
COLR — Color Table 1

The COLR table adds support for multi-colored glyphs in a manner that is compatible 2
with existing text engines and relatively easy to support with current OpenType font 3
files. 4

The COLR table defines a list of base glyphs, which are typically regular glyphs, often 5
associated with a 'cmap' entry. Each base glyph is associated with a set of glyphs 6
composed together to create a colored presentation for the base glyph. The COLR table 7
works together with the CPAL table which holds the color palettes used by the color 8
composition. 9

Two versions of the COLR table are defined. 10

Version 0 allows for a simple composition of colored elements: a linear sequence of 11
glyphs that are stacked vertically (z-order) as layers. Each layer combines a glyph outline 12
from the 'glyf', CFF or CFF2 table (referenced by glyph ID) with a solid color fill. 13

Version 1 supports much richer capabilities: 14

• The colored presentation for a base glyph can use a directed, acyclic graph of 15
elements, with nodes in the graph corresponding to sub-compositions that are 16
vertically layered. 17

• The individual elements can be glyph outlines, as in version 0. But they can also 18
be compositions of elements, including a complete structure defined as the 19
colored presentation for another base glyph. 20

• Fills are not limited to solid colors but can use different types of gradients. 21
• Several composition and blending modes are supported, providing options for 22

how elements are graphically composed. 23

In addition, a COLR version 0 table can be used in variable fonts with glyph outlines 24
being variable, but no other aspect of the color composition being variable. In version 1, 25
several additional items can be variable: 26

• The design grid coordinates used to define gradients. 27
• The elements in transformation matrices. 28
• The relative placement of gradient color stops on a color line. 29
• The alpha values applied to individual colors. 30

The COLR table has a dependency on the CPAL table. If the COLR table is present in a 31
font but no CPAL table exists, then the COLR table is ignored. 32

Processing of the COLR table is done on glyph sequences after text layout processing is 33
completed and prior to rendering of glyphs. In the context of the COLR table, a base 34
glyph is a glyph for which color presentation data is provided in this table. Typically, a 35
base glyph is a glyph that may occur in a sequence that results from the text layout 36
process. In some cases, a base glyph may be a virtual glyph used to define a re-usable 37
color composition. 38

“Color glyph” will be used informally to refer to the graphic composition defined by the 39
COLR data associated with a given base glyph. When a color glyph is used, it is a 40
substitute for the base glyph: the base glyph is not presented. The same glyph ID may 41
be used as an element in the color glyph definition, however. 42

The color values used in a color glyph definition are specified as entries in color palettes 43
defined in the CPAL table. A font may define alternate palettes in its CPAL table; it is up 44
to the application to determine which palette is used. 45

Graphic Compositions 46

The graphic compositions in a color glyph definition use a set of 2D graphic concepts 47
and constructs: 48

• Shapes (or geometries) 49
• Fills (or shadings) 50
• Layering—a z-order—of elements 51
• Composition modes—different ways that the content of a layer is combined with 52

the content of layers above or below it 53
• Affine transformations 54

The simplest color glyphs use just a few of the concepts above: shapes, solid color fills, 55
and layering. This is the set of capabilities provided by version 0 of the COLR table. 56

In a version 0 color glyph, a sequence of layers is defined. Each layer has a shape and a 57
solid color fill. The shapes are obtained from glyph outlines in the 'glyf', 'CFF ' or CFF2 58
table. Colors are obtained from the CPAL table. The filled shapes in the layers are 59
composed using only alpha blending. 60

The following figure illustrates the version 0 capabilities: three shapes are in a layered 61
stack: a blue square in the bottom layer, an opaque green circle in the next layer, and a 62
red triangle with some transparency in the top layer. 63

 64

These capabilities are sufficient to define a color glyph such as the following: 65

 66

The basic concepts also apply to color glyphs defined using the version 1 formats. As for 67
version 0, all shapes are defined using glyph outlines, and all colors are obtained from 68
the CPAL table. A sequence of layers is defined, and all shapes are arranged in layers, 69
though there are some additional ways to incorporate layers. 70

Also, the version 1 concept of filling a shape is similar to that for version 0, but the fills 71
have many more possibilities. Gradients can be used as well as solid colors. But content 72
that fills a shape can also include more complex compositions. A different way to 73
describe the relationship between a glyph outline and the way it is filled is that a fill is a 74
graphic composition, and the glyph outline defines a bounds, or clip region, for the fill. 75
This is still somewhat simplified. 76

More precisely, a version 1 color glyph definition is directed acyclic graph that specifies 77
a set of nested 2D graphics operations. Glyph outlines define clip regions that apply to 78
the nested operations that “fill” the outline. Affine transforms can be set at nodes within 79
the graph, applying to the nested operations defined by the sub-graph. Also, 80
composition modes can be specified at nodes within the graph determining how the 81
composition produced by the nested operations of the sub-graph is blended into the 82
destination surface. 83

All of the additional capabilities will be explained in greater detail, with examples, 84
starting with gradients. 85

Gradients 86

<forthcoming> 87

Header 88

The COLR table begins with a header. Two versions have been defined. Offsets in the 89
header are from the start of the table. 90

COLR version 0: 91

Type Name Description
uint16 version Table version number—set to 0.
uint16 numBaseGlyphRecords Number of Base Glyph Records.
Offset32 baseGlyphRecordsOffset Offset to baseGlyphRecords array.
Offset32 layerRecordsOffset Offset to layerRecords array.
uint16 numLayerRecords Number of Layer Records.

Note: For fonts that use COLR version 0, some early Windows implementations of the 92
COLR table require glyph ID 1 to be the .null glyph. 93

COLR version 1: 94

Type Field name Description
uint16 version Table version number—set to 1.
uint16 numBaseGlyphRecords May be 0 in a version 1 table.
Offset32 baseGlyphRecordsOffset Offset to baseGlyphRecords array (may be

NULL).
Offset32 layerRecordsOffset Offset to layerRecords array (may be NULL).

uint16 numLayerRecords May be 0 in a version 1 table.
Offset32 baseGlyphV1ListOffset Offset to BaseGlyphV1List table.
Offset32 itemVariationStoreOffset Offset to ItemVariationStore (may be NULL).

The BaseGlyphV1List and its subtables are only used in COLR version 1. The 95
ItemVariationStore is only used in variable fonts and in conjunction with a 96
BaseGlyphV1List and its subtables. A font that uses only BaseGlyph and Layer records 97
should use a version 0 table. 98

A font that includes a BaseGlyphV1List can also include BaseGlyph and Layer records for 99
compatibility with applications that only support COLR version 0. For applications that 100
support COLR version 1, if a given base glyph is supported in the BaseGlyphV1List as 101
well as in a BaseGlyph record, the data in the BaseGlyphV1List should be used. 102

Color glyphs that can be implemented in COLR version 0 using BaseGlyph and Layer 103
records can also be implemented using the version 1 BaseGlyphV1List and subtables. 104
Thus, a font that uses a BaseGlyphV1List does not need to use the version 0 BaseGlyph 105
and Layer records. However, a font may use the version 1 structures for some base 106
glyphs and the version 0 structures for other base glyphs. Applications should search for 107
a base glyph ID first in the BaseGlyphV1List, then if not found, search in the BaseGlyph 108
records array, if present. 109

Base Glyph and Layer Records 110

A BaseGlyph record is used to map a base glyph to a sequence of layer records that 111
define the corresponding color glyph. The BaseGlyph record includes a base glyph 112
index, an index into the layerRecords array, and the number of layers. 113

BaseGlyph record: 114

Type Name Description
uint16 glyphID Glyph ID of the base glyph.
uint16 firstLayerIndex Index (base 0) into the layerRecords array.
uint16 numLayers Number of color layers associated with this glyph.

The base glyph records are sorted by glyph id. It is assumed that a binary search can be 115
used to efficiently access the glyph IDs that have a color glyph definition. 116

The color glyph for a given base glyph is defined by the consecutive records in the 117
layerRecords array for the specified number of layers, starting with the record indicated 118

by firstLayerIndex. The first record in this sequence is the bottom layer in the z-order, 119
and each subsequent layer is stack on top of the previous layer. 120

Note that the layer record sequences for two different base glyphs can overlap, with 121
some layer records used in multiple color glyph definitions. 122

The Layer record specifies the glyph used as the graphic element for a layer and the 123
solid color fill. 124

Layer record: 125

Type Name Description
uint16 glyphID Glyph ID of the glyph used for a given layer.
uint16 paletteIndex Index for a palette entry in the CPAL table.

The glyphID in a Layer record must be less than the numGlyph value in the 'maxp' table. 126
That is, it must be a valid glyph with outline data in the 'glyf', 'CFF ' or CFF2 table. The 127
advance width of the referenced glyph must be the same as that of the base glyph. 128

The paletteIndex value must be less than the numPaletteEntries value in the CPAL table. 129
A paletteIndex value of 0xFFFF is a special case, indicating that the text foreground color 130
(as determined by the application) is to be used. 131

BaseGlyphV1List and LayerV1List 132

The BaseGlyphV1List table is, conceptually, similar to the baseGlyphRecords array in 133
COLR version 0, providing records that map a base glyph to a color glyph definition. The 134
color glyph definition is significantly different, however, defined in a LayerV1List table 135
rather than a sequence of layer records. 136

BaseGlyphV1List table: 137

Type Name Description
uint32 numBaseGlyphV1Records

BaseGlyphV1Record baseGlyphV1Records[numBaseGlyphV1Records]

BaseGlyphV1Record: 138

Type Name Description
uint16 glyphID Glyph ID of the base glyph.
Offset32 layerListOffset Offset to LayerV1List table, from start of BaseGlyphsV1List

table.

The records in the baseGlyphV1Records array should sorted in increasing glyphID order. 139

A LayerV1List table defines the graphic composition for a color glyph as a sequence of 140
Paint subtables. 141

LayerV1List table: 142

Type Field name Description
uint8 numLayers

Offset32 paintOffset[numLayers] Offsets to Paint tables, each from the start of the
LayerV1List table.

Several formats for the Paint subtable are defined, each providing a different graphic 143
capability. A format field is the first field for each format. Specifications for each format 144
is provided below. 145

Each paint table will typically have a subtable graph to define a graphic composition. 146
The composition must define a bounded region. If a paint table in the list defines an 147
unbounded composition, it must be ignored. See above for more details. 148

The sequence of offsets to paint tables corresponds to a z-order layering of the graphic 149
compositions defined by each paint table. The first paint table defines the element at 150
the bottom of the z-order, and each subsequent paint table defines an element that is 151
layered on top of the previous element. 152

Bounding Box 153

The bounding box of the base glyph specified in the BaseGlyphV1Record is used at the 154
bounding box for the color glyph defined in the corresponding LayerV1List. 155

Note that a 'glyf' entry with two points at diagonal extrema is sufficient to define the 156
bounding box. 157

Note: Applications can use the bounding box to allocate a drawing surface without 158
first needing to traverse the color glyph definition. 159

Formats Used Within Paint Tables 160

Before providing specifications for the Paint table formats, various building-block 161
elements used in paint tables will be described: variation records, colors and color lines, 162
transforms, and composition modes. 163

Variation Records 164

Several values contained within the Paint tables or their subtable formats are variable. 165
These use various record formats that combine a basic data type with a variation delta-166
set index: VarFWord, VarUFWord, VarF2Dot14, and VarFixed. These are described in the 167
chapter, OpenType Font Variations Common Table Formats. 168

Colors and Color Lines 169

Colors are used in solid color fills for graphic elements, or as stops in a color line used to 170
define a gradient. Colors are defined by reference to palette entries in the CPAL table. 171
While CPAL entries include an alpha component, a ColorIndex record is defined here 172
that includes a separate alpha specification that supports variation in a variable font. 173

ColorIndex record: 174

Type Name Description
uint16 paletteIndex Index for a CPAL palette entry.
VarF2Dot14 alpha Variable alpha value.

A paletteIndex value of 0xFFFF is a special case, indicating that the text foreground color 175
(as determined by the application) is to be used. 176

The alpha.value is always set explicitly. The alpha.value, and any variations of it, should 177
be in the range [0.0, 1.0] (inclusive); values outside this range should be clipped to the 178
range. A value of zero means no opacity (fully transparent); 1.0 means opaque (no 179
transparency). The alpha indicated in this record is multiplied with the alpha component 180
of the CPAL entry. Note that the resulting alpha value can be combined with and does 181
not supersede alpha or opacity attributes set in higher-level contexts. 182

Gradients are defined using a color line, which is a specification of color values at 183
proportional distances from the start to the end of the line. 184

ColorStop record: 185

Type Name Description
VarF2Dot14 stopOffset Proportional distance on a color line; variable.
ColorIndex color

The stopOffset.value, and any variations of it, should be in the range [0.0, 1.0] (inclusive); 186
values outside this range should be clipped to the range. 187

A color line is defined by array of color stops. 188

ColorLine table: 189

Type Name Description
uint8 extend An Extend enum value.
uint16 numStops Number of ColorStop records.
ColorStop colorStops[numStops]

The colorStops array should be in increasing stopOffset order. 190

A color line defines stops at proportional distances along the line, but in a gradient 191
specification the start and end of the line are given positions in the glyph design grid. 192
However, the color gradation can extend beyond those limits, depending on the graphic 193
element that is being filled. Conceptually, the color line is extended infinitely in either 194
direction beyond the [0, 1] range. The extend field is used to indicate how the color line 195
is extended. The same behavior is used for extension in both directions. 196

The extend field uses the following enumeration: 197

Extend enumeration: 198

Value Name Description
0 EXTEND_PAD Use nearest color stop.
1 EXTEND_REPEAT Repeat from farthest color stop.
2 EXTEND_REFLECT Mirror color line from nearest end.

EXTEND_PAD: All positions on the extended color line use the color of the closest color 199
stop. By analogy, given a sequence “ABC”, it is extended to “…AA ABC CC…”. 200

EXTEND_REPEAT: The color line is repeated by extrapolating the design grid positions in 201
the gradient definition in either direction. In either direction, the first color in the 202
extended color line is that of the farthest color stop. By analogy, given a sequence 203
“ABC”, it is extended to “…ABC ABC ABC…”. 204

EXTEND_REFLECT: The color line is repeated by extrapolating the design grid positions 205
in the gradient definition in either direction. However, the ordering of colors along the 206
extension in either direction is reversed. For each repetition of the color line, colors are 207
reversed again. By analogy, given a sequence “ABC”, it is extended to “…ABC CBA ABC 208
CBA ABC…”. 209

See above for graphical illustrations of these effects. 210

If a ColorLine in a font has an unrecognized extend value, applications should use 211
EXTEND_PAD by default. 212

Affine Transformation Matrix 213

A 2×3 affine transformation matrix is used to provide transformations of the design grid. 214
The 2×3 supports scale, skew, reflection, rotation, and translation transformations. The 215
matrix elements use VarFixed records, allowing the transform definition to be variable in 216
a variable font. 217

Matrix operations are of the form v′ = Mv, where v and v′ are vectors for positions in the 218
design grid. The starting position vector v is an extended 3×1 column matrix with the 219
value 1 as a third matrix element: (x,y,1). The result vector v′ is a 2×1 column matrix 220
(x′,y′). 221

Affine2x3 record: 222

Type Name Description
VarFixed xx

VarFixed xy

VarFixed yx

VarFixed yy

VarFixed dx Translation in x direction.
VarFixed dy Translation in y direction.

Composition Modes 223

Composition modes are used to specify how two graphical compositions, one layered 224
on top of the other, are composed together. Supported composition modes are taken 225
from the W3C Compositing and Blending Level 1 specification. In Paint tables, a 226
composition mode is specified using the following enumeration. 227

CompositeMode enumeration: 228

https://www.w3.org/TR/compositing-1/

Value Name Description
Porter-Duff modes

0 COMPOSITE_CLEAR See Clear
1 COMPOSITE_SRC See Copy
2 COMPOSITE_DEST See Destination
3 COMPOSITE_SRC_OVER See Source Over
4 COMPOSITE_DEST_OVER See Destination Over
5 COMPOSITE_SRC_IN See Source In
6 COMPOSITE_DEST_IN See Destination In
7 COMPOSITE_SRC_OUT See Source Out
8 COMPOSITE_DEST_OUT See Destination Out
9 COMPOSITE_SRC_ATOP See Source Atop
10 COMPOSITE_DEST_ATOP See Destination Atop
11 COMPOSITE_XOR See XOR

Separable color blend modes:

12 COMPOSITE_SCREEN See screen blend mode
13 COMPOSITE_OVERLAY See overlay blend mode
14 COMPOSITE_DARKEN See darken blend mode
15 COMPOSITE_LIGHTEN See lighten blend mode
16 COMPOSITE_COLOR_DODGE See color-dodge blend mode
17 COMPOSITE_COLOR_BURN See color-burn blend mode
18 COMPOSITE_HARD_LIGHT See hard-light blend mode
19 COMPOSITE_SOFT_LIGHT See soft-light blend mode
20 COMPOSITE_DIFFERENCE See difference blend mode
21 COMPOSITE_EXCLUSION See exclusion blend mode
22 COMPOSITE_MULTIPLY See multiply blend mode

Non-separable color blend modes:

23 COMPOSITE_HSL_HUE See hue blend mode
24 COMPOSITE_HSL_SATURATION See saturation blend mode
25 COMPOSITE_HSL_COLOR See color blend mode
26 COMPOSITE_HSL_LUMINOSITY See luminosity blend mode

For details on the composition modes, see the W3C specification. See above for some 229
graphical illustrations. 230

Paint Tables 231

Seven Paint table formats (formats 1 to 7) are defined. Formats 1, 2, and 3 define fills. 232
Format 4 uses a glyph outline to define a geometry. Format 5 allows an entire color 233

https://www.w3.org/TR/compositing-1/#porterduffcompositingoperators_clear
https://www.w3.org/TR/compositing-1/#porterduffcompositingoperators_src
https://www.w3.org/TR/compositing-1/#porterduffcompositingoperators_dst
https://www.w3.org/TR/compositing-1/#porterduffcompositingoperators_srcover
https://www.w3.org/TR/compositing-1/#porterduffcompositingoperators_dstover
https://www.w3.org/TR/compositing-1/#porterduffcompositingoperators_srcin
https://www.w3.org/TR/compositing-1/#porterduffcompositingoperators_dstin
https://www.w3.org/TR/compositing-1/#porterduffcompositingoperators_srcout
https://www.w3.org/TR/compositing-1/#porterduffcompositingoperators_dstout
https://www.w3.org/TR/compositing-1/#porterduffcompositingoperators_srcatop
https://www.w3.org/TR/compositing-1/#porterduffcompositingoperators_dstatop
https://www.w3.org/TR/compositing-1/#porterduffcompositingoperators_xor
https://www.w3.org/TR/compositing-1/#blendingscreen
https://www.w3.org/TR/compositing-1/#blendingoverlay
https://www.w3.org/TR/compositing-1/#blendingdarken
https://www.w3.org/TR/compositing-1/#blendinglighten
https://www.w3.org/TR/compositing-1/#blendingcolordodge
https://www.w3.org/TR/compositing-1/#blendingcolorburn
https://www.w3.org/TR/compositing-1/#blendinghardlight
https://www.w3.org/TR/compositing-1/#blendingsoftlight
https://www.w3.org/TR/compositing-1/#blendingdifference
https://www.w3.org/TR/compositing-1/#blendingexclusion
https://www.w3.org/TR/compositing-1/#blendingmultiply
https://www.w3.org/TR/compositing-1/#blendinghue
https://www.w3.org/TR/compositing-1/#blendingsaturation
https://www.w3.org/TR/compositing-1/#blendingcolor
https://www.w3.org/TR/compositing-1/#blendingluminosity

glyph definition from the BaseGlyphV1List to be re-used as a component in another 234
color glyph definition. Format 6 allows a composition, defined using a separate paint 235
table, to be transformed. Format 7 allows compositing of two compositions, each 236
defined using separate paint tables. 237

A color glyph definition using paint tables comprises a directed graph. This graph is 238
expected to be acyclic. Paint format 5 creates potential for circularity by allowing the 239
color glyph definition for a given glyph ID to reference its own glyph ID at some node in 240
the graph. Applications should monitor the glyph ID in format 5 to see if has occurred at 241
a higher node within the graph and, if so, ignore that sub-graph. 242

Paint Format 1: Solid color fill 243

Format 1 is used to specify a solid color fill. 244

PaintSolid table (format 1): 245

Type Field name Description
uint8 format Set to 1.
ColorIndex color Solid color fill.

Paint Format 2: Linear gradient fill 246

Format 2 is used to specify a linear gradient fill. 247

PaintLinearGradient table (format 2): 248

Type Field name Description
uint8 format Set to 2.
Offset24 colorLineOffset Offset to ColorLine, from start of PaintLinearGradient

table.
VarFWord x0 Start point x coordinate.
VarFWord y0 Start point y coordinate.
VarFWord x1 End point x coordinate.
VarFWord y1 End point y coordinate.
VarFWord x2 Rotation vector end point x coordinate.
VarFWord y2 Rotation vector end point y coordinate.

The rotation vector uses the same start point as the gradient line vector. See above for 249
more information. 250

Paint Format 3: Radial/conic gradient fill 251

Format 3 is used to define a class of gradients that are a functional superset of a radial 252
gradient: the color gradation is along a cylinder defined by two circles. In the general 253
case, the circles can have different radii to create a conical cylinder. A radial gradient in 254
the strict sense, with color gradation along rays from a single focal point, is formed by 255
the starting circle having a radius of zero with center located inside the ending circle. 256
See above for more information. 257

PaintRadialGradient table (format 3): 258

Type Field name Description
uint8 format Set to 3.
Offset24 colorLineOffset Offset to ColorLine, from start of PaintRadialGradient

table.
VarFWord x0 Start circle center x coordinate.
VarFWord y0 Start circle center y coordinate.
VarUFWord radius0 Start circle radius.
VarFWord x1 End circle center x coordinate.
VarFWord y1 End circle center y coordinate.
VarUFWord radius1 End circle radius.

Paint Format 4: Glyph clip region 259

Format 4 is used to define a clip region using a glyph outline. The outline sets a clip 260
region that constrains the content of a separate paint subtable. Conceptually, the paint 261
subtable defines a (potentially complex) fill for the outline. 262

PaintClipGlyph table (format 4): 263

Type Field name Description
uint8 format Set to 4.
Offset24 paintOffset Offset to a Paint table, from start of PaintClipGlyph table.
uint16 glyphID Glyph ID for the clip outline.

The glyphID value must be less than the numGlyphs value in the 'maxp' table. That is, it 264
must be a valid glyph with outline data in the 'glyf', 'CFF ' or CFF2 table. 265

Paint Format 5: COLR composition 266

Format 5 is used to allow a color glyph definition from the BaseGlyphV1List to be a re-267
usable component in multiple color glyph definitions. 268

PaintColrGlyph table (format 5): 269

Type Field name Description
uint8 format Set to 5.
uint16 glyphID Virtual glyph ID for a BaseGlyphV1List base glyph.

The glyphID value must be a glyphID found in a BaseGlyphV1Record within the 270
BaseGlyphV1List. It may be a virtual glyph ID, greater than or equal to the numGlyph 271
value in the 'maxp' table. The composition defined by the associated LayerV1List is used 272
as a component within the current color glyph definition. 273

Paint Format 6: Transformed composition 274

Format 6 is used to apply an affine 2×3 transform to a graphical composition defined by 275
a separate paint table. 276

PaintTransformed table (format 6): 277

Type Field name Description
uint8 format Set to 6.
Offset24 paintOffset Offset to a Paint subtable, from start of PaintTransform table.
Affine2x3 transform An Affine2x3 record (inline).

When the composition in the referenced paint table is composed into the destination 278
(represented by the parent of this table), the source design grid origin is aligned to the 279
destination design grid origin. The transform may translate the source such that a pre-280
transform position (0,0) is moved elsewhere. The post-transform origin, (0,0), is aligned 281
to the destination origin. 282

Paint Format 7: Composite 283

Format 7 is used to blend two layered compositions using different composition modes. 284

PaintComposite table (format 7): 285

Type Field name Description
uint8 format Set to 7.
Offset24 sourcePaintOffset Offset to a source Paint table, from start of

PaintComposite table.
uint8 compositeMode A CompositeMode enumeration value.
Offset24 backdropPaintOffset Offset to a backdrop Paint table, from start of

PaintComposite table.

The composition defined by the source paint table is layered on top of and blended into 286
the destination composition defined by the backdrop paint table. 287

The compositionMode must be one of the values defined in the CompositeMode 288
enumeration. If an unrecognized value is encountered, COMPOSITE_CLEAR should be 289
used. 290

	COLR — Color Table
	Graphic Compositions
	Gradients

	Header
	Base Glyph and Layer Records
	BaseGlyphV1List and LayerV1List
	Bounding Box

	Formats Used Within Paint Tables
	Variation Records
	Colors and Color Lines
	Affine Transformation Matrix
	Composition Modes

	Paint Tables
	Paint Format 1: Solid color fill
	Paint Format 2: Linear gradient fill
	Paint Format 3: Radial/conic gradient fill
	Paint Format 4: Glyph clip region
	Paint Format 5: COLR composition
	Paint Format 6: Transformed composition
	Paint Format 7: Composite

