Approach to solving the PnP

Chandra Mangipudi

July 4, 2016

1 Solution Methods

Referring to the proposal, we have the reduced cost function J to be optimized in terms of the Rotation Matrix R for the n object points (P_i) in Camera Frame $\{C\}$.

$$J = \sum_{i=1}^{n} P_i^T R^T W_i^{'} R P_i \tag{1}$$

Let us express the rotation matrix in terms of its elements as shown in (2).

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$
(2)

The cost function can now be expressed in terms of the unknown elements as shown in (3).

$$J = \sum_{i=1}^{n} P_i^T \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}^T W_i^{\prime} \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} P_i$$
(3)

The cost function comprising of 9 scalar variables $(\vec{x} = [r_{11}, r_{12}, r_{13}, r_{21}, r_{22}, r_{23}, r_{31}, r_{32}, r_{33}]^T)$, with the following constraints shown below.

$$\begin{aligned} r_{11}^2 + r_{12}^2 + r_{13}^2 &= 1 \\ r_{21}^2 + r_{22}^2 + r_{23}^2 &= 1 \\ r_{31}^2 + r_{32}^2 + r_{33}^2 &= 1 \\ r_{11}r_{21} + r_{12}r_{22} + r_{13}r_{23} &= 0 \\ r_{11}r_{31} + r_{32}r_{32} + r_{13}r_{33} &= 0 \\ r_{21}r_{31} + r_{22}r_{32} + r_{23}r_{33} &= 0 \end{aligned}$$

Now, we can express the problem statement in terms of a polynomial optimization problem. The cost function is given by (4) and the constraints are given by (5).

$$J = f(\vec{x}) = \frac{1}{2}\vec{x}^T W_i \vec{x} = f(x_1, x_2, ..., x_9)$$
(4)

$$c_i(x_1, x_2, \dots, x_9) = 0 \tag{5}$$

The order of the monomials is 2 (quadratic). This reduces to a subclass of the QCQP (Quadratically constrained Quadratic Programming) problem with equality constraints.

However, the problem at hand is simpler than a QCQP problem. The idea behind solving the global optimization is drived from [1]. The primary advantage of solving the above equation in terms of 9 variables is that the polynomial is quadratic in terms of the variables. Hence, there is only 1 potential point of minima to check for in each of the 9 variables.

If the Rotation matrix is expressed in terms of the quaternion R = R(q), the equation is bi-quadratic (monomials of order 4) in terms of 3 variables (4 variables and 1 constraint) and hence there would be 27 potential points of minima/maxima to check for the global minimum.

This forms an outline of the proposed solution.

References

 A. Vandermeersch and B. D. Moor, "A svd approach to multivariate polynomial optimization problems," in 2015 54th IEEE Conference on Decision and Control (CDC), pp. 7232–7237, Dec 2015.