizers"] = generalizers_params
with open("%s%s_%s_%s_params.json"%(save_test_only,clf_name,avg_loss, id), 'wb') as f:
json.dump(d, f)
if len(save_params)>0:
id ="%s"%str(clf.get_params())).hexdigest()
d = {}
d["name"] = clf_name
d["params"] = { k:(v.get_params() if "\n" in str(v) or "<" in str(v) else v) for k,v in clf.get_params().items()}
d["generalizers"] = generalizers_params
with open("%s%s_%s_%s_params.json"%(save_params,clf_name,avg_loss, id), 'wb') as f:
json.dump(d, f)
if np.unique(y).shape[0] == 2: # when binary classification only return positive class proba
if return_score:
return dataset_blend_train[:,1], dataset_blend_test[:,1], avg_loss
return dataset_blend_train[:,1], dataset_blend_test[:,1]
if return_score:
return dataset_blend_train, dataset_blend_test, avg_loss
return dataset_blend_train, dataset_blend_test