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Modelling Human-like Behavior through
Reward-based Approach in a First-Person

Shooter Game

Abstract. We present two examples of how human-like behavior can
be implemented in a model of computer player to improve its character-
istics and decision-making patterns in video game. At first, we describe
a reinforcement learning model, which helps to choose the best weapon
depending on reward values obtained from shooting combat situations.
Secondly, we consider an obstacle avoiding path planning adapted to the
tactical visibility measure. We describe an implementation of a smooth-
ing path model, which allows the use of penalties (negative rewards)
for walking through “bad” tactical positions. We also study algorithms
of path finding such as improved I-ARA* search algorithm for dynamic
graph by copying human discrete decision-making model of reconsidering
goals similar to Page-Rank algorithm. All the approaches demonstrate
how human behavior can be modeled in applications with significant
perception of intellectual agent actions.

Keywords: Human-like Behavior, Game Artificial Intelligence, Rein-
forcement Learning, Path Planning, Graph-based Search, Video Game

1 Introduction

The development of video games always face the problem of creating believable
non-playable characters (NPC) with game artificial intelligence adapted to hu-
man players. The quality of NPC’s model in terms of game behavior extremely
depends on an interest in the gameplay as in-game interaction of human play-
ers with game environment and NPCs. The main entertainment of many games
consists of challenging enemy NPCs, so called, BOTs. Human players, on one
hand, estimate BOTs to behave like humans, on the other hand, there should be
high probability to mine BOT’s patterns finding its weaknesses. Human players
always estimate the possibility to overcome computer player through intelligence
supremacy. The combination of such beliefs is what makes a gameplay interest-
ing and satisfying humans ambitions, but also providing new cognitive field of
learning through reward based winning policy.

A first-person shooter game is a special genre of video games simulating
combat actions with guns or projectile-based weapons through a first-person
perspective. The human player experiences virtual world and action gameplay
through the eyes of player’s human-like model placed in virtual 3D scene, which
is shown at the Figure 1. The problem aroused from the player’s expectations
of computer players to obtain information from virtual world in a similar way.
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Fig. 1. First-Person Shooter Game

From the human point of view it is unfair to have an access to special features
and information about game environment, which could not be available and
processed by human players during a game. In [1] authors stated the principle
that it is better to play against BOTs ”on equal terms”, rather than against
“God-mode” undefeatable opponents. Thus, we aim to make behavior of BOTs
similar to human players’ behavior in first-person shooter (FPS).

The main criterion of evaluating the quality of a game artificial intelligence is
the level of compliance for NPC actions with respect to ability of human experts
to distinguish computer-controlled and human players in common and specific
in-game situations. One of approaches consists of interpretation of such quality
based level of BOT humanness through Alan Turing test for computer game
BOTs [2]. In the competition, computer-controlled BOTs and human players
that are also judges take part in combat actions during several rounds, whereby
the judges try to guess which opponents are human. In a breakthrough result,
after five years1 of attempting from 14 international research collectives, two
teams have succeeded in breaking through 25% human-like player behavior bar-
rier. Researchers believed that methods developed for a game A. Turing test
should eventually be useful not just in developing intelligent games but also in
creating virtual training environments. Both teams separately cracked test with
two prototypes of human-like BOTs that try to mimic human actions with some
delays and use neuro-evolution model under human gameplay constraints [3].
The disadvantage of such an approach consists of the fact that such models only
imitate human intellect but do not give BOT its own cognitive model. In such a
case we still do not know what are the reasons for human actions and how BOT
could retrieve new information from human gameplay.

However, the most common ways to implement game AI are still finite-state
machines and rule-based systems applied to BOTs behavior [4,5]. The cheapest

1 http://botprize.org/publications.html

http://botprize.org/publications.html
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way for game developing company is to script behavior of NPCs with respect
to restricted game situations fully describing most common NPC actions but
not giving it a freedom of choice or enough quantity of randomness in decision
making. However, this approach has several serious disadvantages: developers
can not script or predict all the possible game situations which may arise during
the game, so it is impossible to write all patterns of the rules or the states for
NPC behavior. As a result, in a certain game situations BOTs do not act opti-
mal and become recognizable for the wrong decision templates from its scripted
model, which significantly reduces the quality of gameplay. This could also lead
to BUGs’ appearance (semantical and technical errors in BOT’s actions).

The idea of selecting script parameters via machine learning are now interest-
ing for the researchers, which could study evolved systems based on rule-based
systems [6]. Still, even the BOT model tweaked behavior can not be modified
during online game testing without decreasing its quality and stability. The prob-
lem also appears when such programmed behavior seems to be static and is not
sensitive to changes in the environment and game strategies of other players and
their skills’ levels.

The authors of [7] present another method for online interactive Reinforced
Tactic Learning in Agent-Team Environments called RETALIATE. The system
take fixed individual BOT behaviors (but not known in advance) as combat
units and learns team tactics rather coordinating the team goals than control-
ling individual player’s reactive behavior. Another real-time behavioral learning
video game NERO was presented in [8]. The state-of-art researches on evolution
approach can be found in [9,10,11,12].

Following empirical study of machine learning and discrete optimisation al-
gorithms applied to modeling player behavior in a first-person shooter video
game2 we focus on some aspects of human decion-making, such as weapon se-
lection, path planning and incremental path finding. Each section of the paper
contains one example of AI improvement based on human behavior, thus cre-
ating intensified cycle of applying human behavioral patterns to model them in
game.

2 Weapon Selection

Considering the methods of machine learning, such as supervised, unsupervised
and reinforcement learning, the latter one gives us the most suitable way to
implement BOT’s behavior in FPS game. During the process of reinforcement
learning BOT receives an award for each committed action, which allows him to
accumulate an experience of various game situations and to act in accordance
with the collected knowledge, constantly modifying its tactical and strategical
decisions [1].

A weapon selection tactics for the BOT should be similar to human player’s.
In real life we often could not predict the result of an action that we are going to

2 http://ftp.cs.wisc.edu/machine-learning/shavlik-group/geisler.thesis.
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perform. Humans’ decisions are based on their personal experience. So, the agent
interacts with the environment by performing some actions and then receiving
reward from the environment. The purpose of this method is to train the agent
to select actions in order to maximize reward value dependently on environment
states. In such a model BOTs will choose the most effective weapons with respect
to computed parameters of the game environment.

We apply a weapon selection model that is based on neural network from
[13]. FALCON (Fusion Architecture for Learning, Cognition, and Navigation)
is a self-organizing neural network that performs reinforcement learning. The
structure of neural network that we used comprises cognitive field of neurons
(it can be also named a category field) and input field (sensory field) that is
designed for representing states of environment. It is shown at the Figure 2
Neurons of input fields are connected to neurons of a cognitive field by synapses.

Fig. 2. FALCON Architecture

FALCON enables BOT to remember value of the reward that was received by
the BOT when it used some weapon in a particular environment state and use
this information to select effective weapons in future.

As of today, we use the values of distance between the BOT and the enemy
and percentage of visibility of the enemy as state parameters; the set of weapons
that accessible to BOT includes rifle, shotgun, machinegun and knife. Each of the
weapons has advantages and disadvantages. We use normalized value of damage
that the BOT inflicts to the enemy as reward value.

We modified training algorithm of FALCON in order to make BOT’s behavior
more human-like. Algorithm of teaching each neuron that we developed consists
of two stages. First stage is matching current neuron J from cognitive field and
two vectors: vector of probabilities to use each weapon and vector of expected
rewards, obtained by the use of a weapon. Every time neuron J is chosen during
the process of neuron competition [13], it triggers script of weapon selection
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based on random experiment. After the selected weapon is used and reward
value is received from environment, algorithm recalculates the expected reward
value for this weapon, then recalculates probabilities of the use of weapons and
modifies synaptic weights of neuron J. After neuron J was chosen the exact
number of times (equal to the neurFixLim parameter value), algorithm considers
the neuron qualified enough to be fixed. Next comes the second stage – the period
of neuron exploiting. Starting from this moment, every time neuron J is chosen,
algorithm selects and then uses the weapon that has the highest probability of
use after the first stage. Synaptic weights of the neuron are not modified at this
stage. Thus the modified algorithm enables BOT to explore environment and
exploit accumulated knowledge in parallel.

Let x denote the input vector; w j is a vector of synaptic weights of neuron
j. Initially, the cognitive field is empty. Iteration of training modified FALCON
is described below:

1. For each neuron j of Cognitive field the value of Choice function is computed:

Tj =
| x ∩ wj |
wj

(where the operation ∩ is defined by (π ∩ q i ) = min(π , q i ), the norm
| · | is defined by |p | =

∑
i π for vectors p and q).

2. Neurons of Cognitive field are sorted in decreasing order of the value T j .
3. For each neuron j of Cognitive field condition of vigilance-criterion is checked:

|x ∩ wj |
|x|

≥ p

If the condition is not violated for neuron J, neuron J is selected. If there is
no neuron j with not violated condition in the Cognitive field, a new neuron
is added to Cognitive field and selected.

4. If selected neuron J is not fixed (that means that it is currently at the first
stage of training):
(a) weapon I is selected via random experiment; then it is used and reward

value ”r” is received from environment
(b) weight coefficients of neuron J are modified:

wjk :=
n− 1

n
· wjk +

1

n
· xk

(c) Expected reward value of using weapon I for neuron J is modified:

expectedRewardI =
expectedRewardI + r

2

Probabilities of using weapons for neuron J are modified:

pji =
expectedRewardI∑
k expectedRewardk

Else (if neuron J has been already fixed), a weapon I that matches neuron
J is selected and used.



6

It can be concluded that complexity of each training iteration is O(n ·
log(n)), in comparison to FALCON’s complexity is O(n 2 ), whereas n is the
size of cognitive field.

The results of experiments for one hundred of weapon usages are shown in
the Table 1.

Table 1. Original/Modified FALCON

Weapon Successes, % Average Reward

Knife 52/73 0.52/0.73

Shotgun 63/79 0.13/0.16

Machinegun 56/68 0.09/0.11

Rifle 54/71 0.08/0.11

The example of a modified FALCON showed us that neural network based
on the FALCON can be applied to human-like selecting effective weapons by
BOTs during the battle in first-person shooter.

3 Path Planning and Path Finding

Path planning and path finding problems are significant in robotics and automa-
tion fields, especially in games. There is a major number of approaches for path
planning, such as [14], [15], [16], [17], [18].

The first strategy of path planning is connected with providing believable tra-
jectory of BOT motion to a fixed goal under some constraints. In game program-
ming, Voronoi diagrams (k -nearest neighbour classification rule with k = 1 ) are
used to make a partition of a navigation mesh to find a collision free path in
game environments [14,17,19]. Smooth paths for improving realism of BOT mo-
tion are made through splines [20,21] or by using Bezier curves [15,17,22,23].
We used combined approach of both smoothing methods following the works of
[15,24,25].

The second strategy of path planning consists of computing tactical proper-
ties of a map as a characteristic of Voronoi regions areas. We compute offline
tactical visibility characteristics of a map for further path finding penalties and
frag map usage to transform paths found by the first strategy to optimise certain
game criteria.

The navigation starts with BOT’s query to navigation system. Navigation
system uses path finding algorithm I–ARA ∗ anytime algorithm from [26] to
obtain a sequence of adjacent polygons on navigation mesh. Then a sequence
of polygons is converted into a sequence of points. Finally, BOT receives a se-
quence of points and build a collision free path to walk. We design the interface
for an interaction between a querier and the navigation system at each itera-
tion of A∗ algorithm. We use region parameters to manage penalties for path’s
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curvature, crouching and jumping at the current Voronoi cell. There is also a
special method for querier to influence the navigation with respect to previous
movement direction, similar to Markov’s chains in path planning published by
authors . We also used general penalties, such as base cost, base enter cost and
no way flag, which can be dynamically modified by any game event.

Now we describe a family of path finding algorithms and how we could use
modelling human behavior to reduce their complexity. In contrast to the Di-
jkstra’s algorithm, A* target search uses information about the location of a
current goal and choose the possible paths to the goal with the smallest cost
(least distance obtained), considering the path leading most quickly to the goal.

Weighted A* as it was presented in [27] was a modified algorithm of A* search
with the use of artificially increased heuristics, which leads to the fact that the
found path was not optimal. The improvement of these algorithms is ARA* [28].
The purpose of this algorithm is to find the minimum suboptimal path between
two points in the graph under time constraints. It is based on iterative running
of weighted A* with decreasing to 1 heuristics values. If it decreases exactly to
1, then the found path is optimal.

Algorithm I-ARA* works as well as repeated ARA*, with the only difference
that it uses the information from the previous iteration [29]. The first search
made using I-ARA* is simple ARA* search.

We present a modification of I-ARA* as human discrete optimisation
decision-making: rather than looking at each step for a new path to the tar-
get we simply walk proposed suboptimal path until we passed a certain part
(partial path length) from the previously found path. The larger the distance,
the longer the last iteration I-ARA*, so most of the time-consuming iterations
of this algorithm could be omitted. As a result, we found that the number of
moves in modified and original I-ARA* algorithms differs not greater than 10%
in average but time for computation has been significantly reduced by 5-20 times
when labyrinth has not extremely dense wall structure.

For proper work of I-ARA ∗ algorithm, each penalty is jammed to a limited
range, so the resulting penalty is not less than the Euclidean distance, which
is used as heuristics in our implementation. Once a path is found, it should be
converted into a point sequence.

We generated 2D mazes with sizes of 300 by 300 and 600 to 600 with density
of free cells equaled to 0.1, 0.2, 0.3, 0.4. For every field size 100 trials have been
conducted. During each test, we choose 30 pairs of random free cells and test
the value of the heuristic P as percentage of a path length to go until next
computation will be needed. In the Table 2 we presented the results of searching
path time decreasing (%) and path length increasing (%) for modified I-ARA ∗ .
It is easy to see that for dense mazes our modification significantly wins in time
with path length stabilizing or even shortening. For sparse mazes increasing of
P leads to the error increasing.

When developing a BOT navigation, smoothing is one of the key steps. It is
the first thing for a human to distinguish a BOT from a human player. Several
approaches can be used to smooth movements. Bezier curves seem to be the
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Table 2. Time decreasing/Path Length Increasing Comparison

Sparseness P=0.05 P=0.1 P=0.15 P=0.2 P=0.25 P=0.3 P=0.35

0.1 785/-.06 1194/-.40 1483/0.07 1744/-.64 1965/0.33 2238/0.83 2354/0.87

0.2 293/0.20 410/0.72 526/1.54 578/2.55 666/2.55 725/2.37 785/4.64

0.3 283/2.20 398/2.25 476/2.11 540/4.24 610/6.53 624/7.53 664/10.71

0.4 221/0.06 309/0.39 346/0.62 379/1.75 406/1.52 395/7.72 419/11.94

most suitable because they could be represented as a sequence of force pushes
from obstacles guaranteeing that BOT will not be stuck into an obstacle.

In practice, the contribution of visibility component to remain undetected
during BOT motion is very low if we are not taking into account the enemies’
movements. We consider the relative dependence of the smooth low-visibility
path length with the length of the shortest path obtained by Recast navigation
mesh. The resulting difference between the smooth paths with and without a
visibility component does not exceed 10–12% , that was shown by authors in the
other research article, so taking into account tactical information seems to be a
useful decision. The difference in 15–25% between smooth path length from our
algorithm and the results from [24,25] is not too significant because we mainly
focus on constructing realistic randomized paths for BOTs. We also create OWL
reasoner to choose whether we have to use smoothing or piece-wise linear path
to answer query for current combat situation like it is shown at the Figure 3.
When implementing such an algorithm in 3D first-person shooter, we obtained

Fig. 3. Path finding

more realistic motion behaviours than the minimized CBR-based path, while
saving the property of the path to be suboptimal.
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4 Conclusion

We started our research with stating the thesis that modeling human behavior
in video games could be presented as game artificial intelligence problem that
should be implemented by algorithms with human patterns of discrete optimisa-
tion. We used obvious assumptions on neuron to be useful in terms of short mem-
ory usage to balance neural network. Smoothing path trajectory was obtained
through a native obstacle avoidance model supporting enough degree of ran-
domness. Path finding algorithm with reduced time computations was obtained
from discrete choice model used by human players (firstly implemented as the
first and the simplest game AI for ghost-BOT in computer game PACKMAN).
We hope that idea to use the simplest optimisation criteria from the Occam’s
razor to model human behavior in video games is a key to understanding correct
reasoning of models containing information about evolution of decision-making
models while increasing its game experience.
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