Browse files

import bit_cast<>

  • Loading branch information...
jlblancoc committed Aug 31, 2017
1 parent 951e767 commit 70906ad75321cf313dbb37e14ab7cf7cddd4c6b7
Showing with 84 additions and 0 deletions.
  1. +79 −0 libs/base/include/mrpt/utils/bit_cast.h
  2. +5 −0 packaging/debian/copyright
@@ -0,0 +1,79 @@
/* +------------------------------------------------------------------------+
| Mobile Robot Programming Toolkit (MRPT) |
| |
| |
| Copyright (c) 2005-2017, Individual contributors, see AUTHORS file |
| See: - All rights reserved. |
| Released under BSD License. See details in |
+------------------------------------------------------------------------+ */
// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_BIT_CAST_H_
#define BASE_BIT_CAST_H_
#include <string.h>
#include <type_traits>
#include "base/compiler_specific.h"
#include "base/template_util.h"
#include "build/build_config.h"
// bit_cast<Dest,Source> is a template function that implements the equivalent
// of "*reinterpret_cast<Dest*>(&source)". We need this in very low-level
// functions like the protobuf library and fast math support.
// float f = 3.14159265358979;
// int i = bit_cast<int32_t>(f);
// // i = 0x40490fdb
// The classical address-casting method is:
// // WRONG
// float f = 3.14159265358979; // WRONG
// int i = * reinterpret_cast<int*>(&f); // WRONG
// The address-casting method actually produces undefined behavior according to
// the ISO C++98 specification, section 3.10 ("basic.lval"), paragraph 15.
// (This did not substantially change in C++11.) Roughly, this section says: if
// an object in memory has one type, and a program accesses it with a different
// type, then the result is undefined behavior for most values of "different
// type".
// This is true for any cast syntax, either *(int*)&f or
// *reinterpret_cast<int*>(&f). And it is particularly true for conversions
// between integral lvalues and floating-point lvalues.
// The purpose of this paragraph is to allow optimizing compilers to assume that
// expressions with different types refer to different memory. Compilers are
// known to take advantage of this. So a non-conforming program quietly
// produces wildly incorrect output.
// The problem is not the use of reinterpret_cast. The problem is type punning:
// holding an object in memory of one type and reading its bits back using a
// different type.
// The C++ standard is more subtle and complex than this, but that is the basic
// idea.
// Anyways ...
// bit_cast<> calls memcpy() which is blessed by the standard, especially by the
// example in section 3.9 . Also, of course, bit_cast<> wraps up the nasty
// logic in one place.
// Fortunately memcpy() is very fast. In optimized mode, compilers replace
// calls to memcpy() with inline object code when the size argument is a
// compile-time constant. On a 32-bit system, memcpy(d,s,4) compiles to one
// load and one store, and memcpy(d,s,8) compiles to two loads and two stores.
template <class Dest, class Source>
inline Dest bit_cast(const Source& source) {
static_assert(sizeof(Dest) == sizeof(Source),
"bit_cast requires source and destination to be the same size");
"bit_cast requires the destination type to be copyable");
"bit_cast requires the source type to be copyable");
Dest dest;
memcpy(&dest, &source, sizeof(dest));
return dest;
#endif // BASE_BIT_CAST_H_
* rplidar: Low-cost LiDAR driver
Copyright (c) 2014 - 2016 Shanghai Slamtec Co., Ltd.
2-clause BSD License
* libs/base/include/mrpt/utils/bit_cast.h
Copyright 2016 The Chromium Authors. All rights reserved.
Use of this source code is governed by a BSD-style license that can be
found in the LICENSE file.

0 comments on commit 70906ad

Please sign in to comment.