Permalink
Switch branches/tags
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
1570 lines (1444 sloc) 48.8 KB
-- -*- coding: utf-8 -*-
newPackage(
"Points",
Version => "3.0",
Date => "29 June 2008, revised by DE June 2016, revised by FG and JWS June 2018",
Authors => {
{Name => "Mike Stillman", Email => "mike@math.cornell.edu", HomePage => "http://www.math.uiuc.edu/Macaulay2/"},
{Name => "Gregory G. Smith", Email => "ggsmith@mast.queensu.ca"},
{Name => "Stein A. Strømme", Email => "stromme@math.uib.no"},
{Name => "David Eisenbud", Email => "de@msri.org"},
{Name => "Federico Galetto", Email => "galetto.federico@gmail.com", HomePage => "http://math.galetto.org"},
{Name => "Joseph W. Skelton", Email => "jskelton@tulane.edu"}
},
Headline => "computing with sets of points",
PackageExports => {"LexIdeals"},
DebuggingMode => false
)
export {
-- Points in affine space
"affinePointsMat",
"affinePoints",
"affinePointsByIntersection",
"affineMakeRingMaps",
---------
-- points in projective space
"randomPointsMat",
"AllRandom",
"points",
"randomPoints",
"omegaPoints",
"expectedBetti",
"minMaxResolution",
---------------------------------------------------------------------
-- FG: fat points, and new projective points (v3)
---------------------------------------------------------------------
"affineFatPoints",
"affineFatPointsByIntersection",
"projectivePoints",
"VerifyPoints",
"projectivePointsByIntersection",
"projectiveFatPointsByIntersection",
"projectiveFatPoints"
}
///
restart
loadPackage("Points", Reload=>true)
randomPointsMat
omegaPoints
///
affineMakeRingMaps = method (TypicalValue => List)
affineMakeRingMaps (Matrix, Ring) := List => (M,R) -> (
K := coefficientRing R;
pts := entries transpose M;
apply(pts, p -> map(K, R, p))
)
addNewMonomial = (M,col,monom,maps) -> (
-- M is an s by s+1 matrix, s=#points
-- monom is a monomial
-- maps is a list of s ring maps, which will give the values
-- of the monom at the points
-- replaces the 'col' column of M with the values of monom
-- at the s points.
scan(#maps, i -> M_(i,col) = maps#i monom)
)
affinePointsByIntersection = method(TypicalValue => List)
affinePointsByIntersection (Matrix,Ring) := (M,R) -> (
flatten entries gens gb intersect apply (
entries transpose M, p -> ideal apply(#p, i -> R_i - p#i)))
reduceColumn = (M,Mchange,H,c) -> (
-- M is a mutable matrix
-- Mchange is either null, or a matrix with same number of columns as M
-- H is a hash table: H#r == c if column c has pivot for row r
-- returns true if the element reduces to 0
r := numRows M - 1;
while r >= 0 do (
a := M_(r,c);
if a != 0 then (
-- is there a pivot?
if not H#?r then (
b := 1/a; -- was 1//a
columnMult(M, c, b);
if Mchange =!= null then columnMult(Mchange, c, b);
H#r = c;
return false;
)
else (
pivotc := H#r;
columnAdd(M, c, -a, pivotc);
if Mchange =!= null then columnAdd(Mchange, c, -a, pivotc);
));
r = r-1;
);
true
)
affinePointsMat = method()
affinePointsMat(Matrix,Ring) := (M,R) -> (
-- The columns of M form the points. M should be a matrix of size
-- n by s, where n is the number of variables of R
--
K := coefficientRing R;
s := numgens source M;
-- The local data structures:
-- (P,PC) is the matrix which contains the elements to be reduced
-- Fs is used to evaluate monomials at the points
-- H is a hash table used in Gaussian elimination: it contains the
-- pivot columns for each row
-- L is the sum of monomials which is still to be done
-- Lhash is a hashtable: Lhash#monom = i means that only
-- R_i*monom, ..., R_n*monom should be considered
-- G is a list of GB elements
-- inG is the ideal of initial monomials for the GB
Fs := affineMakeRingMaps(M,R);
P := mutableMatrix map(K^s, K^(s+1), 0);
H := new MutableHashTable; -- used in the column reduction step
Lhash := new MutableHashTable; -- used to determine which monomials come next
L := 1_R;
Lhash#L = 0; -- start with multiplication by R_0
thiscol := 0;
inG := trim ideal(0_R);
inGB := forceGB gens inG;
Q := {}; -- the list of standard monomials
--ntimes := 0;
while (L = L % inGB) != 0 do (
--ntimes = ntimes + 1;
--if #Q === s then print "got a basis";
--print("size of L = "| size(L));
-- First step: get the monomial to consider
monom := someTerms(L,-1,1);
L = L - monom;
-- Now fix up the matrix P
addNewMonomial(P,thiscol,monom,Fs);
isLT := reduceColumn(P,null,H,thiscol);
if isLT then (
-- we add to G, inG
inG = inG + ideal(monom);
inGB = forceGB gens inG;
)
else (
-- we modify L, Lhash, thiscol, and also PC
Q = append(Q, monom);
L = L + sum apply(toList(Lhash#monom .. numgens R - 1), i -> (
newmon := monom * R_i;
Lhash#newmon = i;
newmon));
thiscol = thiscol + 1;
)
);
--print("ntimes "|ntimes|" std+inG "|#Q + numgens inG);
stds := transpose matrix{Q};
A := transpose matrix{apply(Fs, f -> f stds)};
(A, stds)
)
affinePoints = method()
affinePoints (Matrix,Ring) := (M,R) -> (
-- The columns of M form the points. M should be a matrix of size
-- n by s, where n is the number of variables of R
K := coefficientRing R;
s := numgens source M;
-- The local data structures:
-- (P,PC) is the matrix which contains the elements to be reduced
-- Fs is used to evaluate monomials at the points
-- H is a hash table used in Gaussian elimination: it contains the
-- pivot columns for each row
-- L is the sum of monomials which is still to be done
-- Lhash is a hashtable: Lhash#monom = i means that only
-- R_i*monom, ..., R_n*monom should be considered
-- G is a list of GB elements
-- inG is the ideal of initial monomials for the GB
Fs := affineMakeRingMaps(M,R);
P := mutableMatrix map(K^s, K^(s+1), 0);
PC := mutableMatrix map(K^(s+1), K^(s+1), 0);
for i from 0 to s-1 do PC_(i,i) = 1_K;
H := new MutableHashTable; -- used in the column reduction step
Lhash := new MutableHashTable; -- used to determine which monomials come next
L := 1_R;
Lhash#L = 0; -- start with multiplication by R_0
thiscol := 0;
G := {};
inG := trim ideal(0_R);
inGB := forceGB gens inG;
Q := {}; -- the list of standard monomials
nL := 1;
while L != 0 do (
-- First step: get the monomial to consider
L = L % inGB;
monom := someTerms(L,-1,1);
L = L - monom;
-- Now fix up the matrices P, PC
addNewMonomial(P,thiscol,monom,Fs);
columnMult(PC, thiscol, 0_K);
PC_(thiscol,thiscol) = 1_K;
isLT := reduceColumn(P,PC,H,thiscol);
if isLT then (
-- we add to G, inG
inG = inG + ideal(monom);
inGB = forceGB gens inG;
g := sum apply(toList(0..thiscol-1), i -> PC_(i,thiscol) * Q_i);
G = append(G, PC_(thiscol,thiscol) * monom + g);
)
else (
-- we modify L, Lhash, thiscol, and also PC
Q = append(Q, monom);
f := sum apply(toList(Lhash#monom .. numgens R - 1), i -> (
newmon := monom * R_i;
Lhash#newmon = i;
newmon));
nL = nL + size(f);
L = L + f;
thiscol = thiscol + 1;
)
);
-- print("number of monomials considered = "|nL);
(Q,inG,G)
)
---------------------------------------------------------------------
-- FG: fat points, and new projective points (v3)
---------------------------------------------------------------------
-- FG: fat points by intersection
-- INPUT: a matrix M whose columns are coordinates of points,
-- a list mults of multiplicities, and a polynomial ring R
-- OUTPUT: gb of the ideal of the fat point scheme
affineFatPointsByIntersection = method(TypicalValue => List)
affineFatPointsByIntersection (Matrix,List,Ring) := (M,mults,R) -> (
flatten entries gens gb intersect apply (
entries transpose M, mults,
(p,m) -> (ideal apply(#p, i -> R_i - p#i))^m))
-- FG: affine Buchberger-Möller algorithm for fat points
-- INPUT: a matrix M whose columns are coordinates of points,
-- a list mults of multiplicities, and a polynomial ring R
-- OUTPUT: a list containing 1) a list of standard monomials (i.e.,
-- monomials forming a basis of the quotient ring), 2) the initial
-- ideal, and 3) the gb of the ideal of the fat point scheme
-- NOTE: the idea is to reuse the Buchberger-Möller algorithm for
-- reduced points, but instead of simply evaluating polynomials at
-- points, their partial derivatives are also evaluated to ensure
-- vanishing. By Zariski-Nagata, this is the desired ideal.
-- This may not be the most efficient strategy. For further ideas,
-- see Abbott, Kreuzer, Robbiano, Computing zero-dimensional schemes,
-- J. Symbolic Comput., doi:10.1016/j.jsc.2004.09.001
-- WARNING: for reduced points (i.e., when mults is a list of 1s)
-- this performs slightly worse than the original function
affineFatPoints = method()
affineFatPoints (Matrix,List,Ring) := (M,mults,R) -> (
-- obtain all monomials later used for differentiation
-- sort in increasing order by degree (then monomial order)
diffops := flatten entries sort basis(0,max mults - 1,R);
-- this says how many derivatives to use for each point
cutoffs := apply(mults,m -> sum(m, i -> binomial((dim R)-1+i,i)));
s := sum cutoffs;
-- FG: most of the code below is from the affinePoints method
-- The local data structures:
-- (P,PC) is the matrix which contains the elements to be reduced
-- Fs is used to evaluate monomials at the points
-- H is a hash table used in Gaussian elimination: it contains the
-- pivot columns for each row
-- L is the sum of monomials which is still to be done
-- Lhash is a hashtable: Lhash#monom = i means that only
-- R_i*monom, ..., R_n*monom should be considered
-- G is a list of GB elements
-- inG is the ideal of initial monomials for the GB
K := coefficientRing R;
Fs := affineMakeRingMaps(M,R);
P := mutableMatrix map(K^s, K^(s+1), 0);
PC := mutableMatrix map(K^(s+1), K^(s+1), 0);
for i from 0 to s-1 do PC_(i,i) = 1_K;
H := new MutableHashTable; -- used in the column reduction step
Lhash := new MutableHashTable; -- used to determine which monomials come next
L := 1_R;
Lhash#L = 0; -- start with multiplication by R_0
thiscol := 0;
G := {};
inG := trim ideal(0_R);
inGB := forceGB gens inG;
Q := {}; -- the list of standard monomials
nL := 1;
while L != 0 do (
-- First step: get the monomial to consider
L = L % inGB;
monom := someTerms(L,-1,1);
L = L - monom;
-- Now fix up the matrices P, PC
-- FG: old code called another function addNewMonomial
-- FG: I include code here to better evaluate derivatives
partials := apply(diffops, del -> diff(del,monom));
-- FG: evaluate partials at point up to cutoff
c := 0;
for i to #Fs-1 do (
for j to cutoffs_i-1 do (
P_(c+j,thiscol) = Fs#i (partials_j);
);
c = c + cutoffs_i;
);
-- FG: remaining code is the same as for reduced points
columnMult(PC, thiscol, 0_K);
PC_(thiscol,thiscol) = 1_K;
isLT := reduceColumn(P,PC,H,thiscol);
if isLT then (
-- we add to G, inG
inG = inG + ideal(monom);
inGB = forceGB gens inG;
g := sum apply(toList(0..thiscol-1), i -> PC_(i,thiscol) * Q_i);
G = append(G, PC_(thiscol,thiscol) * monom + g);
)
else (
-- we modify L, Lhash, thiscol, and also PC
Q = append(Q, monom);
f := sum apply(toList(Lhash#monom .. numgens R - 1), i -> (
newmon := monom * R_i;
Lhash#newmon = i;
newmon));
nL = nL + size(f);
L = L + f;
thiscol = thiscol + 1;
)
);
-- print("number of monomials considered = "|nL);
(Q,inG,G)
)
-- FG: Buchberger-Möller for projective points
-- INPUT: a matrix M whose columns are projective coordinates of
-- points, and a polynomial ring R
-- OUTPUT: a list containing 1) the initial ideal,
-- and 2) the gb of the ideal of the set of points
projectivePoints = method(Options => {VerifyPoints => true})
projectivePoints (Matrix,Ring) := opts -> (M,R) -> (
if opts.VerifyPoints then M = removeBadPoints M;
-- FG: the code is mostly like the affine case
-- but now we proceed degree by degree
K := coefficientRing R;
s := numgens source M;
Fs := affineMakeRingMaps(M,R);
G := {};
inG := trim ideal(0_R);
inGB := forceGB gens inG;
deg := 1;
while not stoppingCriterion(deg,inG,s) do (
L := sum flatten entries basis(deg,R);
L = L % inGB;
P := mutableMatrix map(K^s, K^(s+1), 0);
PC := mutableMatrix map(K^(s+1), K^(s+1), 0);
for i from 0 to s-1 do PC_(i,i) = 1_K;
H := new MutableHashTable; -- used in the column reduction step
thiscol := 0;
Q := {}; -- list of standard monomials of current degree
while L != 0 do (
-- First step: get the monomial to consider
monom := someTerms(L,-1,1);
L = L - monom;
-- Now fix up the matrices P, PC
addNewMonomial(P,thiscol,monom,Fs);
columnMult(PC, thiscol, 0_K);
PC_(thiscol,thiscol) = 1_K;
isLT := reduceColumn(P,PC,H,thiscol);
if isLT then (
-- we add to G, inG
inG = inG + ideal(monom);
g := sum apply(toList(0..thiscol-1), i -> PC_(i,thiscol) * Q_i);
G = append(G, PC_(thiscol,thiscol) * monom + g);
)
else (
-- add to standard monomials
Q = append(Q, monom);
thiscol = thiscol + 1;
)
);
inGB = forceGB gens inG;
-- proceed with next degree
deg = deg + 1;
);
(inG,G)
)
-- FG: stopping criterion for projective BM
-- INPUT: an integer deg for the current degree,
-- a monomial ideal inG (initial ideal of the ideal of points as
-- computed so far), and an integer multPts which is the degree of
-- the point scheme, i.e., the sum of the degrees of all the points
-- OUTPUT: true if the Hilbert function of the initial ideal is
-- equal to the expected degree for the given points (this is when
-- the BM algorithm should stop)
-- TO DO: implement better stopping criterion from Abbot, Kreuzer, Robbiano
stoppingCriterion = (deg,inG,multPts) -> (
-- if the initial ideal is zero, then continue
if zero inG then return false else
-- otherwise stop when multiplicity is attained
hilbertFunction(deg,inG) == multPts
)
-- FG: remove zero and duplicate points
-- INPUT: a matrix M whose columns are projective coordinates of
-- points
-- OUTPUT: a matrix obtained from M by removing zero columns and
-- columns that are not scalar multiples of previous columns
-- NOTE: if these points are not removed, the projective BM
-- algorithm above will not terminate!
removeBadPoints = M -> (
-- remove zero columns
N := compress M;
-- remove columns that define same projective points
lastcol := numColumns(N)-1;
thiscol := 0;
while thiscol < lastcol do (
L := toList(thiscol+1..lastcol);
dupcols := select(L,i->rank(N_{thiscol,i})<2);
N = submatrix'(N,dupcols);
lastcol = lastcol - #dupcols;
thiscol = thiscol + 1;
);
return N;
)
-- FG: projective points by intersection
-- INPUT: a matrix M whose columns are coordinates of points,
-- and a polynomial ring R
-- OUTPUT: gb of the ideal of the projective points
projectivePointsByIntersection = method(TypicalValue => List)
projectivePointsByIntersection (Matrix,Ring) := (M,R) -> (
flatten entries gens gb intersect apply (
entries transpose M,
p -> (trim minors(2,matrix{gens R,p}))
)
)
-- FG: projective fat points by intersection
-- INPUT: a matrix M whose columns are coordinates of points,
-- a list mults of multiplicities for each point,
-- and a polynomial ring R
-- OUTPUT: gb of the ideal of the projective fat point scheme
projectiveFatPointsByIntersection = method(TypicalValue => List)
projectiveFatPointsByIntersection (Matrix,List,Ring) := (M,mults,R) -> (
flatten entries gens gb intersect apply (
entries transpose M, mults,
(p,m) -> ((trim minors(2,matrix{gens R,p}))^m)
)
)
-- FG: remove zero and duplicate points
-- INPUT: a matrix M whose columns are projective coordinates of
-- points, and a list mults of multiplicities for those points
-- OUTPUT: a matrix obtained from M by removing zero columns and
-- columns that are not scalar multiples of previous columns,
-- and a list of multiplicities for the points in the new matrix
-- NOTE: if a point appears more than once with different
-- multiplicities, the largest multiplicity is retained
removeBadFatPoints = (M,mults) -> (
-- remove zero columns and their multiplicities
lastcol := numColumns(M)-1;
zeroVec := 0_(target M);
nonzerocols := {};
for i to lastcol do (
if M_i != zeroVec then nonzerocols = append(nonzerocols,i);
);
N := submatrix(M,nonzerocols);
newmults := new MutableList from mults_nonzerocols;
-- remove columns that define same projective points
-- and their multiplicities
lastcol = numColumns(N)-1;
thiscol := 0;
while thiscol < lastcol do (
L := toList(thiscol+1..lastcol);
dupcols := select(L,i->rank(N_{thiscol,i})<2);
N = submatrix'(N,dupcols);
newmults#thiscol = max apply({thiscol}|dupcols,i->newmults#i);
for i in reverse dupcols do (
newmults = drop(newmults,{i,i})
);
lastcol = lastcol - #dupcols;
thiscol = thiscol + 1;
);
return (N,new List from newmults);
)
-- FG: Buchberger-Möller for projective fat points
-- INPUT: a matrix M whose columns are projective coordinates of
-- points, a list mults of multiplicities for those points,
-- and a polynomial ring R
-- OUTPUT: a list containing 1) the initial ideal,
-- and 2) the gb of the ideal of the set of fat points
-- NOTE: for small sets of points this can perform much worse than
-- simply intersecting. The first example where I saw an advantage
-- (of 1 sec) was for 30 points in P^5 with multiplicities 1,2,3
projectiveFatPoints = method(Options => {VerifyPoints => true})
projectiveFatPoints (Matrix,List,Ring) := opts -> (M,mults,R) -> (
if opts.VerifyPoints then (M,mults) = removeBadFatPoints (M,mults);
K := coefficientRing R;
diffops := flatten entries sort basis(0,max mults - 1,R);
-- this says how many derivatives to use for each point
cutoffs := apply(mults,m -> sum(m, i -> binomial((dim R)-1+i,i)));
s := sum cutoffs;
Fs := affineMakeRingMaps(M,R);
G := {};
inG := trim ideal(0_R);
inGB := forceGB gens inG;
deg := 1;
schemedegree := sum(mults,m -> binomial((dim R)-2+m,m-1));
while not stoppingCriterion(deg,inG,schemedegree) do (
L := sum flatten entries basis(deg,R);
L = L % inGB;
P := mutableMatrix map(K^s, K^(s+1), 0);
PC := mutableMatrix map(K^(s+1), K^(s+1), 0);
for i from 0 to s-1 do PC_(i,i) = 1_K;
H := new MutableHashTable; -- used in the column reduction step
thiscol := 0;
Q := {}; -- list of standard monomials of current degree
while L != 0 do (
-- First step: get the monomial to consider
monom := someTerms(L,-1,1);
L = L - monom;
partials := apply(diffops, del -> diff(del,monom));
-- FG: evaluate partials at point up to cutoff
c := 0;
for i to #Fs-1 do (
for j to cutoffs_i-1 do (
P_(c+j,thiscol) = Fs#i (partials_j);
);
c = c + cutoffs_i;
);
columnMult(PC, thiscol, 0_K);
PC_(thiscol,thiscol) = 1_K;
isLT := reduceColumn(P,PC,H,thiscol);
if isLT then (
-- we add to G, inG
inG = inG + ideal(monom);
g := sum apply(toList(0..thiscol-1), i -> PC_(i,thiscol) * Q_i);
G = append(G, PC_(thiscol,thiscol) * monom + g);
)
else (
-- add to standard monomials
Q = append(Q, monom);
thiscol = thiscol + 1;
)
);
inGB = forceGB gens inG;
-- proceed with next degree
deg = deg + 1;
);
(inG,G)
)
---------------------------------------------------------------------
-- FG: end of v3 code
---------------------------------------------------------------------
-----------------Homogeneous codes
randomPointsMat = method(Options =>{AllRandom =>false})
randomPointsMat(Ring, ZZ) := opts -> (R,n) -> (
d := numgens R;
if opts.AllRandom == true then return random(R^d, R^n);
m1 := id_(R^d)|transpose matrix(R,{toList(d:1)});
if n<=d+1 then return m1_(toList(0..n-1));
m3 := random(R^d,R^(n-d-1));
m1 | m3
)
points = (pointsmat) -> (
mm := vars ring pointsmat;
if rank source mm =!= rank target pointsmat then
error "wrong size matrix";
ids := toSequence apply(rank source pointsmat,
i -> image(mm * (syz transpose pointsmat_{i})));
ideal intersect ids
)
randomPoints = (r,n) -> (
x := symbol x;
R := ZZ/101[x_0 .. x_r];
pmat := randomPointsMat(R,n);
points pmat
)
testPoints = ()->(
a := symbol a;
b := symbol b;
c := symbol c;
R := ZZ/101[a,b,c];
pmat := matrix(R,{{1,0,0},{0,1,0},{0,0,1}});
assert(points pmat == image matrix(R, {{a*b, a*c, b*c}}))
)
omegaPoints = (pointsmat) -> (
dualmat := syz pointsmat;
s := (rank source dualmat)-1;
n := rank source pointsmat;
r := (rank target pointsmat)-1;
mm := vars ring pointsmat;
if rank source mm =!= r+1 then
error "wrong size matrix";
R := ring pointsmat;
mult := matrix(R, table(n, n^2,(i,j) -> (
if j//n==j%n and j%n==i then 1 else 0)));
prod := mult*((transpose pointsmat)**dualmat);
mm = (identity (R^{1}))**mm;
(mm**(identity (R^(s+1))))*(generators kernel prod)
)
testOmegaPoints = () -> (
R := ZZ/101[vars(0..6)];
testmat := random(R^7,R^11);
-- testmat = matrix(R, {{1,0,1,5},{0,1,1,11}});
w := omegaPoints(testmat);
assert(rank source w == 18 and rank target w == 4)
)
expectedBetti = (r,n) -> (
e := 1;
while binomial(r+e,e)<= n do e=e+1;
d := e-1;
a:=n-binomial(r+d,d);
toprow := apply(toList(1..r),i->
max((binomial(d+i-1,i-1))*(binomial(r+d,d+i))-a*(binomial(r,i-1)),
0));
bottomrow := apply(toList(1..r), i->
max(a*(binomial(r,i))-(binomial(d+i,i))*(binomial(r+d,d+i+1)),
0));
top := apply(toList(0..r),i -> (
if i == 0 then (0,{0},0)=>1 else
(i,{},d+i) => toprow#(i-1) ));
bottom := apply(toList(1..r),i -> (
(i,{},d+i+1) => bottomrow#(i-1) ));
new BettiTally from join(top, bottom)
)
///
restart
loadPackage("Points", Reload =>true)
expectedBetti(3,5)
minMaxResolution(3,5)
r=3;n=5
R = ZZ/2[x_(0..n-1)];
expectedBetti(r,n)
lexIdeal(R,{1,3,1})
betti resolution
///
minMaxResolution = (r,n) -> (
e := 1;
while binomial(r+e,e)<= n do e=e+1;
H := apply(e, i -> binomial(r+i-1,i));
H = append(H,n-binomial(r+e-1,e-1));
if last H =!= 0 then H = append(H,0);
x := symbol x;
R := ZZ/2[x_0..x_(r-1)];
<<"min"<<endl<< expectedBetti(r,n)<<endl;
<<"max"<<endl<<betti resolution lexIdeal(R,H)<<endl;
)
-- First examples where expected resolution fails.
-- December 25, 1995:
-- Unfortunately VERY slow in this system (the resolution is fast,
-- but the random number generation and intersections are very slow
-- for example the first uses 65 seconds of cpu time on a sparc 10!!
-- June 2016:
-- now first example takes .07 seconds on a mac air.
eg1 := ()->(
res randomPoints(6,11)
)
eg2 := ()->(
res randomPoints(7,12)
)
eg3 := ()->(
res randomPoints(8,13)
)
eg4 := ()->(
res randomPoints(10,16)
)
-- The following method should be much better:
eg := (r,n) -> (
-- print expectedBetti(r,n);
R := ZZ/31991[vars (0..r)];
w := omegaPoints(randomPointsMat(R,n));
-- betti resolution( w, DegreeLimit => 1)
)
beginDocumentation()
doc ///
Key
Points
Headline
A package for making and studying points in affine and projective spaces
Description
Text
The package has routines for points in affine and projective spaces. The affine
code, some of which uses the Buchberger-Moeller algorithm to more quickly
compute the ideals of points in affine space,
was written by Stillman, Smith and Stromme. The projective code was
written separately by Eisenbud and Popescu.
The purpose of the projective code was to find as many counterexamples
as possible to the minimal resolution conjecture; it was of use in the
research for the paper
"Exterior algebra methods for the minimal resolution conjecture",
by David Eisenbud, Sorin Popescu, Frank-Olaf Schreyer and Charles Walter
(Duke Mathematical Journal. 112 (2002), no.2, 379-395.)
The first few of these counterexamples are:
(6,11),
(7,12),
(8,13),
(10,16),
where the first integer denotes the ambient dimension and the second the
number of points. Examples are known in every projective space of dimension >=6
except for P^9.
In version 3.0, F. Galetto and J.W. Skelton added code to
compute ideals of fat points and projective points using
the Buchberger-Moeller algorithm.
///
--documentation for the code for points in projective space
doc ///
Key
randomPoints
Headline
ideal of a random set of points
Usage
i = randomPoints(r,n)
Inputs
r:ZZ
number of points
n:ZZ
ambient dimension
Outputs
i:Ideal
ideal of the random points
Description
Text
The script defines a ring R with r+1 variables, and calls
points(R,randomPointsMat(r,n))
Example
betti res randomPoints(11,5)
SeeAlso
randomPointsMat
points
///
doc ///
Key
expectedBetti
Headline
The betti table of r points in Pn according to the minimal resolution conjecture
Usage
L = expectedBetti(r,n)
Inputs
r:ZZ
ambient dimension
n:ZZ
number of points
Outputs
L:List
Description
Text
The output is the smallest conceivable betti table for a set of
r points in P^n, which is predicted (incorrectly) by the minimal resolution conjecture.
Example
expectedBetti(11,5)
Caveat
The MRC is false, so these are sometimes not the actual betti numbers.
SeeAlso
expectedBetti
minMaxResolution
///
doc ///
Key
minMaxResolution
Headline
Min and max conceivable Betti tables for generic points
Usage
minMaxResolution(r,n)
Inputs
r:ZZ
ambient dimension
n:ZZ
number of points
Description
Text
prints betti tables corresponding to the minimal resolution conjecture
and to the lex ideal with the same hilbert function
Example
minMaxResolution(3,5)
SeeAlso
expectedBetti
///
doc ///
Key
omegaPoints
Headline
linear part of the presentation of canonical module of points
Usage
m = omegaPoints pointsmat
Inputs
pointsmat:Matrix
matrix of ZZ, representing a set of points
Outputs
m:Matrix
linear part of the presentation matrix of the canonical module
Description
Text
given an r+1 x n matrix
over a ring with r+1 variables, interpreted as a set of
n points in P^r, the script produces the linear part
of the presentation matrix of w_{>=-1}, where w is the
canonical module of the cone over the points. It is
necessary for this to assume that no subset of n+1
of the points is linearly dependent. The presentation
is actually a presentation of w if the points do not
lie on a rational normal curve (so there are no
quadratic relations on w_{>=-1}) and impose independent
conditions on quadrics (so the homogeneous coordinate
ring is 3-regular, and w is generated in degree -1.
Example
R = ZZ/101[vars(0..4)]
p = randomPointsMat(R,11)
w = omegaPoints p
degree (R^1/(points p))
degree coker w
betti res (R^1/(points p))
betti res coker w
SeeAlso
///
doc ///
Key
randomPointsMat
(randomPointsMat, Ring, ZZ)
[randomPointsMat, AllRandom]
Headline
matrix of homogeneous coordinates of random points in projective space
Usage
m=randomPointsMat(R,n)
Inputs
R:Ring
homogeneous coordinate ring of projective space Pm
n:ZZ
number of points
Outputs
m:Matrix
of ZZ
Description
Text
Produces a random m+1 x n matrix of scalars, with columns representing the coordinates
of the point. The first m+1 x m+1 submatrix is the identity.
Example
R = ZZ/31991[vars(0..3)]
randomPointsMat(R,3)
randomPointsMat(R,3, AllRandom=>true)
randomPointsMat(R,7)
///
doc ///
Key
points
Headline
make the ideal of a set of points
Usage
i = points pointsMat
Inputs
pointsMat:Matrix
matrix whose columns are the homogeneous cooredinates of the points
Outputs
i:Ideal
Description
Text
Example
R = ZZ/101[vars(0..4)]
pointsMat = randomPointsMat(R,11)
points pointsMat
SeeAlso
randomPointsMat
///
doc ///
Key
AllRandom
Headline
Option to randomPointsMat.
Description
Text
Default is false, in which case the first (up to) r+1 points
returned are the standard simplex; if true, all the points are random.
SeeAlso
randomPointsMat
///
---documentation for the affine code:
document {
Key => {affineMakeRingMaps, (affineMakeRingMaps,Matrix,Ring)},
Headline => "evaluation on points",
Usage => "affineMakeRingMaps(M,R)",
Inputs => {
"M" => Matrix => "in which each column consists of the coordinates of a point",
"R" => PolynomialRing => "coordinate ring of the affine space containing the points",
},
Outputs => {List => "of ring maps corresponding to evaluations at each point"},
"Giving the coordinates of a point in affine space is equivalent to giving a
ring map from the polynomial ring to the ground field: evaluation at the point. Given a
finite collection of points encoded as the columns of a matrix,
this function returns a corresponding list of ring maps.",
EXAMPLE lines ///
M = random(ZZ^3, ZZ^5)
R = QQ[x,y,z]
phi = affineMakeRingMaps(M,R)
apply (gens(R),r->phi#2 r)
phi#2
///
}
---the affine code documentation
document {
Key => {affinePoints, (affinePoints,Matrix,Ring)},
Headline => "produces the ideal and initial ideal from the coordinates
of a finite set of points",
Usage => "(Q,inG,G) = affinePoints(M,R)",
Inputs => {
"M" => Matrix => "in which each column consists of the coordinates of a point",
"R" => PolynomialRing => "coordinate ring of the affine space containing the points",
},
Outputs => {
"Q" => List => "list of standard monomials",
"inG" => Ideal => "initial ideal of the set of points",
"G" => List => "list of generators for Grobner basis for ideal of points"
},
"This function uses the Buchberger-Moeller algorithm to compute a grobner basis
for the ideal of a finite number of points in affine space. Here is a simple
example.",
EXAMPLE lines ///
M = random(ZZ^3, ZZ^5)
R = QQ[x,y,z]
(Q,inG,G) = affinePoints(M,R)
monomialIdeal G == inG
///,
PARA{},
"Next a larger example that shows that the Buchberger-Moeller algorithm in ",
TT "points", " may be faster than the alternative method using the intersection
of the ideals for each point.",
EXAMPLE lines ///
R = ZZ/32003[vars(0..4), MonomialOrder=>Lex]
M = random(ZZ^5, ZZ^150)
time J = affinePointsByIntersection(M,R);
time C = affinePoints(M,R);
J == C_2
///,
SeeAlso => {affinePointsByIntersection}
}
document {
Key => {affinePointsMat, (affinePointsMat,Matrix,Ring)},
Headline => "produces the matrix of values of the standard monomials
on a set of points",
Usage => "(A,stds) = affinePointsMat(M,R)",
Inputs => {
"M" => Matrix => "in which each column consists of the coordinates of a point",
"R" => PolynomialRing => "coordinate ring of the affine space containing the points",
},
Outputs => {
"A" => Matrix => "standard monomials evaluated on points",
"stds" => Matrix => "whose entries are the standard monomials",
},
"This function uses the Buchberger-Moeller algorithm to compute a the matrix ",
TT "A", " in which the columns are indexed by standard monomials, the rows are
indexed by points, and the entries are given by evaluation. The ordering of
the standard monomials is recorded in the matrix ", TT "stds", " which has a
single column.
Here is a simple
example.",
EXAMPLE lines ///
M = random(ZZ^3, ZZ^5)
R = QQ[x,y,z]
(A,stds) = affinePointsMat(M,R)
///,
Caveat => "Program does not check that the points are distinct.",
SeeAlso => {affinePoints},
}
document {
Key => {affinePointsByIntersection, (affinePointsByIntersection,Matrix,Ring)},
Headline => "computes ideal of point set by intersecting maximal ideals",
Usage => "affinePointsByIntersection(M,R)",
Inputs => {
"M" => Matrix => "in which each column consists of the coordinates of a point",
"R" => PolynomialRing => "coordinate ring of the affine space containing the points",
},
Outputs => {
List => "grobner basis for ideal of a finite set of points",
},
"This function computes the ideal of a finite set of points by intersecting
the ideals for each point. The coordinates of the points are the columns in
the input matrix ", TT "M", ".",
EXAMPLE lines ///
M = random(ZZ^3, ZZ^5)
R = QQ[x,y,z]
affinePointsByIntersection(M,R)
///,
SeeAlso => {affinePoints},
}
---------------------------------------------------------------------
-- FG: documentation for fat points and new projective points
---------------------------------------------------------------------
doc ///
Key
affineFatPoints
(affineFatPoints,Matrix,List,Ring)
Headline
produces the ideal and initial ideal from the coordinates of a finite set of fat points
Usage
(Q,inG,G) = affineFatPoints(M,mults,R)
Inputs
M:Matrix
in which each column consists of the coordinates of a point
mults:List
in which each element determines the multiplicity of the
corresponding point
R:Ring
coordinate ring of the affine space containing the points
Outputs
Q:List
list of standard monomials
inG:Ideal
initial ideal of the set of fat points
G:List
list of generators for Grobner basis for ideal of fat points
Description
Text
This function uses a modified Buchberger-Moeller algorithm to
compute a grobner basis for the ideal of a finite number of
fat points in affine space.
Example
R = QQ[x,y]
M = transpose matrix{{0,0},{1,1}}
mults = {3,2}
(Q,inG,G) = affineFatPoints(M,mults,R)
monomialIdeal G == inG
Text
This algorithm may be faster than
computing the intersection of the ideals of each fat point.
Example
K = ZZ/32003
R = K[z_1..z_5]
M = random(K^5,K^12)
mults = {1,2,3,1,2,3,1,2,3,1,2,3}
elapsedTime (Q,inG,G) = affineFatPoints(M,mults,R);
elapsedTime H = affineFatPointsByIntersection(M,mults,R);
G==H
Caveat
For reduced points, this function may be a bit slower than @TO "affinePoints"@.
SeeAlso
(affineFatPointsByIntersection,Matrix,List,Ring)
///
doc ///
Key
affineFatPointsByIntersection
(affineFatPointsByIntersection,Matrix,List,Ring)
Headline
computes ideal of fat points by intersecting powers of maximal ideals
Usage
affineFatPointsByIntersection(M,mults,R)
Inputs
M:Matrix
in which each column consists of the coordinates of a point
mults:List
in which each element determines the multiplicity of the
corresponding point
R:Ring
coordinate ring of the affine space containing the points
Outputs
:List
grobner basis for ideal of a finite set of fat points
Description
Text
This function computes the ideal of a finite set of fat points
by intersecting powers of the maximal ideals of each point.
Example
R = QQ[x,y]
M = transpose matrix{{0,0},{1,1}}
mults = {3,2}
affineFatPointsByIntersection(M,mults,R)
SeeAlso
(affineFatPoints,Matrix,List,Ring)
///
doc ///
Key
projectivePoints
(projectivePoints,Matrix,Ring)
Headline
produces the ideal and initial ideal from the coordinates of a finite set of projective points
Usage
(inG,G) = projectivePoints(M,R)
Inputs
M:Matrix
in which each column consists of the projective coordinates of a point
R:Ring
homogeneous coordinate ring of the projective space containing the points
Outputs
inG:Ideal
initial ideal of the set of projective points
G:List
list of generators for Grobner basis for ideal of projective points
Description
Text
This function uses a modified Buchberger-Moeller algorithm to
compute a grobner basis for the ideal of a finite number of
points in projective space.
Example
R = QQ[x_0..x_2]
M = random(ZZ^3,ZZ^5)
(inG,G) = projectivePoints(M,R)
monomialIdeal G == inG
Text
This algorithm may be faster than
computing the intersection of the ideals of each projective point.
Example
K = ZZ/32003
R = K[z_0..z_5]
M = random(ZZ^6,ZZ^150)
elapsedTime (inG,G) = projectivePoints(M,R);
elapsedTime H = projectivePointsByIntersection(M,R);
G == H
Caveat
This function removes zero columns of @TT "M"@ and duplicate columns giving rise to the same projective point (which prevent the algorithm from terminating). The user can bypass this step with the option @TT "VerifyPoints"@.
SeeAlso
(projectivePointsByIntersection,Matrix,Ring)
///
doc ///
Key
VerifyPoints
Headline
Option to projectivePoints.
Description
Text
Default is true, in which case the function removes zero columns and duplicate columns giving rise to the same projective point.
SeeAlso
projectivePoints
///
doc ///
Key
[projectivePoints,VerifyPoints]
Headline
Option to projectivePoints.
Description
Text
Default is true, in which case the function removes zero columns and duplicate columns giving rise to the same projective point.
SeeAlso
projectivePoints
///
doc ///
Key
[projectiveFatPoints,VerifyPoints]
Headline
Option to projectiveFatPoints.
Description
Text
Default is true, in which case the function removes zero columns and duplicate columns giving rise to the same projective point.
For duplicate points, a single instance is retained with the largest multiplicity.
SeeAlso
projectiveFatPoints
///
doc ///
Key
projectivePointsByIntersection
(projectivePointsByIntersection,Matrix,Ring)
Headline
computes ideal of projective points by intersecting point ideals
Usage
projectivePointsByIntersection(M,R)
Inputs
M:Matrix
in which each column consists of the projective coordinates of a point
R:Ring
homogeneous coordinate ring of the projective space containing the points
Outputs
:List
grobner basis for ideal of a finite set of projective points
Description
Text
This function computes the ideal of a finite set of projective points
by intersecting the ideals of each point.
Example
R = QQ[x,y,z]
M = transpose matrix{{1,0,0},{0,1,1}}
projectivePointsByIntersection(M,R)
SeeAlso
(projectivePoints,Matrix,Ring)
///
doc ///
Key
projectiveFatPointsByIntersection
(projectiveFatPointsByIntersection,Matrix,List,Ring)
Headline
computes ideal of fat points by intersecting powers of point ideals
Usage
projectiveFatPointsByIntersection(M,mults,R)
Inputs
M:Matrix
in which each column consists of the projective coordinates of a point
mults:List
in which each element determines the multiplicity of the
corresponding point
R:Ring
homogeneous coordinate ring of the projective space containing the points
Outputs
:List
grobner basis for ideal of a finite set of fat points
Description
Text
This function computes the ideal of a finite set of fat points
by intersecting powers of the ideals of each point.
Example
R = QQ[x,y,z]
M = transpose matrix{{1,0,0},{0,1,1}}
mults = {3,2}
projectiveFatPointsByIntersection(M,mults,R)
SeeAlso
(projectiveFatPoints,Matrix,List,Ring)
///
doc ///
Key
projectiveFatPoints
(projectiveFatPoints,Matrix,List,Ring)
Headline
produces the ideal and initial ideal from the coordinates of a finite set of fat points
Usage
(inG,G) = projectiveFatPoints(M,mults,R)
Inputs
M:Matrix
in which each column consists of the projective coordinates of a point
mults:List
in which each element determines the multiplicity of the
corresponding point
R:Ring
homogeneous coordinate ring of the projective space containing the points
Outputs
inG:Ideal
initial ideal of the set of fat points
G:List
list of generators for Grobner basis for ideal of fat points
Description
Text
This function uses a modified Buchberger-Moeller algorithm to
compute a grobner basis for the ideal of a finite number of
fat points in projective space.
Example
R = QQ[x,y,z]
M = transpose matrix{{1,0,0},{0,1,1}}
mults = {3,2}
(inG,G) = projectiveFatPoints(M,mults,R)
monomialIdeal G == inG
Caveat
For small sets of points and/or multiplicities, this method might be slower than @TO "projectiveFatPointsByIntersection"@.
SeeAlso
(projectiveFatPointsByIntersection,Matrix,List,Ring)
///
TEST///
M = random(ZZ^3, ZZ^3)
M = id_(ZZ^3)
R = QQ[x,y,z]
(Q,inG,G) = affinePoints(M,R)
assert( G == {x+y+z-1, z^2-z, y*z, y^2-y})
///
TEST///
setRandomSeed 0
m = randomPoints(3,5)
R = ring m
assert(m == ideal(
R_1*R_3-R_2*R_3,R_0*R_3-R_2*R_3,R_1*R_2-R_2*R_3,R_0*R_2-R_2*R_3,R_0*R_1-R_2*R_3)
)
///
TEST///
setRandomSeed 0
R = ZZ/101[a,b,c]
p = randomPointsMat(R,6)
assert(omegaPoints p == R^{1}**matrix {{-36*a+36*b, 19*a-19*b, -30*a+30*c, 19*a-19*c}, {-49*a+b, 0, -24*a+c, 0}, {0,
32*a+b, 0, 32*a+c}}
)
///
TEST///
assert(
expectedBetti(3,5) == new BettiTally from {(0,{0},0) => 1, (1,{},2) => 5, (1,{},3) => 0, (2,{},3) => 5, (2,{},4)
=> 0, (3,{},4) => 0, (3,{},5) => 1}
)
///
TEST///
R = ZZ/11[vars(0..2)]
setRandomSeed 0
assert(
randomPointsMat(R,5) == R**matrix {{1, 0, 0, 1, -3}, {0, 1, 0, 1, 1}, {0, 0, 1, 1, 3}}
)
assert(randomPointsMat(R,3,AllRandom=>true) == R**matrix {{-4, 3, -3}, {-3, 3, -3}, {-1, -4, 5}})
///
TEST ///
R = ZZ/32003[vars(0..4), MonomialOrder=>Lex]
M = matrix(ZZ/32003, {{0, -9, 4, -2, -4, -9, -10, 6, -8, 0},
{1, 0, -10, 9, 3, -4, 1, 1, -10, -3},
{5, 7, -4, -5, -7, 7, 4, 6, -3, 2},
{2, 8, 6, -6, 4, 3, 8, -10, 7, 8},
{-9, -9, 0, 4, -3, 9, 4, 4, -4, -4}})
phi = affineMakeRingMaps(M,R)
apply (gens(R),r->phi#2 r)
assert ( {4, -10, -4, 6, 0} == apply (gens(R),r->phi#2 r) )
J = affinePointsByIntersection(M,R);
///
TEST ///
R = ZZ/32003[vars(0..4), MonomialOrder=>Lex]
M = matrix(ZZ/32003, {{0, -9, 4, -2, -4, -9, -10, 6, -8, 0},
{1, 0, -10, 9, 3, -4, 1, 1, -10, -3},
{5, 7, -4, -5, -7, 7, 4, 6, -3, 2},
{2, 8, 6, -6, 4, 3, 8, -10, 7, 8},
{-9, -9, 0, 4, -3, 9, 4, 4, -4, -4}})
phi = affineMakeRingMaps(M,R)
apply (gens(R),r->phi#2 r)
assert ( {4, -10, -4, 6, 0} == apply (gens(R),r->phi#2 r) )
J = affinePointsByIntersection(M,R);
C = affinePoints(M,R);
assert ( J == C_2 )
assert ( C_1 == ideal(e^6,d*e^3,d^2*e,d^3,c,b,a) )
assert ( C_0 == sort apply (standardPairs monomialIdeal C_2, p -> p#0) )
assert (
(affinePointsMat(M,R))#0 ==
matrix(ZZ/32003, {{1, -9, 81, -729, 6561, 4957, 2, -18, 162, 4}, {1, -9, 81, -729, 6561,
4957, 8, -72, 648, 64}, {1, 0, 0, 0, 0, 0, 6, 0, 0, 36}, {1, 4, 16, 64, 256, 1024,
-6, -24, -96, 36}, {1, -3, 9, -27, 81, -243, 4, -12, 36, 16}, {1, 9, 81, 729, 6561,
-4957, 3, 27, 243, 9}, {1, 4, 16, 64, 256, 1024, 8, 32, 128, 64}, {1, 4, 16, 64,
256, 1024, -10, -40, -160, 100}, {1, -4, 16, -64, 256, -1024, 7, -28, 112, 49}, {1,
-4, 16, -64, 256, -1024, 8, -32, 128, 64}})
)
assert ( first entries transpose (affinePointsMat(M,R))#1 == C_0 )
///
---------------------------------------------------------------------
-- FG: tests for projective and fat points (v3)
---------------------------------------------------------------------
TEST///
M = id_(ZZ^3)
R = QQ[x,y,z]
mults = {2,2,2}
(Q,inG,G) = affineFatPoints(M,mults,R)
assert( G == {x^2+2*x*y+y^2+2*x*z+2*y*z+z^2-2*x-2*y-2*z+1,
x*z^2+y*z^2+z^3-x*z-y*z-2*z^2+z, y^2*z+y*z^2-y*z, x*y*z,
x*y^2+y^3-y*z^2-x*y-2*y^2+y, z^4-2*z^3+z^2, y*z^3-y*z^2,
y^4-2*y^3+y^2})
assert(G == affineFatPointsByIntersection(M,mults,R))
///
TEST///
M = matrix {{1, 0, 0, 1}, {0, 1, 0, 1}, {0, 0, 1, 1}}
R = QQ[x,y,z]
(inG,G) = projectivePoints(M,R)
assert( G == {x*z-y*z, x*y-y*z, y^2*z-y*z^2})
assert(G == projectivePointsByIntersection(M,R))
///
TEST///
M = matrix {{1, 0, 0, 1}, {0, 1, 0, 1}, {0, 0, 1, 1}}
mults = {1,2,3,4}
R = QQ[x,y,z]
(inG,G) = projectiveFatPoints(M,mults,R)
assert( G == {x^4*z-3*x^3*y*z+3*x^2*y^2*z-x*y^3*z-x^3*z^2+3*x^2*y*z^2-3*x
*y^2*z^2+y^3*z^2, x^4*y-2*x^3*y^2+x^2*y^3-2*x^3*y*z+4*x^2*y^
2*z-2*x*y^3*z+x^2*y*z^2-2*x*y^2*z^2+y^3*z^2,
x^3*y*z^2-3*x^2*y^2*z^2+3*x*y^3*z^2-y^4*z^2-x^3*z^3+3*x^2*y*
z^3-3*x*y^2*z^3+y^3*z^3,
x^3*y^2*z-2*x^2*y^3*z+x*y^4*z-2*x^2*y^2*z^2+4*x*y^3*z^2-2*y^
4*z^2-x^3*z^3+4*x^2*y*z^3-5*x*y^2*z^3+2*y^3*z^3,
x^3*y^3-x^2*y^4-3*x^2*y^3*z+3*x*y^4*z+3*x*y^3*z^2-3*y^4*z^2-
x^3*z^3+4*x^2*y*z^3-6*x*y^2*z^3+3*y^3*z^3,
x^2*y^3*z^2-2*x*y^4*z^2+y^5*z^2-2*x^2*y^2*z^3+4*x*y^3*z^3-2*
y^4*z^3+x^2*y*z^4-2*x*y^2*z^4+y^3*z^4,
x^2*y^4*z-x*y^5*z-3*x*y^4*z^2+3*y^5*z^2-3*x^2*y^2*z^3+9*x*y^
3*z^3-6*y^4*z^3+2*x^2*y*z^4-5*x*y^2*z^4+3*y^3*z^4,
x^2*y^5-4*x*y^5*z+6*y^5*z^2-4*x^2*y^2*z^3+12*x*y^3*z^3-12*y^
4*z^3+3*x^2*y*z^4-8*x*y^2*z^4+6*y^3*z^4,
x*y^5*z^2-y^6*z^2-3*x*y^4*z^3+3*y^5*z^3+3*x*y^3*z^4-3*y^4*z^
4-x*y^2*z^5+y^3*z^5,
x*y^6*z-4*y^6*z^2-6*x*y^4*z^3+12*y^5*z^3+8*x*y^3*z^4-12*y^4*
z^4-3*x*y^2*z^5+4*y^3*z^5,
y^7*z^2-4*y^6*z^3+6*y^5*z^4-4*y^4*z^5+y^3*z^6})
assert(G == projectiveFatPointsByIntersection(M,mults,R))
///
end
-*
--test of affinePoints
TEST///
C = affinePoints(M,R);
assert ( J == C_2 )
assert ( C_1 == ideal(e^6,d*e^3,d^2*e,d^3,c,b,a) )
assert ( C_0 == sort apply (standardPairs monomialIdeal C_2, p -> p#0) )
assert (
(affinePointsMat(M,R))#0 ==
matrix(ZZ/32003, {{1, -9, 81, -729, 6561, 4957, 2, -18, 162, 4}, {1, -9, 81, -729, 6561,
4957, 8, -72, 648, 64}, {1, 0, 0, 0, 0, 0, 6, 0, 0, 36}, {1, 4, 16, 64, 256, 1024,
-6, -24, -96, 36}, {1, -3, 9, -27, 81, -243, 4, -12, 36, 16}, {1, 9, 81, 729, 6561,
-4957, 3, 27, 243, 9}, {1, 4, 16, 64, 256, 1024, 8, 32, 128, 64}, {1, 4, 16, 64,
256, 1024, -10, -40, -160, 100}, {1, -4, 16, -64, 256, -1024, 7, -28, 112, 49}, {1,
-4, 16, -64, 256, -1024, 8, -32, 128, 64}})
)
assert ( first entries transpose (affinePointsMat(M,R))#1 == C_0 )
///
*-
end--
uninstallPackage "Points"
restart
installPackage "Points"
viewHelp Points
check "Points"
----------------
--------------
toString C_1
restart
errorDepth = 0
uninstallPackage "Points"
installPackage "Points"
R = ZZ/32003[vars(0..4), MonomialOrder=>Lex]
M = matrix(ZZ/32003, {{0, -9, 4, -2, -4, -9, -10, 6, -8, 0},
{1, 0, -10, 9, 3, -4, 1, 1, -10, -3},
{5, 7, -4, -5, -7, 7, 4, 6, -3, 2},
{2, 8, 6, -6, 4, 3, 8, -10, 7, 8},
{-9, -9, 0, 4, -3, 9, 4, 4, -4, -4}})
phi = affineMakeRingMaps(M,R)
apply (gens(R),r->phi#2 r)
assert ( {4, -10, -4, 6, 0} == apply (gens(R),r->phi#2 r) )
phi#2
time J = affinePointsByIntersection(M,R)
transpose matrix{oo}
time C = points(M,R)
transpose gens ideal C_2
M = random(ZZ^3, ZZ^5)
R = QQ[x,y,z]
phi = affineMakeRingMaps(M,R)
apply (gens(R),r->phi#2 r)
phi#2
R = ZZ/32003[vars(0..4), MonomialOrder=>Lex]
M = random(ZZ^5, ZZ^150)
time J = affinePointsByIntersection(M,R);
transpose matrix{oo}
time C = points(M,R);
transpose gens ideal C_2
assert(J == C_2)
R = ZZ/32003[vars(0..4)]
K = ZZ/32003
R = K[vars(0..7), MonomialOrder=>Lex]
R = K[vars(0..7)]
M = random(K^8, K^500)
time C = points(M,R);
time J = affinePointsByIntersection(M,R);
assert(C_2 == J)
K = ZZ/32003
R = K[x_0 .. x_39]
M = random(K^40, K^80)
time C = points(M,R);
getColumnChange oo_0
apply(Fs, f -> f(a*b*c*d))
B = sort basis(0,2,R)
B = sum(flatten entries basis(0,2,R))
B = matrix{reverse terms B}
P = transpose matrix {apply(Fs, f -> f (transpose B))}
B * syz
transpose oo
-- column reduction:
P = mutableMatrix P
H = new MutableHashTable
reduceColumn(P,null,H,0)
reduceColumn(P,null,H,1)
P
reduceColumn(P,null,H,2)
reduceColumn(P,null,H,3)
reduceColumn(P,null,H,4)
reduceColumn(P,null,H,5)
reduceColumn(P,null,H,6)
reduceColumn(P,null,H,7)
reduceColumn(P,null,H,8)
reduceColumn(P,null,H,9)
P
reduceColumn(P,null,H,10)
reduceColumn(P,null,H,11)
reduceColumn(P,null,H,12)
P
M = matrix{{1,2,3,4}}
K = ZZ/32003
M ** K