Skip to content
Interior-point solver
Branch: master
Clone or download
Michael Friedlander
Latest commit 7333fc9 May 15, 2017
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
examples changes to documentation Mar 29, 2017
src Remove redundant diag method. May 15, 2017
test Performance enhancements - now reuses symbolic factorizations, implem… Aug 25, 2016
.gitignore IntPoint.jl generated files. Feb 9, 2016
.travis.yml Update README and fix to travis requirements. May 15, 2017
LICENSE.md IntPoint.jl generated files. Feb 9, 2016
README.md Update README and fix to travis requirements. May 15, 2017
REQUIRE
appveyor.yml IntPoint.jl generated files. Feb 9, 2016

README.md

ConicIP.jl: A Pure Julia Conic QP Solver

Build Status Coverage Status

ConicIP (Conic Interior Point) is an interior-point solver inspired by cvxopt for optimizing quadratic objectives with linear equality constraints, and polyhedral, second-order cone constraints. (Semidefinite cone constraints are available, but only supported as an experimental feature.) Because ConicIP is written in Julia, it allows abstract input and allows callbacks for its most computationaly intensive internal routines.

Basic Usage

ConicIP has the interface

sol = conicIP( Q , c , A , b , 𝐾 , G , d )

For the problem

minimize    ½yᵀQy - cᵀy
s.t         Ay ≧𝐾 b,  𝐾 = 𝐾₁  × ⋯ × 𝐾ⱼ
            Gy  = d

𝐾 is a list of tuples of the form (Cone Type ∈ {"R", "Q"}, Cone Dimension) specifying the cone 𝐾ᵢ. For example, the cone 𝐾 = 𝑅² × 𝑄³ × 𝑅² has the following specification:

𝐾 = [ ("R",2) , ("Q",3),  ("R",2) ]

ConicIP returns sol, a structure containing error information (sol.status), the primal variables (sol.y), dual variables (sol.v, sol.w), and convergence information.

To solve the problem

minimize    ½yᵀQy - cᵀy
such that   y ≧ 0

for example, use ConicIP as follows

using ConicIP

n = 1000

Q = sparse(randn(n,n))
Q = Q'*Q
c = ones(n,1)
A = speye(n)
b = zeros(n,1)
𝐾 = [("R",n)]

sol = conicIP(Q, c, A, b, 𝐾, verbose=true);

For a more detailed example involving callback functions, refer to this notebook.

Usage with modelling libraries

ConicIP is integrated with MathProgBase and can be used as a solver in JuMP and Convex.

JuMP.jl

using JuMP
using ConicIP

m = Model(solver = ConicIPSolver())
@variable(m, x[1:10] >= 0)
@constraint(m, sum(x) == 1.0)
@objective(m, Min, sum(x))
status = solve(m)
getvalue(x) # should be [0.1 0.1 ⋯ 0.1]

Note: JuMP does not currently allow mixing quadratic objectives with conic constraints.

Convex.jl

using Convex
using ConicIP

set_default_solver(ConicIPSolver())
x = Variable(10)
p = minimize( sum(x), [x >= 0, sum(x) == 1])
solve!(p)
x # should be [0.1 0.1 ⋯ 0.1]
You can’t perform that action at this time.