
GEMINI. User Guide
─

Alvina Awan

Arosan Annalingam

Louis Härtel

Manuel Pozor

Mohsin Muhammad

Yevheniia Kashperuk



1

Getting started
Start by adding GeminiFramework and GeminiTools folders to your projects asset folder.

→
To install needed requirements, simply open the Unity package manager through Window
> Package Manager. Then click on + to add a package from this Git URL:
https://github.com/jilleJr/Newtonsoft.Json-for-Unity.git#upm

(You may need to reload Unity.)

https://github.com/jilleJr/Newtonsoft.Json-for-Unity.git#upm
https://github.com/jilleJr/Newtonsoft.Json-for-Unity.git#upm


2

Starting with an empty scene
Load the existing Gemini scene and customize it to your liking.

Modifying an already existing scene
Import the manager scripts to your scene (simply drag&drop the
GeminiFramework/Prefabs/Settings prefab).

Start your own DT configuration

Unity editor window
Here we show step by step how to use the Gemini plugin to import already existing Digital
Twin configurations, to create a new setup and how to define and initialize new sensors. In
the following documentation, we will go through each window of the plugin wizard.

First of all, open the setup wizard by clicking on Gemini Editor - Run in the Unity upper
menu.

1. Import or create new configurations

Here you have the possibility to load already existing settings via a configuration file. Select
one of the two points and click on the Next button.

If you are setting up Digital Twin for the first time, select the item New Digital Twin.

If there is the configuration file from a pre-existing Digital Twin created with Gemini, the
user can load his previous settings by selecting Load from the configuration file.



3

2. Network protocol configuration

In the next step, the network protocol settings, that establish communication with the
server, are configured. MQTT configuration data is required. Enter the IP address and the
corresponding port of the MQTT broker in the IP Address and Port fields. Once the fields
are filled click Next to go to the next step.

3. Select message format

Now we determine the format of the message received from the server. Currently only the
JSON format is supported.



4

4. Select JSON format of arriving messages

The next step is to define the sensors received from the server. First, enter a unique name
for the sensor in the Input name field. In the Path field, the path to the sensor object in the
message from the server is defined. In the last Type field you define the type of value that a
sensor takes (e.g. boolean, integer, object etc.).

Additional rows for sensors can be created using the Plus (+) button. The Minus (-) button
deletes the last row.

(IMPORTANT: At least one sensor must be defined).



5

5. Define States

In this step the states of the individual sensors are defined. To do this, click on the created
sensors and give the states a name and an identifier. The identifier is used to define the
state uniquely in the simulation.

6. Close the configuration

In the last step, navigate back to previous steps or finish the process.



6

Adding a new Sensor
The following describes how to edit a new sensor to the scene. Your inputs should have
already been generated and added to the hierarchy. Also, as you can see in the Settings,
all inputs have been registered to the Config manager class.

testing: make sure mqtt broker is running and scene is playing; tools, configure topic

1. Create a Canvas

Start by creating a canvas in your project hierarchy. Add the desired prefabs to the canvas.
Here, we selected a ProgessBar prefab that was generated during the configuration
process.

2. Test your MQTT connection

You can test whether your connection works by using our MQTT tool. Run it by clicking
Gemini Editor - Tools.

(Important: scene has to be playing when starting tools)



7

Here, you can send quick test messages on a topic of your choice.

(Pay attention to the correct JSON format of your messages!)

In the console, your message should be visible. In the scene, you can see your update.

The progress bar correctly displays our dummy battery status.



8

An example of our previous work can be seen below, here we were able to integrate
sensors of a brewery into a digital scene and create custom replay behavior to relive the
brewing process.


