10/2/2020 colr.md

COLR — Color Table

Editor’s note: The following is a draft for a revision of the COLR table spec for OT 1.9, introducing version 1 of
the table. Changes shown reflect changes from version 1.8.3 of the OT spec.

The COLR table adds support for multi-colored glyphs in a manner that is compatible with existing text engines
and relatively easy to support with current OpenType font files.

The COLR table defines a list of base gtyptrs=glyphs, which are typically regular glyphs, typicattyoften associated
with a 'cmap’ entry. Each base glyph is associated by*ﬂwe—&@tR—tabPe—to—a—hst—of—@yphs—eadﬂ-correSpOﬂdmg-to

rofwith a set of glyphs composed together to

create a colored presentatlon for the base glyph %whyaed—glmﬁn—are—exphcﬁy—defmed—wboﬁmwm—mder

Two versions of the COLR table are defined.

Version 0 allows for a simple composition of colored elements: a linear sequence of glyphs that are stacked
vertically (z-order) as layers. Each layer combines a glyph outline from the 'glyf', CFF or CFF2 table (referenced by
glyph ID) with a solid color fill.

Version 1 supports much richer capabilities:

* The colored presentation for a base glyph can use a directed, acyclic graph of elements, with nodes in the
graph corresponding to sub-compositions that are vertically layered.

® The individual elements can be glyph outlines, as in version 0. But they can also be compositions of
elements, including a complete structure defined as the colored presentation for another base glyph.

* Fills are not limited to solid colors but can use different types of gradients.

® Several composition and blending modes are supported, providing options for how elements are

graphically composed.

In addition, a COLR version 0O table can be used in variable fonts with glyph outlines being variable, but no other

aspect of the color composition being variable. In version 1, several additional items can be variable:

* The design grid coordinates used to define gradients.
* The elements in transformation matrices.
* The relative placement of gradient color stops on a color line.

® The alpha values applied to individual colors.

sh—The COLR table has a
dependency on the CPAL table. If the COLR table is present in a font but no CPAL table exists, then the COLR

table wittmotbesupported-for-thisfontis ignored.

file:///F:/OpenType_Work/190_draft_201002/colr_draft_delta-from-183.html 1/14

10/2/2020 colr.md
Processing of the COLR table is done on glyph sequences after text layout processing is completed and prior to
rendering of glyphs. In the context of the COLR table, a base glyph is a glyph for which color presentation data is
provided in this table. Typically, a base glyph is a glyph that may occur in a sequence that results from the text
layout process. In some cases, a base glyph may be a virtual glyph used to define a re-usable color composition.

“Color glyph” will be used informally to refer to the graphic composition defined by the COLR data associated
with a given base glyph. When a color glyph is used, it is a substitute for the base glyph: the base glyph is not
presented. The same glyph ID may be used as an element in the color glyph definition, however.

The color values used in a color glyph definition are specified as entries in color palettes defined in the CPAL
table. A font may define alternate palettes in its CPAL table; it is up to the application to determine which palette
is used.

Graphic Compositions
The graphic compositions in a color glyph definition use a set of 2D graphic concepts and constructs:

® Shapes (or geometries)

* Fills (or shadings)

* Layering—a z-order—of elements

® Composition modes—different ways that the content of a layer is combined with the content of layers
above or below it

* Affine transformations

The simplest color glyphs use just a few of the concepts above: shapes, solid color fills, and layering. This is the
set of capabilities provided by version 0 of the COLR table.

In a version 0 color glyph, a sequence of layers is defined. Each layer has a shape and a solid color fill. The shapes
are obtained from glyph outlines in the 'glyf', 'CFF ' or CFF2 table. Colors are obtained from the CPAL table. The
filled shapes in the layers are composed using only alpha blending.

The following figure illustrates the version 0 capabilities: three shapes are in a layered stack: a blue square in the
bottom layer, an opaque green circle in the next layer, and a red triangle with some transparency in the top layer.

Editor’s note: The following figure is added. (Figures cannot be formatted to reflect changes.)

file:///F:/OpenType_Work/190_draft_201002/colr_draft_delta-from-183.html 2/14

10/2/2020 colr.md

Layer 1
Layer O (bottom)

Layer 2 (top)

These capabilities are sufficient to define a color glyph such as the following:

Editor’s note: The following figure is added. (Figures cannot be formatted to reflect changes.)

The basic concepts also apply to color glyphs defined using the version 1 formats. As for version 0, all shapes are

defined using glyph outlines, and all colors are obtained from the CPAL table. A sequence of layers is defined,
and all shapes are arranged in layers, though there are some additional ways to incorporate layers.

Also, the version 1 concept of filling a shape is similar to that for version 0, but the fills have many more
possibilities. Gradients can be used as well as solid colors. But content that fills a shape can also include more
complex compositions. A different way to describe the relationship between a glyph outline and the way it is filled
is that a fill is a graphic composition, and the glyph outline defines a bounds, or clip region, for the fill. This is still
somewhat simplified.

More precisely, a version 1 color glyph definition is directed acyclic graph that specifies a set of nested 2D
graphics operations. Glyph outlines define clip regions that apply to the nested operations that “fill” the outline.
Affine transforms can be set at nodes within the graph, applying to the nested operations defined by the sub-
graph. Also, composition modes can be specified at nodes within the graph determining how the composition
produced by the nested operations of the sub-graph is blended into the destination surface.

All of the additional capabilities will be explained in greater detail, with examples, starting with gradients.
Gradients

<forthcoming>

file:///F:/OpenType_Work/190_draft_201002/colr_draft_delta-from-183.html 3/14

10/2/2020 colr.md

Header

=The COLR table begins with a header. Two versions have
been defined. Offsets in the header are from the start of the table.

COLR version 0:

Type Name Description

uint16 version Table version number-{startsat6)—set to 0.

uint16 numBaseGlyphRecords Number of Base Glyph Records.

Offset tfrombeginmingof- COtRtabteytoBase-Glyphrecordsto

Offset32 baseGlyphRecordsOffset
baseGlyphRecords array.

Offset tfrombegimmingof €COtRtable)jtotayerRecordsto layerRecords

array.

Offset32 layerRecordsOffset

uint16 numLayerRecords Number of Layer Records.

Note: For fonts that use COLR version 0, some early Windows implementations of the COLR table require
glyph ID 1 to be the .null glyph.

COLR version 1:

Type Field name Description
uint16 version Table version number—set to 1.
uint16 numBaseGlyphRecords May be 0 in a version 1 table.

Offset32 baseGlyphRecordsOffset Offset to baseGlyphRecords array (may be NULL).

Offset32 layerRecordsOffset Offset to layerRecords array (may be NULL).

uint16 numLayerRecords May be 0 in a version 1 table.

Offset32 baseGlyphV1ListOffset Offset to BaseGlyphV1List table.

Offset32 itemVariationStoreOffset ~ Offset to ItemVariationStore (may be NULL).

The BaseGlyphV1List and its subtables are only used in COLR version 1. The ItemVariationStore is only used in
variable fonts and in conjunction with a BaseGlyphV1List and its subtables. A font that uses only BaseGlyph and
Layer records should use a version 0 table.

A font that includes a BaseGlyphV1List can also include BaseGlyph and Layer records for compatibility with
applications that only support COLR version 0. For applications that support COLR version 1, if a given base glyph
is supported in the BaseGlyphV1List as well as in a BaseGlyph record, the data in the BaseGlyphV1List should be
used.

file:///F:/OpenType_Work/190_draft_201002/colr_draft_delta-from-183.html 4/14

10/2/2020 colr.md

Color glyphs that can be implemented in COLR version 0 using BaseGlyph and Layer records can also be
implemented using the version 1 BaseGlyphV1List and subtables. Thus, a font that uses a BaseGlyphV1List does
not need to use the version 0 BaseGlyph and Layer records. However, a font may use the version 1 structures for
some base glyphs and the version 0 structures for other base glyphs. Applications should search for a base glyph
ID first in the BaseGlyphV1List, then if not found, search in the BaseGlyph records array, if present.

Base Glyph Recordand Layer Records

A BaseGlyph record is used to map a base glyph to a sequence of layer records that define the corresponding
color glyph. The BaseGlyph record includes a base glyph index, an index into the layerRecords array, and the
number of layers.

BaseGlyph record:

Type Name Description

Glyph ID of reference—
forcotorthe base glyph.

uint16 gibglyphlD

Index tfrombeginning-of-thetayerRecordsjto-thetayerrecord—Fhere-wittbe
uint16 firstLayerindex numtayersconsecutiveentriesforthisbasegtyph(base 0) into the layerRecords

array.

uint16 numlLayers Number of color layers associated with this glyph.

The base glyph records are sorted by glyph id. It is assumed that a binary search can be used to efficiently access
the glyph IDs that have a color glyph definition.

The color glyph for a given base glyph is defined by the consecutive records in the layerRecords array for the
specified number of layers, starting with the record indicated by firstLayerlndex. The first record in this sequence
is the bottom layer in the z-order, and each subsequent layer is stack on top of the previous layer.

file:///F:/OpenType_Work/190_draft_201002/colr_draft_delta-from-183.html 5/14

10/2/2020 colrmd
Note that the layer record sequences for two different base glyphs can overlap, with some layer records used in
multiple color glyph definitions.

tayerRecord

The Layer record specifies the glyph used as the graphic element for a layer and the solid color fill.

Layer record:

Type Name Description

Glyph ID of fayerglyphtmustbeinz-orderfrombottomtotopjthe glyph used for a

given layer.

uint16 gitbglyphlD

uint16 palettelndex caseindicating-thatthetext-foreground—cotor{defined-by-ahigher-tevetctenty
arraylndex for a palette entry in the CPAL table.

The glyphlID in a Layer record must be less than the numGlyph value in the 'maxp' table. That is, it must be a valid
glyph with outline data in the 'glyf', 'CFF ' or CFF2 table. The advance width of the referenced glyph must be the
same as that of the base glyph.

The palettelndex value must be less than the numPaletteEntries value in the CPAL table. A palettelndex value of

OxFFFF is a special case, indicating that the text foreground color (as determined by the application) is to be used.

BaseGlyphV1List and LayerV1List

The BaseGlyphV1List table is, conceptually, similar to the baseGlyphRecords array in COLR version 0, providing
records that map a base glyph to a color glyph definition. The color glyph definition is significantly different,
however, defined in a LayerV1List table rather than a sequence of layer records.

BaseGlyphV1List table:
Type Name Description
uint32 numBaseGlyphV1Records

BaseGlyphV1Record baseGlyphV1Records[numBaseGlyphV1Records]
BaseGlyphV1Record:

Type Name Description

file:///F:/OpenType_Work/190_draft_201002/colr_draft_delta-from-183.html 6/14

10/2/2020 colr.md

Type Name Description

uint16 glyphID Glyph ID of the base glyph.

Offset32 layerlListOffset Offset to LayerV1List table, from start of BaseGlyphsV1List table.

The records in the baseGlyphV1Records array should sorted in increasing glyphlD order.

A LayerV1List table defines the graphic composition for a color glyph as a sequence of Paint subtables.

LayerV1List table:
Type Field name Description
uint8 numLayers

Offset32 paintOffsetfnumLayers] Offsets to Paint tables, each from the start of the LayerV1List table.

Several formats for the Paint subtable are defined, each providing a different graphic capability. A format field is
the first field for each format. Specifications for each format is provided below.

Each paint table will typically have a subtable graph to define a graphic composition. The composition must
define a bounded region. If a paint table in the list defines an unbounded composition, it must be ignored. See
above for more details.

The sequence of offsets to paint tables corresponds to a z-order layering of the graphic compositions defined by
each paint table. The first paint table defines the element at the bottom of the z-order, and each subsequent

paint table defines an element that is layered on top of the previous element.

Bounding Box

The bounding box of the base glyph specified in the BaseGlyphV1Record is used at the bounding box for the
color glyph defined in the corresponding LayerV1List.

Note that a 'glyf' entry with two points at diagonal extrema is sufficient to define the bounding box.

Note: Applications can use the bounding box to allocate a drawing surface without first needing to

traverse the color glyph definition.

Formats Used Within Paint Tables

Before providing specifications for the Paint table formats, various building-block elements used in paint tables

will be described: variation records, colors and color lines, transforms, and composition modes.

Variation Records

Several values contained within the Paint tables or their subtable formats are variable. These use various record
formats that combine a basic data type with a variation delta-set index: VarFWord, VarUFWord, VarF2Dot14, and
VarFixed. These are described in the chapter, OpenType Font Variations Common Table Formats.

file:///F:/OpenType_Work/190_draft_201002/colr_draft_delta-from-183.html 7/14

10/2/2020 colr.md

Colors and Color Lines

Colors are used in solid color fills for graphic elements, or as stops in a color line used to define a gradient. Colors
are defined by reference to palette entries in the CPAL table. While CPAL entries include an alpha component, a
ColorIndex record is defined here that includes a separate alpha specification that supports variation in a variable
font.

ColorIndex record:

Type Name Description
uint16 palettelndex Index for a CPAL palette entry.
VarF2Dot14 alpha Variable alpha value.

A palettelndex value of OxFFFF is a special case, indicating that the text foreground color (as determined by the
application) is to be used.

The alpha.value is always set explicitly. The alpha.value, and any variations of it, should be in the range [0.0, 1.0]
(inclusive); values outside this range should be clipped to the range. A value of zero means no opacity (fully
transparent); 1.0 means opaque (no transparency). The alpha indicated in this record is multiplied with the alpha
component of the CPAL entry. Note that the resulting alpha value can be combined with and does not supersede
alpha or opacity attributes set in higher-level contexts.

Gradients are defined using a color line, which is a specification of color values at proportional distances from the
start to the end of the line.

ColorStop record:

Type Name Description

VarF2Dot14 stopOffset Proportional distance on a color line; variable.

Colorindex color

The stopOffset.value, and any variations of it, should be in the range [0.0, 1.0] (inclusive); values outside this
range should be clipped to the range.

A color line is defined by array of color stops.

ColorlLine table:

Type Name Description
uint8 extend An Extend enum value.
uint16 numStops Number of ColorStop records.

ColorStop colorStops[numStops]

The colorStops array should be in increasing stopOffset order.

file:///F:/OpenType_Work/190_draft_201002/colr_draft_delta-from-183.html 8/14

10/2/2020 colrmd
A color line defines stops at proportional distances along the line, but in a gradient specification the start and
end of the line are given positions in the glyph design grid. However, the color gradation can extend beyond
those limits, depending on the graphic element that is being filled. Conceptually, the color line is extended
infinitely in either direction beyond the [0, 1] range. The extend field is used to indicate how the color line is
extended. The same behavior is used for extension in both directions.

The extend field uses the following enumeration:

Extend enumeration:

Value Name Description

0 EXTEND_PAD Use nearest color stop.

1 EXTEND_REPEAT Repeat from farthest color stop.

2 EXTEND_REFLECT Mirror color line from nearest end.

EXTEND_PAD: All positions on the extended color line use the color of the closest color stop. By analogy, given a
sequence "ABC", it is extended to "...AA ABC CC...".

EXTEND_REPEAT: The color line is repeated by extrapolating the design grid positions in the gradient definition in
either direction. In either direction, the first color in the extended color line is that of the farthest color stop. By
analogy, given a sequence "ABC", it is extended to “... ABC ABC ABC...".

EXTEND_REFLECT: The color line is repeated by extrapolating the design grid positions in the gradient definition
in either direction. However, the ordering of colors along the extension in either direction is reversed. For each
repetition of the color line, colors are reversed again. By analogy, given a sequence "ABC", it is extended to "...
ABC CBA ABC CBA ABC...".

See above for graphical illustrations of these effects.

If a ColorLine in a font has an unrecognized extend value, applications should use EXTEND_PAD by default.

Affine Transformation Matrix

A 2x3 affine transformation matrix is used to provide transformations of the design grid. The 2x3 supports scale,
skew, reflection, rotation, and translation transformations. The matrix elements use VarFixed records, allowing the
transform definition to be variable in a variable font.

Matrix operations are of the form v' = My, where v and v' are vectors for positions in the design grid. The starting
position vector v is an extended 3x1 column matrix with the value 1 as a third matrix element: (x,y,1). The result

vector v'is a 2x1 column matrix (x',y").

Affine2x3 record:

Type Name Description

VarFixed xx

file:///F:/OpenType_Work/190_draft_201002/colr_draft_delta-from-183.html 9/14

10/2/2020

colr.md

Type Name Description

VarFixed xy

VarFixed yx

VarFixed yy

VarFixed dx Translation in x direction.
VarFixed dy Translation in y direction.

Composition Modes

Composition modes are used to specify how two graphical compositions, one layered on top of the other, are
composed together. Supported composition modes are taken from the W3C Compositing and Blending Level 1
specification. In Paint tables, a composition mode is specified using the following enumeration.

CompositeMode enumeration:

Value Name Description
Porter-Duff modes

0 COMPOSITE_CLEAR See Clear

1 COMPOSITE_SRC See Copy

2 COMPOSITE_DEST See Destination

3 COMPOSITE_SRC_OVER See Source Over

4 COMPOSITE_DEST_OVER See Destination Over

5 COMPOSITE_SRC_IN See Source In

6 COMPOSITE_DEST_IN See Destination In

7 COMPOSITE_SRC_OUT See Source Out

8 COMPOSITE_DEST_OUT See Destination Out

9 COMPOSITE_SRC_ATOP See Source Atop

10 COMPOSITE_DEST_ATOP See Destination Atop

11 COMPOSITE_XOR See XOR
Separable color blend modes:

12 COMPOSITE_SCREEN See screen blend mode

13 COMPOSITE_OVERLAY See overlay blend mode

14 COMPOSITE_DARKEN See darken blend mode

file:///F:/OpenType_Work/190_draft_201002/colr_draft_delta-from-183.html

10/14

10/2/2020 colr.md
Value Name Description
15 COMPOSITE_LIGHTEN See lighten blend mode
16 COMPOSITE_COLOR_DODGE See color-dodge blend mode
17 COMPOSITE_COLOR_BURN See color-burn blend mode
18 COMPOSITE_HARD_LIGHT See hard-light blend mode
19 COMPOSITE_SOFT_LIGHT See soft-light blend mode
20 COMPOSITE_DIFFERENCE See difference blend mode
21 COMPOSITE_EXCLUSION See exclusion blend mode
22 COMPOSITE_MULTIPLY See multiply blend mode

Non-separable color blend modes:

23 COMPOSITE_HSL_HUE See hue blend mode
24 COMPOSITE_HSL_SATURATION See saturation blend mode
25 COMPOSITE_HSL_COLOR See color blend mode
26 COMPOSITE_HSL_LUMINOSITY See luminosity blend mode

For details on the composition modes, see the W3C specification. See above for some graphical illustrations.

Paint Tables

Seven Paint table formats (formats 1 to 7) are defined. Formats 1, 2, and 3 define fills. Format 4 uses a glyph
outline to define a geometry. Format 5 allows an entire color glyph definition from the BaseGlyphV1List to be re-
used as a component in another color glyph definition. Format 6 allows a composition, defined using a separate
paint table, to be transformed. Format 7 allows compositing of two compositions, each defined using separate
paint tables.

A color glyph definition using paint tables comprises a directed graph. This graph is expected to be acyclic. Paint
format 5 creates potential for circularity by allowing the color glyph definition for a given glyph ID to reference its
own glyph ID at some node in the graph. Applications should monitor the glyph ID in format 5 to see if has
occurred at a higher node within the graph and, if so, ignore that sub-graph.

Paint Format 1: Solid color fill
Format 1 is used to specify a solid color fill.

PaintSolid table (format 1):

Type Field name Description

uint8 format Set to 1.

file:///F:/OpenType_Work/190_draft_201002/colr_draft_delta-from-183.html 11/14

10/2/2020 colr.md

Type Field name Description

Colorindex color Solid color fill.

Paint Format 2: Linear gradient fill
Format 2 is used to specify a linear gradient fill.

PaintLinearGradient table (format 2):

Type Field name Description

uint8 format Set to 2.

Offset24 colorLineOffset Offset to ColorLine, from start of PaintLinearGradient table.

VarFWord ~ x0 Start point x coordinate.

VarFWord y0 Start point y coordinate.

VarFWord x1 End point x coordinate.

VarFWord y1 End point y coordinate.

VarFWord ~ x2 Rotation vector end point x coordinate.
VarFWord y2 Rotation vector end point y coordinate.

The rotation vector uses the same start point as the gradient line vector. See above for more information.

Paint Format 3: Radial/conic gradient fill

Format 3 is used to define a class of gradients that are a functional superset of a radial gradient: the color
gradation is along a cylinder defined by two circles. In the general case, the circles can have different radii to
create a conical cylinder. A radial gradient in the strict sense, with color gradation along rays from a single focal
point, is formed by the starting circle having a radius of zero with center located inside the ending circle. See

above for more information.

PaintRadialGradient table (format 3):

Type Field name Description

uint8 format Set to 3.

Offset24 colorLineOffset ~ Offset to ColorLine, from start of PaintRadialGradient table.
VarFWord x0 Start circle center x coordinate.

VarFWord y0 Start circle center y coordinate.

VarUFWord radiusO Start circle radius.

VarFWord x1 End circle center x coordinate.

file:///F:/OpenType_Work/190_draft_201002/colr_draft_delta-from-183.html 12/14

10/2/2020 colr.md

Type Field name Description
VarFWord y1 End circle center y coordinate.
VarUFWord radius1 End circle radius.

Paint Format 4: Glyph clip region

Format 4 is used to define a clip region using a glyph outline. The outline sets a clip region that constrains the
content of a separate paint subtable. Conceptually, the paint subtable defines a (potentially complex) fill for the
outline.

PaintClipGlyph table (format 4):

Type Field name Description

uint8 format Set to 4.

Offset24 paintOffset Offset to a Paint table, from start of PaintClipGlyph table.

uint16 glyphID Glyph ID for the clip outline.

The glyphlID value must be less than the numGlyphs value in the 'maxp' table. That is, it must be a valid glyph
with outline data in the 'glyf', 'CFF ' or CFF2 table.

Paint Format 5: COLR composition

Format 5 is used to allow a color glyph definition from the BaseGlyphV1List to be a re-usable component in
multiple color glyph definitions.

PaintColrGlyph table (format 5):

Type Field name Description

uint8 format Set to 5.

uint16 glyphlD Virtual glyph ID for a BaseGlyphV1List base glyph.

The glyphlID value must be a glyphID found in a BaseGlyphV1Record within the BaseGlyphV1List. It may be a
virtual glyph 1D, greater than or equal to the numGlyph value in the 'maxp’ table. The composition defined by the
associated LayerV1List is used as a component within the current color glyph definition.

Paint Format 6: Transformed composition

Format 6 is used to apply an affine 2x3 transform to a graphical composition defined by a separate paint table.

PaintTransformed table (format 6):

Type Field name Description

uint8 format Set to 6.

file:///F:/OpenType_Work/190_draft_201002/colr_draft_delta-from-183.html 13/14

10/2/2020 colr.md

Type Field name Description

Offset24 paintOffset Offset to a Paint subtable, from start of PaintTransform table.

Affine2x3 transform An Affine2x3 record (inline).

When the composition in the referenced paint table is composed into the destination (represented by the parent
of this table), the source design grid origin is aligned to the destination design grid origin. The transform may
translate the source such that a pre-transform position (0,0) is moved elsewhere. The post-transform origin, (0,0),
is aligned to the destination origin.

Paint Format 7: Composite
Format 7 is used to blend two layered compositions using different composition modes.

PaintComposite table (format 7):

Type Field name Description

uint8 format Setto 7.

Offset24 sourcePaintOffset Offset to a source Paint table, from start of PaintComposite table.
uint8 compositeMode A CompositeMode enumeration value.

Offset24 backdropPaintOffset Offset to a backdrop Paint table, from start of PaintComposite table.

The composition defined by the source paint table is layered on top of and blended into the destination
composition defined by the backdrop paint table.

The compositionMode must be one of the values defined in the CompositeMode enumeration. If an
unrecognized value is encountered, COMPOSITE_CLEAR should be used.

file:///F:/OpenType_Work/190_draft_201002/colr_draft_delta-from-183.html 14/14

