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Abstract— We present a novel method to compute all sta-
tionary points of optimization problems, of which the objective
function and equality constraints are expressed as multivariate
polynomials, in the linear algebra setting. It is shown how
Stetter-Möller matrix methods can be obtained through a
parameterization of the objective function, subsequently ma-
nipulated using Macaulay matrices. An algorithm is provided
to extend this framework to circumvent the necessity of a
Gröbner basis. The generalized eigenvalue problem is obtained
through a sequence of unitary transformations and rank tests
operating directly on the polynomial coefficients (data-driven).
The proposed method is illustrated by means of a structured
total least squares (STLS) example.

I. INTRODUCTION

Many problems in engineering can be expressed as mul-

tivariate polynomial optimization problems with equality

constraints [1], [2]. This is equivalent to finding roots of a

system of polynomial equations. Some well-known methods

for finding these roots include Stetter-Möller forms [3],

homotopy continuation methods [4] and rational univariate

representation forms [5]. In the context of optimization, mo-

ment theory allows to compute a lower bound for the global

optimizer through a series of sums-of-squares relaxations

using a linear matrix inequality (LMI) formulation [6].

In recent years, the polynomial root-finding problem has

been reformulated in terms of linear algebra constructs

[7][8][9], operating on the Macaulay matrix [10], in the

Polynomial Numerical Linear Algebra framework (PNLA).

Similar to the work of Stetter, finding stationary points of

a polynomial optimization problem is in essence solving an

eigenvalue problem.

We show that the Stetter-Möller eigenvalue problem can be

constructed in the PNLA framework using a parameterization

of the objective function. The main contribution of this

paper is to extend upon this framework and eliminate the

need of prior knowledge of the standard monomials [11],

inherently linked to the rank properties of the Macaulay

matrix, as they play a vital yet archaic role in current

eigenvalue problem formulations. The accompanying data-

driven algorithm constructs the eigenvalue problem through a

series of strategically placed rank tests and using only unitary

transformations in the process.

The article is structured as follows: in section II we intro-

duce notation and revisit basic definitions in PNLA. Section

III illustrates the link between standard monomials and rank

properties of Macaulay matrices. Section IV explains the

eigenvalue problem and how it arises from a parameterized

objective function. This approach is extended in section V

to eliminate the necessity of knowledge on the standard

monomials. The resulting algorithm is finally tested and

compared in section VI to existing state-of-the-art methods.

We offer concluding remarks in section VII.

II. NOTATION

A. Polynomial optimization problems

We assume optimization problems with only equality

constraints of the form

min
x1,...,xn

p(x1, . . . ,xn)

s.t. c1(x1, . . . ,xn) = 0

...

cs(x1, . . . ,xn) = 0

(1)

where both objective function and constraints are multivariate

polynomials. It is further assumed that the number of station-

ary points satisfying this system is finite (zero-dimensional)

and distinct (i.e. multiplicities equal to 1). Such a polynomial

optimization problem can be converted into solving a system

of polynomial equations through the method of the Lagrange

multipliers, which derives from the Lagrangian

L = p+
s

∑
k=1

lk ck

a system of n+ s equations in n+ s variables:

fi =



















∂L

∂xi

=
∂ p

∂xi

+
s

∑
k=1

lk
∂ck

∂xi

= 0 1≤ i≤ n

∂L

∂ lk
= ck = 0, i = n+ k 1≤ k≤ s

(2)

(3)

where lk denotes the Lagrange multiplier for the k’th equality

constraint. The resulting system of polynomials forms the set

of first order optimality conditions.

B. Linear algebra notation

Throughout the paper, we use uppercase boldface for

matrices (III for the unit matrix), lowercase boldface for

vectors and lowercase for scalars and functions. All matrices,

vectors and scalars are defined over C. By AAA
T

we denote

the transpose of AAA, and AAA
*

for its conjugate transpose. The

proposed algorithm makes frequent use of invertible row
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compressions for arbitrary matrices AAA ∈ C
m×n

to perform

a dimension reduction of the form

UUU
*
AAA =

(

AAAr

0

)

wherein AAAr has r linearly independent rows (r is thus the rank

of AAA). Similarly we use invertible column compressions

AAAVVV =
(

AAAc 0
)

such that AAAc possesses c linearly independent columns. The

singular value decomposition (SVD) provides a numerically

stable way to compute both types of compression, decom-

posing a m× n matrix AAA as

AAA =UUUSSSVVV
*,

where UUU and VVV are m× m and n× n unitary matrices,

respectively. The m×n matrix SSS is a diagonal matrix of the

form

SSS =

(

SSSp 0

0 0

)

, SSSp = diag(σ1, . . . ,σp),

with σi positive real and satisfying σ1 ≥ . . .≥ σp.

C. Polynomial vector representation

In the linear algebra framework polynomial equations

are converted into vector representations using a monomial

ordering, in this case the degree negative lexicographic

ordering. For example, the polynomial x
2 + y

2 − y + 1 is

represented using a row vector

1 x y x
2

xy y
2

( )1 0 −1 1 0 1

For more information on monomial orderings we refer to

[11]. Using a Vandermonde structured vector function

kkkd(x,y) =
(

1 x y x
2

xy y
2

x
3 . . . y

d
)T

the polynomial evaluation of x
2 +y

2−y+1 for (x,y) can be

expressed as the inner product of its vector representation

with kkk2(x,y).

D. The Macaulay matrix

A zero-dimensional system of multivariate polynomials

can be solved in a linear algebra setting by means of the

Macaulay matrix [10]. Each row of a Macaulay matrix con-

tains a vector representation of a polynomial. Each column

holds coefficients for one monomial; each monomial is des-

ignated to a column in accordance with the degree negative

lexicographic ordering. For a Macaulay matrix MMM(d) only

monomials up to degree d are considered and rows are

populated by vector representations f1, f2, . . . , fn+s shifted by

all monomials of degree up to d − d1,d − d2, . . . ,d − dn+s

respectively, with di = deg( fi), or

MMM(d) =



























f1

x1 f1
...

l
d−d1
s f1

f2
...

l
d−dn+s
s fn+s



























.

The dimensions of the Macaulay matrix increase with d as

n+s

∑
i=1

(

n+ s+ d− di

d− di

)

×

(

n+ s+ d

d

)

III. ISOLATING THE AFFINE ROOTS

The purpose of this section is to distill from the Macaulay

matrix, of which the null space contains all projective roots

by [7], a reduced Macaulay matrix containing only the affine

roots within its null space. In essence, this comes down to

removing all roots at infinity.

The main premise consists of splitting the projective

standard monomials [11] as a basis for P
n
d/〈F1, . . . ,Fn+s〉

1

into two sets, where

Fi(x0,xxx, lll)≡ x
d
0 fi(

x1

x0

, . . . ,
xn

x0

,
l1

x0

, . . . ,
ls

x0

)

with d = deg( f ). Variables (x1, . . . ,xn)
T

and (l1, . . . , ls)
T

are

grouped as xxx and lll, respectively. One set of standard mono-

mials forms a basis for C
n/〈 f1, . . . , fn+s〉, with cardinality

equal to the number of affine roots. Projective standard

monomials are extracted in the linear algebra setting from

the Macaulay matrix after regularity is reached, for which

the degree of regularity and the index of regularity, denoted

by dreg and ireg respectively, are required. When regularity

sets in, a Gröbner basis [11] for 〈 f1, . . . , fn+s〉 can be isolated

in the row space of MMM(d) whenever d≥ dreg. A Gröbner basis

for 〈 f1, . . . , fn+s〉 shares the same affine roots, but possesses

no roots at infinity. The maximum degree of the Gröbner

basis equations is equal to ireg, the same degree for which

the Hilbert function becomes the Hilbert polynomial.

In [12], a numerical algorithm acting upon MMM(dreg) is

presented to find the projective standard monomials, at the

expense of many costly SVD computations. By building a set

of linearly independent columns of MMM(dreg) starting from the

rightmost column to the leftmost, one recognizes that stan-

dard monomials in the linear algebra setting are interwoven

with the rank properties of MMM(dreg). The remaining (linearly

dependent) columns correspond to the projective standard

monomials. For zero-dimensional systems, the emergence of

a Gröbner basis in MMM(dreg) can be observed by the absence

of projective standard monomials in the degree block for

ireg. Furthermore, all affine standard monomials are of degree

lower than ireg. This provides a rank test criterion to detect

1
P

n
d denotes the polynomial ring of multivariate homogeneous polyno-

mials of degree d in n variables.
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when regularity sets in. The null space of MMM(dreg) can be

modeled as

(

MMM1 MMM2 MMM3

)

n1 n∞ n2
( )

XXX 0 PPP

0 0 QQQ

0 YYY RRR

= 0 (4)

where MMM1,MMM2,MMM3 group together all monomials in degree

smaller than ireg, equal to ireg and larger than ireg respectively.

YYY forms a numerical basis for all roots at infinity with column

dimension n∞. The number of affine roots is computed as

na = n1 + n2.

When ireg and dreg are known, it is possible to filter out

a Macaulay matrix from MMM(dreg), where only information

about the affine roots is retained. We compute the row

compression of MMM3, or MMM3,p∞
, with

p∞ =

(

n+ s+ dreg

n+ s

)

−

(

n+ s+ ireg

n+ s

)

− n∞

the rank of MMM3, equal to the number of monomials of degree

larger than ireg minus the number of roots at infinity. When

applied to MMM(dreg), we obtain
2

UUU
*
∞MMM(dreg) =UUU

*
∞

(

MMM1 MMM2 MMM3

)

=

(

MMM1,∞ MMM2,∞ MMM3,p∞

MMM1,a MMM2,a 0

)

(5)

We derive from (4) that the null space linked to the affine

roots has a left annihilator

(

MMM1,a MMM2,a

)

(

XXX PPP

0 QQQ

)

= 0

which can be further (row) compressed to MMMa of dimension

pa× (pa + na) with

pa =

(

n+ s+ ireg

n+ s

)

− na

IV. CASE I: STANDARD MONOMIALS KNOWN

We now show that combining the reduced Macaulay

matrix MMMa with a parameterization of the objective function

in (1), expressed as

p(xxx)−λ (6)

will lead to the Stetter-Möller eigenvalue problem. The

Stetter-Möller eigenvalue problem relies on computing the

remainders (i.e. linear combination of affine standard mono-

mials, obtained through division by a Gröbner basis) of the

affine standard monomials shifted, i.e. multiplied, by p(xxx).
As a result we may obtain polynomials of degree larger

than ireg. This issue is resolved using the reduced Macaulay

matrix MMMa, itself a representation of a system of polynomials,

and we may construct a Macaulay matrix MMMa(d) as long as

d ≥ ireg. Let

daug = deg(p)+ ireg− 1

2
We have chosen the notation MMM1,∞, MMM2,∞ here to distinguish between

selecting the first p∞ rows of UUU
*
∞MMM1 and UUU

*
∞MMM2 respectively, and the

notation for a row compression, as in the case of MMM3,p∞
.

be the augmented degree, then no multiplication of any affine

standard monomial with p(xxx) will yield any equation of

degree larger than daug.

We thus obtain a matrix pencil
(

MMMaug

LLLaug

)

−λ

(

0

RRRaug

)

where MMMaug = MMMa(daug). The rows of PPPaug are vector rep-

resentations of the affine standard monomials multiplied by

p. Designating the vector representation of the product of p

with each of the affine standard monomials to a particular

row of PPPaug demands the placement of a 1-coefficient in the

same row in the column of RRRaug that corresponds to that

standard monomial, in order to respect (6).

Because columns of MMMaug not associated to affine stan-

dard monomials are linearly independent, they can be used

in conjunction to left unitary transformations to introduce

zeros in matching columns of PPPaug. By grouping columns

representing the affine standard monomials as MMMaug,1, we

obtain
(

MMMaug,1 MMMaug,2

LLLaug,1 LLLaug,2

)

−λ

(

0 0

IIIna
0

)

The full column rank of MMMaug,2 can then be exploited to

cancel out matrix entries in LLLaug,2 using some unitary matrix

UUU . This is mathematically equivalent to computing the sought

after remainders; while strictly speaking the rows of LLLaug,1

after cancellation of LLLaug,2 are a linear combination thereof,

left unitary transformations do not alter the solutions of the

final eigenvalue problem. Left-multiplication by UUU
*

gives
(

× ×
AAA 0

)

−λ

(

× 0

BBB 0

)

yielding the na× na eigenvalue problem AAA = λ BBB.

V. CASE II: STANDARD MONOMIALS UNKNOWN

In the previous section, all affine standard monomials

were known. Objectively speaking, the relevant output of

the eigenvector problem is often limited to the first q =
n + s + 1 eigenvector components, assuming that all first

degree monomials are affine standard monomials. Such an

assumption is reasonable; in the opposite case a variable can

be expressed in terms of the other variables and eliminated by

substitution. The key insight is that we are free to replace the

remaining affine standard monomials by linear combinations

thereof, and that they are closely intertwined with the rank

properties of MMMa.

The proposed method will act upon the columns of MMMa

and expose the rank pa. In order to keep the zero and first

degree monomials intact in the column structure of MMMa, we

do not operate on their respective columns. Partition MMMa as

q n̄a + pa

( )MMMa,1 MMMa,2

where n̄a = na− q. By computing a column compression of

MMMa,2

MMMa,2VVV a =
n̄a pa

( )0 EEE (7)
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the rank is exposed in the rightmost pa columns. Based off

this compression, a right unitary matrix TTT = diag(IIIq,VVV a)
transforms MMMa into

MMMa

(

IIIq

VVV a

)

=
q n̄a pa

( )MMMa,1 0 EEE

Considering the affine standard monomials are a mere por-

trayal of the linear dependencies among the columns of MMMa,

the aim is to circumvent any prior knowledge by exploiting

the clear separation of the rank in the newly acquired matrix

pencil




MMMa,1 0 EEE

LLL11 LLL12 LLL13

LLL21 LLL22 LLL23



TTT
*−λ





0 0 0

IIIq 0 0

0 IIIn̄a
0



TTT
*

(8)

The back-transformation TTT
*

aids in understanding what

values belong in the unknown matrices LLLi j using (6). The

block row made up by LLL1, j,1 ≤ j ≤ 3 holds the remainders

of the objective function shifted by the zero and first degree

monomials, transformed by TTT , in accordance to the pivots in

the linear part of the matrix pencil, shown as IIIq.

The block row LLL2 j,1≤ j≤ 3 requires additional work. Let

us partition VVV a as

VVV a =
n̄a pa

( )VVV a,1 VVV a,2

then the linear part of the matrix pencil in (8) can be written

in full as

q n̄a pa
( )0 0 0

IIIq 0 0

0 IIIn̄a
0

TTT
* =

q n̄a + pa








0 0

IIIq 0

0 VVV
*
a,1

(9)

Thus, in order to fulfill (6), this implies we must add vector

representations of p(xxx) shifted by polynomials hi(xxx, lll),1 ≤
i ≤ n̄a constructed as linear combinations of monomials

between degrees 2 and ireg. The coefficient of each monomial

term of hi(xxx, lll) is given in accordance to the value in the i’th

row of V
*
a,1 occupying the column associated to that term.

To arrive at a generalized eigenvalue problem we must

traverse similar steps as we did in the case of known basis

monomials, with some slight differences. Since the shift

functions include polynomials of degree ireg, the augmented

degree now equals deg(p) + ireg. After the introduction of

zeros into columns corresponding to monomials of degree

larger than ireg, the intermediate remainders can be brought

in the form (8) using TTT . Finally, the values of LLL13 and LLL23

are annihilated by left unitary transformations using the fact

that EEE is of full column rank, yielding the modified (square)

matrix pencil

q n̄a pa
( )

pa MMMa,1 0 EEE

q AAA11 AAA12 0

n̄a AAA21 AAA22 0

−λ

q n̄a pa
( )

0 0 0

BBB11 BBB12 0

BBB21 BBB22 0

The finite eigenvalues can be singled out by extraction of

the remainders, or
(

AAA11 AAA12

AAA21 AAA22

)

x = λ

(

BBB11 BBB12

BBB21 BBB22

)

x (10)

with problem dimension na.

The steps described in sections III and V are combined

and summarized in Algorithm 1.

Data: p,c1, . . . ,cs, dinit

Result: AAA−λ BBB

compute Lagrange conditions f1, . . . , fn+s;

d←− dinit ;

do

construct MMM(d);
for i = d downto 2 do

Mi+1 = span(
[

MMMi+1 . . . MMMd

]

);

MMM
p
i ←−M

⊥
i+1\MMMi;

if MMM
p
i full column rank then

ireg←− i;

dreg←− d;

end

end

while regularity not reached;

construct MMM(dreg);

(UUU∞, p∞)←− svd(
[

MMMireg+1 . . . MMMdreg

]

);

compute MMMa using (5);

(UUUa,SSSa,VVV a)←− svd(MMMa);
reorder columns of VVV a right to left;

row compress MMMa;

TTT ←− blkdiag(IIIn+s+1,VVV a);

LLL1←− vector representations of [1 x1 ... ls ]
T · p;

CCC←− columns of VVV a forming null space MMMa;

hi←− CCC
*

contains vector representations;

LLL2←− vector representations of [h1 h2 ... ]T · p;

LLL←−
[

LLL
T
1 LLL

T
2

]T

;

daug←− deg(p)+ ireg;

MMMaug←−MMMa(daug);
UUU1←− delete coefficients of columns beyond ireg in LLL;

BBB←− na× na lower-right submatrix of UUU
*
1;

right multiply LLL with TTT ;

(AAA,UUU2)←− delete coefficients in pa last columns of LLL;

BBB←− left-multiply BBB with na× na lower-right

submatrix of UUU
*
2;

Algorithm 1: SVD-based polynomial global optimization

VI. EXPERIMENTS

We illustrate our method by considering a 3×3 structured

total least squares (STLS) problem. Finding a Hankel matrix

of rank n−1 as an approximation to a given Hankel matrix

based off a time series of length 2n− 1 has been tackled

by various algorithms [13], [14] and amounts to solving a

polynomial root-finding problem. All simulations were done

in MATLAB. Results are compared with the output of the
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GloptiPoly3 package [15] (relaxation order 2) and verified

by a polynomial homotopy continuation method (PHCpack

[16]).

The input is a time series which consists of five samples,

ordered in a 3×3 Hankel matrix A of full rank. A nonlinear

generalization of the SVD to solve the STLS problem is

given in [17], [18], also known as the Riemannian SVD, and

is essentially a system of multivariate polynomial equations.

Since we are searching for a low-rank approximation of A

or rank 2, let vvv = [ v1 v2 v3 ]T be the basis for the null space

of the approximating Hankel structured matrix B, then the

optimization problem is

min
1

2
eee

T
eee

s.t. AAAvvv = TTT veee

vvv
T
vvv = 1

We introduce Lagrange multipliers lll = [ l1 l2 l3 ]
T

for the

first equality constraint shown as a matrix equation, and an

additional variable l4 for the normalization constraint. The

matrix TTT v is constructed as




v1 v1 v3

v1 v2 v3

v1 v2 v3





From the derivation of the Lagrangian, we can decrease the

number of variables using the equality eee = TTT
T
v lll. The opti-

mization problem then turns into the root-finding problem

AAAvvv = TTT vTTT
T
v lll, AAA

T
lll = TTT lTTT

T
l vvv, vvv

T
vvv = 1

The polynomial objective function (lllT
TTT vTTT

T
v lll)/2 grades the

eigenvalues in the proposed method such that the best low-

rank matrix approximation for AAA can be isolated using the

inverse power method. In this example we find the best rank-

2 Hankel approximation for

AAA =





7 −2 5

−2 5 6

5 6 −1





The proposed algorithm reaches regularity for the values

dreg = 13 and ireg = 7, with MMM(d) a 148512 by 77520 matrix.

Starting from the maximum degree of the Riemannian SVD

equations, equal to 3, the number of rank tests traversed

equals (dreg− ireg+1)+∑
dreg−1

k=3 (k−2) based on the assump-

tion of first degree basis monomials, or in total 66 rank tests.

An estimate for dreg is proposed in [8] using

dreg = ∑
i=1

deg( fi)+ 1.

Applied to our example, this yields an estimate of 14 for dreg,

thus only 8 rank tests are required to find ireg. The matrix

dimensions of Ma are equal to 1637× 1716, with 78 affine

roots, also predicted by the size of the normal set computed

using Maple’s NormalSet commando. Care must be taken

to avoid eigenvalues of multiplicity higher than 1. For ex-

ample, if a solution vvv satisfies the Riemannian equations, so

does −vvv. Such twin solutions belong to the same eigenspace

TABLE I: STLS global minimum eigenpairs (C = 5× 10
−1

)

compared to GloptiPoly3 (GP)

1 2 GP

λ 1.7815e1 1.8620e1 1.7815e1
λ −C ·v3 1.8218e1 1.8218e1 1.8218e1

l1 −1.8837 1.8837 −1.8922
l2 −2.5889 2.5889 −2.6187
l3 4.3375 −4.3375 4.3160
v1 3.4942e−1 −3.4942e−1 3.4965e−1
v2 4.8021e−1 −4.8021e−1 4.7764e−1
v3 −8.0456e−1 8.0456e−1 −8.0598e−1

but contribute linearly independent eigenvectors given the

monomial structure, and linear combinations generally do

not fulfill the Lagrange conditions of the problem. For this

reason we slightly adapt the original function to

p = lll
T
TTT vTTT

T
v lll +Cv3

where C acts to perturb the eigenvalues such that all eigen-

values occur with multiplicity 1. A sensible value for C is

5× 10
−1

.

The objective function is multiplied by polynomials of

degree ireg, such that the augmentation degree is equal

to ireg + deg(p), or 11. After traversing the steps outlined

in algorithm 1, the square matrix pencil from (10) with

dimension 78 is obtained.

The global minimizer is found from the smallest eigen-

value, results are shown in Table I. It is clear from Table I and

Fig. 1 that real roots in the STLS optimization problem come

in pairs, sharing the same eigenvalue unless we employ the

eigenvalue trick. In this case, the eigenvalue 1.8218e1 with

multiplicity 2 is pulled apart into two distinct eigenvalues

{1.7815e1,1.8620e1}, and the eigenvectors are correctly

visualized on the unit sphere in the R
3

vector space.

The modified objective function ensures global optimality

for the GloptiPoly3 solution, the solution however varies with

C. Unlike the presented method, the Gloptypoly3 package

allows for additional inequality constraints and is able to

restrict to solutions belonging to the real variety. As the

relaxation order increases, the dimensions of the moment

matrices increase due to the combinatorial explosion of

monomials, also manifested in the SVD method. However,

good estimates are retrieved for low relaxation orders. This

in contrast to the dependency of the SVD method upon the

regularity parameters ireg and dreg, for which no simple rules

exist in order to compute them, making the SVD method

in its current form computationally expensive compared to

others.

All (real) stationary points obtained from the eigenvalue

problem are shown in Fig. 1, indicating their position on

the unit sphere. This graphical representation shows that

stationary points can be classified as either maxima, minima

or saddle points present on the mapped objective function

J(v) =
1

2
vvv

T
AAA

T(TTT vTTT
T
v )
−1

AAAvvv
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which is nonlinear in vvv but equivalent to the polynomial

objective function used in the optimization problem. Three

different stationary points are visible in the middle of the unit

sphere snapshot of Fig. 1. The red arrow shown coincides

with the global minimum vvvopt , the blue arrow points to a

maximal solution and the black arrow indicates a saddle

point.

The optimal rank-2 Hankel approximation of AAA, with vvvopt

spanning its null space, is given by





7.6582 −0.1908 3.2120

−0.1908 3.2120 1.8342

3.2120 1.8342 2.4897



 .

VII. CONCLUSIONS AND FUTURE WORKS

The gap between Macaulay matrices and the work of

Stetter has been bridged, omitting the need for symbolic

computations. The role played by standard monomials in the

Stetter-Möller eigenvalue problem has been entirely replaced

by linear algebra concepts. This opens the way for numeri-

cally robust algorithms in which rank test decisions play a

vital role. The dimensions of the matrix structures involved

increase rapidly with the number of problem variables and

equality constraints imposed. Efficient methods exploiting

the quasi-Toeplitz structure and sparsity will yield great

improvements in computational time requirements. On a

more fundamental level, the idea of operating on the column

structure of Macaulay matrices should be further explored

to replace the Macaulay matrix with a more condensed data

structure limiting the influence of combinatorial explosion.

Alongside algorithmic improvements, the challenge to limit

optimization to real-valued stationary points remains a topic

for future research.

Fig. 1: Markers indicate the position of stationary points

lying on the unit sphere for a 3×3 STLS problem. Stationary

points can be categorized as minima (red), maxima (blue)

or saddle points (black). The global optimum (v1,v2,v3) =
(3.4942e−1,4.8021e−1,−8.0456e−1) is shown in the mid-

dle alongside one maximum and one saddle point.
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