
The OpenType Font File 1

An OpenType font file contains data, in table format, that comprises either a TrueType 2
or a Compact Font Format (CFF) outline font. Rasterizers use combinations of data from 3
the tables contained in the font to render the TrueType or PostScript glyph outlines. 4
Some of this supporting data is used no matter which outline format is used; some of 5
the supporting data is specific to either TrueType or PostScript. 6

Filenames 7

OpenType fonts may have the extension .OTF, .TTF, .OTC or .TTC. The extensions .OTC 8
and .TTC should only be used for font collection files. For additional information on 9
filename extension conventions, see “Filenames” in Recommendations for OpenType 10
fonts. 11

Data Types 12

The following data types are used in the OpenType font file. All OpenType fonts use 13
Motorola-style byte ordering (Big Endian): 14

Data Type Description
uint8 8-bit unsigned integer.
int8 8-bit signed integer.
uint16 16-bit unsigned integer.
int16 16-bit signed integer.
uint24 24-bit unsigned integer.
uint32 32-bit unsigned integer.
int32 32-bit signed integer.
Fixed 32-bit signed fixed-point number (16.16)
FWORD int16 that describes a quantity in font design units.
UFWORD uint16 that describes a quantity in font design units.
F2DOT14 16-bit signed fixed number with the low 14 bits of fraction (2.14).
LONGDATETIME Date represented in number of seconds since 12:00 midnight,

January 1, 1904. The value is represented as a signed 64-bit integer.
Tag Array of four uint8s (length = 32 bits) used to identify a table,

design-variation axis, script, language system, feature, or baseline
Offset16 Short offset to a table, same as uint16, NULL offset = 0x0000
Offset24 24-bit offset to a table, same as uint24, NULL offset = 0x000000

Offset32 Long offset to a table, same as uint32, NULL offset = 0x00000000

The F2DOT14 format consists of a signed, 2’s complement integer and an unsigned 15
fraction. To compute the actual value, take the integer and add the fraction. Examples of 16
2.14 values are: 17

Decimal Value Hex Value Integer Fraction
1.999939 0x7fff 1 16383/16384
1.75 0x7000 1 12288/16384
0.000061 0x0001 0 1/16384
0.0 0x0000 0 0/16384
-0.000061 0xffff -1 16383/16384
-2.0 0x8000 -2 0/16384

A Tag value is a uint8 array. Each byte within the array must have a value in the range 18
0x20 to 0x7E. This corresponds to the range of values of Unicode Basic Latin characters 19
in UTF-8 encoding, which is the same as the printable ASCII characters. As a result, a Tag 20
value can be re-interpreted as a four-character sequence, which is conventionally how 21
they are referred to. Formally, however, the value is a byte array. When re-interpreted as 22
characters, the Tag value is case sensitive. It must have one to four non-space 23
characters, padded with trailing spaces (byte value 0x20). A space character cannot be 24
followed by a non-space character. 25

Table Version Numbers 26

Most tables have version numbers, and the version number for the entire font is 27
contained in the Table Directory. Note that there are five different version number types, 28
each with its own numbering scheme. 29

• A single uint16 field. This is used in a number of tables, usually with versions 30
starting at zero (0). 31

• Separate, uint16 major and minor version fields. This is used in a number of 32
tables, usually with versions starting at 1.0. 33

• A Fixed field for major/minor version numbers. This is used in the 'maxp', 'post' 34
and 'vhea' tables. 35

• A uint32 field with enumerated values. 36
• A uint32 field with a numeric value. This is used only in the DSIG and 'meta' 37

tables. 38

Only certain tables use a Fixed value for version, and only for reasons of backward 39
compatibility. When a Fixed number is used as a version, the upper 16 bits comprise a 40
major version number, and the lower 16 bits, a minor version. The representation of a 41
non-zero minor version, however, is not consistent with the normal treatment of Fixed 42
values, in which the lower 16 bits represent a fractional value, N * 2 ^ -16. Rather, tables 43
with non-zero minor version numbers always specify the literal value of the version 44
number. For example, the version number of 'maxp' table version 0.5 is 0x00005000, and 45
that of 'vhea' table version 1.1 is 0x00011000. When Fixed is indicated as the type for a 46
version field, the possible values should be treated as an enumeration of specific values, 47
rather than as a numeric value capable of representing many potential major and minor 48
versions. 49

The Table Directory uses a uint32 field with an enumeration of defined values that 50
represent four-character tags; see the section below, “Organization of an OpenType 51
Font”, for details. 52

Implementations reading tables must include code to check version numbers so that, if 53
and when the format and therefore the version number changes, older implementations 54
will handle newer versions gracefully. 55

Minor version number changes always imply format changes that are compatible 56
extensions. If an implementation understands a major version number, then it can safely 57
proceed with reading the table. If the minor version is greater than the latest version 58
recognized by the implementation, then the extension fields will be undetectable to the 59
implementation. 60

For purposes of compatibility, version numbers that are represented using a single 61
uint16 or uint32 value are treated like a minor version number, and any format changes 62
are compatible extensions. 63

Note that some field values that were undefined or reserved in an earlier revision may 64
be assigned meanings in a minor version change. Implementations should never make 65
assumptions regarding reserved or unassigned values or bits in bit fields, and can ignore 66
them if encountered. When writing font data, tools should always write zero for reserved 67
fields or bits. Validators should warn of any non-zero values for fields or bits that are not 68
defined for the given version against which data is being validated. 69

If the major version is not recognized, the implementation must not read the table as it 70
can make no assumptions regarding interpretation of the binary data. The 71
implementation should treat the table as missing. 72

Organization of an OpenType Font 73

A key characteristic of the OpenType format is the TrueType sfnt “wrapper”, which 74
provides organization for a collection of tables in a general and extensible manner. 75

The OpenType font starts with the Offset Table. If the font file contains only one font, 76
the Offset Table will begin at byte 0 of the file. If the font file is an OpenType Font 77
Collection file (see below), the beginning point of the Offset Table for each font is 78
indicated in the TTCHeader. 79

Offset Table: 80

Type Name Description
uint32 sfntVersion 0x00010000 or 0x4F54544F ('OTTO') — see below.
uint16 numTables Number of tables.
uint16 searchRange (Maximum power of 2 <= numTables) x 16.
uint16 entrySelector Log2(maximum power of 2 <= numTables).
uint16 rangeShift NumTables x 16-searchRange.

OpenType fonts that contain TrueType outlines should use the value of 0x00010000 for 81
the sfntVersion. OpenType fonts containing CFF data (version 1 or 2) should use 82
0x4F54544F ('OTTO', when re-interpreted as a Tag) for sfntVersion. 83

Note: The Apple specification for TrueType fonts allows for 'true' and 'typ1' for sfnt 84
version. These version tags should not be used for fonts which contain OpenType 85
tables. 86

The Offset Table is followed immediately by the Table Record entries. Entries in the 87
Table Record must be sorted in ascending order by tag. Offset values in the Table 88
Record are measured from the start of the font file. 89

Table Record: 90

Type Name Description
Tag tableTag Table identifier.
uint32 checkSum CheckSum for this table.
Offset32 offset Offset from beginning of TrueType font file.
uint32 length Length of this table.

The Table Record makes it possible for a given font to contain only those tables it 91
actually needs. As a result, there is no standard value for numTables. 92

Table tags are the names given to tables in the OpenType font file. For requirements of 93
Tag values, see Data Types, above. 94

Some tables have an internal structure with subtables located at specified offsets, and as 95
a result, it is possible to construct a font with data for different tables interleaved. In 96
general, tables should be arranged contiguously without overlapping the ranges of 97
distinct tables. In any case, however, table lengths measure a contiguous range of bytes 98
that encompasses all of the data for a table. This applies to any subtables as well as to 99
top-level tables. 100

Calculating Checksums 101

Table checksums are the unsigned sum of the uint32 units of a given table. In C, the 102
following function can be used to determine a checksum: 103

uint32 104
CalcTableChecksum(uint32 *Table, uint32 Length) 105
{ 106
uint32 Sum = 0L; 107
uint32 *Endptr = Table+((Length+3) & ~3) / sizeof(uint32); 108
while (Table < EndPtr) 109
 Sum += *Table++; 110
return Sum; 111
} 112

Note: This function implies that the length of a table must be a multiple of four bytes. 113
In fact, a font is not considered structurally well-formed without the correct padding. 114
All tables must begin on four-byte boundaries, and any remaining space between 115
tables is padded with zeros. The length of all tables should be recorded in the table 116
record with their actual length (not their padded length). 117

To calculate the checkSum for the 'head' table which itself includes the 118
checkSumAdjustment entry for the entire font, do the following: 119

1. Set the checkSumAdjustment to 0. 120
2. Calculate the checksum for all the tables including the 'head' table and enter that 121

value into the table directory. 122
3. Calculate the checksum for the entire font. 123
4. Subtract that value from 0xB1B0AFBA. 124

5. Store the result in checkSumAdjustment. 125

The checkSum for the 'head' table which includes the checkSumAdjustment entry for the 126
entire font is now incorrect. That is not a problem. Do not change it. An application 127
attempting to verify that the 'head' table has not changed should calculate the 128
checkSum for that table by not including the checkSumAdjustment value, and compare 129
the result with the entry in the table directory. 130

Font Collections 131

An OpenType Font Collection (formerly known as TrueType Collection) is a means of 132
delivering multiple OpenType font resources in a single file structure. The format for 133
font collections allows font tables that are identical between two or more fonts to be 134
shared. Font collections containing outline glyph data (TrueType, CFF, CFF2 or SVG) are 135
most useful when the fonts to be delivered together share many glyphs in common. By 136
allowing multiple fonts to share glyph sets and other common font tables, font 137
collections can result in a significant saving of file space. 138

For example, a group of Japanese fonts may each have their own designs for the kana 139
glyphs, but share identical designs for the kanji. With ordinary OpenType font files, the 140
only way to include the common kanji glyphs is to copy their glyph data into each font. 141
Since the kanji represent much more data than the kana, this results in a great deal of 142
wasteful duplication of glyph data. Font collections were defined to solve this problem. 143

Note: Even though the original definition of a Font Collection (as part of the TrueType 144
specification) was intended to be used with fonts containing TrueType outlines, and 145
this constraint was maintained in earlier OpenType versions, this is no longer a 146
constraint in OpenType. Font collection files may contain various types of outlines (or 147
a mix of them), regardless of whether or not fonts have layout tables present. 148

Note: A variable font using OpenType Font Variations mechanisms is functionally 149
equivalent to multiple non-variable fonts. Variable fonts do not need to be contained 150
within a collection file. A collection file can include one or even multiple variable fonts, 151
however, and may even combine variable and non-variable fonts. 152

The Font Collection File Structure 153

A font collection file consists of a single TTC Header table, one or more Offset Tables 154
with Table Directories (each corresponding to a different font resource), and a number 155
of OpenType tables. The TTC Header must be located at the beginning of the TTC file. 156

The TTC file must contain a complete Offset Table and Table Directory for each font 157
resource. A TTC file Table Directory has exactly the same format as a TTF file Table 158
Directory. The table offsets in all Table Directories within a TTC file are measured from 159
the beginning of the TTC file. 160

Each OpenType table in a TTC file is referenced through the Offset Table and Table 161
Directory of each font which uses that table. Some of the OpenType tables must appear 162
multiple times, once for each font included in the TTC; while other tables may be shared 163
by multiple fonts in the TTC. 164

As an example, consider a TTC file which combines two Japanese fonts (Font1 and 165
Font2). The fonts have different kana designs (Kana1 and Kana2) but use the same 166
design for kanji. The TTC file contains a single 'glyf' table which includes both designs of 167
kana together with the kanji; both fonts’ Table Directories point to this 'glyf' table. But 168
each font’s Table Directory points to a different 'cmap' table, which identifies the glyph 169
set to use. Font1’s 'cmap' table points to the Kana1 region of the 'loca' and 'glyf' tables 170
for kana glyphs, and to the kanji region for the kanji. Font2’s 'cmap' table points to the 171
Kana2 region of the 'loca' and 'glyf' tables for kana glyphs, and to the same kanji region 172
for the kanji. 173

The tables that should have a unique copy per font are those that are used by the 174
system in identifying the font and its character mapping, including 'cmap', 'name', and 175
OS/2. The tables that should be shared by fonts in the TTC are those that define glyph 176
and instruction data or use glyph indices to access data: 'glyf', 'loca', 'hmtx', 'hdmx', 177
LTSH, 'cvt ', 'fpgm', 'prep', EBLC, EBDT, EBSC, 'maxp', and so on. In practice, any tables 178
which have identical data for two or more fonts may be shared. 179

A tool is available from Microsoft to help build .TTC files. The process involves paying 180
close attention the issue of glyph renumbering in a font and the side effects that can 181
result, in the 'cmap' table and elsewhere. The fonts to be merged must also have 182
compatible TrueType instructions-that is, their preprograms, function definitions, and 183
control values must not conflict. 184

Collection files containing TrueType glyph outlnes should use the filename suffix .TTC. 185
Collection files containing CFF or CFF2 outlines should use the file extension .OTC. 186

TTC Header 187

There are two versions of the TTC Header: Version 1.0 has been used for TTC files 188
without digital signatures. Version 2.0 can be used for TTC files with or without digital 189

signatures — if there’s no signature, then the last three fields of the version 2.0 header 190
are left null. 191

If a digital signature is used, the DSIG table for the file must be the last table in the TTC 192
file. Signatures in a TTC file are expected to be Format 1 signatures. 193

The purpose of the TTC Header table is to locate the different Offset Tables within a TTC 194
file. The TTC Header is located at the beginning of the TTC file (offset = 0). It consists of 195
an identification tag, a version number, a count of the number of OpenType fonts in the 196
file, and an array of offsets to each Offset Table. 197

TTC Header Version 1.0: 198

Type Name Description
TAG ttcTag Font Collection ID string: 'ttcf' (used for fonts with

CFF or CFF2 outlines as well as TrueType outlines)
uint16 majorVersion Major version of the TTC Header, = 1.
uint16 minorVersion Minor version of the TTC Header, = 0.
uint32 numFonts Number of fonts in TTC
Offset32 offsetTable[numFonts] Array of offsets to the OffsetTable for each font

from the beginning of the file

TTC Header Version 2.0: 199

Type Name Description
TAG ttcTag Font Collection ID string: 'ttcf'
uint16 majorVersion Major version of the TTC Header, = 2.
uint16 minorVersion Minor version of the TTC Header, = 0.
uint32 numFonts Number of fonts in TTC
Offset32 offsetTable[numFonts] Array of offsets to the OffsetTable for each font

from the beginning of the file
uint32 dsigTag Tag indicating that a DSIG table exists, 0x44534947

('DSIG') (null if no signature)
uint32 dsigLength The length (in bytes) of the DSIG table (null if no

signature)
uint32 dsigOffset The offset (in bytes) of the DSIG table from the

beginning of the TTC file (null if no signature)

Font Tables 200

The TrueType rasterizer has a much easier time traversing tables if they are padded so 201
that each table begins on a 4-byte boundary. Also, the algorithm for calculating table 202
checksums assumes that tables are 32-bit aligned. For this reason, all tables must be 32-203
bit aligned and padded with zeroes. 204

Required Tables 205

Whether TrueType or CFF outlines are used in an OpenType font, the following tables 206
are required for the font to function correctly: 207

Tag Name
'cmap' Character to glyph mapping
'head' Font header
'hhea' Horizontal header
'hmtx' Horizontal metrics
'maxp' Maximum profile
'name' Naming table
OS/2 OS/2 and Windows specific metrics
'post' PostScript information

Tables Related to TrueType Outlines 208

For OpenType fonts based on TrueType outlines, the following tables are used: 209

Tag Name
'cvt ' Control Value Table (optional table)
'fpgm' Font program (optional table)
'glyf' Glyph data
'loca' Index to location
'prep' CVT Program (optional table)
'gasp' Grid-fitting/Scan-conversion (optional table)

Tables Related to CFF Outlines 210

For OpenType fonts based on CFF outlines, the following tables are used: 211

Tag Name
'CFF ' Compact Font Format 1.0
CFF2 Compact Font Format 2.0
VORG Vertical Origin (optional table)

It is strongly recommended that CFF OpenType fonts that are used for vertical writing 212
include a Vertical Origin (VORG) table. 213

Multiple Master support in OpenType has been discontinued as of version 1.3 of the 214
specification. The MMSD and MMFX tables that were defined in versions prior to version 215
1.3 are no longer supported. 216

Table Related to SVG Outlines 217

Tag Name
'SVG ' The SVG (Scalable Vector Graphics) table

Tables Related to Bitmap Glyphs 218

Tag Name
EBDT Embedded bitmap data
EBLC Embedded bitmap location data
EBSC Embedded bitmap scaling data
CBDT Color bitmap data
CBLC Color bitmap location data
'sbix' Standard bitmap graphics

OpenType fonts may also contain bitmaps of glyphs, in addition to outlines. Hand-tuned 219
bitmaps are especially useful in OpenType fonts for representing complex glyphs at very 220
small sizes. If a bitmap for a particular size is provided in a font, it will be used by the 221
system instead of the outline when rendering the glyph. 222

Advanced Typographic Tables 223

Several optional tables support advanced typographic functions: 224

Tag Name
BASE Baseline data
GDEF Glyph definition data
GPOS Glyph positioning data
GSUB Glyph substitution data
JSTF Justification data
MATH Math layout data

For information on common table formats, please see OpenType Layout Common Table 225
Formats . 226

Tables used for OpenType Font Variations 227

Tag Name
'avar' Axis variations
'cvar' CVT variations (TrueType outlines only)
'fvar' Font variations
'gvar' Glyph variations (TrueType outlines only)
HVAR Horizontal metrics variations
MVAR Metrics variations
STAT Style attributes (required for variable fonts, optional for non-variable fonts)
VVAR Vertical metrics variations

For an overview of OpenType Font Variations and the specification of the interpolation 228
algorithm used for variations, see OpenType Font Variations Overview. For details 229
regarding which tables are required or optional in variable fonts, see Variation Data 230
Tables and Miscellaneous Requirements in the Overview chapter. 231

For information on common table formats used for variations, see OpenType Font 232
Variations Common Table Formats. 233

Note that some variation-related formats may be used in tables other than the 234
variations-specific tables listed above. In particular, the GDEF or BASE tables in a variable 235
font can include variation data using common table formats. A CFF2 table in a variable 236
font can also include variation data, though using formats that are specific to the CFF2 237
table. 238

Tables Related to Color Fonts 239

Tag Name
COLR Color table
CPAL Color palette table
CBDT Color bitmap data
CBLC Color bitmap location data
'sbix' Standard bitmap graphics
'SVG ' The SVG (Scalable Vector Graphics) table

Note that several of these tables were also listed in other sections for tables related to 240
SVG outlines, and for tables related to bitmap glyphs. 241

Other OpenType Tables 242

Tag Name
DSIG Digital signature
'hdmx' Horizontal device metrics
'kern' Kerning
LTSH Linear threshold data
MERG Merge
'meta' Metadata
STAT Style attributes
PCLT PCL 5 data
VDMX Vertical device metrics
'vhea' Vertical Metrics header
'vmtx' Vertical Metrics

Note that the STAT table is required in variable fonts. Also, the 'hdmx' and VDMX tables 243
are not used in variable fonts. 244

	The OpenType Font File
	Filenames
	Data Types
	Table Version Numbers
	Organization of an OpenType Font
	Calculating Checksums

	Font Collections
	The Font Collection File Structure
	TTC Header

	Font Tables
	Required Tables
	Tables Related to TrueType Outlines
	Tables Related to CFF Outlines
	Table Related to SVG Outlines
	Tables Related to Bitmap Glyphs
	Advanced Typographic Tables
	Tables used for OpenType Font Variations
	Tables Related to Color Fonts
	Other OpenType Tables

