
Rcount: User Guide

Marc W. Schmid, marcschmid@gmx.ch

May 11, 2016

Contents

1 Installation 1
1.1 Using pre-compiled binaries . 1

1.1.1 Linux . 1
1.1.2 Windows . 1
1.1.3 Mac . 1

2 Step-by-step example 2
2.1 OPTIONAL: Installation of additional programs 2
2.2 OPTIONAL: Obtaining the short read data 3
2.3 OPTIONAL: Aligning the short reads to the reference genome . 3
2.4 Weighting reads that have more than one alignment with Rcount-

multireads . 4
2.5 Reformating the genome annotation with Rcount-format 4
2.6 Counting the number of hits per gene with Rcount-distribute . . 4
2.7 Merging the count tables in R . 5

3 Usage 8
3.1 Aligning the short reads . 8
3.2 Rcount-format : Creating the genome annotation file 9
3.3 Rcount-multireads: Weighting reads with more than one alignment 10
3.4 Rcount-distribute: Mapping aligned reads to genomic features . . 12
3.5 Reading and merging tables in R 13

4 Test data 14

5 Building from source 16
5.1 Linux . 16
5.2 Windows . 16
5.3 Mac . 16

I

1 Installation

This section describes how to obtain and install Rcount. Source code, 64-bit
binaries for Linux, Windows, and Mac, and R-Scripts can be downloaded on
github.com/MWSchmid/Rcount. The programs can easily use more than 3 Gb
of RAM and it is therefore strongly recommended to use a 64-bit system with
at least 6 Gb of RAM (see Table 4 for examples concerning the memory usage).

1.1 Using pre-compiled binaries

If you have a 64 bit (Ubuntu-like) Linux, Windows (7) or MacOSX, use the pre-
compiled binaries. The binaries were built on Ubuntu 14.04, Windows 7, and
MacOS 10.10 (versions below 10.10 were not tested). If you encounter problems
with the binaries, try building the programs from source (see section 5) and
send a report to marcschmid@gmx.ch.

1.1.1 Linux

Install first the Qt5 libraries with sudo apt-get install qt5-default. Down-
load and unpack the archive linux 64bit.zip. Start Rcount-multireads, Rcount-
format, and Rcount-distribute directly either by double-clicking on them or from
the terminal (you may need to make them executable first, right-click on the
binaries, open the “properties” dialog and check the box for “is executable” -
or in a terminal type chmod 755 filename).

1.1.2 Windows

Download and unpack the archive windows 64bit.zip. Start the applications
directly by double-clicking on them.

1.1.3 Mac

Download and unpack the archive mac 64bit.zip. Mount the *.dmg files
(double-click) and start the applications by double-clicking on them.

1

2 Step-by-step example

This section provides a step-by-step tutorial on how to get count tables starting
from initial read files. The example data are from O. sativa and comprises two
“sperm cell” samples [1]. Download and unpack the archive rice tutorial.zip

from github.com/MWSchmid/Rcount. It contains a folder with the rice refer-
ence genome and its annotation in gff format (MSU7 from rice.plantbiology.msu.edu).
It additionally contains pre-processed .bam and .bai files in case you would like
to try only Rcount and to skip the download and alignment part of the tutorial
(in this case go to section 2.4). The short reads download and alignment part
is written for an Ubuntu-like Linux.

2.1 OPTIONAL: Installation of additional programs

Additional programs are required to download and align the short reads. It is
later assumed that these programs reside in a folder that is included in your
PATH environment variable. This can be done by either moving the programs
into one of the by-default included folders (e.g. /usr/local/bin), or by adding
the folder containing the programs to the PATH environment variable. Note
that the latter is a temporary solution (the commands have to be entered each
time you start a new terminal). Code for both options is given for each of the
programs (note that the hash-tag # stands for comments, which do not have to
be typed into the terminal).

• SRA toolkit
Visit www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software, down-
load the archive for “Ubuntu Linux 64 bit architecture”, unpack it, open
a terminal, and type (adjust the path and version number):

SOLUTION 1

cd /path/to/sratoolkit.x.x.x-x-ubuntu64/bin

sudo cp -r * /usr/local/bin

SOLUTION 2 (temporary!)

export PATH="$PATH:/path/to/sratoolkit.x.x.x-x-ubuntu64/bin"

• Bowtie2 [2]
Visit bowtie-bio.sourceforge.net/bowtie2/index.shtml and obtain
the latest version. Follow the link in the box on the right side of the
page, download the archive for linux, unpack it, open a terminal, and
type (adjust the path and version number):

SOLUTION 1

cd /path/to/bowtie2-x.x.x

sudo cp bowtie2* /usr/local/bin

SOLUTION 2 (temporary!)

export PATH="$PATH:/path/to/bowtie2-x.x.x"

• TopHat2 [3]
Visit ccb.jhu.edu/software/tophat/index.shtml, follow the link in
the box on the right side of the page, download the latest version for linux
(“Linux x86 64 binary”), unpack it, open a terminal, and type (adjust the
path and version number):

2

SOLUTION 1

cd /path/to/tophat-2.x.x.Linux_x86_64

rm README

rm AUTHORS

rm COPYING

sudo cp * /usr/local/bin

SOLUTION 2 (temporary!)

export PATH="$PATH:/path/to/tophat-2.x.x.Linux_x86_64"

• SAMtools [4]
Visit sourceforge.net/projects/samtools/files/samtools/ and ob-
tain the latest version. Download the archive and unpack it. SAMtools
needs to be built from source. For this, install zlib (zlib1g, zlib1g-dev,
and zlib1g-dev from the package manager), open a terminal, and type
(adjust the path and version number):

COMPULSORY - BUILD INSTRUCTIONS

cd /path/to/samtools-x.x.x

make

SOLUTION 1

cd /path/to/samtools-x.x.x

sudo cp samtools /usr/local/bin

SOLUTION 2 (temporary!)

export PATH="$PATH:/path/to/samtools-x.x.x"

2.2 OPTIONAL: Obtaining the short read data

The data used in this tutorial can be conveniently retrieved from NCBI using the
SRA toolkit. Open a terminal to download the example data (takes quite some
time) in the working directory (e.g. rice tutorial, which has been automatically
created by unpacking the archive rice tutorial.zip):

cd /path/to/rice_tutorial

fastq-dump SRR976339

fastq-dump SRR976340

2.3 OPTIONAL: Aligning the short reads to the reference
genome

The alignment of the short reads to the reference genome using TopHat2 requires
an index of the reference genome. Build this index with (takes quite some time):

cd /path/to/rice_tutorial

bowtie2-build -f -q -o 0 all.chrs.con rice_genome_index

You can now align the reads with TopHat2. Note that the option -p 6 tells the
computer to use six cores. You may need to change this according to your sys-
tem. The options -g 10 and --no-coverage-search are given to save memory
and run-time (-g 10 sets 10 as maximal number of alignments per read and
--no-coverage-search omits searching novel exon-junctions using read cover-
age).

3

cd /path/to/rice_tutorial

mkdir SRR976339

mkdir SRR976340

tophat -p 6 -g 10 --no-coverage-search -o SRR976339 rice_genome_index SRR976339.fastq

tophat -p 6 -g 10 --no-coverage-search -o SRR976340 rice_genome_index SRR976340.fastq

The Rcount-multireads program requires the .bam files to have an index (.bai
file). Build this index with (takes few time):

cd /path/to/rice_tutorial/SRR976339

samtools index accepted_hits.bam

cd /path/to/rice_tutorial/SRR976340

samtools index accepted_hits.bam

2.4 Weighting reads that have more than one alignment
with Rcount-multireads

With the TopHat2 option -g 10 enabled, it is possible that a read aligns to
up to 10 locations in the genome. To avoid counting the read 10 times, we
can weight these individual hits with Rcount-multireads. Start the program by
clicking on it, specify the input file (accepted hits.bam) and a corresponding
output file (e.g. accepted hits weighted.bam). Leave the allocation distance
at 100 bp (approximately one read length). Press OK to start the weighting.
This will take some minutes. Once the program has finished you can either
process another file or close the program. Run the program on both samples
(SRR976339 and SRR976340).

2.5 Reformating the genome annotation with Rcount-format

The genome annotation has to be in a specific .xml format. You can create
this file using Rcount-format. Start the program by clicking on it. Specify
the input genome annotation file (all.gff, stored in your working directory),
leave the rest unchanged, and press Next (this can take up to a minute or
longer on older systems). You can now inspect the structure of the genome
annotation. Click on “gene” to expand the menu. If you expand the entry
“mRNA”, you see five sub-entries (CDS, exon, five prime UTR, splice, and
three prime UTR). Note that only exon and splice are important, considering
that the other three types (CDS, five prime UTR, splice, and three prime UTR)
are already included in the exons. Remove those three by changing their priority
to 0 (double-click on the “1” to edit it) and click Next. Specify an output file
(e.g. Rcount rice annotation.xml in your working directory) and click Next.
Finally, close the program by clicking on Finish.

2.6 Counting the number of hits per gene with Rcount-
distribute

Use Rcount-distribute to count the number of reads per gene. Open the program
and click new to create a new project. This will open a multi-tabbed dialog.
For each sample, specify following files under the “Files” tab:

4

• Input > Annotation: Rcount rice annotation.xml

(stored in /path/to/rice tutorial)

• Input > Alignments: accepted hits weighted.bam

(stored in /path/to/rice tutorial/SRR976339)

• Output > Alignments: accepted hits weighted mapped.bam

(to be stored in /path/to/rice tutorial/SRR976339)

• Output > Counts: SRR976339 counts.txt

(to be stored in /path/to/rice tutorial)

Note that the example refers to the sample SRR976339. The .bam files can be
found and should be stored in the corresponding folder (/path/to/rice tutorial/SRR976339).
The count table should be stored in the working directory (/path/to/rice tutorial).
Go to the “Parameters” tab and enable “Use multiple alignments”. Leave the
rest unchanged and click OK. A dialog will open and ask you to save the project
(save it as SRR976339.xml in /path/to/rice tutorial). Once you have cre-
ated for each sample a project, start the analysis by clicking run all. Once
a sample is processed, the alignment statistics are automatically added to its
project (saving is done automatically as well).

2.7 Merging the count tables in R

Rcount-distribute creates for each sample a separate count table stored in the
working directory (e.g. SRR976339 counts.txt). The provided R-Script offers
a function to read in all count tables from a given directory and merge them
into a single table. Open R and use the following code to obtain a merged table
and to generate a plot that gives a first impression of the data correlation and
expression value distribution (table 1 and figure 1).

set the path of the R-script provided

see in linux_64bit.zip or windows_64bit.zip or mac_64bit.zip

pathToScript <- "/path/to/Rcount-R-functions.R"

set the path to the folder where the count tables are located

pathToWorkingDirectory <- "/path/to/rice_tutorial"

load the functions from the script

source(pathToScript)

read in the count tables

note that the expression values are rounded to integer numbers

required by the downstream analysis programs

counts <- f.read.Rcount(pathToWorkingDirectory)

save a merged table

outfile <- file.path(pathToWorkingDirectory, "all_counts.csv")

write.csv(counts, outfile)

draw pairwise scatter-plots (unsorted/sorted) and histograms

f.pair.all(log2(counts+1), pathToWorkingDirectory)

5

Table 1: The count table produced in the step-by-step example (type
head(counts) in R to see this).

SRR976339 counts SRR976340 counts
LOC Os01g01019 13 10
LOC Os01g01030 55 35
LOC Os01g01040 127 111
LOC Os01g01060 70 47
LOC Os01g01080 5 10
LOC Os01g01115 28 10

6

Figure 1: Distribution and pair-wise comparison of gene expression of the two
samples processed in the step-by-step tutorial. The plots were generated with
the function f.pair.all (included in the R-script). Top-left and bottom-right pan-
els show the distributions of expression values for each sample. The panel on
the top-right compares the gene expression values of the two samples (i.e. one
dot reflects a gene). Colors indicate the point density: red and blue indicate the
highest, respectively lowest, densities. The panel on the lower-left compares the
sorted expression values of the two samples (i.e. one dot reflects the x-th highest
expression value within one sample). The latter gives an indication of how sim-
ilar the two distributions of expression values are (e.g. if a certain value means
the same in both samples). Expression values correspond to log2(counts+1).
CorP: Pearson correlation, CorS: Spearman correlation, n: number of genes
plotted.

7

3 Usage

This section describes the features, requirements and parameters of Rcount in
more detail.

3.1 Aligning the short reads

After initial quality checks have been performed (e.g. with the FastQC soft-
ware), the reads are aligned to a reference genome, preferentially with a splice-
aware aligner. In the step-by-step example, we used TopHat2 [3] to align the
reads. Other working examples are Subread [5] and STAR [6]. In principle, any
aligner works with Rcount, but some may require the .bam file to be addition-
ally processed before using it. The following features of the .bam file are crucial
for Rcount.

• The file must be sorted and an index must be present.
Rcount-multireads needs both, sorting and indexing. Rcount-distribute
does not need an index, but sorting is strongly recommended (Rcount-
multireads keeps the order intact, resorting is therefore not necessary).

• The NH:i:x tag must be present.
Without this tag, multireads are not recognized by Rcount-multireads and
treated as unique alignments.

• There should not be any XW or XM tag.
Rcount uses XW:f:x to store the weights of reads with multiple alignments
and XM:i:x for mapping statistics. The latter is similar to the FLAG column
of a .bam file. The individual bits are explained in table 2.

• The CIGAR string should only contain the operations M, N, I, D, S, H.
Other operations are not recognized by Rcount-distribute.

Note regarding paired-end reads: Rcount-distribute automatically takes the first
read of one pair and ignores the second.

Table 2: Description of the individual bits in the XM:i:x tag introduced by
Rcount-distribute.

bit description of the alignment
0x1 belongs to a multiread
0x2 has been skipped by Rcount-distribute
0x4 contains gaps
0x8 has a weight of zero

0x10 maps to a known locus
0x20 maps to a known exon
0x40 maps to a known splice-junction
0x80 maps to ambiguously several loci

8

3.2 Rcount-format : Creating the genome annotation file

To overcome the large variety of genome annotation formats and their sometimes
loose definition, Rcount uses a novel format which follows clear structural rules
while still offering flexibility to add new features. The conversion of the most
common formats (.gtf, .gff, .bed) into the .xml format is done by Rcount-
format. Aside the format conversion, it also enables the user to edit some aspects
of the genome annotation.

• Loci and their transcripts can be extended on both sides.
Some samples have an abnormal number of hits in non-genic regions, often
caused by hits directly flanking the known loci. Cases like this can be easily
detected by comparing the results with and without the extension of the
loci.

• Certain feature types can be removed by setting their priority to zero.
The genome annotation sometimes contains ambiguous information. For
example, it often contains “coding-sequence” and “UTR” information.
However, these are an in silico specification of the type “exon” (i.e. exon
already includes UTR and CDS), which behave identically during library
preparation. Thus, they can be savely removed.

• Features can be given different priorities during the distribution of am-
biguous reads.
Depending on the library preparation protocol, it is possible that some of
the features in the genome annotation are very unlikely to be sequenced
(e.g. rRNA-coding genes with poly(A)-selective library preparation pro-
tocols). Instead of removing these features entirely, it is possible to set
a lower priority to them. In case a read aligns to a location where two
features with different priorities overlap, it is automatically assigned to
the one with a higher priority. It is important to note that priorities
are only considered on a given level: In case of a gene and a pseudogene
(top-level in the genome annotation structure), their priorities are only
compared between each other. The pseudogene would not be compared to
the gene’s sub-feature “mRNA”. Likewise, an “mRNA” is not compared
to an “exon”.

• Features must have three levels.
Rcount-distribute assumes three annotational levels, for example gene-
mRNA-exon. Features without three levels are ignored.

• Specific requirements for BED files.
BED files must have at least 12 columns. An optional 13th column holds
gene IDs (e.g. AT1G01010). It is assumed that the transcript ID is given
as “name” in the fourth column (e.g. AT1G01010.1). The exons are
constructed using the fields “blockSizes” and “blockStarts” (column 11
and 12). If there is no 13th column, the gene ID is per default inferred
from the transcript ID by removing any .X at the end of the transcript ID
(e.g. AT1G01010 in case of AT1G01010.1). The feature types are set per
default to “gene”, “mRNA”, and “exon”. Non-coding RNAs are identified
by identical entries in the fields “thickStart” and “thickEnd” (column 7
and 8) and marked as “non-coding-gene/RNA”. Rcount-format further
assumes that the coordinates in the BED file are zero-based.

9

• Verify that the annotation fits to the reference genome.
Fetching the annotation files (BED/GFF/GTF) from an online genome
browser can be very convenient. However, it is important to ensure that
the reads were aligned to a reference genome for which the annotation file
was created (e.g. that the first chromosome is called “Chr1” in the fasta
file as well as in the BED/GFF/GTF file). It is therefore recommended to
download both, the reference sequence and the genome annotation from
the same resource.

For convenience, several pre-processed genome annotations (A. thaliana, B. tau-
rus, C. elegans, C. familiaris, D. melanogaster, G. gallus, H. sapiens, M. muscu-
lus, and R. norvegicus) are provided on github.com/MWSchmid/Rcount in the
archive test data annotations.zip. They were build with the data available
on tophat.cbcb.umd.edu/igenomes.shtml using the “ENSEMBL data source”.
The archives on this website also contain pre-built bowtie and bwa indices,
which can directly be used in conjunction with the provided genome annotation.
To create the individual .xml genome annotations, the genes.gtf files were first
pre-processed with the python script (convertCufflinksGTFforRcount.py) sup-
plied in the archives linux 64bit.zip, windows 64bit.zip, and mac 64bit.zip

and then processed using Rcount-format (with the ENSEMBL option enabled).
Each of the genome annotation has been tested with a random sample from
SRA (see section 4 for more details).

3.3 Rcount-multireads: Weighting reads with more than
one alignment

Some organisms have very large gene families with similar sequence. To avoid
underestimation of expression values of transcripts with similar sequence, one
can allow multiple alignments of one read to several locations in the genome.
However, a read r with m > 1 alignments would count m times, resulting
in overestimation of expression values. To overcome this, Rcount-multireads
calculates for each alignment i of such a read the weight Hi using a “score” Si

divided by the sum of scores from all alignments of the read (Hi = Si/
∑m

i=1 Si).
If

∑m
i=1 Si is zero, all alignments of the respective read are discarded (i.e. all

weights set to zero). For ungapped alignments, the score is defined as sum of
coverage originating from uniquely aligned reads at the position of the alignment
and the surrounding region. The size of the region can be set by choosing the
“allocation distance”. This value will be added on both sides of the alignment
position. For gapped alignments, the score equals to the number of uniquely
aligned reads spanning the same gap. Thus, if a read has both types of align-
ments, the ungapped ones are generally preferred.

Further notes:

• Rcount-multireads is not required for Rcount-distribute to run.
If you do not use reads with multiple alignments, you can safely skip
Rcount-multireads. It is important that the number of unique alignments
is well above the number of multireads. If not, it is better to use only the
uniquely aligned reads (high number of multireads was observed especially
in amplified libraries where the cDNA was prepared using random primers,
[in-house data]).

10

• Memory usage is mainly influenced by the number of multireads.
The main memory consumption of Rcount-multireads is caused by storing
the multireads. The size of the reference genome does not make a big
difference. If RAM is limiting, one could lower the maximum number of
alignments per read.

• Known issues on Mac and Windows.
The progress bar is not updated instantly. It instead advances directly to
80 % after finishing reading the files.

• Rcount-multireads may be substituted by any other program that adds weights
to reads with multiple alignments.
Rcount-multireads adds the tag XW:f:x to specify the weights of reads
with multiple alignments. The sole requirement for alternative algorithms
is the possibility to add the weights in the form of the XW:f:x tag. An
example for an alternative software may be CSEM [7] (available on dewey-
lab.biostat.wisc.edu/csem), which was originally developed for ChIP-Seq
data analysis using multireads. It calculates the posterior probabilities for
all alignments of a multiread and stores them the ZW:f:x tag. This tag
can be renamed using the following code (example given for an ubuntu-
like linux). However, it is important to note that CSEM does not handle
gapped alignments in a specific way (treats them as regular alignment).
Also, we experienced that summing up the posterior probabilities results
in a slightly higher number than the number of reads with multiple align-
ments (thus, one tends to slightly overweight the multireads).

an example of CSEM usage (instead of Rcount-multireads)

download, unpack, and compile CSEM (deweylab.biostat.wisc.edu/csem)

cd /path/to/csem

make

add CSEM to your PATH (temporary!)

export PATH="$PATH:/path/to/csem"

alignments need to be sorted by read names for CSEM

however, they are sorted by position in the step-by-step tutorial

to resort the alignments you need samtools

cd /path/to/rice_tutorial/SRR976339

samtools sort -n accepted_hits.bam byName

run CSEM to add the posterior probabilities (ZW:f:x tag)

run-csem --bam --no-extending-reads byName.bam 100 withPP

rename/copy the ZW tag into XW

(the backslash indicates that all should be written on one single line)

samtools view -h withPP.sorted.bam |\

sed ’s/ZW:f:/XW:f:/g’ |\

samtools view -bS - > withPP_retagged.bam

you can now use withPP_retagged.bam directly within Rcount-distribute

11

3.4 Rcount-distribute: Mapping aligned reads to genomic
features

To count the number of reads per genomic feature, the positions of the aligned
reads (termed “hits”) have to be mapped to the genomic features. Hits are
matched to the genomic features as follows: ungapped hits must be entirely
within one exon of a given gene and gapped hits must accurately span exon
junctions (corresponds to the intersection strict mode in HTSeq). Hits can
be divided into unambiguous (mapping to transcripts of only one locus) and
ambiguous (mapping to transcripts of more than one locus). To avoid count-
ing ambiguous hits multiple times, Rcount-distribute proportionally distributes
them based on the number of unambiguous hits. If there are no unambiguous
hits, the ambiguous hits are equally distributed. However, we assume a case
where two loci A and B overlap such that locus A is entirely located within lo-
cus B. Locus A shall be “truly” expressed (i.e. is in vivo expressed and therefore
has reads mapping to it), locus B not (i.e all reads that map to B are coming
from A). Using a single step, all hits of locus A would be declared as ambiguous.
In case locus B has no unambiguous hit, the hits from locus A would be equally
distributed to locus A and B, leading to an underestimation of the expression
value from locus A and an overestimation of the expression value from locus B
(a false positive). In another case where locus B has one or two unambiguous
hits due to sequencing and/or alignment errors, all the hits from locus A would
be wrongly assigned to locus B (one false positive and one false negative). The
same error would occur if locus A has a longer transcript in vivo than the in
silico genome annotation would indicate. The hits at the borders of locus A
would then be unambiguously assigned to locus B and as a consequence also all
the ambiguous hits. To overcome this scenario at least to some extent Rcount-
distribute uses a two step approach. In the first step, all hits are mapped to
all annotated transcripts. In many cases one can expect that each “truly” ex-
pressed transcript should have at least some hits within the first few bps at its
3’ end because the library preparation protocols frequently rely on poly(A)-tail
priming for cDNA synthesis. In addition, one can set a minimal number of
hits. Transcripts not matching these criteria are then discarded. During the
second step, the hits are then divided into unambiguous and ambiguous. The
unambiguous hits are assigned first and used to distribute the ambiguous hits.
The transcripts are then filtered again using the same criteria as before. The
final expression value of a locus is then calculated as the sum of hits assigned
to any of its transcripts.

Rcount-distribute takes a genome file (.xml) and an alignment file (.bam) as
input. As a result, it writes a new .bam file with the mapping tag XM:i:x and a
count table. All parameters are set while creating a new project and stored in
the project file. Additionally, one can enable the use of strand information if (!)
the library preparation protocol was strand specific (updated in March 2016:
you can specify whether the reads are in sense (same) or antisense (opposite)
orientation to the transcripts). This greatly helps to assign the ambiguous reads
as overlapping genes are often in opposite orientation to each other. Note that
in case of paired-end reads, only the first/forward read is used.

12

3.5 Reading and merging tables in R

Rcount-distribute creates for each sample a separate count table with multiple
columns:

• sumUnAmb: number of unambiguously mapped hits.

• sumAmb: number of ambiguously mapped hits before distributing them
accoring to the number of unambiguously mapped hits.

• sumAllo: number of ambiguously mapped hits after distributing them
accoring to the number of unambiguously mapped hits.

• sumDistUnAmb, sumDistAmb, sumDistAllo are identical to sumUnAmb,

sumAmb, sumAllo, but only within the first x bp from the 3’ of the tran-
script. The value x can be specified in Rcount-distribute by enabling
“consider 3’ bias”.

• TH: total number of hits (equals to sumUnAmb+sumAllo).

The provided R-Script offers a function to read in all table files from a given
directory and merge them into a single table (see section 2.7). The func-
tion f.read.Rcount loads per default the column “TH”. Other columns in
the count tables can be loaded using the argument toReturn of the function
f.read.Rcount (e.g. f.read.Rcount(pathToWorkingDirectory, toReturn =

’sumUnAmb’)).

13

4 Test data

Rcount was tested with data from multiple organisms with different genome sizes
and RNA-Seq libraries (table 3). Genome annotation data and genome indices
were obtained as described before (see section 3.2) from tophat.cbcb.umd.edu/igenomes.shtml.
Short reads were downloaded from www.ncbi.nlm.nih.gov/sra. The reformatted
.xml genome annotation, as well as the resulting project files and count tables,
can by found on github.com/MWSchmid/Rcount in the archives test data annotations.zip

and test data results.zip. Reads were aligned with TopHat2 (version 2.0.11
[3]) allowing up to 10 alignments per read (-g 10). For increasing the speed of
TopHat2, the coverage-search was turned off for all data. Allocation distance
for weighting multireads was set to 50 for all samples. Run-time and memory

usage were obtained on a 64 bit Kubuntu (12.04) running on an Intel R© CoreTM

i7 930@2.8 GHz with 24 Gb RAM. Input and output files were read and writ-
ten from the same hard-drive (Samsung HD, 7’200 rpm). Memory usage of
Rcount-multireads is mostly influenced by the number of reads with multiple
alignments (e.g. high memory requirements for the mouse sample compared to
the human sample). However, for Rcount-distribute, the size of the genome an-
notation has the largest impact on the memory usage (e.g. the xml file holding
the genome annotation of the human genome is with 643 Mb almost double the
size compared to the xml genome annotation file for the mouse genome, table
4).

Table 3: Data used to test Rcount.

organism assembly accession # reads
A. thaliana TAIR10 SRX275909[8] 52’181’949
B. taurus Btau4.0 DRR001892[9] 69’040’753
C. elegans WS220 SRR1015366[10] 34’542’067
C. familiaris BROADD2 DRR001151 113’253’542
D. melanogaster BDGP5.25 SRR629969[11] 31’267’571
G. gallus WASHUC2 SRR1264638[12] 20’189’799
H. sapiens GRCh37 DRR000897[13] 22’635’328
M. musculus NCBIM37 DRR013118[14] 27’028’925
R. norvegicus RGSC3.4 SRR1041766[15] 28’897’182

14

Table 4: Alignment statistics, approximate run-time and memory usage of
Rcount using the test data given in Table 3. Note that the number of mul-
tireads only includes the ones with at least one alignment with a weight above
zero.

organism # reads aligned Rcount-multireads Rcount-distribute
unique multiple time memory time memory

A. thaliana 41’098’964 2’231’636 12 min 1.0 Gb 18 min 1 Gb
B. taurus 34’913’558 3’538’481 15 min 1.1 Gb 18 min 928 Mb
C. elegans 25’492’284 1’889’021 10 min 729 Mb 14 min 1.0 Gb
C. familiaris 66’816’362 4’809’058 18 min 2.8 Gb 22 min 878 Mb
D. melanogaster 25’806’514 969’484 9 min 216 Mb 12 min 981 Mb
G. gallus 10’465’361 158’067 2 min 185 Mb 4 min 803 Mb
H. sapiens 16’056’845 2’169’498 5 min 1.0 Gb 13 min 3.3 Gb
M. musculus 9’630’768 7’898’165 8 min 3.2 Gb 8 min 1.7 Gb
R. norvegicus 21’729’100 1’288’736 10 min 410 Mb 12 min 1.2 Gb

15

5 Building from source

If the binaries are not working or you would like to implement a new feature,
you can build them from the source code.

5.1 Linux

Compiling the programs using QtCreator is quite easy.

• download and unpack the archive source.zip

• install QtCreator (on the Ubuntu repository: qtcreator) - make sure to
use Qt 5.x.x libraries.

• install zlib (on the Ubuntu repository: zlib1g, zlib1g-dev, zlib1g-dev),
which is required by Rcount-multireads and Rcount-distribute

• start QtCreator and open each of the *.pro files

– Rcount-format: ../source/p502 format wizard/p502 format wizard.pro

– Rcount-multireads: ../source/p502 process multireads/p502 process multireads.pro

– Rcount-distribute: ../source/p502dataAnalysisRNA/p502dataAnalysisRNA.pro

• for Rcount-multireads and Rcount-distribute, copy the seqan folder into
one of your general include paths (e.g. sudo cp -r seqan /usr/local/include)
or add a line INCLUDEPATH += <path containing seqan folder> into
the *.pro files. For Rcount-format, seqan is not required and this step can
therefore be skipped.

• finally, in the QtCreater menu select Build > Build Project ‘‘my project’’

5.2 Windows

There are no build instructions for Windows anymore. It got quite a bit more
comlicated now - partly due to VisualStudio 2015. Aside compiling 64bit ver-
sions of the Qt libraries and zlib, one needs to modify some code of the seqan
library (lexicalCast2 and all cases of std::min and std::max). Furthermore
one needs to replace getopt with XGetopt (www.codeproject.com/Articles/1940/XGetopt-
A-Unix-compatible-getopt-for-MFC-and-Win32).

5.3 Mac

Currently, there are no build instructions available for the MacOS.

16

References

[1] Anderson S, Johnson C, Jones D, Conrad L, Gou X, et al. (2013) Transcrip-
tomes of isolated Oryza sativa gametes characterized by deep sequencing:
evidence for distinct sex-dependent chromatin and epigenetic states before
fertilization. The Plant Journal 76: 729–741.

[2] Langmead B, Salzberg S (2012) Fast gapped-read alignment with Bowtie
2. Nature Methods 9: 357–359.

[3] Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, et al. (2013) TopHat2:
accurate alignment of transcriptomes in the presence of insertions, deletions
and gene fusions. Genome Biology 14: R36.

[4] Li H, Handsaker B, Wysoker A, T F, Ruan J, et al. (2009) The Sequence
alignment/map (SAM) format and SAMtools. Bioinformatics 25: 2078-
2079.

[5] Liao Y, Smyth G, Shi W (2013) The Subread aligner: fast, accurate and
scalable read mapping by seed-and-vote. Nucleic Acids Research 41: e108.

[6] Dobin A, Davis C, Schlesinger F, Drenkow J, Zaleski C, et al. (2013) STAR:
ultrafast universal RNA-seq aligner. Bioinformatics 29: 15-21.

[7] Chung D, Juan P, Li B, Sanalkumar R, Liang K, et al. (2011) Discov-
ering Transcription Factor Binding Sites in Highly Repetitive Regions of
Genomes with Multi-Read Analysis of ChIP-Seq Data. PLOS Computa-
tional Biology 7: e1002111.

[8] Loraine A, McCormick S, Estrada A, Patel K, Peng Q (2013) RNA-Seq or
Arabidopsis Pollen Uncovers Novel Transcription and Alternative Splicing.
Plant Physiology 162: 1092–1109.

[9] Takeo S, Kawahara-Miki R, Goto H, Cao F, Kimura K, et al. (2013)
Age-associated changes in gene expression and developmental competence
of bovine oocytes, and a possible countermeasure against age-associated
events. Molecular Reproduction and Development 80: 508–521.

[10] Washburn M, Kakaradov B, Sundararaman B, Wheeler E, Hoon S, et al.
(2014) The dsRBP and inactive editor ADR-1 utilizes dsRNA binding to
regulate A-to-I RNA editing across the C. elegans transcriptome. Cell
Reports 6: 599–607.

[11] Ramaswami G, Zhang R, Piskol R, Keegan L, Deng P, et al. (2013) Identi-
fying RNA editing sites using RNA sequencing data alone. Nature Methods
10: 128–132.

[12] Ku Y, Renaud N, Veile R, Helms C, Voelker C, et al. (2014) The transcrip-
tome of utricle hair cell regeneration in the avian inner ear. The Journal
of Neuroscience 34: 3523–3535.

[13] Odawara J, Harada A, Yoshimi T, Maehara K, Tachibana T, et al. (2011)
The classification of mRNA expression levels by the phosphorylation state
of RNAPII CTD based on a combined genome-wide approach. BMC Ge-
nomics 12.

17

[14] Yukawa M, Akiyama T, Franke V, Mise N, Isagawa T, et al. (2014) Genome-
Wide Analysis of the Chromatin Composition of Histone H2A and H3 Vari-
ants in Mouse Embryonic Stem Cells. PLOS ONE 9: e92689.

[15] Cortez D, Marin R, Toledo-Flores D, Froidevaux L, Liechti A, et al. (2014)
Origins and functional evolution of Y chromosomes across mammals. Na-
ture 508: 488–493.

18

