

Flame Spread Experiments and Next Steps

Dushyant M. Chaudhari, Isaac T. Leventon and Stanislav I. Stoliarov

2021 IAFSS Symposium Workshop: MaCFP Condensed Phase April 23, 2021

Large-scale experiments on the cast black PMMA that are currently in progress

- Flame spread on a corner wall formed by two 146×50 cm² panels of PMMA
- 7 tests were performed thus far at 5^{1} \Im ; they are supported by 56

- Flame spread on parallel panels lined with 245×60 cm² sheets of PMMA
- 6 tests were performed thus far at **N**

National Institute of **Standards and Technology** U.S. Department of Commerce

Experimental setup to study flame spread on a corner wall

Results of HRR measurements

$$\begin{aligned} \text{HRR} &= E \cdot A \cdot C_f^e \, \left(2\Delta P \left(\frac{P_a M_e}{T_e R} \right) \right)^{0.5} \frac{M_{O_2}}{M_e} \left(\frac{X_{O_2}^{m,0}}{1 + X_{O_2}^{m,0} r_{H_2O}^0} - X_{O_2}^t \right) \\ X_{O_2}^t &= \frac{X_{O_2}^m}{1 + \gamma \left(\frac{X_{O_2}^{m,0}}{(1 - X_{O_2}^{m,0}) + X_{O_2}^m} - X_{O_2}^m \right) + r_{H_2O}^0 X_{O_2}^m} \\ r_{H_2O}^0 &= \left(\frac{P_a}{(RH^0/100)P_{H_2O}^v} - 1 \right)^{-1} \frac{1}{X_{O_2}^{m,0}} \end{aligned}$$

For details, see: <u>https://doi.org/10.1016/j.polymdegradstab.2020.109433</u>

Results of flame heat flux measurements

Results of flame imaging

10 s averaged relative intensities of 900 nm flame emissions projected onto a PMMA panel surface

$$I_{900 nm}^{\text{cam}}(x, y) \propto \int_{s} \left(k_{900 nm}^{\text{soot}}(s) I_{900 nm}^{\text{b}}(T) - k_{900 nm}^{\text{soot}}(s) I_{900 nm}(s) \right) ds$$
$$(x_{s}, y_{s}, z_{s}) = (x, y, 0) + \frac{s}{\sqrt{(12 - x)^{2} + (70 - y)^{2} + 150^{2}}} \cdot (12 - x, 70 - y, 150)$$

 $k_{900 nm}^{soot}$ is the extinction coefficient that includes effects of absorption and scattering by soot and is related to the local soot volume fraction

For details, see: https://doi.org/10.1016/j.polymdegradstab.2020.109433

Further analysis: relationship between flame heat flux and HRR

TIVERSIT4

Further analysis: connection with pyrolysis model

Prediction of HRR

Front surface boundary conditions (two limiting cases):

9

Parallel panel experimental setup

- Ignitability and flame spread
 - Sample size: 2.45 m tall, 0.6 m wide
 - Panel Separation: 0.3 m
- Burner:
 - Fire Size:

• Dimensions:

- 60 kW 0.6 m by 0.3m
- Fill designed for uniform gas flow
 - Ceramic insulation blanket, 2.5 cm at top
 - Sand, 7.5 cm
 - Pea gravel, 20 cm base
- Measurement Data
 - CO, CO₂, O₂, Soot and HRR
 - Flame to surface heat flux at 9 heights, 4 horizontal locations

Results obtained thus far

Measurements from the full-scale parallel panel experiments shown here were obtained by the National Institute of Standards and Technology (NIST), an agency of the US government, and are not subject to copyright in the USA. Not all of the measurement data presented here has been through a formal review process and it should therefore be considered as predecisional draft results.

The Matl-db repository

- Processing /preparation for Github repository, Matl-db
 - Internal data review (NIST)
 - Evaluate ability to merge measurement data from unique tests
- Follow format of existing large-scale measurement data on macfp-db
 - README.md file
 - Global Measurements (time, HRR, Y_i)
 - Local Measurements (heat flux at location: x, y, z)

□ MaCFP / macfp-db	⊙ Watch → 11 ☆ Star	17 😵 Fork 23						
<> Code ① Issues \$`` Pull request	s 🕑 Actions 🛄 Projects	🛱 Wiki 🛈 Security	🗠 Insights					
** master * macfp-db / Wall_Fires / FM_Vertical_Wall_Flames Go to file Add file * / Experimental_Data / /								
mcdermo remove ^M from text files on Oct 23, 2019 🕚 History								
🗅 .gitignore	.gitignore add FM_Vertical_Wall_Flames							
C3H6_Flame_Radiance.csv	FM Vertical Wall Flames: Commit preliminary NIST results and scripts. 4 years ago							
C3H6_Soot_Depth.csv	FM Vertical Wall Flames: Commit preliminary NIST results and scripts. 4 years ago							
C3H6_T_Gas_at_771mm.csv	remove ^M from text files	17 months ago						
C3H6_T_Thermocouple_at_771mm	remove ^M from text files	17 months ago						
C3H6_Total_Heat_Flux.csv	remove ^M from text files	17 months ago						
FM_Vertical_Wall_Flames_dataplot_i	FM_Vertical_Wall_Flames: More NI	4 years ago						
Cther_Fuel_Total_Heat_Flux.csv	remove ^M from text files	17 months ago						
C README.md	Update README.md	4 years ago						

EEADME.md

FM vertical wall fire data

The experimental data are summarized in the following .csv files, which include soot depth at different elevation locations and fuel flow rates for propylene, uncorrected and corrected temperature profiles at Z = 771 mm with different fuel flow rates for propylene, flame outward radiance at different elevation locations and fuel flow rates for propylene, and total heat flux at different fuel flow rates for methane, ethane, ethylene and propylene. Those data have been published in Refs. 1 and 2.

Detailed description of the .csv files are

The Matl-db repository

• Example output file:

- Global measurement quantities
- Time-resolved data
- Standard format
- Quantified uncertainties

Time	HRR	Oxygen	CO2	CO	Ksmoke	Exhaust	Mass	Flow	Rate
[s]	[kW]	[vol %]	[vol %]	[vol %]	[1/m]	[kg/s]			
0	0.95	0.2094	0.0004	-9.00E-07	0	16.364			
1	0.27	0.2094	0.0004	-9.00E-07	0	16.295			
2	2.38	0.2094	0.0004	-1.40E-06	0	16.296			
3	3.94	0.2094	0.0004	-1.20E-06	0	16.283			
4	5.11	0.2094	0.0004	-1.00E-06	0	16.2			
5	10.3	0.2094	0.0005	-8.00E-07	0	16.251			
6	11.8	0.2094	0.0005	-5.00E-07	0	16.22			
7	13.9	0.2094	0.0005	-6.00E-07	0	16.31			
8	16.9	0.2094	0.0005	-7.00E-07	0	16.388			
9	17.5	0.2094	0.0005	-8.00E-07	0	16.369			
10	21.7	0.2094	0.0005	-9.00E-07	0	16.276			
11	23.7	0.2093	0.0005	-5.00E-07	0.001	16.347			
12	26.7	0.2093	0.0005	-7.00E-07	0.001	16.327			
13	28.3	0.2093	0.0005	-1.00E-06	0	16.319			
14	25.7	0.2093	0.0005	-1.00E-06	0.001	16.381			
15	27.9	0.2093	0.0005	-1.20E-06	0.001	16.265			
16	29.2	0.2093	0.0005	-7.00E-07	0.001	16.328			
17	32.6	0.2093	0.0005	-9.00E-07	0.001	16.227			
18	34.1	0.2093	0.0005	-8.00E-07	0.001	16.176			
19	34.3	0.2093	0.0005	-6.00E-07	0.001	16.089			
20	33.9	0.2093	0.0005	-7.00E-07	0.001	16.101			
21	34.9	0.2093	0.0005	-8.00E-07	0.001	16.119			
22	36.1	0.2093	0.0005	-7.00E-07	0.001	16.132			
23	40.2	0.2093	0.0005	-5.00E-07	0.001	16.145			
24	43.2	0.2093	0.0005	-5.00E-07	0.001	15.957			
25	41.6	0.2093	0.0005	-4.00E-07	0.001	16.081			
26	41.5	0.2093	0.0005	0	0.001	16.046			
27	44.8	0.2093	0.0005	-2.00E-07	0.002	16.137			
28	45.4	0.2093	0.0005	-6.00E-07	0.002	16.205			
29	47.6	0.2093	0.0006	-4.00E-07	0.002	16.308			
30	51	0.2092	0.0006	-8.00E-07	0.002	16.374			