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Foreword

This User’s Guide is for the Model for Prediction Across Scales-Ocean (MPAS-Ocean), the ocean
component of the Energy Exascale Earth System Model (E3SM), developed by the U.S. Department
of Energy. Herein we describe the equations, namelist options, and variables for MPAS-Ocean.
These settings apply to both the standalone ocean-only version of MPAS-Ocean, and E3SM version
that is coupled to the atmosphere, sea ice, land ice, land and river components.

The MPAS-Ocean code for both standalone and coupled is housed in the repository https://
github.com/E3SM-Project/E3SM, within the directory components/mpas-ocean. The standalone
executable may be built within that directory using the make command with the required libraries,
as described in Chapter 1 of this guide.

Documentation for the E3SM coupled climate model may be found on the E3SM docs pages,
the E3SM Documentation webpage, or the E3SM repository homepage.


https://github.com/E3SM-Project/E3SM
https://github.com/E3SM-Project/E3SM
https://docs.e3sm.org/E3SM/
https://acme-climate.atlassian.net/wiki/spaces/DOC/overview?homepageId=1931641291
https://github.com/E3SM-Project/E3SM

History

A history of MPAS-Ocean releases follows. Each MPAS core does not participate in all releases,

which is why some numbers are missing.

version

date

description of new additions

E3SM 3.0.0 March 4, 2024

MPAS-Ocean was moved from the MPAS-Dev repository via
an E3SM submodule to code directly within the E3SM reposi-
tory. Many new features and improvements have been added.

6.0

April 18, 2018

Ability to couple with E3SM. New in-situ analysis compu-
tations. Division of tracers into groups to control output,
algorithms, and forcing. Addition of biogeochemistry tracers
and column computations.

3.0

November 18th, 2014

GM mesoscale eddy parameterization, CVMix vertical mix-
ing module (includes KPP), forward/analysis modes, variable
pools data structures, and run-time configurable i/o streams

2.0

November 15th, 2013

Surface forcing capabilities, Arbitrary Lagrangian-Eulerian
vertical grid for z-level, z-star, z-tilde, sigma, idealized isopy-
cnal

1.0

June 14th, 2013

Primitive equation (hydrostatic) ocean model for ide-
alized and realistic global domains using split-explicit
time-stepping, flux-corrected transport advection, Jackett-
McDougall EOS, harmonic/biharmonic horizontal mixing,
and implicit Richardson number-based vertical mixing. Ver-
tical coordinate may be z-level or z-star with partial bottom
cells, or idealized isopycnal.

0.0

June 14th, 2013

Initial pre-release of MPAS




Chapter 1

MPAS-Ocean Quick Start (Guide

This chapter provides MPAS-Ocean users with a quick start description of how to build and run the
model. It is meant merely as a brief overview of the process, while the more detailed descriptions
of each step are provided in later sections.

In general, the build process follows the following steps. See Chapter 15 for recommended
versions.

1.

N o B

Build MPI Layer (OpenMPI, MVAPICH2, etc.)
Build serial NetCDF library

Build Parallel-NetCDF library

Build Parallel 1/O library

(Optional) Build METIS library and executables
Checkout MPAS-Ocean from repository

Build ocean core (e.g. make CORE=ocean)

After step 7, an executable should be created called ocean_model. Once the executable is built,
one can begin the run process as follows:

1.
2.
3.

Download a run directory from http://mpas-dev.github.com, “MPAS-Ocean Download”
Copy or link executable to run directory.

(Optional) Edit namelist.ocean to have the proper parameters. In particular, you may
change the simulation length with config run duration = ’0000.06:00:00°, which shows
DAYS H:M:S.

(Optional) Create additional graph files using METIS executable (pmetis or gpmetis depend-
ing on version). A graph file is required for each processor count you want to use. See Section
4.5

. Run MPAS-Ocean (e.g. mpirun -np 8 ocean model).

. If run was successful, last line of log.ocean.0000.out shows Logging complete.

Visualize output file and perform analysis. Output file is typically named output.nc. See
Chapters 7 and 13.


http://mpas-dev.github.com

Chapter 2

Support Policy

Please see the E3SM support policy at https://e3sm.org/resources/policies/support-policy, part of
which is copied here.

The E3SM project fully realizes and embraces the importance of making the model source code,
the data and the application software tools publicly available, and of communicating and informing
the scientific community and the public about all stages of the project, its research and future
plans.

As the model code becomes an open development project, we cannot commit ourselves to
increased support to cover developmental versions. We are committed though to provide limited
support for the scientifically validated simulations from which the data will be publicly released.


https://e3sm.org/resources/policies/support-policy

Part 1

The MPAS Framework



Chapter 3

MPAS Framework Overview

The MPAS Framework provides the foundation for a generalized geophysical fluid dynamics model
on unstructured spherical and planar meshes. On top of the framework, implementations specific to
the modeling of a particular physical system (e.g., land ice, ocean) are created as MPAS cores. To
date, MPAS cores for atmosphere (Skamarock et al., 2012), ocean (Ringler et al., 2013b; Petersen
et al., 2015, 2018), shallow water (Ringler et al., 2011), sea ice (Turner et al., 2018), and land ice
(Hoffman et al., 2018) have been implemented. The MPAS design philosophy is to leverage the
efforts of developers from the various MPAS cores to provide common framework functionality with
minimal effort, allowing MPAS core developers to focus on development of the physics and features
relevant to their application.

The framework code includes shared modules for fundamental model operation. Significant
capabilities include:

e Description of model data types. MPAS uses a handful of fundamental Fortran derived types
for basic model functionality. Core-specific model variables are handled through custom
groupings of model fields called pools, for which custom accessor routines exist. Core-specific
variables are easily defined in XML syntax in a Registry, and the framework parses the
Registry, defines variables, and allocates memory as needed.

e Description of the mesh specification. MPAS requires 36 fields to fully describe the mesh used
in a simulation. These include the position, area, orientation, and connectivity of all cells,
edges, and vertices in the mesh. The mesh specification can flexibly describe both spherical
and planar meshes. More details are provided in the next section.

e Distributed memory parallelization and domain decomposition. The MPAS Framework pro-
vides needed routines for exchanging information between processors in a parallel environment
using Message Passing Interface (MPI). This includes halo updates, global reductions, and
global broadcasts. MPAS also supports decomposing multiple domain blocks on each pro-
cessor to, for example, optimize model performance by minimizing transfer of data from
disk to memory. Shared memory parallelization through OpenMP is also supported, but the
implementation is left up to each core.

e Parallel input and output capabilities. MPAS performs parallel input and output of data from
and to disk through the commonly used libraries of NetCDF, Parallel NetCDF (pnetcdf), and
Parallel Input/Output (PIO) (Dennis et al., 2012). The Registry definitions control which
fields can be input and/or output, and a framework streams functionality provides easy run-
time configuration of what fields are to be written to what file name and at what frequency



through an XML streams file. The MPAS framework includes additional functionality specific
to providing a flexible model restart capability.

e Advanced timekeeping. MPAS uses a customized version of the timekeeping functionality of
the Earth System Modeling Framework (ESMF), which includes a robust set of time and
calendar tools used by many Earth System Models (ESMs). This allows explicit definition of
model epochs in terms of years, months, days, hours, minutes, seconds, and fractional seconds
and can be set to three different calendar types: Gregorian, Gregorian no leap, and 360 day.
This flexibility helps enable multi-scale physics and simplifies coupling to ESMs. To manage
the complex date/time types that ensue, MPAS framework provides routines for arithmetic
of time intervals and the definition of alarm objects for handling events (e.g., when to write
output, when the simulation should end).

e Run-time configurable control of model options. Model options are configured through namelist
files that use standard Fortran namelist file format, and input/output are configured through
streams files that use XML format. Both are completely adjustable at run time.

e Online, run-time analysis framework. A system for defining analysis of model states during
run time, reducing the need for post-processing and model output.

Additionally, a number of shared operators exist to perform common operations on model data.
These include geometric operations (e.g., length, area, and angle operations on the sphere or the
plane), interpolation (linear, barycentric, Wachspress, radial basis functions, spline), vector and
tensor operations (e.g., cross products, divergence), and vector reconstruction (e.g., interpolating
from cell edges to cell centers). Most operators work on both spherical and planar meshes.



Chapter 4

Building MPAS

4.1 Prequisites

To build MPAS, compatible C and Fortran compilers are required. Additionally, the MPAS software
relies on the PIO parallel I/O library to read and write model fields, and the PIO library requires
the standard netCDF library as well as the parallel-netCDF library from Argonne National Labs.
All libraries must be compiled with the same compilers that will be used to build MPAS. Section
4.2 summarizes the basic procedure of installing the required I/O libraries for MPAS.

In order for the MPAS makefiles to find the PIO, parallel-netCDF, and netCDF include files and
libraries, the environment variables PI0, PNETCDF, and NETCDF should be set to the root installation
directories of the PIO, parallel-netCDF, and netCDF installations, respectively. Newer versions of
the netCDF library use a separate Fortran interface library; the top-level MPAS Makefile attempts
to add -lnetcdff to the linker flags, but some linkers require that -lnetcdff appear before
-lnetcdf, in which case -1netcdff will need to be manually added just before -lnetcdf in the
specification of LIBS in the top-level Makefile.

An MPI installation such as MPICH or OpenMPI is also required, and there is no option to
build a serial version of the MPAS executables. There is currently no support for shared-memory
parallelism with OpenMP within the MPAS framework.

4.2 Compiling I/O Libraries

NOTE: It’s important to note the MPAS Developers are not responsible for any of the libraries
that are used within MPAS. Support for specific libraries should be taken up with the respective
developer groups.

Although most recent versions of the I/O libraries should work, the most tested versions of
these libraries are: netCDF 4.1.3, parallel-netCDF 1.3.1, and PIO 1.4.1. The netCDF and parallel-
netCDF libraries must be installed before building PIO library.

All commands are presented for csh, and will not work if pasted into another shell. Please
translate them to the appropraite commands in your shell.

4.2.1 netCDF

Version 4.1.3 of the netCDF library may be downloaded from http://www.unidata.ucar.edu/
downloads/netcdf/netcdf-4_1_3/index.jsp. Assuming the gfortran and gcc compilers will be
used, the following shell commands are generally sufficient to install netCDF.


http://www.unidata.ucar.edu/downloads/netcdf/netcdf-4_1_3/index.jsp
http://www.unidata.ucar.edu/downloads/netcdf/netcdf-4_1_3/index.jsp

setenv FC gfortran
setenv F77 gfortran
setenv F90 gfortran
setenv CC gcc
> ./configure --prefix=XXXXX --disable-dap --disable-netcdf-4 --disable-cxx
--disable-shared --enable-fortran
> make all check
> make install

vV V V V

Here, XXXXX should be replaced with the directory that will serve as the root installation direc-
tory for netCDF. Before proceeding to compile PIO the NETCDF_PATH environment variable should
be set to the netCDF root installation directory.

Certain compilers require addition flags in the CPPFLAGS environment variable. Please refer
to the netCDF installation instructions for these flags.

4.2.2 parallel-netCDF

Version 1.3.1 of the parallel-netCDF library may be downloaded from https://trac.mcs.anl.
gov/projects/parallel-netcdf/wiki/Download. Assuming the gfortran and gcc compilers will
be used, the following shell commands are generally sufficient to install parallel-netCDF.

> setenv MPIF90 mpif90

> setenv MPIF77 mpif90

> setenv MPICC mpicc

> ./configure --prefix=XXXXX
> make

> make install

Here, XXXXX should be replaced with the directory that will serve as the root installation direc-
tory for parallel-netCDF. Before proceeding to compile PIO the PNETCDF _PATH environment variable
should be set to the parallel-netCDF root installation directory.

4.2.3 PIO

Instructions for building PIO can be found at http://www.cesm.ucar.edu/models/pio/. Please
refer to these instructions for building PIO.

After PIO is built, and installed the PIO enviroment variable needs to be defined to point at the
directory PIO is installed into. Older versions of PIO cannot be installed, and the PIO environment
variable needs to be set to the directory where PIO was built instead.

4.3 Compiling MPAS

Before compiling MPAS, the NETCDF, PNETCDF, and PI0 environment variables must be
set to the library installation directories as described in the previous section. A CORE
variable also needs to either be defined or passed in during the make process. If CORE
is not specified, the build process will fail.

The MPAS code uses only the ‘make’ utility for compilation. Rather than employing a separate
configuration step before building the code, all information about compilers, compiler flags, etc.,
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is contained in the top-level Makefile; each supported combination of compilers (i.e., a configu-
ration) is included in the Makefile as a separate make target, and the user selects among these
configurations by running make with the name of a build target specified on the command-line,

e.g.,
> make gfortran

to build the code using the GNU Fortran and C compilers. Some of the available targets are listed
in the table below, and additional targets can be added by simply editing the Makefile in the
top-level directory.

‘ Target ‘ Fortran compiler ‘ C compiler ‘ MPI wrappers ‘
x1f x1f90 xlc mpxlf90 / mpce
pgi pef90 pgce mpif90 / mpicc
ifort ifort gee mpif90 / mpicc
gfortran | gfortran gcc mpif90 / mpicc
g95 295 gce mpif90 / mpice

In order to get a more complete and up-to-date list of available tagets, one can use the following
command within the top-level of MPAS. NOTE: This command is known to not work with Mac
OSX.

> make -rpn | sed -n -e */°$/ { n; /7[" I*:/p }’ | sed "s/: *.x$//g"

The MPAS framework supports multiple cores — currently a shallow water model, an ocean
model, a non-hydrostatic atmosphere model, a non-hydrostatic atmosphere initialization core, and
a land ice core — so the build process must be told which core to build. This is done by either
setting the environment variable CORE to the name of the model core to build, or by specifying the
core to be built explicitly on the command-line when running make. For the shallow water core,
for example, one may run either

> setenv CORE sw
> make gfortran

or
> make gfortran CORE=sw

If the CORE environment variable is set and a core is specified on the command-line, the
command-line value takes precedence; if no core is specified, either on the command line or via
the CORE environment variable, the build process will stop with an error message stating such.
Assuming compilation is successful, the model executable, named ${CORE} model (e.g., sw.model),
should be created in the top-level MPAS directory.

In order to get a list of available cores, one can simply run the top-level Makefile without
setting the CORE environment variable, or passing the core via the command-line. And example of
the output from this can be seen below.

> make

11



( make error )
make[1]: Entering directory ‘mpas’

Usage: make target CORE=[core] [options]

Example targets:
ifort

gfortran

x1f

pgi

Availabe Cores:
atmosphere
init_atmosphere
landice

ocean

sW

Available Options:

DEBUG=true - builds debug version. Default is optimized version.
USE_PAPI=true - builds version using PAPI for timers. Default is off.
TAU=true - builds version using TAU hooks for profiling. Default is off.

Ensure that NETCDF, PNETCDF, PIO, and PAPI (if USE_PAPI=true) are environment variables
that point to the absolute paths for the libraries.

sokskokskokokkokkkk ERROR kkskskskskokokokokokk

No CORE specified. Quitting.
sksokckokskskokokkk ERROR skokskskokokkokskoskok ok

make[1]: Leaving directory ‘mpas’

4.4 Cleaning

To remove all files that were created when the model was built, including the model executable
itself, make may be run for the ‘clean’ target:

> make clean

As with compiling, the core to be cleaned is specified by the CORE environment variable, or by
specifying a core explicitly on the command-line with CORE=.

4.5 Graph partitioning with METIS

Before MPAS can be run in parallel, a mesh decomposition file with an appropriate number of
partitions (equal to the number of MPI tasks that will be used) is required in the run directory. A
limited number of mesh decomposition files (graph.info.part.*) are provided with each test case.
In order to create new mesh decomposition files for your desired number of partitions, begin with
the provided graph.info file and partition with METIS software (http://glaros.dtc.umn.edu/
gkhome/views/metis). The serial graph partitioning program, METIS (rather than ParMETIS or

12


http://glaros.dtc.umn.edu/gkhome/views/metis
http://glaros.dtc.umn.edu/gkhome/views/metis

hMETIS) should be sufficient for quickly partitioning any SCVT produced by the grid-gen mesh
generator.
After installing METIS, a graph.info file may be partitioned into N partitions by running

> gpmetis graph.info N

The resulting file, graph.info.part. N, can then be copied into the MPAS run directory before
running the model with N MPI tasks.

13



Chapter 5

Grid Description

This chapter provides a brief introduction to the common types of grids used in the MPAS frame-
work.

The MPAS grid system requires the definition of seven elements. These seven elements are
composed of two types of cells, two types of lines, and three types of points. These elements are
depicted in Figure 5.1 and defined in Table 5.1. These elements can be defined on either the plane
or the surface of the sphere. The two types of cells form two meshes, a primal mesh composed of
Voronoi regions and a dual mesh composed of Delaunay triangles. Each corner of a primal mesh
cell is uniquely associated with the “center” of a dual mesh cell and vice versa. So we define the
two mesh as either a primal mesh (composed of cells P;) or a dual mesh (composed of cells D).
The center of any primal mesh cell, P;, is denoted by x; and the center of any the dual mesh cell,
D,, is denoted by x,. The boundary of a given primal mesh cell P; is composed of the set of lines
that connect the x, locations of associated dual mesh cells D,. Similarly, the boundary of a given
dual mesh cell D, is composed of the set of lines that connect the x; locations of the associated
primal mesh cells P;.

As shown in Figure 5.1, a line segment that connects two primal mesh cell centers is uniquely
associated with a line segment that connects two dual mesh cell centers. We assume that these
two line segments cross and the point of intersection is labeled as x.. In addition, we assume that
these two line segments are orthogonal as indicated in Figure 5.1. Each x. is associated with two
distances: d. measures the distance between the primal mesh cells sharing x. and [, measures the
distance between the dual mesh cells sharing x..

Since the two line segments crossing at x. are orthogonal, these line segments form a convenient
local coordinate system for each edge. At each x. location a unit vector n. is defined to be parallel
to the line connecting primal mesh cells. A second unit vector t. is defined such that t. = k x n..

In addition to these seven element types, we require the definition of sets of elements. In all,
eight different types of sets are required and these are defined and explained in Table 5.2 and Figure
5.2. The notation is always of the form of, for example, i € CE(e), where the LHS indicates the
type of element to be gathered (cells) based on the RHS relation to another type of element (edges).

Table 5.3 provides the names of all elements and all sets of elements as used in the MPAS
framework. Elements appear twice in the table when described in the grid file in more than one
way, e.g. points are described with both cartesian and latitude/longitude coordinates. An “ncdump
-h” of any MPAS grid, output or restart file will contain all variable names shown in second column
of Table 5.3.
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Table 5.1: Definition of elements used to build the MPAS grid.

FElement Type Definition

X; point location of center of primal-mesh cells

Xy point location of center of dual-mesh cells

Xe point location of edge points where velocity is defined
de line segment distance between neighboring x; locations

le line segment distance between neighboring x, locations

P cell a cell on the primal-mesh

D, cell a cell on the dual-mesh

Table 5.2: Definition of element groups used to reference connections in the MPAS grid. Examples
are provided in Figure 5.2.

Syntax ouptut
e € EC(i) set of edges that define the boundary of F;.
e € EV(v) set of edges that define the boundary of D,,.
i€ CE(e) two primal-mesh cells that share edge e.
i€ CV(v) set of primal-mesh cells that form the vertices of dual mesh cell D,.
veVE(e) the two dual-mesh cells that share edge e.
ve VI(i) the set of dual-mesh cells that form the vertices of primal-mesh cell P;.
e € ECP(e) edges of cell pair meeting at edge e.
e € EVC(v,i) edge pair associated with vertex v and mesh cell 1.
Table 5.3: Variable names used to describe a MPAS grid.
Element  Name Size Comment
X; {x,y,z}Cell nCells cartesian location of x;
X {lon,lat}Cell nCells longitude and latitude of x;
Xy {x,y,2} Vertex nVertices cartesian location of x,
Xy {lon,lat}Vertex nVertices longitude and latitude of x,
Xe {x,y,z}Edge nEdges cartesian location of x,
Xe {lon,lat} Edge nEdges longitude and latitude of x,
de dcEdge nEdges distance between x; locations
le dvEdge nEdges distance between x, locations
e€ EC(i) edgesOnCell (nEdgesMax,nCells) edges that define P;.
e € EV(v) edgesOnVertex (3,nCells) edges that define D,.
i€ CE(e) cellsOnEdge (2,nEdges) primal-mesh cells that share edge e.
i€ CV(v) cellsOnVertex  (3,nVertices) primal-mesh cells that define D,.
vEVE(e) verticesOnEdge (2,nEdges) dual-mesh cells that share edge e.
veVI(i) verticesOnCell (nEdgesMax,nCells) vertices that define P;.
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Figure 5.1: Definition of elements used to build the MPAS grid. Also see Table 5.1.
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b9

Dy Dg
e € EC(P1) = [e1, €2, €3, €4, €5, €]
€10
e € EV(Dy) = ley, e, €7]
P i€ CE(e)) = [Py, P
Dy ) D, (e1) = [P, P2]
1€ CV(Dl) = [P17P27P3}
€11
D2 P3
€2
RS VE(@l) = [Dl,Dg]
Ds P Ds ye VC(Py) = [D1, Ds, D3, Dy, Dy, Ds, Dg]
€c ECP(el) = [6176276376476576676776876976107611}
€3
€ c ECV(Pl,Dl) = [61,6’6]
Dy €4 D5

Figure 5.2: Definition of element groups used to reference connections in the MPAS grid. Also see
Table 5.2.
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Chapter 6

Configuring Model Input and Output

The reading and writing of model fields in MPAS is handled by user-configurable streams. A stream
represents a fixed set of model fields, together with dimensions and attributes, that are all written
or read together to or from the same file or set of files. Each MPAS model core may define its own
set of default streams that it typically uses for reading initial conditions, for writing and reading
restart fields, and for writing additional model history fields. Besides these default streams, users
may define new streams to, e.g., write certain diagnostic fields at a higher temporal frequency than
the usual model history fields.

Streams are defined in XML configuration files that are created at build time for each model
core. The name of this XML file is simply ‘streams.’ suffixed with the name of the core. For
example, the streams for the sw (shallow-water) core are defined in a file named ‘streams.sw’. An
XML stream file may further reference other text files that contain lists of the model fields that are
read or written in each of the streams defined in the XML stream file.

Changes to the XML stream configuration file will take effect the next time an MPAS core is
run; there is no need to re-compile after making modifications to the XML files. As described in
the next section, it is therefore possible, e.g., to change the interval at which a stream is written,
the template for the filenames associated with a stream, or the set of fields that are written to a
stream, without the need to re-compile any code.

Two classes of streams exist in MPAS: immutable streams and mutable streams. Immutable
streams are those for which the set of fields that belong to the stream may not be modified at
model run-time; however, it is possible to modify the interval at which the stream is read or
written, the filename template describing the files containing the stream on disk, and several other
parameters of the stream. In contrast, all aspects of mutable streams, including the set of fields
that belong to the stream, may be modified at run-time. The motivation for the creation of two
stream classes is the idea that an MPAS core may not function correctly if certain fields are not
read in upon model start-up or written to restart files, and it is therefore not reasonable for users to
modify this set of required fields at run-time. An MPAS core developer may choose to implement
such streams as immutable streams. Since fields may not be added to an immutable stream at
run-time, new immutable streams may not be defined at run-time, and the only type of new stream
that may be defined at run-time is the mutable stream type.

6.1 XML stream configuration files

The XML stream configuration file for an MPAS core always has a parent XML element named
streams, within which individual streams are defined:
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<streams>
. one or more stream definitions ...

</streams>

Immutable streams are defined with the immutable_stream element, and mutable streams are
defined with the stream element:

<immutable_stream name="initial _conditions"
type="input"
filename_template="init.nc"
input_interval="initial only"

/>

<stream name="history"
type="output"
filename_template="output.$Y-$M-$D_$h.%m.$s.nc"
output_interval="6:00:00" >

. model fields belonging to this stream ...

</stream>

As shown in the example stream definitions, above, both classes of stream have the following
required attributes:

e name — A unique name used to refer to the stream.

e type — The type of stream, either "input", "output", "input;output", or "none". A
stream may be both an input and an output stream (i.e., "input;output") if, for example, it
is read once at model start-up to provide initial conditions and thereafter written periodically
to provide model checkpoints. A stream may be defined as neither input nor output (i.e.,
"none") for the purposes of defining a set of fields for inclusion other streams. Note that, for
immutable streams, the type attribute may not be changed at run-time.

e filename template — The template for files that exist or will be created by the stream. The
filename template may include any of the following variables, which are expanded based on
the simulated time at which files are first created.

— $Y — Year

— $M — Month

— $D — Day of the month
— $d — Day of the year

— $h — Hour
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— $m — Minute

— $s — Second

A filename template may include either a relative or an absolute path, in which case MPAS
will attempt to create any directories in the path that do not exist, subject to filesystem
permissions.

e input_interval — For streams that have type "input" or "input;output", the interval,
beginning at the model initial time, at which the stream will be read. Possible values include a
time interval specification in the format "YYYY-MM-DD_hh:mm:ss"; the value "initial _only",
which specifies that the stream is read only once at the model initial time; or the value "none",
which specifies that the stream is not read during a model run.

e output_interval — For streams that have type "output" or "input;output", the inter-
val, beginning at the model initial time, at which the stream will be written. Possible val-
ues include a time interval specification in the format "YYYY-MM-DD_hh:mm:ss"; the value
"initial_ only", which specifies that the stream is written only once at the model initial
time; or the value "none", which specifies that the stream is not written during a model run.

Finally, the set of fields that belong to a mutable stream may be specified with any combination
of the following elements. Note that, for immutable streams, no fields are specified at run-time in
the XML configuration file.

e var — Associates the specified variable with the stream. The variable may be any of those
defined in an MPAS core’s Registry.xml file, but may not include individual constituent arrays
from a var_array.

e var_array — Associates all constituent variables in a var_array, defined in an MPAS core’s
Registry.xml file, with the stream.

e var_struct — Associates all variables in a var_struct, defined in an MPAS core’s Registry.xml
file, with the stream.

e stream — Associates all explicitly associated fields in the specified stream with the stream:;
streams are not recursively included.

e file — Associates all variables listed in the specified text file, with one field per line, with
the stream.

6.2 Optional stream attributes

Besides the required attributes described in the preceding section, several additional, optional
attributes may be added to the definition of a stream.

e filename_interval — The interval between the timestamps used in the construction of the
names of files associated with a stream. Possible values include a time interval specification in
the format "YYYY-MM-DD_hh:mm:ss"; the value "none", indicating that only one file containing
all times is associated with the stream; the value "input_interval" that, for input type
streams, indicates that each time to be read from the stream will come from a unique file;
or the value "output_interval" that, for output type streams, indicates that each time to
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be written to the stream will go to a unique file whose name is based on the timestamp
of the data being written. The default value is "input_interval" for input type streams
and "output_interval" for output type streams. For streams of type "input;output", the
default filename interval is "input_interval" if the input interval is an interval (i.e., not
"initial_only"), or "output_interval" otherwise. Refer to Section 6.3.1 for an example of
the use of the filename_interval attribute.

e reference_time — A time that is an integral number of filename intervals from the timestamp
of any file associated with the stream. The default value is the start time of the model
simulation. Refer to Section 6.3.3 for an example of the use of the reference_time attribute.

e clobber_mode — Specifies how a stream should handle attempts to write to a file that already
exists. Possible values for the mode include:

— "overwrite" — The stream is allowed to overwrite records in existing files and to append
new records to existing files; records not explicitly written to are left untouched.

— "truncate" or "replace files" — The stream is allowed to overwrite existing files,
which are first truncated to remove any existing records; this is equivalent to replacing
any existing files with newly created files of the same name.

— "append" — The stream is only allowed to append new records to existing files; existing
records may not be overwritten.

— "never modify" — The stream is not allowed to modify existing files in any way.

The default clobber mode for streams is "never modify". Refer to Section 6.3.2 for an
example of the use of the clobber_mode attribute.

e precision — The precision with which real-valued fields will be written or read in a stream.
Possible values include "single" for 4-byte real values, "double" for 8-byte real values, or
"native", which specifies that real-valued fields will be written or read in whatever precision
the MPAS core was compiled. The default value is "native". Refer to Section 6.3.1 for an
example of the use of the precision attribute.

e packages — A list of packages attached to the stream. A stream will be active (i.e., read
or written) only if at least one of the packages attached to it is active, or if no packages
at all are attached. Package names are provided as a semi-colon-separated list. Note that
packages may only be defined in an MPAS core’s Registry.xml file at build time. By default,
no packages are attached to a stream.

e io_type — The underlying library and file format that will be used to read or write a stream.
Possible values include:

"pnetcdf" — Read/write the stream with classic large-file NetCDF files (CDF-2) using
the ANL Parallel-NetCDF library.

— "pnetcdf,cdf5" — Read/write the stream with large-variable files (CDF-5) using the
ANL Parallel-NetCDF library.

— "netcdf" — Read/write the stream with classic large-file NetCDF files (CDF-2) using
the Unidata serial NetCDF library.

— "netcdf4" — Read/write the stream with HDF-5 files using the Unidata parallel NetCDF-
4 library.
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Note that the PIO library must have been built with support for the selected io_type. By
default, all input and output streams are read and written using the "pnetcdf" option.

6.3 Stream definition examples

This section provides several example streams that make use of the optional stream attributes
described in Section 6.2. All examples are of output streams, since it is more likely that a user will
need to write additional fields than to read additional fields, which a model would need to be aware
of; however, the concepts that are illustrated here translate directly to input streams as well.

6.3.1 Example: a single-precision output stream with one month of data per
file

In this example, the optional attribute specification filename interval="01-00_00:00:00" is
added to force a new output file to be created for the stream every month. Note that the general
format for time interval specifications is YYYY-MM-DD_hh:mm:ss, where any leading terms can be
omitted; in this case, the year part of the interval is omitted. To reduce the file size, the specification
precision="single" is also added to force real-valued fields to be written as 4-byte floating-point
values, rather than the default of 8 bytes.

<stream name="diagnostics"
type="output"
filename_template="diagnostics.$Y-$M.nc"
filename_interval="01-00_00:00:00"
precision="single"
output_interval="6:00:00" >

<var name="ul0"/>
<var name="v10"/>
<var name="t2"/>
<var name="q2"/>

</stream>

The only fields that will be written to this stream are the hypothetical 10-m diagnosed wind
components, the 2-m temperature, and the 2-m specific humidity variables. Also, note that the
filename template only includes the year and month from the model valid time; this can be prob-
lematic when the simulation starts in the middle of a month, and a solution for this problem is
illustrated in the example of Section 6.3.3.

6.3.2 Example: appending records to existing output files

By default, streams will never modify existing files whose filenames match the name of a file that
would otherwise be written during the course of a simulation. However, when restarting a simulation
that is expected to add more records to existing output files, it can be useful to instruct the MPAS
I/0 system to append these records, thereby modifying existing files. This may be accomplished
with the clobber_mode attribute.
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<stream name="diagnostics"
type="output"
filename template="diagnostics.$Y-$M.nc"
filename_interval="01-00_00:00:00"
precision="single"
clobber_mode="append"
output_interval="6:00:00" >

<var name="ul0"/>
<var name="v10"/>
<var name="t2"/>
<var name="q2"/>

</stream>

In general, if MPAS were to attempt to write a record at a time that already existed in an output
file, a clobber_mode of ‘append’ would not permit the write to take place, since this would modify
existing data; in ‘append’ mode, only new records may be added. However, due to a peculiarity in
the implementation of the ‘append’ clobber mode, it may be possible for an output file to contain
duplicate times. This can happen when the first record that is appended to an existing file has
a timestamp not matching any in the file, after which, any record that is written — regardless
of whether its timestamp matches one already in the file — will be appended to the end of the
file. This situation may arise, for example, when restarting a model simulation with a shorter
output_interval than was used in the original model simulation with an MPAS core that does
not write the first output time for restart runs.

6.3.3 Example: referencing filename intervals to a time other than the start
time

The example stream of the previous sections creates a new file each month during the simulation,
and the filenames contain only the year and month of the timestamp when the file was created.
If a simulation begins at 00 UTC on the first day of a month, then each file in the diagnostic
stream will contain only output times that fall within the month in the filename. However, if a
simulation were to begin in the middle of a month — for example, the month of June, 2014 —
the first diagnostics output file would have a filename of ‘diagnostics.2014-06.nc¢’, but rather than
containing only output fields valid in June, it would contain all fields written between the middle
of June and the middle of July, at which point one month of simulation would have elapsed, and a
new output file, ‘diagnostics.2014-07.nc’, would be created.

In order to ensure that the file ‘diagnostics.2014-06.nc’ contained only data from June 2014, the
reference_time attribute may be added such that the day, hour, minute, and second in the date
and time represent the first day of the month at 00 UTC. In this example, the year and month of
the reference time are not important, since the purpose of the reference time here is to describe to
MPAS that the monthly filename interval begins (i.e., is referenced to) the first day of the month.

<stream name="diagnostics"

type="output"
filename_template="diagnostics.$Y-$M.nc"
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filename_interval="01-00_00:00:00"
reference_time="2014-01-01_00:00:00"
precision="single"
clobber_mode="append"
output_interval="6:00:00" >

<var
<var
<var
<var

</stream>

In general, the components of a timestamp, YYYY-MM-DD_hh:mm: ss, that are less significant than
(i.e., to the right of) those contained in a filename template are important in a reference_time. For
example, with a filename template that contained only the year, the month component of the
reference_time would become important to identify the month of the year on which the yearly

name="u10"/>
name="v10"/>
name="t2"/>
name="qg2"/>

basis for filenames would begin.
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Chapter 7

Visualization

This chapter discusses visualization tools that may be used by all cores.

7.1 ParaView

ParaView may be used to visualize MPAS initialization, output, and restart files. It includes a
reader that was specifically designed to read MPAS NetCDF files, including Cartesian and spherical
domains. At this time, only cell-centered quantities may be plotted with ParaView. Variables
located at edges and vertices must be interpolated to cell centers for visualization.

ParaView is freely available for download at http://www.paraview.org. Binary installations
are available for Windows, Mac, and Linux, as well as source code files and tutorials. From the
ParaView website:

ParaView is an open-source, multi-platform data analysis and visualization appli-
cation. ParaView users can quickly build visualizations to analyze their data using
qualitative and quantitative techniques. The data exploration can be done interactively
in 3D or programmatically using ParaView’s batch processing capabilities. ParaView
was developed to analyze extremely large datasets using distributed memory computing
resources. It can be run on supercomputers to analyze datasets of terascale as well as
on laptops for smaller data.

To visualize an MPAS cell-centered variable in ParaView, open the file and choose MPAS NetCDF
(Unstructured) as the file format. In the lower left Object Inspector panel, choose your variables
of interest (Figure 7.1). For large data sets, loading fewer variables will result in less wait time.
Options are available for latitude-longitude projections, vertical level, etc. Click the "Apply’ button
to load the data set. In the toolbars at the top, choose the variable to plot from the pull-down
menu, and ’Surface’ for the type of visualization. The color bar button displays a color bar, and
the color scale editor button allows the user to manually change the color bar type and extents.
The Filters menu provides computational tools for interactive data manipulation. Movies, in avi
format or as individual frames, may be conveniently created with the Save Animation tool in the
File menu.

Paraview may be used to view the grid from any MPAS NetCDF file by choosing Wireframe
or Suface With Edges from the visualization-type pull-down menu (Figure 7.2). This produces a
view of the Delaunay triangulation, which is the dual mesh to the primal Voronoi cell grid (Figure
5.1). Paraview plots all variables by interpolating colors between each corner of the Delaunay
triangles. These corners are the cell-center locations of the primal grid.
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Part 11

MPAS-Ocean
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Chapter 8

Governing Equations

The governing equations for MPAS-Ocean are

momentum equation:

0 0 1 ,
ai:junk X 11+w(7‘z1 =~ Vp- %Vszd—VK+D}Z‘+D;‘+}""
thickness equation:
oh
ot + V- (hu”) + w|z:stop = W]—gpor =0

tracer equation:

9
517 + V(W) + pul._tor = pwl._ o = Dij + DY + F7

hydrostatic condition:

s

4
p(z,y, 2) =ps(ﬂc,y)+/ pgdz'
z

equation of state:
P = feos(@a S»p)

(8.3)

(8.4)

(8.5)

Equations 8.1 through 8.5 are a normal expression of the primitive equations; i.e. the incom-
pressible Boussinesq equations in hydrostatic balance. Variable definitions are in Tables 8.1 and
8.2. The momentum advection and Coriolis terms in (8.1) are presented in vorticity-kinetic energy
form (Ringler et al., 2010, eqn 5). The thickness and tracer equations describe a single layer in the
vertical, where the operator 62 is a vertical average over that layer (see derivation in Appedix A.2
of Ringler et al. (2013a)). Otherwise, 8.1-8.5 are the model equations in continuous form. Details
of the conversion to fully discretized equations are given in the appendices of Ringler et al. (2013a).
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Table 8.1: Latin variables used in prognostic equation set. Column 3 shows the native horizontal
grid location. All variables are located at the center of the layer in the vertical unless

noted.
symbol name grid notes
D}, D mom. diffusion terms edge h horizonal, v vertical
D;f, Dy tracer diff. terms cell
f Coriolis parameter vertex
feos equation of state -
FH momentum forcing edge
F# tracer forcing cell
g grav. acceleration constant
h layer thickness cell
k vertical unit vector
K kinetic energy edge K =u*/2
P pressure cell
p° surface pressure cell
q potential vorticity vertex qg=n/h
sbot z-location of bottom of layer cell
stop z-location of top of layer cell
S salinity cell a tracer ¢
t time -
U horizontal velocity edge normal component to edge
u horizontal velocity -
v 3D velocity -
w vertical transport cell top of layer in vertical
z vertical coordinate - positive upward
Zmid z-location of middle of layer cell
z° z-location of sea surface cell

Table 8.2:

Greek variables used in prognostic equation set. Column 3 shows the native horizontal
grid location. All variables are located at the center of the layer in the vertical.

symbol name grid notes
0 horizontal divergence cell 0=V -u
¢ sea surface height cell
w relative vorticity vertex w=k-(Vxu)
n absolute vorticity vertex n=w+f
(C] potential temperature cell a tracer @
Kh, Ko tracer diffusion cell horizontal and vertical
Vh, Uy viscosity edge horizontal and vertical
p density cell
0o reference density constant
® generic tracer cell eg. 6,8
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Chapter 9

Tracer Infrastructure

Both active and passive tracers in MPAS-Ocean are governed by equation 8.3. In the current
version of the code, there are five specific groups of tracers:

activeTracers: Potential temperature and salinity.

debugTracers: A passive tracer used primarily for testing conservation and monotonicity
of tracer advection.

ecosysTracers: Ocean biogeochemistry and ecosystem dynamics based on the Biogeochem-
ical Elemental Cycling (BEC) model of Moore.

DMSTracers: Extension of BEC for prognostic sulfur cycling focused on calculating the
flux of dimethyl sulfide (DMS) from the ocean to the atmosphere.

MacroMoleculesTracers: Extension of BEC that computes the evolution of subclasses of
dissolved organic carbon (DOC), such as lipids, proteins, and poly saccharides, that can affect
air-sea transfer and the formation of cloud condensation nuclei.

Each tracer group has an associated namelist named tracer_forcing_[groupName] (for example,
tracer_forcing_ecosysTracers). To activate a tracer group, set config use_[groupName| = .true. The
activeTracers group is the only one that is turned on by default. Both the DMS and MacroMolecules
groups rely on the ecosys tracers to be enabled, but ecosys does not require DMS or MacroMolecules
to be active.

In keeping with the MPAS-O philosophy of maximum flexibility, every tracer is configured to
allow for 6 different types of forcing which the user can mix and match at will:

surface_bulk_forcing: Surface flux will be applied. It can be supplied by reading in a field
from a file, calculating in a user-created routine, passed from another model component (for
example, by the E3SM flux coupler), or a combination of these.

surface_restoring: Surface layer tracer is linearly restored to a climatological field.

interior_restoring: Full 3D tracer is linearly restored to a climatological field, except for
the surface layer.

exponential_decay: Tracer will decay at an exponential rate. Intended for radioactive
tracers and, for example, simple models of oil degradation.
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e ideal-Age_forcing: Tracer is Ideal Age, where the surface value is reset to zero and interior
values are incremented by dt every timestep.

e ttd_forcing: Tracer surface field is reset to a specified value every timestep. Intended for
simulating Time Transit Distribution functions (TTDs).

Each type of forcing requires 1 or more associated fields (10 total) to be defined for each tracer
(a spatially varying surface restoring rate or a mask defining where TTD forcing is applied), though
they won’t be allocated memory unless they are needed. As a result, there are a large number of
fields that are defined in Registry_[groupName|.xml that will likely never actually be used. For
example, the ecosysTracers group is made up of 30 individual tracers and each of them must have
10 associated forcing fields defined, resulting in 300 defined arrays, the vast majority of which will
never be used. Again, these unused fields don’t get allocated any memory, but they still must be
defined to avoid a runtime error.

Another idiosyncrasy of the tracer implementation in MPAS-O concerns output. Due to the
way tracer groups have been defined using the constructs of the MPAS framework, it isn’t possible
to directly output specific tracers within a group to an output stream; the entire group must be
designated. For temperature and salinity, for example, this isn’t a major issue since they are both
typically desired for output. However, it can be an issue for other groups such as ecosysTracers when
the user may only want a subset of prognostic fields (for example, nutrients and chlorophyll), but
is required to output either all 30 tracers or none at all, which has significant storage implications.
This feature will be addressed as soon as possible.
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Chapter 10

Namelist options

Fmbedded links point to more detailed namelist information in the appendix.

10.1 run _modes

MPAS-Ocean may be run in forward or analysis mode. Forward mode is the default, and invokes
the time stepping routine to run through the specified time duration. Analysis mode simply reads
in files upon initialization, runs all enabled analysis members, writes output, and shuts down.

| Name | Description

’ config_ocean_run_mode H Determines which run mode will be used for the ocean model.

10.2 time_management

General time management is handled by the time_management namelist record. Included options
handle time-related parts of MPAS, such as the calendar and if the simulation is a restart or not.
Users should use this record to specify the beginning time of the simulation, and either the
duration or the end of the simulation. Only the end or the duration need to be specified as the
other is derived within MPAS from the beginning time and other specified one.
If both the run duration and stop time are specified, run duration is used in place of stop time.

| Name | Description
config_do_restart Determines if the initial conditions should be read from a restart
file, or an input file.
config_restart_timestamp_name Path to the filename for restart timestamps to be read and written
from.
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Name

Description (Continued)

config_start_time

Timestamp describing the initial time of the simulation. If it is set
to ’file’, the initial time is read from restart_timestamp.

config_stop_time

Timestamp descriping the final time of the simulation. If it is set
to 'none’ the final time is determined from config_start_time and
config_run_duration.

config_run_duration

Timestamp describing the length of the simulation. If it is set
to 'none’ the duration is determined from config start_time and
config_stop_time. config_run_duration overrides inconsistent values
of config_stop_time.

config_calendar_type

Selection of the type of calendar that should be used in the simu-
lation.

config_output_reference_time

Reference time used in the units attribute of Time in output files.

10.3 io

The io namelist record provides options for modifications to the I/O system of MPAS. These include
frequency, file name, and parallelization options.

| Name

Description

config_write_output_on_startup

Logical flag determining if an output file should be written prior
to the first time step.

config_pio_num_iotasks

Integer specifying how many IO tasks should be used within the
PIO library. A value of 0 causes all MPI tasks to also be 10 tasks.
IO tasks are requried to write contiguous blocks of data to a file.

config_pio_stride

Integer specifying the stride of each IO task.

10.4 decomposition

MPAS handles decomposing all variables into computational blocks. The decomposition used needs
to be specified at run time and is computed by an external tool (e.g. metis). Additionally, MPAS
supports multiple computational blocks per MPI process, and the user may specify an additional
decomposition file which can specify the assignment of blocks to MPI processes. Run-time param-
eters that control the run-time decomposition used are specified within the decomposition namelist

record.

| Name

[

Description
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| Name || Description (Continued)

config_num_halos Determines the number of halo cells extending from a blocks owned
cells (Called the 0-Halo). The default of 3 is the minimum that can
be used with monotonic advection.

config_block_decomp_file_prefix Defines the prefix for the block decomposition file. Can include a
path. The number of blocks is appended to the end of the prefix
at run-time.

config number_of_blocks Determines the number of blocks a simulation should be run with.
If it is set to 0, the number of blocks is the same as the number of
MPI tasks at run-time.

config_explicit_proc_decomp Determines if an explicit processor decomposition should be used.
This is only useful if multiple blocks per processor are used.
config_proc_decomp_file_prefix Defines the prefix for the processor decomposition file. This file is

only read if config_explicit_proc_decomp is .true. The number of
processors is appended to the end of the prefix at run-time.

10.5 time_integration

The time integration namelist controls parameters that pertain to all time-stepping methods. Op-
tions that are specific to a particular time-stepping method are contained in a separate namelist
for that method, below.

| Name | Description
config_dt Length of model time-step.
config_time_integrator Time integration method. These options are only supported in
standalone, not E3SM: "LTS’, '"FB_LTS’.
config_ number_of_time _levels The number of time levels in the time-stepping scheme. This is
used for array allocation.

10.6 hmix

There are several choices of horizontal mixing schemes available for the momentum and tracer
equations. Each of these is a turbulence closure, and attempts to account for subgrid-scale mixing
and diffusion. These schemes have the practical effect of reducing grid-scale noise in the velocity
and tracer fields, and improving numerical stability.

Each horizontal mixing scheme has its own namelist, and may be turned on with the _use_
logical configuration flags. Multiple schemes may be run simultaneously. The horizontal mixing
terms in the governing equations (8.1, 8.3) are D} for momentum and D} for tracers. No horizontal
mixing is applied to the thickness equation.

All horizontal mixing coefficients can be set to scale with the mesh as pﬁlg/ Yin equations (10.2,
10.3, 10.4, 10.5). The mesh density, p,,, is a variable in the input and restart file. It can vary
between zero and one, and is one in the highest resolution region. Scaling with the mesh can be
turned off, as described in the options below.
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The anticipated potential Vorticity (APV) method is a parameterization of the effects of subgrid
or unresolved scales on those explicitly resolved (Vallis and Hua, 1988). It contributes an upstream
bias to the vorticity in the del2 and del4 momentum terms as follows,

Napy = 1 — Cappdt (u-Vn), (10.1)

where the altered vorticity 74y, is used in equations (10.2, 10.8, 10.11).

| Name | Description |

config_hmix_scaleWithMesh If false, del2 and del4 coefficients are constant throughout the mesh
(equivalent to setting p,, = 1 throughout the mesh). If true, these
coefficients scale as mesh density to the -3/4 power.
config_maxMeshDensity Global maximum of the mesh density
config_hmix_use_ref_cell_width If true, hmix coefficient values are set with reference to con-
fig_hmix_ref_cell width. If false, hmix coefficient values are ref-
erenced to smallest gridcell in the mesh. The false setting is for
backwards compatilibity. When false, hmix coefficient flags must
be adjusted for every new mesh with a different minimum-sized
cell.

config_hmix_ref_cell_width Reference cell width. If config_hmix_use_ref_cell width =
true., then hmix coefficients are set to be nus, = con-
fig_mom_del2*(cellWidth / config_hmix_use_ref_cell_width)
and  nugp = config_mom_deld*(cellWidth  / con-
fig_hmix_use_ref cell width)® where cellWidth is the effective
cell width computed as 2*sqrt(areaCell/pi). See Hoch et al 2020
JAMES eq 1,2. This relation applies within a simulation, but
also generally among multiple simulations, so the parameters con-
fig_mom_del2, config_mom_del4, and config_hmix_use_ref_cell_width
can generally remain at their standard values, and just be adjusted
for fine tuning.

config_apvm_scale_factor Anticipated potential vorticity (APV) method scale factor, cgpy-
When zero, APV is off.

10.7 hmix del2

The “del2”, or Laplacian, turbulence closures are

w Vp, Vp,
Pm Pm
Df=vV. <h2’/"‘4V<p> (10.3)
Pm

for momentum and tracers, respectively. Variable definitions appear in Tables 8.1 and 8.2. The
momentum diffusion is in divergence-vorticity form because it is a natural discretization of the
vector Laplacian operator with a C-grid staggering.
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The Laplacian operator smooths the momentum and tracer fields, and smooths more strongly
at small scales than at large scales. This operator is the two dimensional form of the heat equation,
Ut = Vg, described in introductory books on partial differential equations. The strength of mixing
is controlled by the viscosity, vy, for the momentum equation, and the diffusion, xj, for the tracer
equation.

] Name H Description
config_use_mom_del2 If true, Laplacian horizontal mixing is used on the momentum equa-
tion.
config_mom _del2 Horizontal viscosity, vap,. If config_hmix_use_ref_cell_width
= .true. then v, = config_mom_ del2*(cellWidth / con-

fig_hmix_use_ref_cell_ width). If config-hmix_use_ref_cell width =
false. then it is referenced to the smallest cell.

config_use_tracer_del2 If true, Laplacian horizontal mixing is used on the tracer equation.
config_tracer_del2 Horizontal diffusion, kop. If config_ hmix_use_ref_cell_width
= .true.  then Kk, = config_tracer_del2*(cellWidth / con-

fig_ hmix_use_ref_cell_ width). If config_hmix_use_ref_cell width =
false. then it is referenced to the smallest cell.

10.8 hmix del4

The “del4”, or biharmonic, turbulence closures are

w_ _Vh
DY = —3—/4v4u (10.4)
DY — h—L 7 [V - (hV 10.5
[= -V (VY6 (10.5)

for momentum and tracers These are both computed by applying the Laplacian operator twice.
For momentum, this can be written in terms of divergence and vorticity as

§=V-u (10.6)
n=k-(Vxu)+f (10.7)
Vu = (Vi +k x Vn) (10.8)

5o = V- (V*u) (10.9)

m =k (Vx (V) +f (10.10)
DY = /;ILI(Vég +k % Vi), (10.11)

The biharmonic operator is similar to the Laplacian operator, but smooths more strongly at high
wavenumbers.
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] Name H Description

config_use_mom _del4 If true, biharmonic horizontal mixing is used on the momentum
equation.

config_mom_del4 Coefficient for horizontal biharmonic operator on momentum.
If config_hmix_use_ref _cell width = .true. then vy, = con-

fig_mom_deld*(cellWidth / config_hmix use_ref cell width)3.  If
config_hmix_use_ref_cell_width = .false. then it is referenced to the
smallest cell.

config_ mom_del4_div_factor The divergence portion of the deld operator is scaled by this factor.
config_use_tracer_del4 If true, biharmonic horizontal mixing is used on the tracer equation.
config_tracer_del4 Coefficient for horizontal biharmonic operator on tracers. If

config_hmix_use_ref_cell_width = .true. then w4, = con-

fig_tracer_del4*(cellWidth / config-hmix_use_ref_cell_ width)3. If
config_hmix_use_ref_cell_width = .false. then it is referenced to the
smallest cell.

10.9 hmix Leith

The Leith (1996) closure is the enstrophy-cascade analogy to the Smagorinsky (1963) energy-cascade
closure, i.e. the Leith closure assumes an inertial range of enstrophy flux moving toward the grid
scale. The assumption of an enstrophy cascade and dimensional analysis produces right-hand-side
dissipation, D}, of velocity of the form

U V. (1, Vu) =V - (r Vol (Az)? Vu) (10.12)

where w is the relative vorticity, u is the horizontal velocity, Az is the local grid spacing and T is
a non-dimensional, O(1) parameter. This beta release approximates the RHS of the 10.12 as

B =1Viu (10.13)

where the V?u is computed using the form shown in 10.8. Future releases will remove this approx-
imation by computing the rate-of-strain, i.e. Vu, directly.

| Name || Description
config_use_Leith_del2 If true, the Leith enstrophy-cascade closure is turned on
config_Leith_parameter Non-dimensional Leith closure parameter
config_Leith_dx Characteristic length scale, usually the smallest dx in the mesh
config_Leith_visc2_max Upper bound on the allowable value of Leith-computed viscosity

10.10 Redi_isopycnal mixing
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Name

Description

config_use_Redi

If true, Redi isopycnal mixing is turned on

config_Redi_closure

Control what type of function is used for Redi . For ’equalGM’,
RediKappa is set to gmBolusKappa, so picks up the closure used
by GM. Note that equalGM should only be used with 2D GM
schemes (e.g. config GM_closure=constant or Visbeck), not with
EdenGreatbatch.

config_Redi_constant_kappa

The Redi diffusion coefficient. Only used when config_Redi_closure
= ’constant’.

config_Redi_maximum_ slope

value of maximum allowed isopycnal slope from Danabasoglu et al
2008 equation (2)

config_Redi_use_slope_taper

If true, Redi is tapered based on Danabasoglu and McWilliams
1995 (slope tapering)

config_Redi_use_surface_taper

If true, Redi slope is tapered near sfc based on Large et al 1997

config_Redi_limit_term1

If true, the N2 limiting is applied to the horizontal diffusion term

config_Redi_use_quasi_-
monotone_limiter

If true, fluxes are reduced to prevent tracers from violating mono-
tonicity. Cross-term fluxes are scaled toward zero to prevent tracers
from under/overshooting the min/max values in adjacent cells and
layers

config_Redi_quasi_monotone_-
safety_factor

A safety factor applied to flux scaling when monotonicity is vio-
lated. Smaller values scale fluxes toward zero more aggressively.

config_Redi_min_layers_diag_-
terms

Redi diagonal terms (2 and 3) are turned off from layer 1
through config_ Redi_min_layers_diag_terms-1, and on from con-
fig_Redi_min_layers_diag_terms to nVertLevels. The Redi diagonal
terms are not guaranteed to produce bounded tracer fields, and
in practice produce growing temperatures in a few columns with
fewer than 5 vertical cells. Redi is meant for isopycnal mixing in
the deep ocean, so not applying Redi diagonal terms in very shal-
low regions is an acceptable solution.

config_Redi_horizontal _taper

Control how the Redi x value varies as a function of hor-
izontal resolution. ‘none’ is constant, ’ramp’ is strictly
based on resolution, 'RossbyRadius’ follows Hallberg (2013) -
https://doi.org/10.1016 /j.ocemod.2013.08.007

config_Redi_horizontal ramp_min

Minimum value in grid cell size for Redi x ramp function. Here
cell size refers to dcEdge. Used when config_Redi_horizontal _taper
is set to ramp.

config_Redi_horizontal ramp_-
max

Maximum value in grid cell size for Redi x ramp function. Here
cell size refers to dcEdge. Used when config_Redi_horizontal _taper
is set to ramp.

10.11

submesoscale_eddy_parameterization

Name

I

Description

|

config_submesoscale_enable

flag to enable the FK2011 parameterization for submesoscale eddies

config_submesoscale_tau

timescale for frictional slumping of front (in seconds)

config_submesoscale_Ce

efficiency of submesoscale eddies
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Name

Description (Continued)

config_submesoscale_Lfmin

minimum frontal width (meters)

config_submesoscale_ds_max

maximum grid scale to scale up buoyancy gradient

10.12

GM _eddy_parameterization

Name

Description

config_use_ GM

If true, the standard GM for the tracer advection and mixing is
turned on.

config_ GM _closure

Control what method used to compute GM k. Both ’con-
stant’ and 'N2_dependent’ use the method in Ferrari et al. 2010
(https://doi.org/10.1016/j.ocemod.2010.01.004). ’constant’ uses a
constant kappa in eqn 16a, while 'N2_dependent’ varies kappa
in the vertical according to Danabasoglu and Marshall 2007
(https://doi.org/10.1016/j.0cemod.2007.03.006). ’Visbeck’ imple-
ments a horizontally varying diffusivity of Visbeck et al 1997. Eden-
Greatbatch implements a simplified form of the EKE scheme in
Eden and Greatbatch (2008) Ocean modeling

config_ GM _constant_kappa

Coefficient of standard GM parametrization of eddy transport (Bo-
lus component), k. Only used when config_ GM _closure is set to
constant.

config_GM _constant_bclMode-
Speed

The parameter setting for the first baroclinic mode speed
for the wvertical stream function boundary value problem.
This appears as ¢ in eqn 16a of Ferrari et al. 2010
(https://doi.org/10.1016/j.ocemod.2010.01.004).

config_GM_minBclModeSpeed._-
method

Determines how the GM setting for the minimum of the first
baroclinic mode speed is computed. If ’constant’ then use con-
fig_GM _constant_bclModeSpeed. If ’computed’ then compute at
every edge at every time step using the Brunt-Vaisala frequency

config_ GM _spatially_variable_-
min_kappa

minimum value of bolus diffusivity for spatially variable GM
schemes. Used for all choices of config_ GM _closure other than ’con-
stant’.

config_ GM _spatially_variable_-
max_kappa

minimum value of bolus diffusivity for spatially variable GM
schemes. Used for all choices of config_ GM _closure other than ’con-
stant’.

config_GM _spatially_variable_-
baroclinic_mode

baroclinic wave mode chosen for the Ferrari et al 2010 calculation.
Used for all choices of config_ GM _closure other than ’constant’.

config_ GM _Visbeck_alpha

scaling factor on the Visbeck diffusivity parameterization

config_GM _Visbeck_max_depth

minimum depth for calculation of vertical average

config GM_EG _riMin

minimum Richardson number to prevent overly large bolus Kappa
values

config_ GM_EG __kappa_factor

factor to scale diffusivity for Eden Greatbach scheme

config_ GM_EG_Rossby_factor

factor multiplying the Rossby length in the scheme from Eden
Greatbatch (2008) Ocean Modeling — Equation (28)

config GM_EG _Rhines_factor

factor multiplying the Rhines length in the scheme from Eden
Greatbatch (2008) Ocean Modeling — Equation (28)
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Name

Description (Continued)

config_GM _horizontal taper

Control how the GM Bolus value varies as a function of
horizontal resolution. ‘none’ is constant, ‘ramp’ is strictly
based on resolution, 'RossbyRadius’ follows Hallberg (2013) -
https://doi.org/10.1016 /j.ocemod.2013.08.007

config_ GM _horizontal ramp_min

Minimum value in grid cell size for GM « ramp function. Here cell
size refers to dcEdge. Used when config_ GM _horizontal _taper is set
to ramp.

config_GM _horizontal_ramp_max

Maximum value in grid cell size for GM « ramp function. Here
cell size refers to dcEdge. Used when config_GM _horizontal _taper
is set to ramp.

config_GMRedi_Rossby_ramp_-
min

Minimum value of the ratio between grid-cell size (dcEdge) and
Rossby radius for GM and Redi x ramp functions. Used when con-
fig_GM_horizontal_taper and/or config_Redi_horizontal taper are
set to RossbyRadius.

config GMRedi_Rossby_ramp_-
max

Maximum value of the ratio between grid-cell size (dcEdge) and
Rossby radius for GM and Redi x ramp functions. Used when con-
fig_GM_horizontal_taper and/or config_Redi_horizontal taper are
set to RossbyRadius.

10.13 eddy_parameterization

] Name

|| Description ‘

config_eddyMLD _dens_threshold

potential density change relative to surface for mixed layer depth
threshold method. This calculation is used for the Redi tapering,
GM N2_dependent bolus kappa, and the submesoscale eddy pa-
rameterization

config_eddyMLD _reference_depth

reference depth for threshold computation

config_eddyMLD _reference -
pressure

reference pressure for original mixed layer depth calculation

config_eddyMLD _use_old

switches from old dThreshMLD calculation to new (fixed one)

10.14 cvmix

There are several choices of vertical mixing schemes available for the momentum and tracer equa-
tions. The CVMix namelist record is intended to control the Community Vertical Mixing package
https://github.com/CVMix. CVMix is a collection of individual vertical mixing parameterizations
intended to model background, convective, shear, tidal, double diffusion and ocean boundary layer
processes. The output of each CVMix parameterization is a vertical profile of viscosity/diffusivity
for a specific process. The CVMix parameterizations are constructed and implemented as “stand-
alone” modules, so each parameterization can be toggled on/off without directly impacting the use
of other parameterizations. The net viscosity/diffusivity used by the ocean model is the sum of
all of the individual viscosity/diffusivity profiles. The one exception to this rule is when KPP is
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used when config_cvmix_kpp_matching is set to “MatchBoth”; in this instance the KPP-computed
viscosity /diffusivity is the only contribution to mixing from the surface to the bottom of the ocean
boundary layer.

All supported schemes are part of the Community Vertical Mixing (CVMix) library. A few
legacy MPAS specific options are included, but are not off