Skip to content
master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 

Deep4cast: Forecasting for Decision Making under Uncertainty

This package is under active development. Things may change :-).

Deep4Cast is a scalable machine learning package implemented in Python and Torch. It has a front-end API similar to scikit-learn. It is designed for medium to large time series data sets and allows for modeling of forecast uncertainties.

The network architecture is based on WaveNet. Regularization and approximate sampling from posterior predictive distributions of forecasts are achieved via Concrete Dropout.

Documentation is available at read the docs.

Installation

Main Requirements

Source

Before installing we recommend setting up a clean virtual environment.

From the package directory install the requirements and then the package.

$ pip install -r requirements.txt
$ python setup.py install

Examples

Authors:

References:

About

Probabilistic Multivariate Time Series Forecast using Deep Learning

Resources

License

Releases

No releases published

Packages

No packages published

Languages