3 PARALLEL COMPUTING

3 PARALLEL COMPUTING

Parallel computing divides calculations into smaller problems and solves these
simultaneously using multiple computing elements (hereafter “workers”). Par-
allel computing, once prominently used only in supercomputing (e.g. Hager &
Wellein, 2010), is today commonplace as most desktop computers and laptops
have CPUs with multiple “cores”. Parallel computing has also become rela-
tively straightforward to implement, but is not implemented by default in R
(Knaus et al., 2009). In the next sections we provide an introduction to parallel
programming. The benefits of parallelism can be great, however before imple-
menting parallel-programming or investing in hardware, a handful of basic rules
are worth reviewing.

1.

A common misconception is that when more processes are run in paral-
lel the faster the problem will be solved (Hager & Wellein, 2010). This
misconception is easily seen by applying Amdahl’s Law (Fig. 3 in the
maintext), which shows that the possible speed-up is asymptotically re-
lated to the amount of parallel processes. Even when a large fraction of
the code can be run in parallel the maximum speed-up is limited (and
each additional worker offers diminishing returns). Applying both profil-
ing and Amdahl’s law can identify the optimal amount of parallel processes
beforehand. We provide this functionality in the package aprof.

. Parallel computation incurs overhead. Initializing a parallel computation

takes some time, including communication between devices or across nodes
to copy code and data. When individual jobs are not reasonably intensive
compared to the time it takes to initiate the parallelisation (i.e. the ra-
tio of computation to communication is low), repeatedly starting parallel
threads will deteriorate overall performance. This sometimes means that
one should not use all workers available, especially for smaller repetitive
tasks.

Avoid over-parallelisation, and do not assign more workers than available.
If the machine is used for additional tasks besides calculation, leave some
resources (i.e. physical cores) for other processes. If not, the system may
become unstable.

In most computing devices, memory (RAM) is shared among parallel pro-
cesses (Schmidberger et al., 2009). Therefore, each of N processes running
in parallel will only receive 1/N of the available memory. If memory is not
available within a thread, threads will automatically attempt to “borrow”
memory from another process. While parallel workers wait for memory
to become available, overhead is drastically increased to the point that
execution of the problem in serial may be faster. One can use R functions
as object.size to determine memory usage in an algorithm.

. Independence of random number sequences must be ensured for valid sci-

entific results (e.g. L’Ecuyer, 2012). A crucial consideration when conduct-

34

3 PARALLEL COMPUTING

ing operations that rely on random numbers is that all parallel calculations
have unique sequences that will not overlap and can be reproduced. Spe-
cific techniques are available that ensure independence of random number
sequences within R (e.g. L’Ecuyer, 1999, section 3.4)).

3.1 PARALLEL COMPUTING IN R

Programming in parallel in short, involves starting a main process, often called
the parent process, which (1) initializes the calculations, (2) divides them and
sends these as ”jobs” to ”child” processes and (3) waits for the ”child” processes
to return results once they have completed.

R has multiple packages to execute parallel code. These packages include
foreach, multicore and snow to name a few (Weston & Computing, 2013;
Urbanek, 2011; Tierney et al., 2013), and some packages for parallel calculations
on a graphics processing unit or ’GPU” (e.g. gputools Buckner et al., 2013).
In this tutorial we will use the package parallel which is shipped with the core
version of R (since R version 2.14.0). In this document we will focus on parallel
computing on a single machine (i.e. a laptop) with two or more cores (these
techniques will also work on servers with many more cores). We do not focus
on parallel computing via clusters or using several computers connected via
ethernet, though the reader should be aware that these operations are readily
available and easy to implement in R (see e.g. the snow package Tierney et al.,
2013).

Take special care when using programs (e.g. a custom BLAS library, pqR)
that automatically make use of parallel operations, as these can easily cause the
proliferation of jobs far beyond the amount of workers if used within parallel
algorithms.

3.2 PARALLEL CALCULATIONS USING FORKING (UNIX SYSTEMS
INCLUDING MAC)

One of the easiest ways of conducting parallel computations in R is through
forking. However, this can only be done on unix machines (essentially anything
but Windows). In the next section (3.5) we give an example for windows. Win-
dows users should not skip this part, as we address some key issues for parallel
computing. They may, however, skip running most of the code examples. In
these sections, we use so-called implicit parallelism (this is nice as most of the
setup is done by the system and the user does not need to worry about it).
So-called ”explicit parallelism” is also possible in R, and here the user will have
more control over the process. However, we do not discuss explicit parallelism
here. More important considerations for parallel computing are given in the
main document.

35

3 PARALLEL COMPUTING

3.3 NUMBER OF WORKERS

One thing that needs to be ensured in parallel computing is that we avoid over-
parallelization. We should not assign more jobs then there are ”workers”, or we
will surely paralyse our code. Therefore it is important to find out how many
physical workers are available (for details see the main document). In R we can
do this using the following code:

R Example 3.1.

require(parallel)
Loading required package: parallel

ncores<-detectCores ()
print (ncores)

[1] 8

We see that the computer on which this document was made, has 8 cores.
However we should watch out, as we are working on a multi-threaded machine.
However, we don’t want to use all the cores when running these codes, as we are
using our machine for more than just computation (e.g. writing this document).
This is why we adjust the output of detectCores, below, to ensure we don’t use
all the resources (physical cores and dual-threaded capabilities) for computation.
We do this to ensure stability of the system by leaving enough computing power
for the other things we need to do. If you are using a dedicated machine (e.g.
on a server) you can of course assign all the workers available to you (though
even then it may be smart to leave some idle).

R Example 3.2.

require(parallel)
ncores<-detectCores()/2
print (ncores)

[1] 4

36

3 PARALLEL COMPUTING

3.4 RANDOM NUMBERS

Another thing we need to consider before we start is that bootstrapping relies
on random number generation. We therefore need to ensure that the sequences
of random number generated by R, within each child process, are truly indepen-
dent. We therefore need each parallel stream to have a separate random seed.
We must also consider that not all seeds are equally good as pseudo Random
Number Generators (RNG) - as they are called - are typically also periodic,
meaning that sequences will eventually repeat. If seeds are not chosen well,
streams with each parallel calculation may overlap and will therefore no longer
be independent. Lastly, we would also like our random numbers to be repeat-
able when we keep the same seed. To make sure all this takes place we change
the random number generator in use to the L’Ecuyer RNG (L’Ecuyer, 1999)
with RNGkind(” L' Ecuyer — CM RG”), which is a random number generator
specifically designed for use in parallel computations. This ensures that we will
have independent and reproducible random numbers.

R Example 3.3.

RNGkind (L'Ecuyer-CMRG")

Now that we know how many workers we have available and we know which
RNG to use, let’s build our first parallel algorithm to test if we can reproduce
random numbers. We will generate random values, in parallel, from a normal
distribution using rnorm. To do this, we will utilize the function mcparallel
in R. You will see that, as we are using "implicit parallelism”, its usage is
remarkably simple. Note that when you build parallel algorithms you should
avoid using any GUI elements (e.g. graph plotting, printing) as they may lead
to problems. The code for windows users is given in 3.5.

R Example 3.4.

require(parallel)

ncores<-2

37

3 PARALLEL COMPUTING

children<-vector(1list" , ncores)

change the random number generator
RNGkind (L'Ecuyer-CMRG")

set an wnitial seed
set.seed(20130808)

The following will make runs from mcparallel reproducible
mc.reset.stream()

inittalize each child process

for(i in 1l:ncores){
children[[i]l]<-mcparallel (rnorm(4))

}

collect results
randomnumbers<-parallel::mccollect(children)

Let’s see if we can reproduce these by rerunning the code with the original
seed:

R Example 3.5.

OnlineRcode44.R

reset an initial seed
set.seed(20130808)
mc.reset.stream()

re-initialize each child process

for(i in 1l:ncores){
children[[i]l]<-mcparallel (rnorm(4))

}

collect results
randomnumbers2<-parallel::mccollect(children)

Now lets see if the random numbers are identical:

38

OnlineRcode45.R

print (randomnumbers)

$°6598°

[1] -0.6172 0.1962
##

$°6599°

[1] 0.4541 -0.1770

print (randomnumbers2)

$°6600°

[1] -0.6172 0.1962
##

$°6601°

[1] 0.4541 -0.1770

0.6680 -1.0425

0.3327 -0.4369

0.6680 -1.0425

0.3327 -0.4369

3 PARALLEL COMPUTING

Success! We now know how to conduct a parallel computation via forking,

and ensure we have reproducible results.

problem and see what our gains are.

Let’s apply this to our bootstrap

3.4.1 THE PARALLEL BOOTSTRAPPING ALGORITHM VIA FORKING

Building a parallel algorithm to conduct our bootstrap, will be relatively easy.
However, we will need to find a way to split our calculations. In this case the
most logical place to split the calculations into equal parts would be to divide
the number of re-samples among workers. The following is one way to do this:

R Example 3.6.

OnlineRcode46.R

subR<-1000

Set the number of workers we will use

ncores<-3

Split the jobs

splitR<-table(cut (1:subR,ncores,labels=F))

print (splitR)

##

39

3 PARALLEL COMPUTING

1 2 3
334 333 333

As can be seen, we have now produced an equal split among 3 workers. Next,
let’s start our parallel bootstrap - by sending our (almost) equal job splits to
the different children. As each of the children are independent processes we opt
to not use a profiler to time the execution of this process. Instead we record
the start and end times. The equivalent of the below code for windows users is
given in section 3.5. Note that the windows code is slightly simplier, and also
works well on *unix systems.

R Example 3.7.

OnlineRcode47.R

load the parallel package
require(parallel)

save the start time
tp0 <- structure(.Internal(Sys.time()))

initialize a list where we can store the id of each child
children<-vector(1list" , ncores)

send the division of work in splitR to each of the cores
for(i in 1l:ncores){
children[[i]] <- mcparallel(fastBoot (subBioData,
splitR[i]))

}

Wait for the child processes mamed in "children" to finish
results <- mccollect(children)

Record end time
tpl <- structure(.Internal(Sys.time()))

Calculate execution time

tp <- tpl-tpO

Which gives us:

print(tp)
[1] 5.529923

40

3 PARALLEL COMPUTING

That’s it. We completed a parallel execution of the bootstrap and the final
execution time of our program was about 5.5 seconds. This means that we
gained a relative speed-up of 280% above our fastest serial code!

3.5 ALTERNATIVE PARALLEL BOOTSTRAPPING ALGORITHM
(INCLUDING WINDOWS)

Adapting the above guidelines for windows is straight forward.

R Example 3.8.

OnlineRcode48.R
require(parallel)

number of workers
ncores<-2

set an original seed
set.seed(20130808)
mclapply(rep(4,ncores) ,rnorm)

[[1]]

[1] -0.6172 0.1962 0.6680 -1.0425
##

[[2]]

[1]1 0.4541 -0.1770 0.3327 -0.4369

reset the original seed
set.seed(20130808)
mclapply (rep(4,ncores) ,rnorm)

[[1]]

[1] -0.6172 0.1962 0.6680 -1.0425
##

[[2]]

[1] 0.4541 -0.1770 0.3327 -0.4369

Again, as in section 3.4, we succeeded in generating repeatable random num-
bers that are independent with each parallel process. Next let’s finish the par-
allel bootstrap for windows. The following deploys the same parallel bootstrap
as we did before:

41

3 PARALLEL COMPUTING

R Example 3.9.

OnlineRcode49.R

load the parallel package
require(parallel)

##initialize the problem
subR<-1000

Set the number of workers we will use
ncores<-3

Split the jobs
splitR<-table(cut(1:subR,ncores,labels=F))

save the start time
tp0 <- structure(.Internal(Sys.time()))

send the diviston of work in splitR to each of the cores
results <- mclapply(splitR,function(X)
fastBoot (subBioData,X))

Record end time
tpl <- structure(.Internal(Sys.time()))

Calculate execution time
tp <- tpl-tpO

3.6 THE END GAINS

The final question that needs to be answered is, in the end, how much did we
gain when we conduct the full problem? That being 10 000 bootstrap resamples
on the full dataset with 750 000 records. We have summarized the full run time
of each program in table 3.1, here we see that in the end we have sped-up
execution of our problem by a factor of &~ 18.8 (from 1 hour 3 minutes to 3.35
minutes). This is a significant improvement.

3.7 CLOSING REMARKS

Parallel computation via cloud computing and computing clusters are also be-
coming common at many institutions (e.g. Harvard University’s Odyssey Clus-
ter), increasing the value to learn parallelisation techniques for the future. Be-

42

3 PARALLEL COMPUTING

Program NaiveBoot LessNaiveBoot DatatableBoot Parallel
Execution 1 hour and 3 38 minutes 12 minutes 3.35 minutes
time minutes

Table 3.1: The end gains. Required execution time for each of the program
versions to conduct 10 000 bootstrap resamples on a dataset of 750 000 records.

yond this, it is now possible for scientists to implement massively parallelised
code on graphics cards (or graphics processing units, GPUs), which have hun-
dreds to thousands of processors, and are relatively cheap (starting at only a
few hundred dollars). New developments, such as the CUDA platform and
programming model (Nvidia, 2007), which enables execution of C, C++ and
Fortran code on GPUs, are freely available to scientists. Such prospects show
that we are only starting to scrape the surface of computationally feasibility.
Most scientists use desktop or laptop computers (Hannay et al., 2009), and in
recent years most of these computers have become capable of parallel computing
(Wilson, 1995). Coincidentally, many computationally intensive problems in
the biological science rely on so-called ‘embarrassingly parallel computations’
(Grama, 2003), where a very large fraction of all calculations can be completed
in parallel. Consequently, parallel computing is potentially the most useful
technique highlighted here for certain problems, and as we show in our here (see
2.1), implementing code in parallel is also one of the simplest ways of speeding
up an analysis. We hope that we have shown here that there is no reason not
to take advantage of all the computing power available at our fingertips today.

43

