Skip to content
This repository
branch: norman_github_…
Fetching contributors…

Cannot retrieve contributors at this time

file 367 lines (310 sloc) 9.888 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
(*
Copyright © 2011 MLstate

This file is part of Opa.

Opa is free software: you can redistribute it and/or modify it under the
terms of the GNU Affero General Public License, version 3, as published by
the Free Software Foundation.

Opa is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for
more details.

You should have received a copy of the GNU Affero General Public License
along with Opa. If not, see <http://www.gnu.org/licenses/>.
*)
(*
@author Damien Lefortier
@author Corentin Gallet
**)

module type Ordered = sig
  type t
  val compare : t -> t -> int
end

(**

This file contains multiple implementations of (min) heaps.

[From Wikipedia, the free encyclopedia]

A heap is a tree data structure with ordered nodes where the min
(or max) value is the root of the tree and all children are less
than (or greater than) their parent nodes.

All the different implementations respect the following signature.

- Binary Heaps:

Imperative implementation, more efficient but not persistent.
Do not support merging.

- Binomial Heaps:

Functional implementation.
Support merging.

- Soft Heaps.

Functional implementation.
Support merging.

In comparison to previous structures, a better *amortized*
complexity can be obtained by allowing some elements of the heap to
be *corrupted*, i.e. to have their value increased after their
insertion. But more the number of extraction is important, more
the soft heaps are efficient, thus it isn't interesting at all to
use them just to do insertions.

**)

module type Sig = sig
  type elt
  type t
  val empty : unit -> t
  val is_empty : t -> bool
    (** If the optional argument minimum is true, then the minimum is
not updated which is faster in some cases, this feature should
be used when many insertions are done in a row *)
  val insert : t -> ?minimum:bool -> elt -> t
    (** This function removes the minimum of the heap *)
  val remove : t -> t
  val minimum : t -> elt option
  val merge : t -> t -> t
  val iter : (elt -> unit) -> t -> unit
  val fold : (elt -> 'a -> 'a) -> t -> 'a -> 'a
  val size : t -> int
end

module Binary(X : Ordered) = struct
  type elt = X.t

  type t = { mutable length : int; mutable data : X.t array }

  let empty() = { length = 0 ; data = [||] }

  let is_empty h =
    h.length = 0

  let insert h x =
    let resize h x =
      let n = Array.length h.data in
      let data = Array.create (2 * n + 1) x in
Array.blit h.data 0 data 0 n ; h.data <- data ; h
    in
    let h = if h.length = Array.length h.data then resize h x else h in
    let rec aux i =
      let j = (i - 1) / 2
      in if i > 0 && X.compare h.data.(j) x > 0 then begin
h.data.(i) <- h.data.(j) ;
aux j
end else begin
h.data.(i) <- x end
    in
      aux h.length ; h.length <- h.length + 1 ; h

  let remove h =
    let n = h.length - 1 in
    let rec aux i x =
      let j = 2 * i + 1 in
      let k = j + 1 in
      if j < n && (X.compare h.data.(j) x < 0 || X.compare h.data.(k) x < 0) then begin
let j = if k < n && X.compare h.data.(j) h.data.(k) > 0 then k else j
in
h.data.(i) <- h.data.(j) ;
aux j x
      end else
h.data.(i) <- x
    in match h.length with
    | 0 -> h
    | _ -> aux 0 h.data.(n) ; h.length <- n ; h

  let minimum h = if h.length = 0 then None else Some h.data.(0)

  let merge _ _ = assert false

  let iter f h =
    if (h.length == 0) then
      ()
    else
      let rec aux k =
f h.data.(k);
if (k < h.length - 1) then
aux (k + 1);
      in aux 0

  let fold f h x0 =
    if (h.length == 0) then
      x0
    else
      let rec aux k l =
match l with
| 0 -> f h.data.(0) k
| _ -> aux (f h.data.(l) k) (l - 1)
      in aux x0 (h.length - 1)

  let size h = h.length

  let to_string print_elt h =
    let data = Array.to_list h.data in
    let data = Base.String.concat_map "; " print_elt data in
    Printf.sprintf "heap{ len = %d; data = [%s]}" h.length data
end

module type Epsilon = sig
  val epsilon : float
end

(** This is based on the following paper.

\@InProceedings\{
author = \{Kaplan,, Haim and Zwick,, Uri\},
title = \{A simpler implementation and analysis of Chazelle's soft heaps\},
booktitle = \{SODA '09: Proceedings of the Nineteenth Annual ACM -SIAM
Symposium on Discrete Algorithms\},
year = \{2009\},
pages = \{477--485\},
location = \{New York, New York\},
publisher = \{Society for Industrial and Applied Mathematics\},
address = \{Philadelphia, PA, USA\},
\}

**)

module Soft(X : Ordered)(E : Epsilon) = struct
  type elt = X.t

  (* A tree is as follows: (left,ckey,list,size,right) *)
  type tree =
    | Empty
    | Node of tree * X.t * X.t list * int * tree

  (* A node is as follows: [(root, smin, rank)], rank *)
  type t = (tree * tree ref * int) list * int

  let rate =
    let log2 x = log10 x /. log10 2.0
    in int_of_float (log2 (E.epsilon)) + 5

  let empty() = [],0

  let is_empty p = match fst p with
  | [] -> true
  | _ -> false

  let leaf = function
    | Node (Empty,_,_,_,Empty) -> true
    | _ -> false
  let ckey = function
    | Empty -> assert false
    | Node (_,ckey,_,_,_) -> ckey

  let rec sift x =
    match x with
      | Empty -> assert false
      | Node (Empty,_,_,_,Empty) -> x
      | Node (_,_,c,s,_) when List.length c >= s -> x
      | Node (l,ckey_,c,s,r) ->
let aux = function
| Empty
| Node (Empty,_,_,_,_) -> assert false
| Node (Node (l2,ckey_,c2,s2,r2) as l1,_,c1,s1,r1) ->
let l1 = match leaf l1 with
| true -> Empty
| _ -> sift (Node (l2,ckey_,[],s2,r2))
in Node (l1,ckey_,c1 @ c2,s1,r1)
and x = match l,r with
| Empty,_ -> Node (r,ckey_,c,s,l)
| l,r when r <> Empty && ckey l > ckey r -> Node (r,ckey_,c,s,l)
| _ -> x
in sift (aux x)

  let rank = function
    | (_,_,rank) -> rank
  let smin = function
    | (_,smin,_) -> smin
  let root = function
    | (root,_,_) -> root

  let combine x y = match root x with
    | Empty -> assert false
    | Node (_,ckey,_,size,_) ->
let size = if rank x + 1 <= rate then 1 else (3 * size + 1) / 2
in sift (Node (root x,ckey,[],size,root y)), smin x, rank x + 1

  let repeated_combine (lq,rq) k =
    let rec aux = function
      | [] -> assert false
      | x :: [] -> [x], rank x
      | x :: y :: lq when rank x = rank y ->
(match lq with
| z :: lq when rank z = rank x ->
let lq,rq = aux (combine y z :: lq)
in x :: lq, rq
| _ -> aux (combine x y :: lq))
      | x :: lq when rank x > k -> x :: lq, rq
      | x :: y :: lq ->
let lq,rq = aux (y :: lq)
in x :: lq, rq
    in aux lq

  let update_smin q f =
    let rec aux = function
      | [] -> []
      | x :: lq ->
let update (root,_,rank) = function
| [] -> [(root,ref root,rank)]
| y :: lq -> (
if ckey root <= ckey (!(smin y)) then (root,ref root,rank)
else (root,ref !(smin y),rank)
) :: y :: lq
in match f x with
| `continue x -> update x (aux lq)
| `break x -> update x lq
| `delete _x -> lq
    in aux (fst q), snd q

  let merge_ update p q =
    let merge_into (lp,rp) (lq,rq) =
      List.merge (fun x y -> compare (rank x) (rank y)) lp lq, max rp rq
    and p,q = match p,q with
      | p,q when snd p > snd q -> q,p
      | _ -> p,q in
    let q = repeated_combine (merge_into p q) (snd p)
    in match update with
      | true -> update_smin q (fun x -> `continue x)
      | false -> q

  let merge = merge_ true

  let insert p ?(minimum=true) e =
    let node = Node (Empty,e,[e],1,Empty)
    in merge_ minimum ([node,ref node,0],0) p

  let remove p = match fst p with
    | [] -> p
    | x :: _lq ->
match !(smin x) with
| Empty -> assert false
| Node (_,_,[],_,_) -> assert false
| Node (l,ckey,_ :: c,s,r) ->
let n = Node (l,ckey,c,s,r) in
let aux (_root,size,rank) =
if 2 * List.length c <= s then
match leaf n with
| false -> `break (sift n,size,rank)
| true ->
if List.length c = 0 then `delete n
else `break (n,size,rank)
else `break (n,size,rank) in
let f = (fun y ->
if root y == !(smin x) then (aux y) else `continue y)
in update_smin p f

  let minimum p = match fst p with
    | [] -> None
    | x :: _lq ->
match !(smin x) with
| Empty -> assert false
| Node (_,_,[],_,_) -> assert false
| Node (_,_,e :: _,_,_) -> Some e

  (* Useful for debug *)
  let display string_of_elt (lp,rp) =
    let string_of_list = function
      | [] -> ""
      | x :: xs -> List.fold_left (
fun acc x -> acc ^ "," ^ string_of_elt x
) (string_of_elt x) xs
    in
    let rec dfs indent = function
      | Empty -> ()
      | Node (l,ckey,c,s,r) ->
Printf.printf "%s ckey = %s, list = [%s](%d), size = %d\n"
indent (string_of_elt ckey) (string_of_list c) (List.length c) s ;
dfs (indent ^ " ") l ;
dfs (indent ^ " ") r
    in
      Printf.printf "Heap of rank is %d with rate %d:\n" rp rate;
      List.iter (
fun x ->
Printf.printf ">> Tree of rank is %d:\n" (rank x) ;
dfs " " (root x)
      ) lp

  let rec iter f h =
    match h with
    | [],_ -> ()
    | (a, _, _)::t, _ ->
let rec aux ff tree =
match tree with
| Empty -> ()
| Node (l,_,c,_,r) ->
aux ff l; List.iter ff c; aux ff r
in aux f a; iter f (t, 0);;

  let rec fold f h h0 =
    match h with
    | [], _ -> h0
    | (a,_,_)::t, _ ->
let rec aux ff tree accu =
match tree with
| Empty -> accu
| Node (l,_,c,_,r) ->
match c with
| [] -> accu
| h::_t -> aux ff r (aux ff l (ff h accu))
in fold f (t, 0) (aux f a h0)
end

module ZeroCorruption = struct
  let epsilon = max_float
end

module Binomial (X : Ordered) = Soft(X)(ZeroCorruption)
Something went wrong with that request. Please try again.