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1 Installation

This section describes how to obtain and install HiCdat. Source code, 64-bit
binaries (HiCdatPre) for Linux, Windows, and Mac, the R-package (HiCdatR)
and additional R-Scripts can be downloaded on github.com/MWSchmid/HiCdat.
Even though the program can in principle run using little memory, the R-code
can easily use several Gb of RAM. It is therefore strongly recommended to use
a 64-bit system with at least 6 Gb of RAM.

1.1 Using pre-compiled binaries

If you have a 64 bit (Ubuntu-like) Linux, Windows (7) or MacOSX, use the
pre-compiled binary. The binaries were built on Kubuntu 12.04, Windows 7,
and MacOS 10.10.1 (10.8.5 worked as well). If you encounter problems with the
binaries, try building the program from source (see section 4) and send a report
to marcschmid@gmx.ch.

1.1.1 Linux

Download and unpack the archive linux 64bit.zip. Start HiCdatPre directly
either by double-clicking on it or from the terminal (you may need to make
it executable first, right-click on the binary, open the “properties” dialog and
check the box for “is executable” - or in a terminal type chmod 755 filename).

1.1.2 Windows

Download and unpack the archive windows 64bit.zip. Start the application
directly by double-clicking on it.

1.1.3 Mac

Download and unpack the archive mac 64bit.zip. Mount the *.dmg file (double-
click) and start the application by double-clicking on it.

1.1.4 R-dependencies

HiCdatR requires the R libraries “gplots”, “randomizeBE”, and “MASS”. You
can install them with install.packages(c("gplots", "randomizeBE", "MASS"))
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2 Step-by-step example for pre-processing Hi-C
data

This section provides a step-by-step tutorial on how to get the tables for Hi-C
data analysis in R starting from initial read files. The example data are from
A. thaliana and comprise five seedling samples (two wild-types and three mutant
samples) [1, 2]. Download and unpack the archive At pre-process tutorial.zip

from github.com/MWSchmid/HiCdat (if this archive takes too long to down-
load, you can alternatively download the archive At pre-process tutorial small.zip

containing a less data; i.e., less reads from the HiC experiments - please note
that all the example figures in the user guide are based on the full data set). The
archive contains a folder with the A. thaliana reference genome, its annotation
in gff format (TAIR10 from www.arabidopsis.org), and a few additional tracks
(genomic sequencing, RNA-Seq and DNA methylation data). It additionally
contains pre-processed .bam files for two Hi-C samples in case you would like to
skip the download and alignment part of the tutorial (in this case go to section
2.4). The short reads download and alignment part is written for an Ubuntu-like
Linux.

2.1 OPTIONAL: Installation of additional programs

Additional programs are required to download and align the short reads. It is
later assumed that these programs reside in a folder that is included in your
PATH environment variable. This can be done by either moving the programs
into one of the by-default included folders (e.g. /usr/local/bin), or by adding
the folder containing the programs to the PATH environment variable. Note
that the latter is a temporary solution (the commands have to be entered each
time you start a new terminal). Code for both options is given for each of the
programs (note that the hash-tag # stands for comments, which do not have to
be typed into the terminal).

• SRA toolkit
Visit www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software, down-
load the archive for “Ubuntu Linux 64 bit architecture”, unpack it, open
a terminal, and type (adjust the path and version number):

# SOLUTION 1

cd /path/to/sratoolkit.x.x.x-x-ubuntu64/bin

sudo cp -r * /usr/local/bin

# SOLUTION 2 (temporary!)

export PATH="$PATH:/path/to/sratoolkit.x.x.x-x-ubuntu64/bin"

• Subread [3]
Visit subread.sourceforge.net and obtain the latest version. Follow
the link in the box on the right side of the page, download the archive for
linux, unpack it, open a terminal, and type (adjust the path and version
number):

# SOLUTION 1

cd /path/to/subread-x.x.x-p1-Linux-x86_64/bin

2



sudo cp -r * /usr/local/bin

# SOLUTION 2 (temporary!)

export PATH="$PATH:/path/to/subread-x.x.x-p1-Linux-x86_64/bin"

• SAMtools [4]
Visit sourceforge.net/projects/samtools/files/samtools/ and ob-
tain the latest version. Download the archive and unpack it. SAMtools
needs to be built from source. For this, install zlib (zlib1g, zlib1g-dev,
and zlib1g-dev from the package manager), open a terminal, and type
(adjust the path and version number):

# COMPULSORY - BUILD INSTRUCTIONS

cd /path/to/samtools-x.x.x

make

# SOLUTION 1

cd /path/to/samtools-x.x.x

sudo cp samtools /usr/local/bin

# SOLUTION 2 (temporary!)

export PATH="$PATH:/path/to/samtools-x.x.x"

2.2 OPTIONAL: Obtaining the short read data

The data used in this tutorial can be conveniently retrieved from NCBI using
the SRA toolkit. Open a terminal to download the example data (takes several
hours) in the working directory (e.g. At pre-process tutorial, which has been au-
tomatically created by unpacking the archive At pre-process tutorial.zip):

cd /path/to/At_pre-process_tutorial

fastq-dump --split-files SRR1197490

fastq-dump --split-files SRR1197491

fastq-dump --split-files SRR1197492

fastq-dump --split-files SRR681003

fastq-dump --split-files SRR681004

NOTE: DO NOT USE -I.

It will add a .1/.2 to the read name and cause a failure during merging.

The option --split-files ensures that the forward and reverse reads are writ-
ten in separate .fastq files. Downloading one sample (e.g. SRR1197490) will
therefore result in two .fastq files (SRR1197490 1.fastq and SRR1197490 2.fastq)
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2.3 OPTIONAL: Aligning the short reads to the reference
genome

In this tutorial, we use Subread [3] to align the reads to the reference genome.
This requires a special index of the reference genome. Build this index with:

cd /path/to/At_pre-process_tutorial

subread-buildindex -o At_GI.nix TAIR10.fasta

You can now align the reads with Subread. Note that the option -T 4 tells the
computer to use four cores. You may need to change this according to your
system. The option --trim3 trims the reads to 50 bp, -I 0 disables InDel
detection, and -u allows only for unique alignments. The backslash in the code
below indicates that all should be written on one single line. For each sample,
the forward and reverse (later on, we use the term read-end as synonym for one
read of a pair) need to be aligned separately to the reference genome (as the
aligners normally expect both reads of a pair to align close to each other - which
is not the case for Hi-C data).

cd /path/to/At_pre-process_tutorial

# the following three samples have 100 bp reads, so we can trim 50 bp

for SAMPLE in SRR1197490 SRR1197491 SRR1197492

do echo "$SAMPLE"

subread-align -u --trim3 50 -I 0 -T 4 -i At_GI.nix -r "${SAMPLE}_1.fastq" \

--BAMoutput -o "${SAMPLE}_1.bam"

subread-align -u --trim3 50 -I 0 -T 4 -i At_GI.nix -r "${SAMPLE}_2.fastq" \

--BAMoutput -o "${SAMPLE}_2.bam"

done

# the following two samples have only 50 bp reads, so we don’t trim

for SAMPLE in SRR681003 SRR681004

do echo "$SAMPLE"

subread-align -P 6 -u -I 0 -T 4 -i At_GI.nix -r "${SAMPLE}_1.fastq" \

--BAMoutput -o "${SAMPLE}_1.bam"

subread-align -P 6 -u -I 0 -T 4 -i At_GI.nix -r "${SAMPLE}_2.fastq" \

--BAMoutput -o "${SAMPLE}_2.bam"

done

Some general notes on the alignment part. Any aligner should work with HiC-
dat. However, the output may have to be reformatted into BAM (.bam), which
is required by HiCdat (if sorted or not does not matter). In cases where one
sample was sequenced on multiple lanes (i.e. has multiple sequencing runs), it
is recommended to process the runs individually and only combine them later
(i.e. at the stage where they are loaded into R). An important point to con-
sider is the length of the individual reads: The longer a read, the more likely
it is that the read spans the restriction site where the two restriction fragments
were ligated. A read spanning this site consists of sequences from both frag-
ments and can thus not be aligned. Long reads should therefore be trimmed
(especially at the 3’ end) to ensure a high data recovery. It is also possible to
align the reads iteratively (e.g. 100 bp, 75 bp, 50 bp, 25 bp). However, we
tried the iterative mapping procedure proposed in HiClib [5] (reads trimmed
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to 100, 82, 64, 46, and 28 bp and aligned with bowtie2 in --sensitive instead of
--very-sensitive mode), and did not observe a substantial increase in successfully
aligned read-pairs compared to the single-step approach with Subread. At least
for the small, non-repetitive genome of Arabidopsis, alignment with Subreads
thus seems more convenient, considering that it is 10 to 20 times faster than
the iterative procedure with bowtie2.

2.4 HiCdatPre: Hi-C data pre-processing

2.4.1 Pair aligned reads

Up to now, the individual reads of the read-pairs have been processed separately.
To see which regions in the genome interact with each other, the read-ends need
to be merged into read-pairs again. To pair the two alignment (.bam) files, start
HiCdatPre and go to the “pair aligned reads” tab. If you followed the align-
ment part above, specify for each sample (e.g. SRR1197490) the two .bam files
(e.g. SRR1197490 1.bam and SRR1197490 2.bam) and a plain .txt file (e.g.
SRR1197490 read pairs.txt). Otherwise take the two samples located in the
archive At pre-process tutorial.zip (WT 1/2.bam and morc 1/2.bam) and
pair the reads for each sample (e.g. WT read pairs.txt and morc read pairs.txt).
To start merging the read-ends, press pair reads. Note, however, that the
maximal number of reads stored in memory at once is per default set to a high
value (1 billion). If RAM is limiting, this value may be adjusted (10 million
reads require around 1.3 Gb of RAM). Start the procedure for all samples (the
jobs will be added to a queue and processed after each other - all current jobs
in the queue are listed in the “overview” tab). Pairing the read-ends should
not take too long. The program can process around 12.6 million read-end align-
ments per minute (corresponds to around 5.4 million successfully merged pairs
per minute) on our test-system [6].

The “read-pair table” with the read-pairs has six tab-separated columns: chromA,
strandA, posA, chromB, strandB, posB and refer to the chromosome, strand,
and position of an aligned read-end (A for the forward read, B for the reverse
read). Note that the positions are zero-based (means that the first base on a
chromosome is number 0).

2.4.2 Create fragments and bins

While the read-ends are being paired, we can create the table with the genomic
fragments. Go to the “create fragments” tab, specify the reference genome
(TAIR10.fasta), and a plain .txt file which will store the genomic fragments.
Fragments are created based on either the restriction pattern or the fixed bin-
sizes. All samples have been generated using the HindIII restriction enzyme.
To create a table with the restriction fragments (e.g. fragments HindIII.txt),
specify the restriction site (AAGCTT) and press create fragments. In ad-
dition to the restriction fragments, create a table with 100 kb bins (e.g. frag-
ments 100kb.txt, specify as 100’000 bp!). The bin-size corresponds to the res-
olution later on, so you may try different sizes as well. Note that by pressing
create fragments the job is added to the queue as well. As a consequence,
the table may not be produced instantly.
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The “fragment tables” have four tab-separated columns: fragmentNumber,

chrom, start, end. The tables are required for the mapping procedure and
for the addition of additional experiments. Note that multiple restriction en-
zymes can be supplied as patternA,patternB (e.g. AAGCTT,CCATGG for HindIII
and NcoI).

2.4.3 Map read-pairs to fragments

Go to the “overview” tab and wait until all jobs have been processed (it would
be possible though to continue directly and specify the files manually using their
future path). We now assign/map the read-ends to the genomic fragments. Go
to the “map read-pairs to fragments” tab, specify the fragment table (e.g. frag-
ments HindIII.txt or fragments 100kb.txt, see 2.4.2), the read-pair table (e.g.
SRR1197490 read pairs.txt or WT read pairs.txt, see 2.4.1), and a plain .txt

file which will store the mapped read-pairs (e.g. SRR1197490 read pairs mapped.txt
or WT read pairs mapped.txt). For data analysis in R, this table can further
be simplified: enable the “reduced matrix for R” and specify a corresponding
plain .txt file (e.g. SRR1197490 100kb.txt or WT 100kb.txt).

The read-pairs can optionally be filtered using the approach proposed by Jin
et al. [7]. Read-pairs with each end aligning at the opposite strand are thereby
removed if they are too close to each other. There are two cases: (i) A read-pair
with the two ends pointing towards each other (“inward-pair”), and (ii) a read-
pair with the two ends pointing away from each other (“outward-pair”). Inward-
pairs spanning only a short region may be caused by uncut DNA. Outward-pairs
spanning only a short region can be a result of self-ligation (see Supplementary
Figure 1 in [7]). Enable the filter and leave the values at default. Start pro-
cessing by clicking on map reads. The procedure should not take too long as
well: HiCdatPre can map around 7.5 million read-pairs per minute to 823’377
HindIII restriction fragments of the mouse genome on our test-system [6].

The “mapped read-pair table” has eight tab-separated columns: chromA, strandA,

posA, fragA, chromB, strandB, posB, fragB, where fragA and fragB refer
to the ID of a the fragment, to which the read-ends map to (the ID equals to the
column fragmentNumber in the fragment tables (see 2.4.2)). The “reduced ma-
trix for R” holds only the read counts per frament pair (three columns: fragA,
fragB, count).

2.4.4 Add additional tracks to fragments

To correlate the Hi-C data to genomic and epigenetic features (e.g. gene den-
sity, histone modifications, or DNA methylation), these additional data have
to be added to the genomic fragments. To annotate the genomic fragments,
go to the tab “add tracks to fragments” and import the fragment table (e.g.
fragments HindIII.txt or fragments 100kb.txt, see 2.4.2) by clicking on load

fragments. Once the fragments are loaded, you should see the four entries
fragmentNumber, chrom, start, end on the left side (“current tracks in the
file”). Any additional track successfully added will be displayed there as well.
There are four different types of “tracks” which can be added:
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• genome annotation features (ann *)
Examples are genes and transposons. Generally, these features can be very
long (i.e. spanning multiple fragments). Short features like transcription
binding sites or SNPs may also be added as genome annotation feature.
However, for a large number of short features, it is faster to supply them as
count feature. Possible formats are GFF and GTF (multiple feature types
per file possible). For each feature, the number of elements per fragment
is counted as follows: If the feature spans the entire fragment, a value of
1 is added. If the feature only partly overlaps (or is within) the fragment,
a value of 0.5 is added.

• count features (sum *)
Examples may be short reads from an RNA-Seq experiment or small RNA
sequencing project. BAM is the only possible format (only one feature per
file, the feature will be named according to the file name). For each feature,
the number of elements (e.g. short reads) per fragment is counted.

• density features (den *)
Examples may be short reads from a ChIP-seq experiment. BAM is the
only possible format (only one feature per file, the feature will be named
according to the file name). For each feature, the density per fragment
is calculated as the number of bases covered by at least one element (e.g.
short read) divided by the length of the fragment (times 100 to obtain %).

• DNA methylation (den *)
This is specifically for DNA-methylation (cytosin-methylation). The file
must be a table with the tab-separated columns ”chrom”, ”position”, and
”state” (plain text, without header). Position must be 0-based, and state
either ”m” or ”u” (for methylated and unmethylated). To add multiple
contexts (e.g. CG, CHG, CHH), use one file per context. Missing C’s
are treated as non-C characters. For each context, the DNA-methylation
density per fragment is calculated as the percentage of methylated C’s.

The names of the tracks added with HiCdatPre start with one of three prefixes
(ann , sum , den ). The prefixes are important for the data analysis in R (they
are used to differentiate between the different data types). If custom tracks are
added in another way, it is therefore important to supply the appropriate prefix.

A few tracks are supplied in the archive At pre-process tutorial.zip:

• TAIR10.gff holds the annotation of the A. thaliana reference genome.
Add it under “genome annotation features (ann )”.

• SRX006704.bam is a seedling RNA-Seq sample [8]. Add it under “count
features (sum )”

• SRR094098 trimmed.bam is a control library (genomic sequencing) [9].
Add it under “density features (den )”

• CG rep1.txt contains DNA methylation data (only CG context) [10]. Add
it under “DNA methylation (den )”
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Press add all listed tracks to add the tracks. If you are not sure if you
already started it (especially if you have some other tasks running in the back-
ground), you can have a look at the “jobs currently in queue” list in the overview
tab. Once the tracks are added, save and close the fragments. All the data
would now be ready for the analysis in R. However, we recommend using the
data specifically supplied for the R-tutorial, as there are a lot more additional
tracks available (see next section).

Some other notes on the “add tracks to fragments”. The fragments may be
genomic bins with a fixed size or restriction fragments. The latter is preferred
for one of the functions in R, which is more accurate using restriction fragments
instead of large genomic bins (a function which tests a set of genomic regions
for enrichment/depletion of the given genomic/epigenetic features). Restriction
fragments can also be summarized into larger genomic bins directly in R. Note,
however, that in this case the summarization is performed without taking the
fragment length into account.

2.4.5 Create organism-specific R-code

Finally, we can as well generate the organism-specific R-code (this step is gener-
ally only required once). For the data analysis in R, we require some basic infor-
mation on the genome (i.e. the chromosome names, sizes, and number of restric-
tion fragments). A file holding this information can be automatically created
under the tab “create organism-specific R-code”. Simply specify the reference
genome (TAIR10.fasta), an R-source file (with the ending .R, e.g. HiCdat-A-
thaliana-TAIR10.R), the restriction site (AAGCTT), and press create R-code.
Note that this organism-specific R-script also contains a function which defines
the chromosomes you would like to consider during the analysis. The follow-
ing chromosome identifiers (i.e. the header in the fasta file) are per default
considered to be irrelevant by HiCdat: Mt, Pt, MtDNA, PtDNA, ChrM, ChrC,

M, C, MT, CP, PT, Un. Before you start the analysis in R, make sure that the
function contains all chromosomes which you would like to analyze (the function
is called f.get.relevant.chromosomes()).
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3 HiCdatR: Analyzing Hi-C interaction profiles
in R

To install HiCdatR, download the package from github.com/MWSchmid/HiCdat
(the file is called HiCdatR 0.99.0.tar.gz), open R, and type:

install.packages("/path/to/HiCdatR_0.99.0.tar.gz", repos=NULL, type = "source")

The tutorial for the data analysis in R is supplied as R-Script. To obtain it,
download and unpack the archive Rscripts.zip. We provide pre-processed
data for the five samples introduced in the step-by-step tutorial (note, how-
ever, that these data were processed as described in [2]). Download and unpack
the archive At tutorial files.zip. It contains tables with read counts per
fragment pair (“reduced matrix for R”), tables with annotations for the ge-
nomic fragments, and some additional tables defining certain genomic regions.
Open the tutorial-script (“HiCdat-tutorial-arabidopsis.R”) in R and follow the
instructions in the comments.

The following section describes the most important functions in more detail
(values in the brackets are the default values for a given argument). Note that
this does not complement the tutorial-script in R. Try to follow the script first,
and use the following section only as a reference for further information. To
use the functions within R, it is crucial to load the organism-specific code right
after loading the library:

library(HiCdatR)

f.source.organism.specific.code("/path/to/organism-specific-code.R")
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3.0.6 Reading data into R

A single Hi-C sample (which may comprise multiple “reduced matrices for R”
created with HiCdatPre) can be read into R using the function f.load.one.sample().
Multiple samples are loaded conveniently with f.load.samples().

dataMatrix <- f.load.one.sample(

dataDir = "/path/to/files",

files = c("sampleA_run1.txt", "sampleA_run2.txt"),

binSize = 1e6,

repetitions = 50

)

dataMatrices <- f.load.samples(

dataDir = "/path/to/files",

sampleToFiles = list(

sampleA = c("sampleA_run1.txt", "sampleA_run2.txt"),

sampleB = c("sampleB_run1.txt", "sampleB_run2.txt", "sampleB_run3.txt")

),

binSize = 1e6,

repetitions = 50

)

- dataMatrix is a matrix with n*n entries, where n corresponds to the
number of genomic fragments.

- dataMatrices is a list of matrices created by f.load.one.sample(). For
a given sample, the matrix can be accessed using either dataMatrixList[["sampleA"]]
or dataMatrixList$sampleA

- binSize specifies the size of the genomic bins to be used (see HiCdatPre).
To use restriction fragments instead of genomic bins with a fixed size, set
binSize = 0.

- repetitions [0] sets the number of iterations for the normalization pro-
posed by [11]. To disable the normalization, set repetitions = 0.
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3.0.7 Normalization using linear regression

The HiC matrices can also be normalized using the approach proposed by [12].

normalizedDataMatrix <- f.normalize.like.hu(

dataMatrix = dataMatrixSampleX,

binSize = 1e6,

annotation = annotationTable,

lenCol = "length",

gccCol = "gcContent",

mapCol = "mappability",

useNegativeBinomial = FALSE

)

- dataMatrix is a matrix with n*n entries, where n corresponds to the
number of genomic fragments.

- binSize specifies the size of the genomic bins to be used (see HiCdatPre).
To use restriction fragments instead of genomic bins with a fixed size, set
binSize = 0.

- annotation is a table holding genomic and epigenetic information, loaded
with f.read.annotation() (see section 3.0.14).

- lenCol column with the length of the genomic fragments.

- gccCol column with the GC-content of the genomic fragments.

- mapCol column with the mappability of the genomic fragments.

- useNegativeBinomial [FALSE] indicates if the normalization shall be
done using a negative binomial model (default is Poisson)

Note that the three parameters fragment length, GC-content, and mappabil-
ity are not defined per default in the annotation tables created by HiCdatPre.
Examples on how to obtain them:

- fragment length can be calculated directly in R: annotation$length =

annotation$end - annotation$start.

- GC-content can be imported as a “density” feature using HiCdatPre (see
section 2.4.4). Instead of using a regular DNA-methylation table, one
can supply a table where the CG-positions are marked as methylated and
the non-CG positions are marked as unmethylated. An example for an
artificial chromosome “Chr1” starting with the sequence ACGTA:

Chr1 0 u

Chr1 1 m

Chr1 2 m

Chr1 3 u

Chr1 4 u

- for mappability, one can align either artificial reads (from a chopped
genome) or real genomic sequencing reads and import them as a “den-
sity” feature using HiCdatPre (see section 2.4.4).
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3.0.8 Correlation between samples

The similarity between different samples can be visualized using the function
f.Hi-C.correlation.matrix() (figure 1).

f.HiC.correlation.matrix(

dataMatrixList = dataMatrices,

rDir = "/path/to/where/the/figure/is/stored",

outfile = "aNameForTheFigureWithoutExtension",

corMethod = "pearson",

summaryFunction = median,

useOnlyHighVar = TRUE

)

- dataMatrixList is a list of n*n matrices created by f.load.samples().

- corMethod ["pearson"] specifies the method used to calculate the cor-
relation between two bins i of two samples.

- summaryFunction [median] is used to summarize the correlations be-
tween the n pairs of bins between two samples.

- useOnlyHighVar [TRUE] tells if the bins with low variance should be ig-
nored.
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Figure 1: Correlation between four mouse Hi-C samples. The tissue types are
well separated into two groups (embryonic stem cells: GSM862720, GSM862721;
cortex cells: GSM862750, GSM862751 [13]; 1 mb bins).
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3.0.9 Visualization of Hi-C matrices

Hi-C interaction matrices can be visualized using the function f.plot.XY.matrix()

(figure 2 and 3).

f.plot.XY.matrix(

matrixToPlot = dataMatrix,

binSize = 1e6,

axStep = 10e6,

rDir = "/path/to/where/the/figure/is/stored",

outfile = "aNameForTheFigureWithoutExtension",

chromA = "ALL",

startA = 0,

endA = 0,

chromB = "ALL",

startB = 0,

endB = 0,

useLog = TRUE,

drawGrid = FALSE,

doNorm = FALSE,

doCor = FALSE, # or TRUE to draw a distance-normalized, correlated Hi-C-matrix

useSplineInterPol = TRUE

)

- matrixToPlot is a matrix created by f.load.one.sample().

- binSize specifies the size of the genomic bins to be used (must be greater
than zero, i.e. the function only takes bins with a fixed size).

- axStep specifies the distance between labels on the x-axis and y-axis.

- chromA ["ALL"], startA [0], endA [0] are genomic coordinates at the
x-axis. To plot all chromosomes, set chromA = "ALL".

- chromB ["ALL"], startB [0], endB [0] are genomic coordinates at the
y-axis. To plot all chromosomes, set chromB = "ALL".

- useLog [TRUE] tells if the data shall be transformed using log2(data +

1).

- drawGrid [FALSE] enables a white grid that is drawn over the plot. Only
useful for smaller regions.

- doNorm [FALSE] specifies if the data shall be distance-normalized as de-
scribed in [14].

- doCor [FALSE] tells if the data shall be correlated before drawing (to
visualize domains).

- useSplineInterPol [TRUE] serves to modify the color mapping.

14



Figure 2: Visualization of Hi-C interaction frequencies in a pooled wild-type
sample of A. thaliana [1, 2] (100 kb bins).
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Figure 3: Visualization of distance-normalized and correlated Hi-C interaction
frequencies in a pooled wild-type sample of A. thaliana [1, 2] (100 kb bins).
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3.0.10 Comparison between Hi-C matrices - relative differences

Differences between two Hi-C samples A and B can be visualized based on the
relative difference of interaction frequencies [1]. For each matrix entry (i.e. a
pixel at row i and column j), the difference between the two samples is divided
by the average value: Rij = (Aij −Bij)/(Aij + Bij)/2. A pair of Hi-C samples
can be visualized using the function f.plot.relative.difference(). Multiple
samples are compared to each other with f.compare.samples.relative.difference()

(figure 4).

f.plot.relative.difference(

dataMatrixA = dataMatrixSampleA,

dataMatrixB = dataMatrixSampleB,

binSize = 1e6,

rDir = "/path/to/where/the/figure/is/stored",

outfile = "aNameForTheFigureWithoutExtension",

filterZero = TRUE,

filterThreshold = 0.95

)

f.compare.samples.relative.difference(

dataMatrixList = dataMatrices,

binSize = 1e6,

rDir = "/path/to/where/the/figures/are/stored",

outfilePrefix = "aPrefixForTheFileNames",

filterZero = TRUE,

filterThreshold = 0.95

)

- dataMatrixA, dataMatrixB are two matrices created by f.load.one.sample().

- dataMatrixList is a list of n*n matrices created by f.load.samples().

- binSize specifies the size of the genomic bins to be used (binSize = 0

for restriction fragments).

- outfilePrefix ["relDiff "] will be added in front of all file names.

- filterZero [TRUE] tells whether or not to filter the x percent of bins
with the highest number of 0 entries.

- filterThreshold [0.95] specifies the fraction of bins which shall be kept
if filterZero = TRUE.
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Figure 4: Enrichment (blue) and depletion (red) of interaction frequencies in
the wild-type compared to the crwn4 mutant sample of A. thaliana [2] (100 kb
bins).
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3.0.11 Comparison between Hi-C matrices - correlated differences

To see if differences are clustered, the relative differences can be correlated to
each other [2]. The correlation (i.e. a pixel at row i and column j) is thereby cal-
culated between two vectors of relative differences Cij = cor(Ri, Rj). A pair of
Hi-C samples can be visualized using the function f.plot.cor.difference().
Multiple samples are compared to each other with f.compare.samples.cor.difference()

(figure 5).

f.plot.cor.difference(

dataMatrixA = dataMatrixSampleA,

dataMatrixB = dataMatrixSampleB,

binSize = 1e6,

rDir = "/path/to/where/the/figure/is/stored",

outfile = "aNameForTheFigureWithoutExtension",

filterZero = TRUE,

filterThreshold = 0.95

)

f.compare.samples.cor.difference(

dataMatrixList = dataMatrices,

binSize = 1e6,

rDir = "/path/to/where/the/figures/are/stored",

outfilePrefix = "aPrefixForTheFileNames",

filterZero = TRUE,

filterThreshold = 0.95

)

- dataMatrixA, dataMatrixB are two matrices created by f.load.one.sample().

- dataMatrixList is a list of n*n matrices created by f.load.samples().

- binSize specifies the size of the genomic bins to be used (binSize = 0

for restriction fragments).

- outfilePrefix ["corDiff "] will be added in front of all file names.

- filterZero [TRUE] tells whether or not to filter the x percent of bins
with the highest number of 0 entries.

- filterThreshold [0.95] specifies the fraction of bins which shall be kept
if filterZero = TRUE.
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Figure 5: Correlation of differences between the wild-type and the crwn4 mutant
samples of A. thaliana [2] (100 kb bins).
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3.0.12 Comparison between Hi-C matrices - signed differences (SDM)

An alternative way to assess the difference between two Hi-C samples are signed
difference matrices (SDM) described in [2]. For each matrix entry (i.e. a pixel
at row i and column j), the signed difference indicates whether a given in-
teraction is higher or lower in sample A than sample B: Bij = sign(Aij −
Bij). For a pair of Hi-C samples, these signed differences can be visualized
and tested for being clustered (e.g. if sample A has higher interaction fre-
quencies than sample B over a whole chromosome arm) using the function
f.plot.signed.difference(). Multiple samples are compared to each other
with f.compare.samples.signed.difference() (figure 6).

SDMresult <- f.plot.signed.difference(

dataMatrixA = dataMatrixSampleA,

dataMatrixB = dataMatrixSampleB,

binSize = 1e6,

rDir = "/path/to/where/the/figure/is/stored",

outfile = "aNameForTheFigureWithoutExtension",

filterZero = TRUE,

filterThreshold = 0.95,

pValueThreshold = 0.01

)

SDMresultList <- f.compare.samples.signed.difference(

dataMatrixList = dataMatrices,

binSize = 1e6,

rDir = "/path/to/where/the/figures/are/stored",

outfilePrefix = "aPrefixForTheFigureNames",

filterZero = TRUE,

filterThreshold = 0.95,

pValueThreshold = 0.01

)

- SDMresult is an object holding the overall P-value (SDMresult$overallPvalue)
and the significant bin IDs (SDMresult$significantRows).

- SDMresultList is a list of objects created by f.plot.signed.difference().

- dataMatrixA, dataMatrixB are two matrices created by f.load.one.sample().

- dataMatrixList is a list of n*n matrices created by f.load.samples().

- binSize specifies the size of the genomic bins to be used (binSize = 0

for restriction fragments).

- outfilePrefix ["relDiff "] will be added in front of all file names.

- filterZero [TRUE] tells whether or not to filter the x percent of bins
with the highest number of 0 entries.

- filterThreshold [0.95] specifies the fraction of bins which shall be kept
if filterZero = TRUE.

- pValueThreshold [0.01] specifies the significance-threshold for the in-
dividual bins.
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Figure 6: Visualization of the difference between the wild-type and crwn4 mu-
tant samples of A. thaliana [2] using the signed difference matrix (100 kb bins).
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3.0.13 Distance-dependent decay of interaction frequencies

The distance-dependent decay of interaction frequencies (IDEs, as described in
[14]) within a Hi-C sample can be calculated and visualized using the function
f.distance.decay() (figue 7).

f.distance.decay(

dataMatrix = dataMatrixSampleX,

binSize = 1e6,

rDir = "/path/to/where/the/figure/is/stored",

outfile = "aNameForTheFigureWithoutExtension",

distance = 10e6,

regionTable = data.frame(),

filterZero = TRUE,

filterThreshold = 0.95

)

- dataMatrix is a matrix created by f.load.one.sample().

- binSize specifies the size of the genomic bins to be used (must be greater
than zero, i.e. the function only takes bins with a fixed size).

- distance specifies the distance up to which the interaction frequency
decay shall be considered. Must be smaller than the smallest region (e.g.
smaller than the smalles chromosome if regionTable = data.frame())

- regionTable [data.frame()] defines specific regions in the genome which
shall be assessed. Per default, each chromosome is first tested separately
and a common IDE is calculated as the average between all individual
IDEs. The table must have three columns (chrom, start, end). User
defined names can be given using an optional fourth column (name). An
example is given in the A. thaliana tutorial.

- filterZero [TRUE] tells whether or not to filter the x percent of bins
with the highest number of 0 entries.

- filterThreshold [0.95] specifies the fraction of bins which shall be kept
if filterZero = TRUE.
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Figure 7: Distance-dependent decay of interaction frequencies along entire chro-
mosomes (10 mb, top panel), euchromatic parts of chromosome arms (5 mb,
middle panel), and heterochromatic pericentromeres (1 mb, lower panel) in a
pooled wild-type sample of A. thaliana [1, 2] (100 kb bins).
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3.0.14 Reading the annotation

Fragment annotations (additional tracks with genomic and epigenetic informa-
tion) processed with HiCdatPre can be read into R using the function f.read.annotation().
Annotations for genomic bins with fixed size can also be obtained from anno-
tated restriction fragments with f.read.annotation.via.fragment.annotation().

annotation <- f.read.annotation(

annotationFile = "/path/to/file/created/with/HiCdatPre",

binSize = 1e6,

useLog = TRUE

)

annotation <- f.read.annotation.via.fragment.annotation(

annotationFile = "/path/to/file/created/with/HiCdatPre",

binSize = 1e6,

useLog = TRUE

)

- annotation is a table holding genomic and epigenetic information (see
HiCdatPre, section 2.4.4).

- binSize specifies the size of the genomic bins to be used (binSize = 0

for restriction fragments in f.read.annotation()).

- useLog [TRUE] specifies if count-like features (columns starting with ann ,

sum ) shall be transformed using log2(data + 1).
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3.0.15 Analysis of the first principle component (PCA)

Analysis of the first principle component can be used as a tool to identify dis-
crete structural domains [14]. The first principle component can be obtained and
related to the genomic and epigenetic features (annotation) using the function
f.principle.component.analysis.and.features() (figure 8). Note that the
function tries to orient the first principle component as such that positive Eigen-
values correspond to more loose (and negative Eigenvalues to a more compact)
chromatin configuration.

f.principle.component.analysis.and.features(

dataMatrix = dataMatrixSampleX,

binSize = 1e6,

rDir = "/path/to/where/the/results/are/stored",

outfilePrefix = "aPrefixForTheFileNames",

annotation = annotationTable, # or data.frame() if only PCA is requested

regionTable = data.frame(),

simplifiedNames = list(),

filterZero = TRUE,

filterThreshold = 0.95,

pValueThreshold = 0.05,

userLimits = c(-1, 1)

)

- dataMatrix is a matrix created by f.load.one.sample().

- binSize specifies the size of the genomic bins to be used (must be greater
than zero, i.e. the function only takes bins with a fixed size).

- annotation [data.frame()] is a table holding genomic and epigenetic
information, loaded with f.read.annotation(). If no annotation is sup-
plied, the function only performs the PCA.

- regionTable [data.frame()] defines specific regions in the genome which
shall be analyzed individually. Per default, each chromosome is tested sep-
arately. The table must have three columns (chrom, start, end). User
defined names can be given using an optional fourth column (name). An
example is given in the A. thaliana tutorial.

- simplifiedNames [list()] is a list with the column names of the anno-
tation as keys to simplified names as values (e.g. “ann transposable element gene”
can be replaced by “TE-gene”).

- filterZero [TRUE] tells whether or not to filter the x percent of bins
with the highest number of 0 entries.

- filterThreshold [0.95] specifies the fraction of bins which shall be kept
if filterZero = TRUE.

- pValueThreshold [0.05] specifies the significance-threshold for the cor-
relation and enrichment tests (only significant values are drawn in the
heatmaps).

- userLimits [c(-1, 1)] specifies the lower and upper limit for the cor-
relation values drawn in the heatmap.
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Figure 8: Left panels: Visualization of distance-normalized and correlated Hi-
C interaction frequencies and the resulting first principle component. Middle:
significant correlation (blue: positive, red: negative) of the first principle com-
ponent with various genomic and epigenetic features. Right: significant enrich-
ment (blue) and depletion (red) of genomic and epigenetic features in regions
with positive Eigenvalues compared to regions with negative Eigenvalues. Data
shown for the right arms of chromosomes 1, 4, and 5 from a pooled wild-type
sample of A. thaliana [1, 2] (100 kb bins).

27



3.0.16 Test a specific set of bins for higher interaction among each
other

A given set of genomic regions can be tested for preferential interaction among
each other compared to sets of randomly sampled regions using the function
f.test.interaction.frequencies().

f.test.interaction.frequencies(

dataMatrix = dataMatrixSampleX,

binSize = 1e6,

repetitions = 1e4,

testRegionsTable = tableWithRegionsOfInterest,

regionDefinitionTable = data.frame()

)

- interactionResult is a vector holding the sum of interactions between
the regions of interest, the mean and standard deviation of the sampled
interaction sums, and the corresponding P-value.

- dataMatrix is a matrix created by f.load.one.sample().

- binSize specifies the size of the genomic bins to be used (must be greater
than zero, i.e. the function only takes bins with a fixed size).

- repetitions specifies the number of random sets to be sampled.

- testRegionsTable is a table with genomic regions of interest. Columns
must be chrom, start, end. Rownames can be freely chosen. An exam-
ple is given in the A. thaliana tutorial.

- regionDefinitionTable defines specific regions in the genome from which
the random sets are sampled. If a table is supplied, the regions of interest
are assigned to the defined regions (unassigned will be removed) and sam-
pling happens within the defined region (see [2] for details). If no regions
are defined, the regions of interest are assigned to the whole chromosomes.
Mapping of regions is done on the whole length (a test region must be en-
tirely within a defined region to be assigned to it - unassigned test regions
are removed). The table must have three columns (chrom, start, end).
User defined names can be given using an optional fourth column (name).
An example is given in the A. thaliana tutorial.
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3.0.17 Test a specific set of bins for enrichment/depletion of certain
annotation features

A given set of genomic regions can further be tested for enrichment or depletion
of certain genomic or epigenetic features using the function f.test.regions.for.feature.enrichment.fragment.based().

enrichmentResult <- f.test.regions.for.feature.enrichment.fragment.based(

annotation = annotationTableOnRestrictionFragments,

rDir = "/path/to/where/the/results/are/stored",

outfilePrefix = "aPrefixForTheFileNames",

repetitions = 1e4,

testRegionsTable = tableWithRegionsOfInterest,

regionDefinitionTable = data.frame(),

simplifiedNames = list(),

pValueThreshold = 0.05,

countDataWasLogged = TRUE

)

- enrichmentResult is a list holding the observed values (enrichmentResult$observed),
the enrichment (enrichmentResult$enrichment) compared to the ran-
dom sets, and the corresponding P-values (enrichmentResult$pValues).

- annotation is a table holding genomic and epigenetic information, loaded
with f.read.annotation(..., binSize = 0). It is important that the
annotation is based on restriction fragments and not genomic bins with
fixed size (for the latter case, it is possible, but not recommended, to use
f.test.regions.for.feature.enrichment.bin.based)

- repetitions specifies the number of random sets to be sampled.

- testRegionsTable is a table with genomic regions of interest. Columns
must be chrom, start, end. Rownames can be freely chosen. An exam-
ple is given in the A. thaliana tutorial.

- regionDefinitionTable defines specific regions in the genome from which
the random sets are sampled. If a table is supplied, the regions of interest
are assigned to the defined regions (unassigned will be removed) and sam-
pling happens within the defined region (see [2] for details). If no regions
are defined, the regions of interest are assigned to the whole chromosomes.
Mapping of regions is done on the whole length (a test region must be en-
tirely within a defined region to be assigned to it - unassigned test regions
are removed). The table must have three columns (chrom, start, end).
User defined names can be given using an optional fourth column (name).
An example is given in the A. thaliana tutorial.

- simplifiedNames [list()] is a list with the column names of the anno-
tation as keys to simplified names as values (e.g. “ann transposable element gene”
can be replaced by “TE-gene”).

- pValueThreshold [0.05] specifies the significance-threshold for the en-
richment tests (only significant values are drawn in the heatmaps).

- countDataWasLogged [TRUE] tells if useLog = TRUE while loading the
annotation with f.load.annotation().
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3.0.18 Identify domains within chromosomes with HiCseg

Domains within chromosomes (e.g., TADs) can be identified using the HiCseg
package described in [15]. To use it, you need to first install the HiCseg package
(install.packages("HiCseg")). The function f.identify.domains.with.HiCseg()

is a wrapper for the HiCseg package.

domainResults <- f.identify.domains.with.HiCseg(

dataMatrix = dataMatrixSampleX,

binSize = 1e5,

rDir = "/path/to/where/the/results/are/stored",

outfilePrefix = "aPrefixForTheFileNames",

minAverageDomainSize = 1e6,

distributionType = "G",

modelType = "D",

useLog = FALSE,

regionDefinitionTable = data.frame()

)

- dataMatrix is a matrix created by f.load.one.sample().

- binSize specifies the size of the genomic bins to be used (binSize = 0

for restriction fragments).

- minAverageDomainSize is the minimal average domain size in base pairs.
This argument is used to calculate the maximal number of domains within
a chromosome given its size.

- distributionType describes the distribution of the data: “B” is for Neg-
ative Binomial distribution, “P” is for the Poisson distribution, and “G”
is for the Gaussian distribution. In general, take Gaussian for normalized
data and Poisson/Negative Binomial for raw data..

- modelType ”D” for block-diagonal and ”Dplus” for the extended block-
diagonal model (see [15] for details).

- useLog [TRUE] tells if the data shall be transformed using log2(data +

1).

- regionDefinitionTable defines specific regions in the genome where do-
mains shall be searched. If no regions are defined, domains are searched
on the entire chromosomes. The table must have three columns (chrom,
start, end). User defined names can be given using an optional fourth
column (name).
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4 Building from source

If the binary is not working or you would like to implement a new feature, you
can build it from the source code.

4.1 Linux

Compiling the program using QtCreator is quite easy.

• download and unpack the archive source.zip

• install QtCreator (on the Ubuntu repository: qtcreator) - make sure to
use Qt 4.x.x libraries

• install zlib (on the Ubuntu repository: zlib1g, zlib1g-dev, zlib1g-dev)

• start QtCreator and open the ../source/HiCdatPre.pro file

• copy the seqan folder into one of your general include paths (e.g. sudo cp

-r seqan /usr/local/include) or add a line INCLUDEPATH += <path

containing seqan folder> into the *.pro file

• finally, in the QtCreater menu select Build > Build Project ‘‘my project’’

4.2 Windows

Compiling on Windows requires access to VisualStudio. The following steps
worked well with VisualStudio 2010 Ultimate.

• download and unpack the archive source.zip

• install the Qt Add-In for VisualStudio - make sure to use Qt 4.x.x libraries

• open the ../source/HiCdatPre.pro file (Qt > Open Qt Project File

(.pro)...)

• download the latest zlib from zlib.net (e.g. zlib-1.2.8.tar.gz) and un-
pack the archive

• open the project properties (right-click on the project in the solution ex-
plorer) and do the following steps:

– under Configuration Properties > VC++ Directories, in the field
Include Directories, add the zlib folder

– under Configuration Properties > VC++ Directories, in the field
Include Directories, add the folder containing the seqan folder

– under Configuration Properties > General, change the variable
Character Set to Use Multi-Byte Character Set

– under Configuration Properties > C/C++ > Preprocessor in the
field Preprocessor Definitions, remove the UNICODE key-words
and add the key-word CRT SECURE NO WARNINGS

– under Configuration Properties > C/C++ > Command Line, add
the options -W2 -wd4996 in the field with the Additional Options

• close the project properties and compile it with Build > Build Solution
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4.3 Mac

Currently, there are no build instructions available for the MacOS.
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