
An Alternate Feature Variations Mechanism
Skef Iterum

August 15, 2023

1 Introduction

This is an attempt to flesh out a sketch of a new mechanism for specifying a replacement feature

table in a variable font. Behdad Esfahbod and I have been discussing this sketch in OpenFontFormat

issue 53

2 Concept

In the current system a single list of condition sets is evaluated in order until one set evaluates all

true, and then whatever feature indices are listed in that entry replace the original feature tables.

The problem with this system is that one must break down the designspace into small unique

areas either geometrically or logically as described in conditions.pdf.

In this new system the basic unit is not feature tables but lookups:

• Iterate through a list where each element has a condition set.

• Instead of stopping at the first condition set, all entries in the list are evaluated.

• When all conditions in the set evaluate to true, one adds lookups corresponding to some

feature from a “true” list (if any).

• When all conditions in the set evaluate to false, one adds lookups corresponding to some

feature from a “false” list (if any).

At the end of the search, the total set of added lookups encountered is used as the list for that

feature.

3 Tables

The idea here is to add a new lookup variation mechanism mostly analogous to the feature

variation mechanism.

1

https://github.com/MPEGGroup/OpenFontFormat/issues/53
https://github.com/MPEGGroup/OpenFontFormat/issues/53
https://github.com/MPEGGroup/OpenFontFormat/files/12198534/conditions.pdf


An Alternate Feature Variations Mechanism 2

3.1 FeatureVariations Table Format 2

Type Name Description

uint16 majorVersion set to 2

uint16 minorVersion set to 0

Offset32 lookupVariationsOffset Offset to lookupVariations

table, 0 if unused

uint32 featureVariationRecordCount Number of feature variation

records.

FeatureVariationRecord featureVariationRecords[featureVariationRecordCount] Array of feature variation

records.

3.2 LookupVariations Table

Type Name Description

uint32 lookupVariationRecordCount Number of lookup variation

records.

LookupVariationRecord lookupVariationRecords[lookupVariationRecordCount] Array of lookup variation

records (sorted).

3.3 LookupVariation Record

Type Name Description

uint16 featureIndex The feature table index to match (sort key)

Offset32 lookupAdditionsTable Offset to a LookupAdditions table

3.4 LookupAdditions Table

Type Name Description

uint16 majorVersion set to 1

uint16 minorVersion set to 0



An Alternate Feature Variations Mechanism 3

Type Name Description

uint16 flags If bit 0 is set start out lookup

set with lookups from current

feature table

uint32 conjunctionCount Number of

LookupConjunction records.

Offset32 lookupConjunctionRecord[conjunctionCount] Array of LookupConjunction

records.

3.5 LookupConjunction Record

Type Name Description

Offset32 conditionSetOffset Offset to a condition set table

Offset32 trueLookupIndexSetOffset Offset to a LookupIndexSet table when all conditions are

true (0 if unused)

Offset32 falseLookupIndexSetOffset Offset to a LookupIndexSet table when at least one

condition is false (0 if unused)

3.6 LookupIndexSet Table

Type Name Description

uint16 lookupIndexCount Number of LookupList indices in this table.

uint16 lookupListIndices[lookupIndexCount] Array of indices into the lookup list.

4 Algorithm

The original feature table contains an offset to a featureParams table and a list of lookupList

indices. The purpose of the algorithm is to allow either or both of these to be substituted in

relation to the chosen position in design space.

1. Process the featureVariationRecords in the same way as for a version 1 table

2. For each active feature with a LookupVariationRecord:



An Alternate Feature Variations Mechanism 4

a. Allocate an empty feature table structure.

b. Copy any FeatureParams from the current feature table

c. If bit 0 is set, copy list of lookups from current feature table into the set for this feature.

d. For each LookupConjunction record:

i. If all conditions are true set o = trueLookupIndexSetOffset

ii. Otherwise set o = falseLookupIndexSetOffset

iii. Copy each lookup in the LookupIndexSet at o into the set for this feature

5 Requirements

• The initial feature table in GSUB for a given tag should be equivalent to the output of the

algorithm of that feature for the (format) default instance (all axes 0).

6 Typical patterns

• A given feature will typically use either the FeatureVariation or the LookupVariation subtable.

The exception is if a feature alters its featureParams at points in design space but specifies

its lookups with the LookupVariation system.

• When a feature has some lookups used at every point in designspace, but cannot copy those

from the initial feature table, they can be added to the set with an initial LookupConjunction

Record with a 0 conditionSetOffset. The empty condition set always evaluates to true so

the entries in the trueLookupAdditions subtable will always be added.

7 Formal Properties

For the purposes of this discussion assume there is an easy way to logically negate any condition.

And for the sake of simplicity ignore the falseLookupIndexSet subtable.

When a feature uses the LookupVariations system the set of lookups will be union of those

added for each condition set that evaluates to true. This is analogous to a logical “or”. A condition

set evaluates to true when all of its conditions evalute to true, analogous to a logical “and”.

Therefore lookups are added to the set based on a disjunction of conjunctions.



An Alternate Feature Variations Mechanism 5

Accordingly, the system is “complete” in that any lookup can be included (or excluded) accord-

ing to any arbitrary boolean formula using the following convention:

1. Convert the formula for each lookup to disjunctive normal form.

2. Pool the conjunctions used among the lookups together.

3. Create a LookupConjunction records corresponding to each individual conjunction with a

trueLookupIndexSet containing each lookup that had that conjunction in its DNF.

8 Motivation for false LookupIndexSet table

Although the system is formally complete with the false LookupIndexSet field, which is conceptu-

ally analogous to an “else”, it simplifies some cases.

GSUB substitutions are typically present or absent, but the variable substitution mechanism

can also be used with GPOS. Consider the archetypal GPOS case of a sudden change in kerning

between “T” and “o” when the weight (or other axis) makes the latter no longer fit under the

former. One can implement that change with clever variable kerning values but one can also

implement it by specifying two separate kerning values and switching between them.

When doing the latter, one wants one value used when a specified set of conditions is true

and the other in other cases, e.g. when at least one is false. Positively expressing the latter without

an “else” might take many separate conjunctions (according to how the conditions overlap). The

analysis is much easier with the “else”.


	Introduction
	Concept
	Tables
	FeatureVariations Table Format 2
	LookupVariations Table
	LookupVariation Record
	LookupAdditions Table
	LookupConjunction Record
	LookupIndexSet Table

	Algorithm
	Requirements
	Typical patterns
	Formal Properties
	Motivation for false LookupIndexSet table

