

INSTITUTO SUPERIOR DE TRANSPORTES E COMUNICAÇÃO

Licenciatura em engenharia informatica e telecomunicações

LEIT13

Trabalho laboratorial 2

Tema: Pendulo Simples

-	•				
11	10	ce	nt	ΔC	•

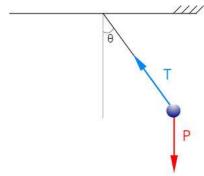
Nilton Boane

Sergio Mendes

Docente:

Belarmino Matsinhe

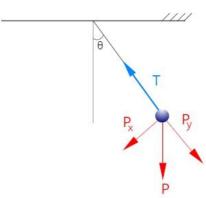
CAPITULO.1	3
Breve introdução teorica	3
Como funciona o pêndulo simples	3
Periodo do pêndulo simples (T)	4
Força restauradora (F)	4
Conservação de energia no pêndulo	4
CAPITULO 3	6
Conclusão	9


CAPITULO.1

Breve introdução teorica

O **pêndulo simples** é um sistema <u>mecânico</u> que consiste em uma massa puntiforme, ou seja, um corpo com dimensões insignificantes, presa a um fio de massa desprezível e inextensível capaz de **oscilar em torno de uma posição fixa**. Graças à sua simplicidade, esse pêndulo é bastante usado durante o estudo do <u>movimento harmônico simples</u>.

Como funciona o pêndulo simples


O pêndulo simples é uma aproximação em que **não existem forças dissipativas**, ou seja, forças de <u>atrito</u> ou de <u>arraste</u>, atuando sobre quaisquer componentes do sistema. Nesses pêndulos, o movimento oscilatório surge em decorrência da **ação das forças peso e tração**, exercida por um fio. Observe:

A força resultante entre a tração (T) e o peso (P) é uma força centrípeta.

Como as forças **peso e tração não se cancelam** nesse contexto, já que isso só acontece na posição de equilíbrio, surge, dessa forma, uma força resultante de natureza <u>centrípeta</u>, fazendo o pêndulo oscilar em torno de um ponto de equilíbrio..

A partir das **equações horárias** do movimento harmônico simples e das **leis de Newton**, é possível determinar um conjunto de equações exclusivas para os **pêndulos simples**, para isso, dizemos que a resultante entre a força peso e a força de tração é uma força centrípeta. Além disso, a força restauradora do movimento pendular é a **componente horizontal** do peso:

 P_x – componente horizontal da força peso (N)

 P_y – componente vertical da força peso (N)

Periodo do pêndulo simples (T)

A fórmula mostrada a seguir é usada para calcular o período no pêndulo simples, ela relaciona o tempo de uma oscilação completa ao tamanho do fio e à aceleração da gravidade local, confira:

$$T=2\pi\sqrt{\frac{L}{g}}$$

T – período (s)

L – comprimento do fio (m)

g – gravidade (m/s²)

A fórmula anterior nos mostra que o tempo da oscilação no pêndulo simples não depende da massa do objeto que se encontra a oscilar. Para deduzirmos essa fórmula, é necessário assumir que a oscilação ocorre apenas em **ângulos pequenos**, de modo que o seno do ângulo θ seja muito próximo ao próprio valor de θ , em graus.

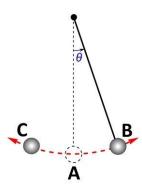
Força restauradora (F)

A força restauradora (F) é responsável por fazer com que o pêndulo retorne para sua posição de equilíbrio, já que a gravidade o direciona para o ponto mais baixo.

Pela posição para qual o corpo é direcionado no pêndulo, entende-se que a força restauradora é a componente horizontal da força peso. Por isso, sua fórmula é:

$$F_{\times} = -K \cdot x$$

Onde,


 F_x é a força restauradora, em newton (N).

x é o deslocamento da posição de equilíbrio, em metros (m).

K é a constante de proporcionalidade.

Conservação de energia no pêndulo

Observe a imagem abaixo. Um pêndulo simples está na sua posição de equilíbrio, representada pela letra A. Ao deslocá-lo para direita, é posicionado em B e ao soltá-lo alcança a posição C.

Na posição B, o corpo na extremidade do fio adquire energia potencial. Ao soltá-lo ocorre o movimento que vai até à posição C, fazendo com que adquira energia cinética, mas perca energia potencial ao diminuir a altura.

Quando o corpo sai da posição B e chega até a posição A, nesse ponto a energia potencial é nula, enquanto a energia cinética é máxima.

Desconsiderando a resistência do ar, pode-se admitir que o corpo nas posições B e C alcançam a mesma altura e, por isso, entende-se que o corpo possui a mesma energia do início.

Observa-se então que se trata de um sistema conservativo e a energia mecânica total do corpo permanece constante.

$$E_{M} = E_{M_{C}} + E_{M_{P}} = cte.$$

Sendo assim, em qualquer ponto da trajetória a energia mecânica será a mesma.

$$E_{M_B} = E_{M_A} = E_{M_C} = cte.$$

1.1 Objetivo

O objetivo desse experimento é avaliar e comparar grandezas provenientes da análise mecânica de um pêndulo simples. Para isso, serão analisados o período, o ângulo de lançamento, o comprimento do fio e a relação com o Movimento Harmônico Simples (MHS).

CAPITULO 2

2.0 Materiais e equipamentos usados

- i. Pêndulo simples.
- ii. Cronómetro.
- iii. Régua graduada
- I. Primeiro passo clica-se no botão pause.
- II. Segundo passo selecciona-se o cronómetro e clica-se play no mesmo.
- III. Terceiro passo calibra-se o pêndulo para um comprimento da corda de L1 = 1,00 m e massa do corpo de 1.5kg.
- IV. Quarto passo ajusta-se o pêndulo para um ângulo de 45.
- V. Quinto passo clica-se o botão Play.
- VI. Sexto passo para reduzir o erro na medição, medi-se o tempo que demora realizar 10 oscilações do pêndulo e regista-se na tabela 1.
- VII. Setimo passo repita o processo 4 vezes e registar os dados na tabela 1.
- VIII. Oitavo passo e o ultimo reinicie e repita o procedimento anterior com a diminuição progressiva do comprimento do pêndulo para valores L2 = 0,80 m; L3 = 0,60 m; L4 = 0,40 m e L5 = 0,20 m em cada experiência. Elaborar uma tabela para cada valor de L. Registar os dados obtidos

2.1. Procedimentos experimentais

Meça o período de oscilação do pêndulo simples para 5 comprimentos diferentes. Deve garantir que:

As oscilações sejam harmónicas simples.

Os comprimentos se diferenciem em 10 ou mais centímetros entre si.

O período medido seja o mais preciso possível (determine-o n vezes).

CAPITULO 3

- 3.Resultados(no anexo) e Equações
- 3.1. Para calcular o *periodo* em cada uma das tabelas fez-se:

$$T = \frac{t}{n}$$

Para obtenção da *media do tempo* fez-se o mesmo processo para os restantes 4 valores e no final somou-se os resultados e dividido por 5.

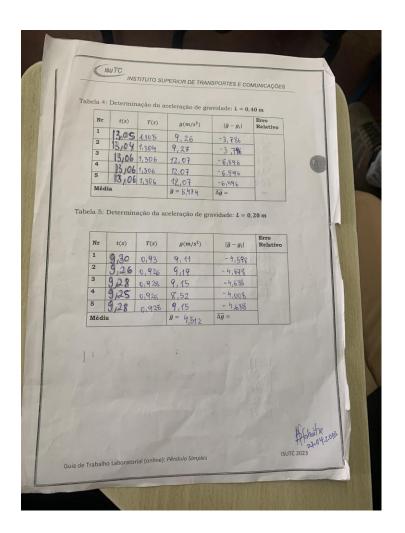
3.2 Para calcular a aceleração da gravidade fez-se:

$$g = 4\mathbf{p^2} L/T^2$$

3.3. Para calculo do *desvio* fez-se:

$$\Delta G = |G - Gi|$$

3.4. Para o calculo do erro percentual fez-se:


$$\mathsf{Erro} = \frac{\Delta g}{g} * 100\%$$

CAPITULO 4

4.0. Anexos

Tabela 1, 2, 3.

Tabel	Nr Nr	etermina	ação da ac	UPERIOR DE TRANS	de: L = 1,00 m		
1	1	t(s)	T(s)	$g(m/s^2)$	$ \bar{g} - g_i $	Erro Relativo	1,50 40
	2	20,70	2,07	9,20	-4,574		
+	3	20,58	5 1028	9,31	- 4,684	20.81	
1	4	20,63	2,063	9,26	-4,634	7 9/8/	A
1	5	20,66	2,066	9,23	-4,604	19,0	W.
1	Média	20,63	2,063	9,26	- 4,634	1919	
L				<u>g</u> = 4,626	$\overline{\Delta g} =$	100	
1	Ir Det	t(s)	r(s)	eleração de gravida $g(m/s^2)$	de: $L = 0,80 n$	Erro Relativo	1,50
1	1	18,45	1,845	9,26	-4,632		
2	1		1,814		-4,642		
3	1		1,845		- 4,632	160	
4	15	Addition to	1,847		- 4,612	7	1
5	1	8,46		9,25	- 4,622	348	1 3
M	édia	0/10		g = 4,628	$\overline{\Delta g} =$	OF THE	1
nbela 3	1	ermina	ção da a	celeração de gra $g(m/s^2)$	avidade: $L = \bar{g} - g_i $	0,60 m Erro Relativo	1,50
1	15	,99	1,599	9,25	-4,626		
2		,00		9,24	- 4,616		
3	15		1,597	9,27	-41646		
4	160		1,602	9,22	- 4,596		
	18,		1,598	9,26	-4,636		
5		10	110.0	g = 4,624	$\overline{\Delta g} =$		

Tabela 4, 5.

Conclusão

Em suma, a experiência com o pêndulo simples revelou-se extremamente esclarecedora e enriquecedora. Durante o desenvolvimento deste relatório, exploramos os fundamentos teóricos e as características intrínsecas desse sistema físico. Por meio da análise das equações do movimento e do estudo das suas propriedades, pudemos compreender a relação entre o comprimento do pêndulo, a amplitude do movimento, o período .

Ao realizar experimentos práticos, observamos que o período de oscilação do pêndulo não depende da massa pendurada, mas apenas do comprimento do fio e da aceleração da gravidade. Essa descoberta corroborou os princípios estabelecidos pela teoria e nos permitiu comprovar sua validade

Por fim, a experiência do pêndulo simples revelou-se valiosa não apenas do ponto de vista acadêmico, mas também pela sua relevância prática. A compreensão das propriedades desse sistema físico encontra aplicação em diversas áreas, como a engenharia, a física, a arquitetura e até mesmo em tecnologias como relógios e instrumentos de medição precisos.

Em resumo, a experiência com o pêndulo simples permitiu-nos aprofundar nossos conhecimentos teóricos e práticos sobre o movimento oscilatório e suas características. Essa compreensão é essencial para o avanço do conhecimento científico e para a aplicação desses princípios em diversos campos.

Referência bibliográfica

 $\underline{https://mundoeducacao.uol.com.br/fisica/pendulo-simples.htm}$

 $\underline{https://www.todamateria.com.br/pendulo-simples/}$

 $\underline{https://www.infoescola.com/fisica/pendulo-simples/}$