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2. Material Properties
3. Target Simulation Predictions
• Thermogravimetric Analysis (TGA)
• Gasification

4. Discussion
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1.  Purpose

April 23, 2021 MaCFP Condensed Phase Modeling 3



Why are we here?
• Final destination: reliable 

predictions of flame spread 
and fire growth
• Barriers to getting there
• Complex physics
• Material variability
• Scenario variability

• MaCFP provides a forum for 
collaboration
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Fire Model Development Process
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MaCFP Condensed Phase Modeling 
Phase
• Objectives from, “Guidelines for Participation in the 2021 

MaCFP Condensed Phase Workshop”:
• To catalogue current approaches used to parameterize pyrolysis 

models; 
• To quantify the interlaboratory variability for comparable experimental 

datasets; 
• To assess the impact of the variability of model parameters on 

predictions of sample burning rate; and 
• To present a rigorous analysis of these results in the Fire Safety 

Journal. 
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Note
• Validation asks:  “Do model predictions agree with 

experiments?”
• Must compare with experimental data
• Experimental data cannot be same data used for calibration

• Not showing true model validation today
• Code-to-code Comparison asks:  “Do different model 

predictions agree with each other?”
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Contributors to Modeling Phase
1. Aalto—Aalto University, 🇫🇮 Finland
2. BoWFZJ—University of Wuppertal and Forschungszentrum Jülich, 🇩🇪 Germany
3. DBI—Danish Institute of Fire and Security Technology, 🇩🇰 Denmark
4. GIDAZE+—Imperial College of London, 🇬🇧 United Kingdom
5. NIST—National Institute of Standards and Technology, 🇺🇸 United States
6. Sandia—Sandia National Laboratories, 🇺🇸 United States
7. UCLAN—University of Central Lancashire, 🇬🇧 United Kingdom
8. UMD—University of Maryland, 🇺🇸 United States
9. UMET—EDF, Université de Lille, and Universite ́ de Toulouse, 🇫🇷 France
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2.  Material Properties
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Requested Model Parameters
• Complications
• Multiple reactions
• Temperature dependent 

properties
• Differences

1. Data
2. Model
3. Method
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Pyrolysis Modeling 
Standard Data Set: Model Parameters of Interest 
   

Table 1 lists all pyrolysis model parameters of interest for this study. Note: degradation 
kinetics and thermodynamic parameters can be component- or reaction-step-specific. If 
your model includes multiple reaction steps and/or components, please include all relevant 
parameters below for each one. Participants should provide a detailed description of the 
method of determination of each of these parameters as well as a description (written and 
mathematical) of their proposed decomposition reaction mechanism. 

 

Table 1. Pyrolysis Model Parameters. 

Symbol Units Name 
Degradation Kinetics 

A s-1 Pre-exponential constant  
E J mol-1 Activation energy  
n [-] Reaction order 
ν [-] Stoichiometric coefficient 
   

Thermodynamic Properties 
cp J kg-1 K-1 Heat capacity 
hr J kg-1 Heat of reaction 
ρ kg m-3 Density 
   

Transport Properties 
k W m-1 K-1 Thermal conductivity 
D m2 s-1 Mass diffusivity 
α m-1 or m2 kg-1 Absorption coefficient 
ε [-] Emissivity 

 

s 

Es 
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Aalto
1. Data

• TGA from UMET at 1, 2, 5, 10, 20, and 50 K min-1
• Gasification from DBI at 25 kW m-2 and from Aalto at 65 kW m-2

• UV-Vis and FTIR for absorption coefficients
• Density and emissivity from literature

2. Model
• Gpyro for fitting kinetics, FDS for fitting thermophysical properties
• Two-step, parallel reaction mechanism with 1st order kinetics 
• Gasification boundary conditions:  convective heat transfer at top, ceramic 

wool at back surface
3. Method

• Kinetics:  Gpyro with shuffled complex evolution optimization
• Thermophysical Properties:  PROPTI + FDS with shuffled complex evolution 

optimization
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BoWFZJ
1. Data
• TGA from LCCP
• Gasification (CAPA) from UMD

2. Model
• FDS
• Two-step, parallel reaction mechanism with 1st order kinetics

3. Method
• PROPTI with shuffled complex evolution optimization
• Method A—Kinetics from TGA then other properties from CAPA
• Method B—All properties from TGA and CAPA simultaneously
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DBI
1. Data
• STA (TGA/DSC) from DBI at 20 K min-1
• Heat Flow Meter (HFM) from DBI
• Assumed emissivity = 1

2. Model
• FDS and Gpyro
• One-step reaction mechanism with 1st order kinetics

3. Method
• Smoothing filters:  LOESS and Savitzgy-Golay
• Three fitting methods:  (1) Monte Carlo sampling, (2) Gpyro, and (3) 

manual updating
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GIDAZE+
1. Data
• TGA 

• UMET, LCPP, and literature at 5 K min-1
• UMD, GIDAZE+, LCCP, and UMET at 10 K min-1
• Literature at 30 K min-1

• Literature values for other properties
2. Model
• Gpyro
• One-step reaction mechanism with 1st order kinetics

3. Method
• Kinetics by manual updating
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NIST
1. Data
• TGA from NIST at 10 K min-1
• Literature values for other properties

2. Model
• FDS
• One-step reaction mechanism with 1st order kinetics

3. Method
• Algebraic estimation of kinetics based on peak parameters

April 23, 2021 MaCFP Condensed Phase Modeling 15



Sandia
1. Data

• TGA
• Sandia (S) at 1 K min-1 and 5 K min-1
• UMET (U) at 1 K min-1, 2 K min-1, 5 K min-1, and 50 K min-1

2. Model
• Sierra Thermal/Fluids (Sandia)
• Three reaction mechanisms (nth order kinetics) :

1. One-step
2. Two-step in series
3. Two-step in parallel

3. Method
• MatCal + Dakota using gradient-based optimization of least squares residual
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UCLAN
1. Data
• TGA from UCLAN

2. Model
• ThermaKin
• One-step reaction mechanism with 1st order kinetics

3. Method
• Manual updating
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UMD
1. Data
• TGA/DSC from UMD at 10 K/min
• Gasification (CAPA) from UMD at 25 kW m-2

2. Model
• ThermaKin2D
• Two-step in series reaction mechanism with 1st order kinetics

3. Method
• Hill climbing optimization with least squares objective function
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UMET
1. Data

• TGA from UMET at 1 K min-1, 2 K min-1, 5 K min-1, 20 K min-1, 50 K min-1, and 
100 K min-1

• DSC (STA) from UMET
• Hot Disk Analyzer (Transient Plane Source) from UMET
• Literature data for density, emissivity, and absorption coefficient

2. Model
• ThermaKin (TK)
• Gpyro (GP)
• Two-step reaction mechanism with 1st order (TK) and nth order (GP) kinetics

3. Method
• Hybrid regularized Gauss-Newton or Marquardt optimization of TGA
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Calibration Method Summary

April 23, 2021 MaCFP Condensed Phase Modeling 20

Data Models Methods
• TGA at many heating 

rates
• Gasification/CAPA
• STA (TGA/DSC)
• Heat flow meter
• Hot disk
• UV-Vis and FTIR
• Literature data and 

values

• FDS, Gpyro, 
ThermaKin, Sierra 
Thermal/Fluids

• One-step, two-step 
(series and parallel) 
reaction mechanism 

• 1st order and nth order 
kinetics

• PROPTI, Gpyro, 
MatCal+Dakota tools

• Shuffled complex 
evolution

• Other optimization
• Algebraic
• Monte Carlo sampling
• Manual updating
• Direct measurment



Kinetic Properties
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Kinetic Properties
• Clear kinetic compensation
• Large range of values
• Location on line affects width 

of mass loss curve
• Questions
• Does this spread matter?
• Are two reactions necessary?
• Are 1st order models sufficient?
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Density
• All except UMET assume 

constant density
• Aalto and NIST both use 

literature values
• BoWFZJ gets density by 

optimization
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Thermodynamic Properties
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Transport Properties
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Average Thermal Diffusivity
• Averaged over entire 

temperature range (275 K to 
750 K)
• Shaded area represents +/-

two standard deviations
• Do not see clear 

compensation between 
thermal conductivity and heat 
capacity
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Radiative Properties
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Properties Summary
• Typical variability within 10 % to 50 % of averages
• No order of magnitude differences
• Questions
• Are predictions sensitive to changes within this variability?
• What are the most influential properties?
• How do parameter estimates vary with methods?
• Do we need more calibration experiments or fewer?
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3.  Target Simulation Predictions
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TGA Target Simulations

• Two total simulations
• Validation data for 10 K min-1

• TGA data at 100 K min-1 is 
possibly problematic
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Target Simulations 
Comparisons of pyrolysis model predictions of zero-dimensional Thermogravimetric 
Analysis (TGA) experiments conducted at two heating rates and one-dimensional 
gasification scenarios conducted at three incident radiant heat fluxes and two sample 
thicknesses will be presented and compared at the 2021 MaCFP Condensed Phase 
Workshop. These simulations will be repeated using all complete pyrolysis model parameter 
sets submitted by workshop participants. These simulations will be employed to compare 
performance of different models. In the case of the TGA simulations, mass loss rate profiles 
as a function of temperature will be used for comparison. In the case of the gasification 
simulations, mass loss rate and surface temperature profiles will be used for comparison.  

Thermogravimetric Analysis (TGA) Experiments   [Two simulations]  

Temperature Range: 300 K to 1000 K 

Heating Rates: 10 K min-1 and 100 K min-1 

Initial Sample Mass 5 mg 

Output: time [s] 
Time-resolved Sample Temperature [K]  
Time-resolved Sample Mass [mg] 

Test Description: Simulations of idealized TGA experiments in which sample 
temperature must remain spatially uniform. 

 

Gasification Experiments  [Six simulations]  

Simulations should be performed using a computational pyrolysis solver. 

Initial Temperature Initial ambient and sample temperatures should be 293K. 

Top Surface  
Boundary Conditions: 

Sample surface exposed to 10, 25, and 65 kW m-2 of 
incident radiant heat flux; no convection 

Bottom Surface  
Boundary Conditions: 

Sample back surface should be perfectly insulated. (i.e., no 
convection or radiation) 

Sample Dimensions: Simulations should be repeated at each incident heat flux 
using sample thicknesses of 6 mm and 12 mm.  

Simulation outputs should be scaled such that samples are 
initial 10 cm x 10 cm, squares. 

Output: Time [s] 
Time-resolved Sample Mass [g] 
Time-resolved Sample Back-Surface Temperature [K]  
Time-resolved Sample Top-Surface Temperature [K] 
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𝑚 𝑡 = 0 = 5 mg
𝛽 = 10 K min!", 10 K min!"

𝑚 𝑡
𝑇(𝑡) = 300 K + 𝛽𝑇



TGA at 10 K/min
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TGA at 10 K min-1 Peak Data

• Peak temperature predictions 
vary by ~30 K
• Peak mass loss rate predictions 

vary by ~40 %
• Models predict peak 

temperature very close to 
MaCFP mean
• Scatter is about twice what we 

see in experimental data
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TGA at 100 K/min
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TGA at 100 K/min Peak Data
• Peak temperature predictions 

vary by ~80 K
• Peak mass loss rate 

predictions vary by ~60 %
• Not surprising that variability 

increases with heating rate
• What impact does this have 

on flame spread predictions?
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Gasification Target Simulations
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Target Simulations 
Comparisons of pyrolysis model predictions of zero-dimensional Thermogravimetric 
Analysis (TGA) experiments conducted at two heating rates and one-dimensional 
gasification scenarios conducted at three incident radiant heat fluxes and two sample 
thicknesses will be presented and compared at the 2021 MaCFP Condensed Phase 
Workshop. These simulations will be repeated using all complete pyrolysis model parameter 
sets submitted by workshop participants. These simulations will be employed to compare 
performance of different models. In the case of the TGA simulations, mass loss rate profiles 
as a function of temperature will be used for comparison. In the case of the gasification 
simulations, mass loss rate and surface temperature profiles will be used for comparison.  

Thermogravimetric Analysis (TGA) Experiments   [Two simulations]  

Temperature Range: 300 K to 1000 K 

Heating Rates: 10 K min-1 and 100 K min-1 

Initial Sample Mass 5 mg 

Output: time [s] 
Time-resolved Sample Temperature [K]  
Time-resolved Sample Mass [mg] 

Test Description: Simulations of idealized TGA experiments in which sample 
temperature must remain spatially uniform. 

 

Gasification Experiments  [Six simulations]  

Simulations should be performed using a computational pyrolysis solver. 

Initial Temperature Initial ambient and sample temperatures should be 293K. 

Top Surface  
Boundary Conditions: 

Sample surface exposed to 10, 25, and 65 kW m-2 of 
incident radiant heat flux; no convection 

Bottom Surface  
Boundary Conditions: 

Sample back surface should be perfectly insulated. (i.e., no 
convection or radiation) 

Sample Dimensions: Simulations should be repeated at each incident heat flux 
using sample thicknesses of 6 mm and 12 mm.  

Simulation outputs should be scaled such that samples are 
initial 10 cm x 10 cm, squares. 

Output: Time [s] 
Time-resolved Sample Mass [g] 
Time-resolved Sample Back-Surface Temperature [K]  
Time-resolved Sample Top-Surface Temperature [K] 
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Gasification Mass: 25 kW m-2, 12 mm
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Gasification Temperatures: 25 kW m-2, 12 mm

0 5 10 15 20 25 30
Time (min)

300

400

500

600

700

800

T
op

Su
rf

ac
e

T
em

p
er

at
ur

e
(K

)

Aalto

BoWFZJ (A)

BoWFZJ (B)

DBI

GIDAZE+

NIST

UMD

UMET (TK)

UMET (GP)

0 5 10 15 20 25 30
Time (min)

300

400

500

600

700

800

B
ac

k
Su

rf
ac

e
T
em

p
er

at
ur

e
(K

) Aalto

BoWFZJ (A)

BoWFZJ (B)

DBI

GIDAZE+

NIST

UMD

UMET (TK)

UMET (GP)



Gasification Peak Data: 25 kW m-2, 12 mm
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• Peak mass loss rate 
predictions vary by ~75 %
• Time to peak mass loss rate 

predictions vary by ~40 %
• Peak rate decreases with time 

to peak
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Gasification Onset:  25 kW m-2, 12 mm
• Definition:  time where mass 

loss rate exceeds 1 g m-2 s
• Indicative of time to ignition
• Time to gasification onset 

predictions vary by ~125 % 
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Gasification Peaks Summary
• High heat fluxes: peak mass 

loss rate predictions vary by 
up to ~75 %
• Low heat fluxes, time to peak 

mass loss rate predictions 
vary by up to ~85 %
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Gasification Onset Summary
• Expected trend
• Sample thickness only matters 

at low heat fluxes
• Substantial (order of 

magnitude) variations at all 
heat fluxes
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Gasification Summary
• No clear difference between models (FDS, Gpyro, ThermaKin)
• Questions:
• Are these results good enough?
• What aspects of this data set should we examine more closely?
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4.  Discussion
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Some Observations
• For these cases, differences between FDS, Gpyro, and 

ThermaKin seem small
• Variability in model predictions:  they can’t all be right, but they 

could all be wrong
• +/-35 % uncertainty in peak mass loss rate (or peak heat 

release rate) seems large
• +/-50 % uncertainty in time to mass loss onset (or time to 

ignition) seems large
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Next Steps
• Standard format for material property metadata:
• (Calibration) Data, Model, and Method

• Standard format for material property data:
• Different models for temperature dependence

• Share data on GitHub
• Improve plotting scripts
• Investigate data:  links between calibration data, methods, and 

models to predictions
• Remember purpose:  what do we need to do to improve 

predictions?
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Discussion Topics
• Do we need validation data for gasification predictions? Who 

will provide it?
• How do we define when a prediction is good enough?
• What can we learn with the results that we currently have?
• Are more calibration experiments necessary?
• Pure validation versus code-to-code comparisons?
• What validation experiments should we do next? Who will 

perform them?
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