
OpenType Font Variations Common Table 1

Formats 2

OpenType Font Variations allow continuous variation along one or more design axes, 3
such as weight or width. An overview of OpenType Font Variations and a specification of 4
the algorithm for interpolating variation instance values is provided in the chapter, 5
OpenType Font Variations Overview; that chapter should be read first. This chapter 6
documents the formats for variation data that are used in various font tables, such as 7
the 'gvar' or MVAR tables. The data stored using the formats described in this chapter 8
are processed as described in detail in the Overview chapter; additional, higher-level 9
information on processing is provided here. 10

Overview 11

A font has many different data items found in several different font tables that provide 12
values that are specific to a particular font face. Examples include glyph-specific values, 13
such as the positions of glyph outline points and glyph advance widths, and face-wide 14
values, such as a sub-family name, a weight class, or ascender and descender values. In a 15
variable font, most or all of these values may need to vary for different variation 16
instances. When an application selects a variation instance within the font’s variation 17
space, new values for such items appropriate to that instance need to be derived. This is 18
done using delta adjustment values. 19

For example, the OS/2 table of a font may provide a default sxHeight value of 970. The 20
MVAR table might provide a delta value of +50 that is used for weight-axis values from 21
the default to the heaviest-supported weight. For a particular instance, the interpolation 22
process might scale that delta with a scalar co-efficient of 0.4, deriving an instance 23
sxHeight value of 990. 24

These concepts and the interpolation algorithm for deriving instance values are 25
described in detail in the chapter, OpenType Font Variations Overview. 26

The variation data for a font consists of a number of delta adjustment values. Each 27
individual delta applies to a particular, target data item — for instance, the X coordinate 28
of a point in a glyph outline, or the font’s sTypoAscender — and is also associated with 29
a specific region within the font’s design variation space over which it is applicable. 30
Thus, a given delta is logically keyed by the target data item and the applicable region. 31

A variable font includes many deltas. At the highest level, deltas are organized into 32
collections for different target item sets: 33

• Deltas for positions of points of a 'glyf' table are stored in a 'gvar' table. 34
• Deltas for positions of points of a CFF2 table are stored within the CFF2 table. 35
• Deltas for CVT values in the 'cvt ' table are stored in a 'cvar' table. 36
• Deltas for glyph metrics in an 'hmtx' table are stored in an HVAR table; and deltas 37

for glyph metrics in a 'vmtx' or VORG table are stored in a VVAR table. 38
• Deltas for anchor positions in GPOS lookups and other items used in GDEF, GPOS 39

or JSTF tables are stored within variation data contained in the GDEF table. 40
• Deltas for font-wide metrics and other items from the OS/2, 'hhea', 'gasp', 'post' 41

or 'vhea' tables are stored in an MVAR table. 42
• Deltas for values in other tables are stored in the respective table: deltas for 43

baseline metrics in the BASE table and for various items in the COLR table are 44
stored in each table. 45

In a variable font, the largest group of deltas are for the positions of glyph outline 46
points. For TrueType outlines in a 'glyf' table, the deltas are stored within the 'gvar' 47
table, with a second level of organization grouping deltas by glyph ID. See the 'gvar' 48
table specification for details. 49

Below these higher levels of organization, most variation data is organized in one of two 50
ways. (Variation data for CFF 2 outlines is a partial exception — see below.) 51

• Organize sets of deltas for several target items into groupings by the variation-52
space region over which they apply. Since regions are defined using n-tuples (or 53
“tuples”), such data sets will be referred to as tuple variation stores. 54

• Organize sets of deltas associated with different regions into groupings by the 55
target items to which they apply. Such data sets will be referred to as item 56
variation stores. 57

The two formats have different ways of representing n-tuples that define regions of 58
applicability, and different ways of associating deltas with target font-data items. The 59
tuple variation store format is optimized for compact representation of glyph outline 60
variation data that is all processed for a given variation instance. The item variation store 61
format, on the other hand, is designed to allow direct access to variation data for 62
arbitrary target items, allowing more efficient processing in contexts that do not require 63
interpolated values for all items to be computed. (Additional details are provided 64
below.) The 'gvar' and 'cvar' table use the tuple variation store format, while variation 65
data in most other tables, including the MVAR, HVAR and GDEF tables, use item 66
variation store formats. 67

Variation data for CFF 2 outlines are handled slightly differently than other cases. The 68
deltas for glyph outline descriptions are interleaved directly within the outline 69
descriptions in the Compact Font Format 2 (CFF2) table. But the sets of regions that are 70
associated with the delta sets are defined in an item variation store, contained as a 71
subtable within the CFF2 table. 72

Tuple Variation Store 73

Tuple variation stores are used in the 'gvar' and 'cvar' tables, and organize sets of 74
variation data into groupings, each of which is associated with a region of applicability 75
within the variation space. Within the 'gvar' table, there is a separate variation store for 76
each glyph. Within the 'cvar' table, there is one variation store providing variations for all 77
CVT values. 78

There is a minor difference in the top-level structure of the store in these two contexts. 79
Within the 'cvar' table, it is the entire 'cvar' table that comprises the specific variation 80
store format, with a header that begins with major/minor version fields. The specific 81
variation store format for glyph-specific data within the 'gvar' table is the 82
GlyphVariationData table (one per glyph ID), which does not include any version fields. 83
In other respects, the 'cvar' table and GlyphVariationData table formats are the same. 84
There is also a minor difference in certain data that can occur in a GlyphVariationData 85
table versus a 'cvar' table. Differences between the 'gvar' and 'cvar' tables will be 86
summarized later in this section. 87

In terms of logical information content, the GlyphVariationData and 'cvar' tables consist 88
of a set of logical, tuple variation data tables, each for a different region of the variation 89
space. In physical layout, however, the logical tuple variation tables are divided into 90
separate parts that get stored separately: a header portion, and a serialized-data 91
portion. 92

In terms of overall structure, the GlyphVariationData table and the 'cvar' table each 93
begin with a header, which is followed by serialized data. The header includes an array 94
with the tuple variation headers. The serialized data include deltas and other data that 95
will be explained below. 96

97
Figure: High-level organization of tuple variation stores 98

Tuple Records 99

The tuple variation store formats reference regions within the font’s variation space 100
using tuple records. These references identify positions in terms of normalized 101
coordinates, which use F2DOT14 values. 102

Tuple record (F2DOT14): 103

Type Name Description
F2DOT14 coordinates[axisCount] Coordinate array specifying a position within the

font’s variation space. The number of elements
must match the axisCount specified in the 'fvar'
table.

Tuple Variation Store Header 104

The two variants of a tuple variation store header, the GlyphVariationData table header 105
and the 'cvar' header, are only slightly different. The formats of each are as follows: 106

GlyphVariationData header: 107

Type Name Description
uint16 tupleVariationCount A packed field. The

high 4 bits are
flags (see below),
and the low 12 bits
are the number of
tuple variation
tables for this
glyph. The count
can be any number
between 1 and
4095.

Offset16 dataOffset Offset from the
start of the
GlyphVariationData
table to the
serialized data.

TupleVariationHeader tupleVariationHeaders[tupleVariationCount] Array of tuple
variation headers.

'cvar' table header: 108

Type Name Description
uint16 majorVersion Major version

number of the
'cvar' table —
set to 1.

uint16 minorVersion Minor version
number of the
'cvar' table —
set to 0.

uint16 tupleVariationCount A packed field.
The high 4 bits
are flags (see
below), and the
low 12 bits are
the number of
tuple variation
tables. The
count can be

any number
between 1 and
4095.

Offset16 dataOffset Offset from the
start of the
'cvar' table to
the serialized
data.

TupleVariationHeader tupleVariationHeaders[tupleVariationCount] Array of tuple
variation
headers.

The tupleVariationCount field contains a packed value that includes flags and the 109
number of logical tuple variation tables — which is also the number of physical tuple 110
variation headers. The format of the tupleVariationCount value is as follows: 111

Mask Name Description
0x8000 SHARED_POINT_NUMBERS Flag indicating that some or all tuple variation

tables reference a shared set of “point”
numbers. These shared numbers are
represented as packed point number data at
the start of the serialized data.

0x7000 Reserved Reserved for future use — set to 0.
0x0FFF COUNT_MASK Mask for the low bits to give the number of

tuple variation tables.

If the SHARED_POINT_NUMBERS flag is set, then the serialized data following the 112
header begins with packed “point” number data. In the context of a GlyphVariationData 113
table within the 'gvar' table, these identify outline point numbers for which deltas are 114
explicitly provided. In the context of the 'cvar' table, these are interpreted as CVT indices 115
rather than point indices. The format of packed point number data is described below. 116

TupleVariationHeader 117

The GlyphVariationData and 'cvar' header formats include an array of tuple variation 118
headers. The TupleVariationHeader format is as follows. 119

TupleVariationHeader: 120

Type Name Description
uint16 variationDataSize The size in bytes of the serialized data for this tuple

variation table.
uint16 tupleIndex A packed field. The high 4 bits are flags (see below).

The low 12 bits are an index into a shared tuple
records array.

Tuple peakTuple Peak tuple record for this tuple variation table —
optional, determined by flags in the tupleIndex
value.

Note that this must always be included in the 'cvar'
table.

Tuple intermediateStartTuple Intermediate start tuple record for this tuple
variation table — optional, determined by flags in
the tupleIndex value.

Tuple intermediateEndTuple Intermediate end tuple record for this tuple variation
table — optional, determined by flags in the
tupleIndex value.

Note that the size of the TupleVariationHeader is variable, depending on whether peak 121
or intermediate tuple records are included. (See below for more information.) 122

The variationDataSize value indicates the size of serialized data for the given tuple 123
variation table that is contained in the serialized data. It does not include the size of the 124
TupleVariationHeader. 125

Every tuple variation table has an associated peak tuple record. Most tuple variation 126
tables use non-intermediate regions, and so require only the peak tuple record to define 127
the region. In the 'cvar' table, there is only one variation store, and so any given region 128
will only need to be referenced once. Within the 'gvar' table, however, there is a 129
GlyphVariationData table for each glyph ID, and so any region may be referenced 130
numerous times; in fact, most regions will be referenced within the GlyphVariationData 131
tables for most glyphs. To provide a more efficient representation, the tuple variation 132
store formats allow for an array of tuple records, stored outside the tuple variation store 133
structures, that can be shared across many tuple variation stores. This is used only within 134
the 'gvar' table; it is not needed or supported in the 'cvar' table. The formats alternately 135
allow for a peak tuple record that is non-shared, specific to the given tuple variation 136
table, to be embedded directly within a TupleVariationHeader. This is optional within the 137
'gvar' table, but required in the 'cvar' table, which does not use shared peak tuple 138
records. 139

See the 'gvar' chapter for details on the representation of shared tuple records within 140
that table. 141

The tupleIndex field contains a packed value that includes flags and an index into a 142
shared tuple records array (not used in the 'cvar' table). The format of the tupleIndex 143
field is as follows. 144

tupleIndex format: 145

Mask Name Description
0x8000 EMBEDDED_PEAK_TUPLE Flag indicating that this tuple variation header

includes an embedded peak tuple record,
immediately after the tupleIndex field. If set, the
low 12 bits of the tupleIndex value are ignored.

Note that this must always be set within the
'cvar' table.

0x4000 INTERMEDIATE_REGION Flag indicating that this tuple variation table
applies to an intermediate region within the
variation space. If set, the header includes the
two intermediate-region, start and end tuple
records, immediately after the peak tuple
record (if present).

0x2000 PRIVATE_POINT_NUMBERS Flag indicating that the serialized data for this
tuple variation table includes packed “point”
number data. If set, this tuple variation table
uses that number data; if clear, this tuple
variation table uses shared number data found
at the start of the serialized data for this glyph
variation data or 'cvar' table.

0x1000 Reserved Reserved for future use — set to 0.
0x0FFF TUPLE_INDEX_MASK Mask for the low 12 bits to give the shared

tuple records index.

Note that the intermediateRegion flag is independent of the embeddedPeakTuple flag 146
or the shared tuple records index. Every tuple variation table has a peak n-tuple 147
indicated either by an embedded tuple record (always true in the 'cvar' table) or by an 148
index into a shared tuple records array (only in the 'gvar' table). An intermediate-region 149
tuple variation table additionally has start and end n-tuples that also get used in the 150
interpolation process; these are always represented using embedded tuple records. 151

Also note that the privatePointNumbers flag is independent of the 152
SHARED_POINT_NUMBERS flag in the tupleVariationCount field of the 153
GlyphVariationData or 'cvar' header. A GlyphVariationData or 'cvar' table may have 154
shared point number data used by multiple tuple variation tables, but any given tuple 155
variation table may have private point number data that it uses instead. 156

As noted, the size of tuple variation headers is variable. The next TupleVariationHeader 157
can be calculated as follows: 158

const TupleVariationHeader* 159
NextHeader(const TupleVariationHeader* currentHeader, int axisCount) 160
{ 161
 int bump = 2 * sizeof(uint16); 162
 int tupleIndex = currentHeader->tupleIndex; 163
 if (tupleIndex & embeddedPeakTuple) 164
 bump += axisCount * sizeof(F2DOT14); 165
 if (tupleIndex & intermediateRegion) 166
 bump += 2 * axisCount * sizeof(F2DOT14); 167
 return (const TupleVariationHeader*)((char*)currentHeader + bump); 168
} 169

Serialized Data 170

After the GlyphVariationData or 'cvar' header (including the TupleVariationHeader array) 171
is a block of serialized data. The offset to this block of data is provided in the header. 172

The serialized data block begins with shared “point” number data, followed by the 173
variation data for the tuple variation tables. The shared point number data is optional: it 174
is present if the corresponding flag is set in the tupleVariationCount field of the header. 175
If present, the shared number data is represented as packed point numbers, described 176
below. 177

178
Figure: Organization of serialized data 179

The remaining data contains runs of data specific to individual tuple variation tables, in 180
order of the tuple variation headers. Each TupleVariationHeader indicates the data size 181
for the corresponding run of data for that tuple variation table. 182

The per-tuple-variation-table data optionally begins with private “point” numbers, 183
present if the privatePointNumbers flag is set in the tupleIndex field of the 184
TupleVariationHeader. Private point numbers are represented as packed point numbers, 185
described below. 186

After the private point number data (if present), the tuple variation data will include 187
packed delta data. The format for packed deltas is given below. Within the 'gvar' table, 188
there are packed deltas for X coordinates, followed by packed deltas for Y coordinates. 189

190
Figure: Organization 'gvar' per-tuple variation data 191

Within the 'cvar' table, there is one set of packed deltas. 192

193
Figure: Organization 'cvar' per-tuple variation data 194

The data size indicated in the TupleVariationHeader includes the size of the private 195
point number data, if present, plus the size of the packed deltas. 196

Packed “Point” Numbers 197

Tuple variation data specify deltas to be applied to specific items: X and Y coordinates 198
for glyph outline points within the 'gvar' table, and CVT values in the 'cvar' table. For a 199
given glyph, deltas may be provided for any or all of a glyph’s points, including 200
“phantom” points generated within the rasterizer that represent glyph side bearing 201
points. (See the chapter Instructing TrueType Glyphs for more background on phantom 202
points.) Similarly, within the 'cvar' table, deltas may be provided for any or all CVTs. The 203
set of glyph points or CVTs for which deltas are provided is specified by packed point 204
numbers. 205

Note: If a glyph is a composite glyph, then “point” numbers are component indices for 206
the components that make up the composite glyph. See the 'gvar' table chapter for 207
complete details. Likewise, in the context of the 'cvar' table, “point” numbers are 208
indices for CVT entries. 209

Note: Within the 'gvar' table, if deltas are not provided explicitly for some points, then 210
inferred delta values may need to be calculated — see the 'gvar' table chapter for 211
details. This does not apply to the 'cvar' table, however: if deltas are not provided for 212
some CVT values, then no adjustments are made to those CVTs in connection to the 213
given tuple variation table. 214

Packed point numbers are stored as a count followed by one or more runs of point 215
number data. 216

The count may be stored in one or two bytes. After reading the first byte, the need for a 217
second byte can be determined. The count bytes are processed as follows: 218

• If the first byte is 0, then a second count byte is not used. This value has a special 219
meaning: the tuple variation data provides deltas for all glyph points (including 220
the “phantom” points), or for all CVTs. 221

• If the first byte is non-zero and the high bit is clear (value is 1 to 127), then a 222
second count byte is not used. The point count is equal to the value of the first 223
byte. 224

• If the high bit of the first byte is set, then a second byte is used. The count is read 225
from interpreting the two bytes as a big-endian uint16 value with the high-order 226
bit masked out. 227

Thus, if the count fits in 7 bits, it is stored in a single byte, with the value 0 having a 228
special interpretation. If the count does not fit in 7 bits, then the count is stored in the 229
first two bytes with the high bit of the first byte set as a flag that is not part of the count 230
— the count uses 15 bits. 231

For example, a count of 0x00 indicates that deltas are provided for all point numbers / 232
all CVTs, with no additional point number data required; a count of 0x32 indicates that 233
there are a total of 50 point numbers specified; a count of 0x81 0x22 indicates that there 234
are a total of 290 (= 0x0122) point numbers specified. 235

Point number data runs are given after the count. Each data run begins with a control 236
byte that specifies the number of point numbers defined in the run, and a flag bit 237
indicating the format of the run data. The control byte’s high bit specifies whether the 238
run is represented in 8-bit or 16-bit values. The low 7 bits specify the number of 239
elements in the run minus 1. The format of the control byte is as follows: 240

Mask Name Description
0x80 POINTS_ARE_WORDS Flag indicating the data type used for point

numbers in this run. If set, the point numbers are
stored as unsigned 16-bit values (uint16); if clear,
the point numbers are stored as unsigned bytes
(uint8).

0x7F POINT_RUN_COUNT_MASK Mask for the low 7 bits of the control byte to
give the number of point number elements,
minus 1.

For example, a control byte of 0x02 indicates that the run has three elements 241
represented as uint8 values; a control byte of 0xD4 indicates that the run has 0x54 + 1 = 242
85 elements represented as uint16 values. 243

In the first point run, the first point number is represented directly (that is, as a 244
difference from zero). Each subsequent point number in that run is stored as the 245
difference between it and the previous point number. In subsequent runs, all elements, 246
including the first, represent a difference from the last point number. 247

Since the values in the packed data are all unsigned, point numbers will be given in 248
increasing order. Since the packed representation can include zero values, it is possible 249
for a given point number to be repeated in the derived point number list. In that case, 250
there will be multiple delta values in the deltas data associated with that point number. 251
All of these deltas must be applied cumulatively to the given point. 252

Packed Deltas 253

Tuple variation data specify deltas to be applied to glyph point coordinates or to CVT 254
values. As in the case of point number data, deltas are stored in a packed format. 255

Packed delta data does not include the total number of delta values within the data. 256
Logically, there are deltas for every point number or CVT index specified in the point-257
number data. Thus, the count of logical deltas is equal to the count of point numbers 258
specified for that tuple variation table. But since the deltas are represented in a packed 259
format, the actual count of stored values is typically less than the logical count. The data 260
is read until the expected logic count of deltas is obtained. 261

Note: In the 'gvar' table, there will be two logical deltas for each point number: one 262
that applies to the X coordinate, and one that applies to the Y coordinate. Therefore, 263
the total logical delta count is two times the point number count. The packed deltas 264
are arranged with the deltas for X coordinates first, followed by the deltas for Y 265
coordinates. 266

Packed deltas are stored as a series of runs. Each delta run consists of a control byte 267
followed by the actual delta values of that run. The control byte is a packed value with 268
flags in the high two bits and a count in the low six bits. The flags specify the data size 269
of the delta values in the run. The format of the control byte is as follows: 270

Mask Name Description
0x80 DELTAS_ARE_ZERO Flag indicating that this run contains no data (no

explicit delta values are stored), and that the
deltas for this run are all zero.

0x40 DELTAS_ARE_WORDS Flag indicating the data type for delta values in
the run. If set, the run contains 16-bit signed
deltas (int16); if clear, the run contains 8-bit
signed deltas (int8).

0x3F DELTA_RUN_COUNT_MASK Mask for the low 6 bits to provide the number of
delta values in the run, minus one.

For example, a control byte of 0x03 indicates that there are four 8-bit signed delta 271
values following the control byte; a control byte of 0x40 indicates that there is one 16-272
bit signed delta value following the control byte; a control byte of 0x94 indicates that 273
there is no additional data for this run, and that the run represents a sequence of 0x14 + 274
1 = 21 deltas equal to zero. 275

03 0A 97 00 C6 87 41 10 22 FB 34 276

This data has three runs: a run of four 8-bit values, a run interpreted as eight zeroes, and 277
a run of two 16-bit values: 278

Run 1: 03 0A 97 00 C6 279

Run 2: 87 280

Run 3: 41 10 22 FB 34 281

This packed data would represent the following logical sequence of delta values: 282

10, -105, 0, -58, 0, 0, 0, 0, 0, 0, 0, 0, 4130, -1228 283

Processing Tuple Variation Store Data 284

When a variation instance has been selected, an application needs to process the 285
variation store data to derive interpolated values for that instance — interpolated grid 286
coordinates for outline points, or interpolated CVT values. In the case of the 'gvar' table, 287
this will be done glyph-by-glyph as needed. The application can process the 288
TupleVariationHeaders to filter the tuple variation tables that are applicable for the 289
current instance, or to calculate a scalar for each tuple variation table directly. Scalars 290

can then be applied to deltas in each tuple variation table, and the net adjustments 291
applied to the target items. 292

Note: In the 'cvar' table, there is a logical delta for each CVT index given in the packed 293
point number data. In the 'gvar' table, there are two logical deltas for each point 294
number: one for the point’s X coordinate, and one for the Y coordinate. The delta data 295
is organized with all of the deltas for X coordinates first, followed by deltas for Y 296
coordinates. 297

Note: In the 'gvar' table, if the data for a given glyph lists point numbers for some 298
points in a contour but not others, then delta values for the omitted point numbers 299
must be inferred. See the 'gvar' table chapter for details. 300

For details on determining applicability of a given tuple variation table, and on 301
calculation of scalars and net adjustments to target items, see the chapter OpenType 302
Font Variations Overview. 303

Because point number and delta data are stored in a packed representation, the data 304
must be processed from the start to determine the presence of any particular point 305
number, or to retrieve the delta for a particular item. For this reason, the format is best 306
suited to processing all the data in a given tuple variation table at once rather than 307
processing data for individual target items. In the case of glyph outlines, this is 308
reasonable since there is no common application scenario for interpolating an adjusted 309
position of a single outline point. 310

The “phantom” points, which provide side-bearing and advance width information, are a 311
possible exception to that generalization, however. (See the chapter, Instructing 312
TrueType Glyphs for more background on phantom points.) In particular, some text-313
layout operations require glyph metrics (advance widths or side bearings) without 314
necessarily requiring glyph outline data. Yet the tuple variation store formats used in the 315
'gvar' table require that interpolated outlines be computed to obtain the interpolated 316
glyph metrics. The HVAR table and VVAR table provide an alternate way to represent 317
horizontal and vertical glyph metric variation data, and these use the item variation 318
store format which is specifically designed to be suitable for processing data for 319
particular target items. 320

Differences Between 'gvar' and 'cvar' Tables 321

The following is a summary of key differences between tuple variation stores in the 322
'gvar' and 'cvar' tables. 323

• The 'gvar' table is a parent table for tuple variation stores, and contains one tuple 324
variation store (the glyph variation data table) for each glyph ID. In contrast, the 325
entire 'cvar' table is comprised of a single, slightly extended (with version fields) 326
tuple variation store. 327

• Because the 'gvar' table contains multiple tuple variation stores, sharing of data 328
between tuple variation stores is possible, and is used for shared tuple records. 329
Because the 'cvar' table has a single tuple variation store, no possibility of shared 330
data arises. 331

• The tupleIndex field of TupleVariationHeader structures within a tuple variation 332
store includes a flag that indicates whether the structure instance includes an 333
embedded peak tuple record. In the 'gvar' table, this is optional. In the 'cvar' 334
table, a peak tuple record is mandatory. 335

• The serialized data includes packed “point” numbers. In the 'gvar' table, these 336
refer to glyph contour point numbers or, in the case of a composite glyph, to 337
component indices. In the context of the 'cvar' table, these are indices for CVT 338
entries. 339

• In the 'gvar' table, point numbers cover the points or components defined in a 340
'glyf' entry plus four additional “phantom” points that represent the glyph’s 341
horizontal and vertical advance and side bearings. (See the chapter, Instructing 342
TrueType Glyphs for more background on phantom points.) The last four point 343
numbers for any glyph, including composite glyphs, are for the phantom points. 344

• In the 'gvar' table, if deltas are not provided for some points and the point 345
indices are not represented in the point number data, then interpolated deltas for 346
those points will in some cases be inferred. This is not done in the 'cvar' table, 347
however. 348

• In the 'gvar' table, the serialized data for a given region has two logical deltas for 349
each point number: one for the X coordinate, and one for the Y coordinate. 350
Hence the total number of deltas is twice the count of control points. In the 'cvar' 351
table, however, there is only one delta for each point number. 352

Item Variation Store 353

Item variation stores are used for most variation data other than that used for TrueType 354
glyph outlines, including the variation data in MVAR, HVAR, VVAR, BASE and GDEF 355
tables. 356

Note: For CFF2 glyph outlines, delta values are interleaved directly within the glyph 357
outline description in the CFF2 table. The sets of regions which are associated with the 358
delta sets are defined in an item variation store, contained as a subtable within the 359
CFF2 table. See the CFF2 chapter for additional details. 360

The item variation store formats organize sets of variation data into groupings by the 361
target items. This makes the formats well-suited to computing interpolated instance 362
values for individual font data items. This is useful for certain text layout operations in 363
which only certain data items are required, such as the advance widths of specific glyphs 364
or anchor positions used in specific GPOS lookup tables. 365

The different tables that use item variation stores have their own top-level formats. Each 366
will include an offset to an itemVariationStore table, containing the variation data. This 367
chapter describes the shared formats: the itemVariationStore and its component 368
structures. 369

Associating Target Items to Variation Data 370

Variation data is comprised of delta adjustment values that apply to particular target 371
items. Some mechanism is needed to associate delta values with target items. In the 372
item variation store, a block of delta values has an implicit delta-set index, and separate 373
data outside the item variation store is provided that indicates the delta-set index 374
associated with a given target item. Depending on the parent table in which an item 375
variation store is used, different means are used to provide these associations: 376

• In the MVAR table, an array of records identifies target data items in various 377
other tables, along with the delta-set index for each respective item. 378

• In the HVAR and VVAR tables, the target data items are glyph metric arrays in the 379
'hmtx' and 'vmtx' tables. Subtables in the HVAR and VVAR tables provide the 380
mapping between the target data items and delta-set indices. 381

• For the BASE, GDEF, GPOS, and JSTF tables, a target data item is associated with a 382
delta-set index using a related VariationIndex table within the same subtable that 383
contains the target item. 384

• In the COLR table, target data items are specified in structures that combine a 385
basic data type, such FWORD, with a delta-set index. 386

The structures used in the COLR table currently are used only in that table but may be 387
used in other tables in future versions, and so are defined here as common formats. 388
Structures are defined to wrap the FWORD, UFWORD, F2DOT14 and Fixed basic types. 389

Note: as described below, each delta-set index is represented as two index components, 390
an outer index and an inner index, corresponding to a two-level organizational 391
hierarchy. This is described in detail below. 392

VarFWord 393

The FWORD type is used to represent coordinates in the glyph design grid. The 394
VarFWord record is used to represent a coordinate that can be variable. 395

Type Name Description
FWORD coordinate

uint16 varOuterIndex

uint16 varInnerIndex

VarUFWord 396

The UFWord type is used to represent distances in the glyph design grid. The 397
VarUFWord record is used to represent a distance that can be variable. 398

Type Name Description
UFWORD distance

uint16 varOuterIndex

uint16 varInnerIndex

VarF2Dot14 399

The F2DOT14 type is typically used to represent values that are inherently limited to a 400
range of [-1, 1], or a range of [0, 1]. The VarF2Dot14 record is used to represent such a 401
value that can be variable. 402

Type Name Description
F2Dot14 value

uint16 varOuterIndex

uint16 varInnerIndex

In general, variation deltas are (logically) signed 16-bit integers, and in most cases, they 403
are applied to signed 16-bit values (FWORDs) or unsigned 16-bit values (UFWORDs). 404
When scaled deltas are applied to F2DOT14 values, the F2DOT14 value is treated like a 405
16-bit integer. (In this sense, the delta and the F2DOT14 value can be viewed as an 406
integral numerator for 1/16384ths.) 407

If the context in which the VarF2Dot14 is used contrains the valid range for the default 408
value, then any variations by applying deltas are clipped to that range. 409

VarFixed 410

The Fixed type is intended for floating values, such as variation-space coordinates. The 411
VarFixed record is used to represent such a value that can be variable. 412

Type Name Description
Fixed value

uint16 varOuterIndex

uint16 varInnerIndex

While in most cases deltas are applied to 16-bit types, Fixed is a 32-bit (16.16) type and 413
requires 32-bit deltas. The DeltaSet record used in the ItemVariationData subtable 414
format can accommodate deltas that are, logically, either 16-bit or 32-bit. See the 415
description of the ItemVariationData subtable, below, for details. 416

When scaled deltas are applied to Fixed values, the Fixed value is treated like a 32-bit 417
integer. (In this sense, the delta and the Fixed value can be viewed as an integral 418
numerator of 1/65536ths.) 419

Variation Data 420

The ItemVariationStore table includes a variation region list, which defines the different 421
regions of the font’s variation space for which variation data is defined. It also includes a 422
set of itemVariationData subtables, each of which provides a portion of the total 423
variation data. Each subtable is associated with some subset of the defined regions, and 424
will include deltas used for one or more target items. Conceptually, the deltas form a 425
two-dimensional array, with delta-set rows that include a delta for each of the regions 426
referenced by that subtable. From this perspective, the table columns correspond to 427
regions. 428

The following figure illustrates the overall structure of the ItemVariationStore stable. 429

430
Figure: High-level organization of ItemVariationStore table 431

Note that multiple subtables are necessary only if the number of distinct delta-set data 432
exceeds 65,536. Multiple subtables may also be used, however, to provide more 433
compact data representation. There are different ways that the delta data can be made 434
more compact. 435

First, deltas with a value of zero have no impact on their target items. If there are several 436
delta-set rows that have a zero delta for the same region, then those rows could be 437
moved into a subtable that does not reference that region. As a result, there will be 438
fewer delta values in each row, making the size of data for those rows smaller. 439

Also, some delta values require 16-bit representations, but some require only 8 bits. For 440
a given subtable, deltas in each row correspond, in order, to the regions that are 441
referenced, but the ordering of regions has no effect. Hence, regions and corresponding 442
deltas within each row can be reordered. Thus, regions that require 16-bit delta 443
representations can be ordered together. The itemVariationData format specifies a 444
count of regions (columns) for which a 16-bit delta representation is used, with the 445
remaining deltas in each row using 8 bits. By reordering columns, the size required for a 446
given delta-set row can potentially be reduced. If a set of rows have similar 447
requirements in regard to which columns have deltas requiring 16-bit versus 8-bit 448
representations, then those rows can be moved into a subtable with a column order that 449
allows a maximal number of deltas using 8-bit rather than 16-bit representations. 450

Note that there is minimal overhead for each subtable: 10 bytes (6 bytes in the subtable 451
header and 4 bytes for the offset in the parent table) plus 2 bytes for each region that is 452
referenced. 453

A complete delta-set index involves an outer-level index into the ItemVariationData 454
subtable array, plus an inner-level index to a delta-set row within that subtable. A special 455
meaning is assigned to a delta-set index 0xFFFF/0xFFFF (that is, outer-level and inner-456
level portions are both 0xFFFF): this is used to indicate that there is no variation data for 457
a given item. Functionally, this would be equivalent to referencing delta-set data 458
consisting of only deltas of 0 for all regions. 459

As noted above, delta-set indices are stored outside the variation store. Different parent 460
tables that use an item variation store will store indices in different ways, and may utilize 461
different schemes for how to represent the indices in an efficient manner. For example, 462
the HVAR and VVAR tables allow the outer and inner indices to be combined into one-463
byte, two-byte, three-byte or four-byte representations depending on the indexing 464
requirements of the variation store. For larger sets of variation data, such as may be 465
needed for HVAR or VVAR tables, optimization of the indices data as well as the delta 466
data may have a significant impact on overall size. Optimizing compilers may need to 467
consider the impact on representation of indices in tandem as it optimizes the item 468
variation store to achieve the best overall results. 469

Variation Regions 470

As noted above, variation data is comprised of delta adjustment values that have effect 471
over particular regions within the font’s variation space. In a tuple variation store 472
(described earlier in this chapter), the deltas are organized into groupings by region of 473
applicability, with each grouping associated with a given region. In contrast, the item 474
variation store format organizes deltas into groupings by the target items to which they 475
apply, with each grouping having deltas for several regions. Accordingly, the item 476
variation store uses different formats for describing the regions in which a set of deltas 477
apply. 478

For a given item variation store, a set of regions is specified using a VariationRegionList. 479

VariationRegionList: 480

Type Name Description
uint16 axisCount The number of variation axes for

this font. This must be the same
number as axisCount in the 'fvar'
table.

uint16 regionCount The number of variation region
tables in the variation region list.
Must be less than 32,768.

VariationRegion variationRegions[regionCount] Array of variation regions.

The high-order bit of the regionCount field is reserved for future use, and must be 481
cleared. 482

The regions can be in any order. The regions are defined using an array of 483
RegionAxisCoordinates records, one for each axis defined in the 'fvar' table: 484

VariationRegion record: 485

Type Name Description
RegionAxisCoordinates regionAxes[axisCount] Array of region axis coordinates

records, in the order of axes given in
the 'fvar' table.

Each RegionAxisCoordinates record provides coordinate values for a region along a 486
single axis: 487

RegionAxisCoordinates record: 488

Type Name Description
F2DOT14 startCoord The region start coordinate value for the current axis.
F2DOT14 peakCoord The region peak coordinate value for the current axis.
F2DOT14 endCoord The region end coordinate value for the current axis.

The three values must all be within the range -1.0 to +1.0. startCoord must be less than 489
or equal to peakCoord, and peakCoord must be less than or equal to endCoord. The 490
three values must be either all non-positive or all non-negative with one possible 491
exception: if peakCoord is zero, then startCoord can be negative or 0 while endCoord 492
can be positive or zero. 493

Note: The following guidelines are used for setting the three values in different 494
scenarios: 495

• In the case of a non-intermediate region for which the given axis should factor 496
into the scalar calculation for the region, either startCoord and peakCoord are 497
set to a negative value (typically, -1.0) and endCoord is set to zero, or 498
startCoord is set to zero and peakCoord and endCoord are set to a positive 499
value (typically +1.0). 500

• In the case of an intermediate region for which the given axis should factor into 501
the scalar calculation for the region, startCoord, peakCoord and endCoord are 502
all set to non-positive values or are all set to non-negative values. 503

• If the given axis should not factor into the scalar calculation for a region, then 504
this is achieved by setting peakCoord to zero. In this case, startCoord can be 505
any non-positive value, and endCoord can be any non-negative value. It is 506
recommended either that all three be set to zero, or that startCoord be set to -507
1.0 and endCoord be set to +1.0. 508

The full algorithm for interpolation of instance values is given in the chapter, OpenType 509
Font Variations Overview. The logical algorithm involves computing per-axis scalar 510
values for a given region and a given instance. The per-axis scalars for a region are then 511
combined to yield an overall scalar for the region that is then applied to delta 512
adjustment values. Given a selected variation instance, a per-axis scalar can be 513
calculated for each RegionAxisCoordinates record. The overall scalar for a region can be 514
calculated by combining the per-axis scalars for that region. 515

Item Variation Store Header and Item Variation Data Subtables 516

The item variation store table has a header with the following structure. 517

ItemVariationStore table: 518

Type Name Description
uint16 format Format — set to 1
Offset32 variationRegionListOffset Offset in bytes from

the start of the item
variation store to the
variation region list.

uint16 itemVariationDataCount The number of item
variation data
subtables.

Offset32 itemVariationDataOffsets[itemVariationDataCount] Offsets in bytes from
the start of the item
variation store to each
item variation data
subtable.

The item variation store includes an offset to a variation region list and an array of 519
offsets to item variation data subtables. 520

Note: Indices into the itemVariationDataOffsets array are stored in parent tables as 521
delta-set “outer” indices with each such index having a corresponding “inner” index. If 522
the outer index points to a NULL offset, then any inner index will be invalid. The 523
itemVariationDataOffsets array should not include any NULL offsets. 524

Each item variation data subtable includes deltas for some number of items, and some 525
subset of regions. The regions are indicated by an array of indices into the variation 526
region list. 527

ItemVariationData subtable: 528

Type Name Description
uint16 itemCount The number of delta sets for distinct

items.
uint16 wordDeltaCount A packed field: the high bit is a flag—

see details below.
uint16 regionIndexCount The number of variation regions

referenced.
uint16 regionIndexes[regionIndexCount] Array of indices into the variation region

list for the regions referenced by this
item variation data table.

DeltaSet deltaSets[itemCount] Delta-set rows.

The wordDeltaCount field contains a packed value that includes a flag and a “word” 529
delta count. The format of this value is as follows: 530

Mask Name Description
0x8000 LONG_WORDS Flag indicating that “word” deltas are long

(int32)
0x7FFF WORD_DELTA_COUNT_MASK Count of “word” deltas

The representation of delta values uses a mix of long types (“words”) and short types. If 531
the LONG_WORDS flag is set, deltas are represented using a mix of int32 and int16 532
values. This representation is only used for deltas that are to be applied to data items of 533
Fixed or 32-bit integer types. If the flag is not set, deltas are presented using a mix of 534
int16 and int8 values. See the description of the DeltaSet record below for additional 535
details. 536

The count value indicated by WORD_DELTA_COUNT_MASK is a count of the number of 537
deltas that use the long (“word”) representation, and must be less than or equal to 538
regionIndexCount. 539

The deltaSets array represents a logical two-dimensional table of delta values with 540
itemCount rows and regionIndexCount columns. Rows in the table provide sets of deltas 541
for particular target items, and columns correspond to regions of the variation space. 542
Each DeltaSet record in the array represents one row of the delta-value table — one 543
delta set. 544

DeltaSet record: 545

Type Name Description
int16 and int8
or
int32 and int16

deltaData[regionIndexCount] Variation delta values.

Logically, each DeltaSet record has regionIndexCount number of elements. The 546
elements are represented using long and short types, as described above. These are 547
either int16 and int8, or int32 and int16, according to whether the LONG_WORDS flag 548
was set. The delta array has a sequence of deltas using the long type followed by 549
sequence of deltas using the short type. The count of deltas using the long type is 550
derived using WORD_DELTA_COUNT_MASK. The remaining elements use the short type. 551
The length of the data for each row, in bytes, is regionIndexCount + (wordDeltaCount 552
&& WORD_DELTA_COUNT_MASK) if the LONG_WORDS flag is not set, or 2 x that 553
amount if the flag is set. 554

Note: Delta values are each represented directly. They are not packed as in the tuple 555
variation store. 556

Processing Item Variation Store Data 557

When a variation instance has been selected, an application needs to process the 558
variation store data associated with particular target items to derive interpolated values 559
for those items and that instance. 560

To compute the interpolated instance value for a given target item, the application first 561
obtains the delta-set index for that item. It uses the outer-level index portion to select 562
an item variation data subtable within the item variation store, and the inner-level index 563
portion to select a delta-set row within that subtable. The delta set contains one delta 564
for each region referenced by the subtable, in order of the region indices given in the 565
regionIndices array. The application uses the regionIndices array for that subtable to 566
identify applicable regions and to compute a scalar for each of these regions based on 567
the selected instance. Each of the scalars is then applied to the corresponding delta 568

within the delta set to derive a scaled adjustment. The scaled adjustments for the row 569
are then combined to obtain the overall adjustment for the item. 570

Complete details on the interpolation algorithm logic are provided in the chapter, 571
OpenType Font Variations Overview. 572

For a given variation instance, an application will often need to interpolate values for 573
several items that may use deltas in different item variation data subtables. The 574
subtables will reference region definitions in the shared variation region list. When the 575
instance has been selected, applications can pre-compute and cache a scalar for that 576
instance for each region in the region list. Then when processing different target items, 577
the cached scalar array can be used without needing to re-compute region scalars for 578
each target item. 579

	OpenType Font Variations Common Table Formats
	Overview
	Tuple Variation Store
	Tuple Records
	Tuple Variation Store Header
	TupleVariationHeader
	Serialized Data
	Packed “Point” Numbers
	Packed Deltas
	Processing Tuple Variation Store Data
	Differences Between 'gvar' and 'cvar' Tables

	Item Variation Store
	Associating Target Items to Variation Data
	VarFWord
	VarUFWord
	VarF2Dot14
	VarFixed

	Variation Data
	Variation Regions
	Item Variation Store Header and Item Variation Data Subtables
	Processing Item Variation Store Data

