
Introduction To virtual-Environment (Python setup in Linux)

Python, Python3….. Pip, Pip3….. It seems like we have faced a great disaster in Linux OS just because of

having pre-installed versions of them. For so, I want to introduce you with a new technique. Using this I

can ensure you there will be no effect on system (pre-installed modules). In this way you will create a

virtual environment (virtualenv) of a version of python and introduce your project that this python is its

default python. For so, project will never interfere with the system. But of course, you have to install the

necessary libraries for projects in another directories, as like the libraries are installed using virtualenv,

can only be accessed by the projects which holds the local position of it (means the virtualenv directory

and the project directory is same). Let’s stop discussion and dig into for practical experience. We are going

to use Python3 as an example.

Steps:-

1. Install desire python version (not necessary if you already have that as pre-installed). For us,

it’s Python3.6.7 (pre-installed). If you want to check about yours then type “python3” in

terminal. It will show your python-version if there is any. If not then install your desire.

2. Install virtualenv using pip (any version of pip) by the command : sudo pip install virtualenv

3. Open a directory where you want to create the virtual environment for local python. Note

that the directory must be in the same directory where Linux is installed and which must be

freed from root monitoring (Doesn’t require root access to enter). I suggest you to create a

folder in Desktop. It’s the best way.

4. Open terminal in the directory as like :

5. Type the command in terminal as like:

 For Python v3: Which python3

 For Python v2: Which python

It will give you a path. Copy that as like:

6. Now type in opened terminal: virtualenv my_py --python= and pest the copied path as like:

Here, my_py is the environment name. You can change the name if you wish. But then the

activation code of it also be different. Here “source my_py/bin/active” my_py will be the name

what you give it.

7. Done. This directory becomes the virtual environment for python3 (for my case). Now copy

any project directory in the location and if you run that project from any ide (like: vs-code)

then this virtual environment will be active by default.

8. If you want to active this from the terminal then type source my_py/bin/active & to disable

type deactivate. Note: when the environment is activate then its name also be shown as:

Here,

1. My project directory (a git repository too)

2. My virtualenv directory (Local Python)

3. When I have activated my local python then its name has been appeared to indicate

that the local is activated. After activate the local the terminal acts like the OS has

only one python at the local directory location. So there is no pip/pip3 or

python/python3. Just use pip & python to control the local.

4. Note that: The local is activated for only those terminals, which have called it. Must

do any command after active it which you want to work on the local. Like if you want

to install libraries which are necessary for our project in the local, then do as:

I. Active the local virtual environment.

II. pip install numpy

III. pip install opencv-python

IV. pip install pandas

V. pip install sklearn

VI. pip install keras

VII. pip install tensorflow

Conclusion:
 Why this?..... Advantage

1. It can secure the system from being interrupted.

2. When a project uses many libraries which are only for the project and there

is no need of them after the project finished then those can be a burden for

OS to carry the unnecessary items. Using it if anything is installed then those

are staying in the local directory (my-py for us). If we want to unload the

packages then just simply can delete the local directory (my-py).

3. While activate it then the OS acts like it has only one python for the activated

terminal. So there is no tangly of using pip, pip3, pip3.8 and so on. Simple like

windows OS.

4. No interrupt with multi-versions of same library used for differ projects.

5. It can make project even more platform free by allowing a project to run in

any OS which even never have the libraries without installing any. (Make

project portable)

Disadvantage:

1. Library packages are need to be installed for every different virtualenv

directory(means every my_py directory of differ locations)

For any problem or confusion you are welcome to ask mz.minhaz5683@gmail.com

mailto:mz.minhaz5683@gmail.com?subject=Python%20Installation%20in%20Linux

