Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

465 lines (419 sloc) 12.678 kb
#
# = prime.rb
#
# Prime numbers and factorization library.
#
# Copyright::
# Copyright (c) 1998-2008 Keiju ISHITSUKA(SHL Japan Inc.)
# Copyright (c) 2008 Yuki Sonoda (Yugui) <yugui@yugui.jp>
#
# Documentation::
# Yuki Sonoda
#
require "singleton"
require "forwardable"
class Integer
# Re-composes a prime factorization and returns the product.
#
# See Prime#int_from_prime_division for more details.
def Integer.from_prime_division(pd)
Prime.int_from_prime_division(pd)
end
# Returns the factorization of +self+.
#
# See Prime#prime_division for more details.
def prime_division(generator = Prime::Generator23.new)
Prime.prime_division(self, generator)
end
# Returns true if +self+ is a prime number, false for a composite.
def prime?
Prime.prime?(self)
end
# Iterates the given block over all prime numbers.
#
# See +Prime+#each for more details.
def Integer.each_prime(ubound, &block) # :yields: prime
Prime.each(ubound, &block)
end
end
#
# The set of all prime numbers.
#
# == Example
# Prime.each(100) do |prime|
# p prime #=> 2, 3, 5, 7, 11, ...., 97
# end
#
# == Retrieving the instance
# +Prime+.new is obsolete. Now +Prime+ has the default instance and you can
# access it as +Prime+.instance.
#
# For convenience, each instance method of +Prime+.instance can be accessed
# as a class method of +Prime+.
#
# e.g.
# Prime.instance.prime?(2) #=> true
# Prime.prime?(2) #=> true
#
# == Generators
# A "generator" provides an implementation of enumerating pseudo-prime
# numbers and it remembers the position of enumeration and upper bound.
# Futhermore, it is a external iterator of prime enumeration which is
# compatible to an Enumerator.
#
# +Prime+::+PseudoPrimeGenerator+ is the base class for generators.
# There are few implementations of generator.
#
# [+Prime+::+EratosthenesGenerator+]
# Uses eratosthenes's sieve.
# [+Prime+::+TrialDivisionGenerator+]
# Uses the trial division method.
# [+Prime+::+Generator23+]
# Generates all positive integers which is not divided by 2 nor 3.
# This sequence is very bad as a pseudo-prime sequence. But this
# is faster and uses much less memory than other generators. So,
# it is suitable for factorizing an integer which is not large but
# has many prime factors. e.g. for Prime#prime? .
class Prime
include Enumerable
@the_instance = Prime.new
# obsolete. Use +Prime+::+instance+ or class methods of +Prime+.
def initialize
@generator = EratosthenesGenerator.new
extend OldCompatibility
warn "Prime::new is obsolete. use Prime::instance or class methods of Prime."
end
class<<self
extend Forwardable
include Enumerable
# Returns the default instance of Prime.
def instance; @the_instance end
def method_added(method) # :nodoc:
(class<<self;self;end).def_delegator :instance, method
end
end
# Iterates the given block over all prime numbers.
#
# == Parameters
# +ubound+::
# Optional. An arbitrary positive number.
# The upper bound of enumeration. The method enumerates
# prime numbers infinitely if +ubound+ is nil.
# +generator+::
# Optional. An implementation of pseudo-prime generator.
#
# == Return value
# An evaluated value of the given block at the last time.
# Or an enumerator which is compatible to an +Enumerator+
# if no block given.
#
# == Description
# Calls +block+ once for each prime number, passing the prime as
# a parameter.
#
# +ubound+::
# Upper bound of prime numbers. The iterator stops after
# yields all prime numbers p <= +ubound+.
#
# == Note
# +Prime+.+new+ returns a object extended by +Prime+::+OldCompatibility+
# in order to compatibility to Ruby 1.8, and +Prime+#each is overwritten
# by +Prime+::+OldCompatibility+#+each+.
#
# +Prime+.+new+ is now obsolete. Use +Prime+.+instance+.+each+ or simply
# +Prime+.+each+.
def each(ubound = nil, generator = EratosthenesGenerator.new, &block)
generator.upper_bound = ubound
generator.each(&block)
end
# Returns true if +value+ is prime, false for a composite.
#
# == Parameters
# +value+:: an arbitrary integer to be checked.
# +generator+:: optional. A pseudo-prime generator.
def prime?(value, generator = Prime::Generator23.new)
value = -value if value < 0
return false if value < 2
for num in generator
#q,r = value.divmod num
q = value / num; r = value % num
return true if q < num
return false if r == 0
end
end
# Re-composes a prime factorization and returns the product.
#
# == Parameters
# +pd+:: Array of pairs of integers. The each internal
# pair consists of a prime number -- a prime factor --
# and a natural number -- an exponent.
#
# == Example
# For [[p_1, e_1], [p_2, e_2], ...., [p_n, e_n]], it returns
# p_1**e_1 * p_2**e_2 * .... * p_n**e_n.
#
# Prime.int_from_prime_division([[2,2], [3,1]]) #=> 12
def int_from_prime_division(pd)
pd.inject(1){|value, (prime, index)|
value *= prime**index
}
end
# Returns the factorization of +value+.
#
# == Parameters
# +value+:: An arbitrary integer.
# +generator+:: Optional. A pseudo-prime generator.
# +generator+.succ must return the next
# pseudo-prime number in the ascendent
# order. It must generate all prime numbers,
# but may generate non prime numbers.
#
# === Exceptions
# +ZeroDivisionError+:: when +value+ is zero.
#
# == Example
# For an arbitrary integer
# n = p_1**e_1 * p_2**e_2 * .... * p_n**e_n,
# prime_division(n) returns
# [[p_1, e_1], [p_2, e_2], ...., [p_n, e_n]].
#
# Prime.prime_division(12) #=> [[2,2], [3,1]]
#
def prime_division(value, generator= Prime::Generator23.new)
raise ZeroDivisionError if value == 0
pv = []
for prime in generator
count = 0
while (value1, mod = value.divmod(prime)
mod) == 0
value = value1
count += 1
end
if count != 0
pv.push [prime, count]
end
break if value1 <= prime
end
if value > 1
pv.push [value, 1]
end
return pv
end
# An abstract class for enumerating pseudo-prime numbers.
#
# Concrete subclasses should override succ, next, rewind.
class PseudoPrimeGenerator
include Enumerable
def initialize(ubound = nil)
@ubound = ubound
end
def upper_bound=(ubound)
@ubound = ubound
end
def upper_bound
@ubound
end
# returns the next pseudo-prime number, and move the internal
# position forward.
#
# +PseudoPrimeGenerator+#succ raises +NotImplementedError+.
def succ
raise NotImplementedError, "need to define `succ'"
end
# alias of +succ+.
def next
raise NotImplementedError, "need to define `next'"
end
# Rewinds the internal position for enumeration.
#
# See +Enumerator+#rewind.
def rewind
raise NotImplementedError, "need to define `rewind'"
end
# Iterates the given block for each prime numbers.
def each()
return self.dup unless block_given?
if @ubound
last_value = nil
loop do
prime = succ
break last_value if prime > @ubound
last_value = yield(prime)
end
else
loop do
yield(succ)
end
end
end
# see +Enumerator+#with_index.
alias with_index each_with_index
# see +Enumerator+#with_object.
def with_object(obj)
return enum_for(:with_object) unless block_given?
each do |prime|
yield prime, obj
end
end
end
# An implementation of +PseudoPrimeGenerator+.
#
# Uses +EratosthenesSieve+.
class EratosthenesGenerator < PseudoPrimeGenerator
def initialize
@last_prime = nil
end
def succ
@last_prime = @last_prime ? EratosthenesSieve.instance.next_to(@last_prime) : 2
end
def rewind
initialize
end
alias next succ
end
# An implementation of +PseudoPrimeGenerator+ which uses
# a prime table generated by trial division.
class TrialDivisionGenerator<PseudoPrimeGenerator
def initialize
@index = -1
end
def succ
TrialDivision.instance[@index += 1]
end
def rewind
initialize
end
alias next succ
end
# Generates all integer which are greater than 2 and
# are not divided by 2 nor 3.
#
# This is a pseudo-prime generator, suitable on
# checking primality of a integer by brute force
# method.
class Generator23<PseudoPrimeGenerator
def initialize
@prime = 1
@step = nil
end
def succ
loop do
if (@step)
@prime += @step
@step = 6 - @step
else
case @prime
when 1; @prime = 2
when 2; @prime = 3
when 3; @prime = 5; @step = 2
end
end
break @prime
end
end
alias next succ
def rewind
initialize
end
end
# Internal use. An implementation of prime table by trial division method.
class TrialDivision
include Singleton
def initialize # :nodoc:
# These are included as class variables to cache them for later uses. If memory
# usage is a problem, they can be put in Prime#initialize as instance variables.
# There must be no primes between @primes[-1] and @next_to_check.
@primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101]
# @next_to_check % 6 must be 1.
@next_to_check = 103 # @primes[-1] - @primes[-1] % 6 + 7
@ulticheck_index = 3 # @primes.index(@primes.reverse.find {|n|
# n < Math.sqrt(@@next_to_check) })
@ulticheck_next_squared = 121 # @primes[@ulticheck_index + 1] ** 2
end
# Returns the cached prime numbers.
def cache
return @primes
end
alias primes cache
alias primes_so_far cache
# Returns the +index+th prime number.
#
# +index+ is a 0-based index.
def [](index)
while index >= @primes.length
# Only check for prime factors up to the square root of the potential primes,
# but without the performance hit of an actual square root calculation.
if @next_to_check + 4 > @ulticheck_next_squared
@ulticheck_index += 1
@ulticheck_next_squared = @primes.at(@ulticheck_index + 1) ** 2
end
# Only check numbers congruent to one and five, modulo six. All others
# are divisible by two or three. This also allows us to skip checking against
# two and three.
@primes.push @next_to_check if @primes[2..@ulticheck_index].find {|prime| @next_to_check % prime == 0 }.nil?
@next_to_check += 4
@primes.push @next_to_check if @primes[2..@ulticheck_index].find {|prime| @next_to_check % prime == 0 }.nil?
@next_to_check += 2
end
return @primes[index]
end
end
# Internal use. An implementation of eratosthenes's sieve
class EratosthenesSieve
include Singleton
def initialize # :nodoc:
# bitmap for odd prime numbers less than 256.
# For an arbitrary odd number n, @table[i][j] is 1 when n is prime where i,j = n.divmod(32) .
@table = [0xcb6e, 0x64b4, 0x129a, 0x816d, 0x4c32, 0x864a, 0x820d, 0x2196]
end
# returns the least odd prime number which is greater than +n+.
def next_to(n)
n = (n-1).div(2)*2+3 # the next odd number of given n
i,j = n.divmod(32)
loop do
extend_table until @table.length > i
if !@table[i].zero?
(j...32).step(2) do |k|
return 32*i+k if !@table[i][k.div(2)].zero?
end
end
i += 1; j = 1
end
end
private
def extend_table
orig_len = @table.length
new_len = [orig_len**2, orig_len+256].min
lbound = orig_len*32
ubound = new_len*32
@table.fill(0xFFFF, orig_len...new_len)
(3..Integer(Math.sqrt(ubound))).step(2) do |p|
i, j = p.divmod(32)
next if @table[i][j.div(2)].zero?
start = (lbound.div(2*p)*2+1)*p # odd multiple of p which is greater than or equal to lbound
(start...ubound).step(2*p) do |n|
i, j = n.divmod(32)
@table[i] &= 0xFFFF ^ (1<<(j.div(2)))
end
end
end
end
# Provides a +Prime+ object with compatibility to Ruby 1.8 when instanciated via +Prime+.+new+.
module OldCompatibility
# Returns the next prime number and forwards internal pointer.
def succ
@generator.succ
end
alias next succ
# Overwrites Prime#each.
#
# Iterates the given block over all prime numbers. Note that enumeration starts from
# the current position of internal pointer, not rewound.
def each
return @generator.dup unless block_given?
loop do
yield succ
end
end
end
end
Jump to Line
Something went wrong with that request. Please try again.