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1 CODE OPTIMIZATION IN R

1 CODE OPTIMIZATION IN R

1.1 INTRODUCTION

The use and advancement of mathematical and computational tools in ecology
has seen considerable headway since its pioneering days (Lotka, 1925; Volterra,
1926; Gause, 1934). Today, computation and computer code are fundamental
parts of our science and the computational needs of biologists are extensive
(Fig. 1.1); emerging fields such as ecoinformatics and computational ecology
(Michener & Jones, 2012; Petrovskii & Petrovskaya, 2012) bear witness to the
fact that biologists are collecting and distributing data on larger scales than
ever before (e.g. GenBank, NEON; Jones et al., 2006; Kelling et al., 2009)
Such data sources are used to inform, validate and construct ever more elab-
orate models (e.g. Clark et al., 2010; Nathan et al., 2011; Luo et al., 2011).
These complex models are often analytically intractable and require intensive
numerical calculations (e.g. Bohrer et al., 2009).

In such an intense setting, computational issues should not limit the scope
of the science conducted. That is why we decided to compile this guide for im-
proving computational efficiency in a wide variety of settings. Here, we provide
background information on the topics discussed in the main paper. We review
the scattered information on computational efficiency found online, in text books
and other sources, and provide an overview which includes some basic theory
from computer science, but is mostly a hands-on tutorial for learning how to
identify bottlenecks and speed-up the corresponding R code. We hope to show
that fast and efficient code is often straightforward and easily implemented.

In the examples to follow, we will focus solely on R (R Core Team, 2013) .
Using some realistic program examples from biology, we give guides on profiling,
general inefficiencies in R, parallel computing and extending R with C.

1We feel that it makes sense to focus on techniques that are directly applicable to R because
of it’s widespread adoption in the biological sciences. This greatly facilitates code sharing as
such widespread use is leading to a reverse “tower of babel” situation, where ecologists are
moving away from a diverse suite of programming languages towards speaking a common
computational tongue.
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Figure 1.1: The rate of increase in computation heavy problems in biology. The
vertical axis denotes the number of publications for a given year. Starting slowly
in 1950 with the advent of computers, and a consistent exponential increase
in computational power since, has led to a true explosion of computationally
heavy research during the past 20 years in virtually every research topic in
ecology and evolutionary biology. Data was obtained through the Web of Science
search in the fields of biology, ecology, evolutionary ecology, fisheries and plant
sciences. The search was conducted to include all papers with at least one of the
following keywords; Stochastic simulations, Markov chain Monte Carlo, Agent
based model, individual based model, Monte Carlo, Bootstrap, randomization,
Simulation.

All code examples and benchmarks in this document were run on a single
test machine (MSI model gt680R, with CPU Intel i7-2639QM, 8GB DDRII
RAM running Fedora 17), code was also tested separately on other systems
(Windows and Mac).This should ensure that code examples supplied here work
on all platforms (unless indicated separately). We assume that you have a
working R installation (R > 3.1.0), and have modified little to nothing about
the installation yourself 2.

2 A number of replacement ” packages” can be downloaded off the web, including optimized
replacements of your "BLAS” libraries (this is for matrix operations) to entire replacements
for R as pqR. The good news is that the techniques shown here, will also work well when
you are using such packages. However, if you have installed any general all purposes speed-up
packages, we advice you to take caution (especially with parallel code). In general, unless
you know exactly what you are doing, or more specifically what these packages are doing,
you may end up unwittingly paralysing your code. Indeed, if you are unaware that a package
automates the parallel computations for you, you may end-up running its parallel operations
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1.2 GENERAL GUIDELINES FOR OPTIMIZATION

Learning how to code neatly and efficiently is key to solving complex computa-
tional problems quickly and in the long-run we feel that everyone will be better
off learning the fundamentals of efficient coding (see e.g. programming guides
for scientists Wilson et al., 2012). In general, however, the following steps are
advocated by computer scientists when attempting to optimize code (see e.g.
Wilson et al., 2012; Chambers, 2009). They are meant to ensure that you are
working correctly and productively. We will follow these steps throughout this
document.

1. Your first objective should always be to make sure that your program
does what you intended it to do correctly. Start by using easy to debug
R code, without worrying too much about efficiency initially. Once you
have a working program with results you can trust, you have a solid basis
to compare more complex optimized code against.

2. If you believe performance should and can be improved, start profiling your
program (as shown in the section 1.3) or a smaller version of your program.
This will help you to discover what is using most of the resources. Find
out whether it is worthwhile to spend time optimizing using Amdahl’s law
(see the main document) to calculate your expected gains (we use our R
package aprof for this).

3. Once you find bottlenecks, and are certain that optimizing your code is
worthwhile, you should start by asking yourself if you can speed up your
R code itself (section 1.4). In most cases optimizing R code will yield
the greatest speed-ups. For example, are you conducting any unnecessary
operations? is there something that you can vectorise? Can you drop a
higher level function with more overhead for a lower level one (e.g. Im vs
Im.fit)? Can you replace a slow function with a custom one?

4. If you are still not satisfied with the program’s performance, then ask
yourself if your code can run in parallel (section 2)? Or you may be able
to rewrite certain key parts in C, C++ or Fortran (section 5).

5. At each step, repeatedly confirm for yourself that each version of code is

giving the same answers as the correct, but slower, R code.

1.3 PROFILING

Identifying which part of the code takes the most time can allow effective and
targeted optimization efforts. “Code profilers” help towards this end. In this

within your own parallel script. This quickly leads to over-parallelism (multiple threads within
multiple threads), causing CPU’s to park threads and increasing execution time to extremes.
It is our experience that in many cases you can achieve speed-ups beyond what these packages
provide, with directed and focussed optimization - focussing on the unique bottlenecks of your
program will, generally speaking, be far more effective



1 CODE OPTIMIZATION IN R

section we will describe how to use a statistical profiler (called Rprof in R), that
uses “operating system interrupts” to probe which routines are active at regular
intervals and counts which R expressions are consuming the most resources. For
example, profiling a program consisting of a two commands will tell you exactly
how much time is spent in each command, and therefore which of the two you
should take a closer look at. We have also developed software in the form of
an R package (aprof: “Amdahl’s profiler”) to organize the output from the R
profiler using visual tools to identify bottlenecks (as illustrated in Figure 2.1).
We will use the package aprof to organise the output from R’s standard profiler.
This makes it much easier to rapidly identify bottlenecks in your program code.
An example of using aprof is given below. The package is available at CRAN.

In cases where random-access memory (RAM) storage, rather than proces-
sor time, poses the most pressing limit, one can use a memory profiler (e.g.
Rprofmem) to obtain similar statistics for memory efficiency. Simpler, though
less informative, tools to time and track resource use include the R functions
system.time() and object.size(). The former returns the time used by both
R and the operating system (for communication between devices, file writing,
etc.), while the latter gives an approximation of the memory usage of objects.

To use the R profiler, we first need to make a simple program which we want
to profile. Here is an example of a program (InterpreterQuirks) that executes
the calculation N/(1+ N) many times with either parentheses or brackets, and
different amounts of each. The function highlights some of the quirks of an
interpreted language as explained in section 1.4.

InterpreterQuirks<-function(l){
for (i in 1:N) { N/(1+N) }
for (i in 1:N) { (C(N/(1+N))))}
for (i in 1:N) { N/{1+N} }
for (i in 1:N) { {{{N/{1+N}}}} }

dump (InterpreterQuirks" ,file=TnterpreterQuirks.R" )

Next we use Rprof to start profiling InterpreterQuirks. As we will be using
”line profiling” we will first reload our saved file. This ensure that the version
in R and the saved file on the disk match up exactly (the function ”dump” used
above can sometimes change the layout slightly).
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## OnlineRcode02.R

source(InterpreterQuirks.R" )

Then we switch on R’s profiler Rprof, and because we want to know which
lines of InterpreterQuirks are the slowest we need to make sure the option
line.profiling is set to TRUE. Here we use a time interval between samples
of 0.02.

## OnlineRcode03.R

Rprof (file=TnterpreterQuirks.out" ,interval = 0.02,
line.profiling =TRUE)

InterpreterQuirks(N=1e5) # run 100 thousand times

Rprof (append=FALSE) # stop profiling

Now lets summarize the profiling output with the function summaryRprof:

## OnlineRcode04.R

summaryRprof (InterpreterQuirks.out" )

## $by.self

#i# self.time self.pct total.time total.pct
## InterpreterQuirks" 0.34 89.47 0.38 100.00
#t oy 0.04 10.53 0.04 10.53
#i#

## $by.total

#i# total.time total.pct self.time self.pct
## InterpreterQuirks" 0.38 100.00 0.34 89.47
#t Y 0.04 10.53 0.04 10.53
#i#

## $sample.interval

## [1] 0.02

##

## $sampling.time

## [1] 0.38
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This gives us information on the program run time, and the percentage of
time various functions took, identifying which function call is taking the most
time. However, in this example such output is not very informative as many
functions or operators were repeated in multiple lines of code.

Next we load our package aprof (”Amdahl’s profiler”). We want to vi-
sualize the time spent in each line of code using aprof’s standard plot func-
tion on our program InterpreterQuirks (see ?plot.aprof for details). How-
ever before we start we need to use the function aprof to make an “aprof
object”. This object will contain the profiling information and the source file
? Interpreter Quirks.R”.

require (aprof)

## Loading required package: aprof

IntQuirksAprof <- aprof (InterpreterQuirks.R" ,TInterpreterQuirks.out" )

Now that we have a standard "aprofobject” we can display some basic
information about the profiling exercise by simply typing the name of the
“aprofobject” and hitting return. In contrast to the summaryRprof which
focusses on specific functions, this gives you information on which lines of codes
took most time to execute.

IntQuirksAprof

##
## Source file:
## InterpreterQuirks.R (7 lines).

#i#

## Call Density and Execution time per line number:
#i#

#i#t Line Call Density Time Density (s)

## [1,] 3 4 0.08

## [2,] b 4 0.08

## [3,] 6 5 0.1

## [4,] 4 6 0.12

#i#

## Totals:
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## Calls 20
## Time (s) 0.46 (interval = 0.02 (s8))

Next we can use the standard plot function on this object to display the
execution time per line. The following code should return figure 1.2.
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plot (IntQuirksAprof)
InterpreterQuirks.R (:3(::”5”31 L“O fxecugz: “meéf?

1 InterpreterQuirks <— .

2 function(N){ .

3 for(iin 1:N) { N/(1+N) } —_—

4 for (i in 1:N) { ((N/(1+N))))}

5 for (iin 1:N) { N{1+N} } —_—

6 for (iin 1:N) { {{{N/{1+N}}}} }

7} .

Figure 1.2: Output from aprof’s PlotExcDens function. It shows the source
code for our function InterpreterQuirks in the left panel with the execution
time per line of code in the right panel. We see a classical interpreted language
problem, where more parentheses and brackets mean that the R interpreter has
to evaluate more often, while some symbols (here ”{” and ”}”) are interpreted
faster (i.e. the lookup speed for these symbols is likely faster). Use profile.plot
for larger pieces of code.

10
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Plotting an aprof object is useful when your program is relatively small
however, when your code consists of hundreds of lines, a better function would
be profile.plot. Go ahead and use it on our aprof object ”IntQuirksAprof” to
see what it does (type ?profile.plot in the command line for details). Another
useful feature is to summarize our aprof object, which gives us the theoretical
maximum attainable speed-up for each line of code (see ?summary.aprof for
details).

### OnlineRcode08.R
##Rcodel3.R
summary (IntQuirksAprof)

## Largest attainable speed-up factor for the entire program
#i#

#it when 1 line is sped-up with factor (S):

##

##  Speed up factor (S) of a line

#i# 1 2 4 8 16 S -> Infx*x
## Linex: 4 : 1.00 1.15 1.24 1.30 1.32 1.35

## Linex: 6 : 1.00 1.12 1.19 1.23 1.26 1.28

## Linex: 3 : 1.00 1.10 1.15 1.18 1.19 1.21

## Linex: 5 : 1.00 1.10 1.15 1.18 1.19 1.21

##

## Lowest attainable execution time for the entire program when
##

#it lines are sped-up with factor (S):

##

##  Speed up factor (S) of a line

#i# 1 2 4 8 16

## All lines 0.4600 0.2300 0.1150 0.0575 0.0288
## Linex: 4 : 0.4600 0.4000 0.3700 0.3550 0.3475
## Linex: 6 : 0.4600 0.4100 0.3850 0.3725 0.3663
## Linex: 3 : 0.4600 0.4200 0.4000 0.3900 0.3850
## Linex: 5 : 0.4600 0.4200 0.4000 0.3900 0.3850
##

#i# Total sampling time: 0.46 seconds

## * Expected improvement at current scaling
## xx Asymtotic max. improvement at current scaling

Using this information we can easily decide where to focus our efforts and,
maybe more importantly, decide whether it is worth the effort to optimize the
code. As we can see in the uppermost table, line 4 would be the most promising
to work on, as it shows the greatest improvement for each of the sets of speed-up
factors (1 - 16x). These numbers effectively tell us what the predicted overall
speed-up of the program would be when we focus on a single line. That is, if
we improve the execution time of a given line by a factor S (S times faster),

11
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the table predicts how much this improvement will affect the overall run-time
of the entire program. In the above example we see, however, that the gain is
minimal and even when the speed-up factor goes to infinity (effectively when the
run time of that line becomes 0; lim S — 0o0) we can only achieve a maximum
speed-up of > 1.3. Or in other words, if we were to infinitely improve the code in
line number 4 we would only improve the overall program by slightly more than
30%. Infinitely faster is not something we are likely to achieve, but also for the
more practical speed-up factors we also see that a factor of 16 improvement is
hardly an improvement over a factor of 4. In such cases it may not be worthwhile
to either purchase computing resources (parallel machines or execution time on
a cluster) or spend time optimizing code. Naturally, in this simple example
the overall execution time is so small that we won’t spend time optimizing it.
However, as we usually would profile a simplified version of a larger program
where the execution time may be considerably larger, even a small improvement
in execution time may be worthwhile.

1.4 WHAT SLOWS DOWN COMPUTATION IN R
1.4.1 DISPATCH OVERHEAD AND NONESSENTIAL OPERATIONS

A major benefit of statistical software like R, however, is that it employs a wide
variety of statistical tools and programs that work “out of the box”. These
predefined programs often contain additional features meant to ease their use
by auto-formatting data, error checking, and making other checks on user in-
puts. When dealing with computationally onerous problems these features can
cause considerable slowdowns. One potential speed-up strategy is therefore cre-
ate custom functions to avoid overhead in base- or package-provided functions.
These custom functions can be then be ”specialized” to perform only the desired
task, and can lead to significant speed-ups. For example, in Fig. 1.3 (i & j) we
see that using R’s ‘mean()’ function is less efficient than a more basic function
with the same result:

avg <- function(x,...){
sum(x, ...)/length(x)

}

The additional features in ‘mean’ function (”dispatch overhead”) make it
slower but more robust and easier to use. When creating such custom functions
one should realize that much of the original robustness will be lost in the more
basic function. Which, as pointed out by an anonimous reviewer, can result in
serious errors and incorect results:

12
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x<-c(1, 2, NA)
DefuaultMean<-mean(x, na.rm=TRUE)
CustomMean<-avg(x, na.rm=TRUE)
identical (DefuaultMean,CustomMean)

## [1] FALSE

Another strategy to avoid overhead would be to use lower-level functions
instead of their default counterparts (e.g. lm.fit vs lm). For instance, if the
function Im is taking most of the time in your calculations, then you can use its
lower-level function Im.fit. This lower-level function is much faster. However,
it is again far less robust to bad user input and, as they require much stricter
compliance to input rules, these lower level function should be used cautiously.
You can often find such lower-level functions by looking at the source code of
a ”"slow” function (using e.g. page(”lm”) is one way of doing this). A general
guide to find the source code of a function (and any lower-level functions) is
given in (Ligges, 2006).

1.4.2 VECTORIZATION

Loops in code exacerbate inefficient code contained within the loop, and can
easily prove to be one of the most basic processing bottlenecks. A valuable
feature of R is vectorisation, which can be used to avoid the inherent inefficiency
of looping. Vectorisation involves writing functions that are designed to work
on vectors of values in one call. Researchers switching from a different language
may at first construct loops that apply a function over a vector (e.g., when
adding a series of numbers [a vector] to a single number, one could loop through
the series adding each in turn). For instance, in ecological analyses it is often
necessary to create a matrix of random numbers (e.g., null model tests for species
co-occurrence). If we were to fill in random numbers in a large matrix using a
double loop (example 2.1), this would be approximately 38 times slower than a
vectorised approach (example 2.2 creating random sequences for entire rows).
Avoiding loops all together in R, by directly filling the appropriate sized matrix
(example 2.3) is approximately 63 times faster than the double loop (2.1).

R Example 1.1.

mat <- matrix(ncol=1e3,nrow=1e3)

13
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for(i in 1:1e3) {
for(j in 1:1e3) {
mat[i,j] <- runif(1) } }

R Example 1.2.

mat <- matrix(ncol=1e3, nrow = 1e3)
for(i in 1:1e3){ mat[i, ] <- runif(le3) }

R Example 1.3.

mat <- matrix(runif(le6), nrow = 1e3, ncol = 1e3)

The vectorised version is faster because creation of a long vector of random
numbers though a loop is already implemented in a lower-level language (in
most cases C; Schmidberger et al., 2009). Vectorisation in R is essentially a
shift to a lower-level function when the user applies a vectorised function (e.g.
functions like runif, sum and many others). This is far more efficient than using
the R interpreter to loop through each instance, and calculations conducted
in a vectorised fashion are thus often an order of magnitude faster (example
2.1. v.s. 2.2 v.s. 2.3). Some useful and highly optimized vectorised functions
include: cumsum, diff, rowSums, colSums, rowMeans and colMeans. Note that
example 2.5 can also be replaced with a single line of code using the “apply”
family of functions; “mat = apply(mat,l, function(X) runif(length(X)))”. In
this instance, however, apply is not necessarily faster than a vectorised for loop
(it is a myth is that the apply family of functions are always faster than for
loops). An easy alternative to loops for beginning programmers in R is the
function Vectorize which is able to vectorise almost any function in R.

1.4.3 GROWING DATA

Another inefficient coding practice is “growing data”, where data frames, ma-
trices, or vectors are created without defining their size a priori, and values (e.g.
population states) are added to them incrementally in a loop.

14
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R Example 1.4.

vec <- NULL
for(i in 1:n) vec <- c(vec, runif(1))

When growing data, instances of memory allocation and run time are signif-
icantly increased. In each iteration, the current amount of space dedicated to
vec is too small to store the new version of vec (i.e. ¢(vec, runif(1)) ). Hence,
an entirely new object must be written to free space in the memory for each
item added. In the next iteration the space will be too small again and the
process repeats itself becoming ever more time consuming. A better practice is
to pre-allocate space in the memory with placeholders. For instance:

R Example 1.5.

vec <- numeric(n)
for(i in 1:n) vec[i] <- runif (1)

Here the code numeric(n) creates a vector of the correct size n in the memory
before values are assigned. Using memory profiling, we found that example 2.4
performs twice as many memory allocations (1890) as example 2.2 (820), with
the latter being 8 times faster on average (when n = 1000).

1.4.4 AN INTERPRETED LANGUAGE

R is an interpreted language, which mean that code is evaluated by an evalua-
tion program (hereafter the R-interpreter Chambers, 2009). This causes CPU
overhead as each line must be translated (i.e. “interpreted”) every time it is
executed. A classic example of translation overhead can be seen in Fig. 1.3 (a-
h), which shows the execution time of two sets of four identical functions that
simply evaluate the quantity N/N1 (code in section 1.3), only differing in the
number of parentheses 3 and whether the language was compiled or interpreted.

3This is an example that has been used in the R community to show the quirks of an
interpreted language

15
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Figure 1.3: Execution time (on a log scale) for pairs of functions that differ
in coding, but return exactly the same answer. Functions in bars a,c,e,and
g (black bars) were run within a for loop 1 million times and differ in the
number of parentheses used (example adapted from Radford Neal, University of
Toronto). Functions in b, d, f and h (grey bars) are identical to a, c, e, and g but
where coded in C and compiled (see Appendix A for the code). The examples
in a, ¢, e and g show that adding additional parentheses ”()” can noticeably
influence execution time when using the interpreted language R. Here adding
extra parentheses slowed down execution time by 15% per added parenthesis
pair. Compiled code did not suffer from the same quirks, and is on average
almost 8.2 times faster (examples b, d, f and h). Functions j and i calculate
mean values for 1 million random vectors of length 100. In example i, calculation
of the mean of a vector x is done by using the function mean(x) in R, while
in j the equivalent calculation is performed by dividing the sum of x by its
length, using the R functions sum(x)/length(x). Using method j is on average
6 times faster than using the function "mean” in i. The bar in j is also colored
grey (compiled) as these functions give more direct access to their lower-level
C equivalents (termed ”primitives”) while the function "mean” contains more
overhead which slows it down, but increases its ease of use.

16



2 OPTIMIZING R CODE: A BOOTSTRAP EXAMPLE

We immediately see that the examples using compiled code in C are approx-
imately 9 times faster, on average. The reason for this is simple: the compiled
function has already been processed by the compiler into a readily executable
form (machine language), while for the pure R code, some processing is required
even at run time to interpret the instructions at every iteration. Additionally,
we can see that simply adding parentheses, which causes extra work for the in-
terpreter, increases computation time in R (Fig. 1.3 a, ¢, e & g). The slow-down
is non-trivial, with an average increase in execution time of 14.7% per added
pair of parentheses on our test machine. Compiled languages, in contrast, are
immune to this overhead (Fig. 1.3 b, d, f & h).

2 OPTIMIZING R CODE: A BOOTSTRAP EXAMPLE

Now that we are a little bit familiar with profiling, let’s continue with a more
practical example. In the next sections we will be inspecting some methods with
which we can speed-up a bootstrap operation similar to the one in the main text.
We start with a program that is a typical example of "unpolished” code, and
then continue to profile and optimize the code in a series of steps. In the later
sections, we run our highly optimized code in parallel on multiple processors to
obtain a 18.8 x speed-up (see the main document for more details).

2.1 BOOTSTRAPPING A MODERATELY LARGE BIODIVERSITY
DATASET

In the main document we gives examples using a large dataset of 750 million
records, however to make this example accessable to readers with a less RAM
at there disposal we haev chosen to use a smaller dataset here. Imagine we
have a moderately large biodiversity dataset, with 750 000 records, which may
resemble something like species counts from N plots at S different sites (e.g.
Hennekens & Schaminée, 2001). To create such a fake dataset in R, we could
use the following code:

N<-=7.5%10"2

S<-1000
BioData<-data.frame(S=rpois(N#*S,15),
site=as.factor(rep(1:S,N)))

Our goal is to calculate for each site 10 000 bootstrapped estimates of dif-
ference between a site-specific species richness and the overall mean species
richness across all sites. Using base R, however we have a problem, for although
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our dataset is not particularly large, the bootstrap routine in R (the function
boot, in the boot package) can’t handle its size. After first defining how many
bootstrap resamples (10 000) we want:

R Example 2.1.

R<-10000
require(boot)

SiteMeans<-function(x,d,){
tapply (x$S[d] ,x$site[d] ,mean)-mean(x)

}

BtResults<-boot(BioData,SiteMeans,R)

We get the following error.
Error: cannot allocate vector of size 55.9 Gb

This error occurs because within the boot function all re-samples are gen-
erated in one go. This ensures that random numbers will be independent even
when boot is run in parallel®, but causes problems when datasets become mod-
erately large (as we reach the limits of the internal R function sample.int(7.5 *
10°,7.5 % 10° * 10000, replace = TRUFE) which is used ”"behind the scenes” in
boot).

A way around this problem would be to define some function that will execute
a standard amount, say 10 000 re-samples of the dataset and calculate our
statistics of interest. The following code will conduct a bootstrap as required
by our goal, albeit not quite optimally. Let’s call this function NaiveBoot and
save it as a file called NaiveBoot.R.

R Example 2.2.

NaiveBoot<-function(x,R){

4Note: depending on your system, and available memory you may get another error message
than the one we got here using R 3.1.0.
5See the main document on why this is important (section How to optimize:parallelisation).
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results<-NULL
for(i in 1:R){
index<-sample(seq_len(nrow(x)) ,replace=TRUE)
results<-rbind(results,
tapply (x$S[index] ,x$site [index],
function(X) mean(X)-mean(x)))

}

return(results)

}

##Save the function to a source code file
dump (WaiveBoot" ,file=WNaiveBoot.R" )

Before we run the full bootstrap operation, let’s see how fast our program
runs by profiling it using a smaller problem. In essence a bootstrap problem has
two aspects that will influence run time: 1) the size of the dataset that needs to
be reshuffled and 2) the amount of resamples. So let’s reduce the problem by
conducting only 10% of the 10 000 resamples on only 10% of the dataset. We can
now be confident that we have decreased the size of our problem considerably.

R Example 2.3.

## OnlineRcode20.R

## make a small subset of the data to work with
subBioData<-BioDatal[1:7.5e4,]

# 1074 of the 10 000 resamples
subR<-1000

Next we start the profiling operation (again, we should not forget to switch
on line-profiling in the Rprof function call).

R Example 2.4.

## OnlineRcode2l.R

## reload our program so everything matches up exactly
source(NaiveBoot.R" )

## Switch on R's profiler
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Rprof (file=NaiveBoot.out" ,line.profiling =TRUE)
## set the random seed so we can compare results
## later.

set.seed(123)

## Run NaiveBoot on a subset of data 1000 times
ResultsNB<-NaiveBoot (subBioData,subR)

## stop profiling
Rprof (append=F)

Now that we have the R profiler output, we can find out where the bottle-
necks are in our program.
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require (aprof)

NaiveBootAprof <- aprof(NaiveBoot.R" ,WNaiveBoot.out" )

plot(NaiveBootAprof)
NaiveBoot.R Density in execution time(s)
' 0 20 40 60 80 100 140
L | | | | | | |
1 NaiveBoot <— .
2 function(x,R){ .
3 results<—=NULL N
4 for(iin 1:R){ .

5 index<—sample(seq_len(nrow(x)),replace=TRUE)

6 results<—rbind(results,

~

tapply(x$[index],x$ite[index], .

8  function(X) mean(X)-mean(x)))

9 } .
10  return(results) .

11}

Figure 2.1: Execution-time density plot for the function NaiveBoot. Here we
clearly see that the largest ammount of time is spent in line 6 and line 8.
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In this case it seems like there can be large gain by looking carefully at lines 6
and 8 (see Fig. 2.1). First, however, we should evaluate whether its worthwhile
to attempt to optimize the code.

R Example 2.5.
## OnlineRcode23.R
summary (NaiveBootAprof)

## Largest attainable speed-up factor for the entire program
#i#

#i# when 1 line is sped-up with factor (S):

##

##  Speed up factor (S) of a line

## 1 2 4 8 16 S -> Inf*x*
## Linex: 6 : 1.00 1.36 1.66 1.87 1.99 2.13

## Linex: 8 : 1.00 1.30 1.53 1.68 1.77 1.86

## Linex: 5 : 1.00 1.00 1.00 1.00 1.01 1.01

#i#
## Lowest attainable execution time for the entire program when
#i#

#i# lines are sped-up with factor (S):
##

##  Speed up factor (S) of a line

## 1 2 4 8 16

## All lines 266.3 133.1 66.6 33.3 16.6

## Linex: 6 : 266.3 195.5 160.1 142.4 133.6

## Linex: 8 : 266.3 204.7 173.9 158.4 150.7

## Linex: 5 : 266.3 265.6 265.2 265.0 264.9

#i#

## Total sampling time: 266.3 seconds

## *x Expected improvement at current scaling

## *x Asymtotic max. improvement at current scaling

22



2 OPTIMIZING R CODE: A BOOTSTRAP EXAMPLE

The output from the function summary (row All lines) basically confirms
what we saw when eye-balling line 6 and 8 in figure 2.1, that optimizing these
lines are worthwhile leading to meaningfull speed-ups (at least theoretically®).
We will run through the table output again quickly. We see that optimizing
line 6 will give the greatest returns for our efforts (which can be expressed by
the speed-up factor ”S”). For instance if we figure out a way to make line 6
or line 8 execute 4 times faster the overall execution time of the program will
speed-up between 53-66% (upper table) depending on whether we speed-up line
6 or 8. If we speed-up both the full program’s completion is projected to drop
to almost 66 seconds (bottom table, at S = 4; we can safely ignore line 5 in
this example). Therefore, we should focus our efforts on line 6 and 8 at this
stage. As discussed in the main document, we can identify the usual suspects
slowing down our operations: line 6 contains a reference to rbind, and here we
are growing an object to store our results. This is highly inefficient. In line 8
we are repeatedly calculating the overal mean, this is completely unnecessary as
we only need to do this once. Our next step should therefore be to pre-allocate
space in the memory for our results and to calculate the overall mean only once.
Our new bootstrap function LessNaiveBoot then looks like this;

R Example 2.6.

LessNaiveBoot<-function(x,R){
avg<-mean (x$S)

results<-array(dim=c(R,nlevels(x$site)))
for(i in 1:R){
index<-sample(seq_len(nrow(x)) ,replace=TRUE)
results[i,]<-tapply(x$S[index],x$site[index],
function(X) mean(X)-avg)

}

return(results)

6 However there is something we should keep in mind when looking at the expected gains
returned by the summary function in aprof: these expected gains are subject to the scaling of
the problem. Scaling involves the question of how the complexity of the calculations change
with the size of the problem. For instance, matrix operations will generally scale with the
matrix dimension N/timesN by a factor of N3, meaning larger matrices will require ever
greater amounts of computation. In our example above the scaling depends on two factors:
1) the size of the dataset and 2) the number of re-samples. This is important to keep in mind
as it means that if you profile your program with a smaller example, due to scaling the actual
benefits when you conduct the full-scale problem may be far greater - and vice versa - if you
profile your code with a complex problem, you should not be surprised that the gain of any
optimization may be far less on simpler versions.
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}

# Save the function to a source code file
dump (LessNaiveBoot" ,file=LessNaiveBoot.R" )

Next, let’s see what we have acheived by timing the run of our updated code.

R Example 2.7.

## OnlineRcode25.R

## reload our saved file
source (LessNaiveBoot.R" )

set.seed(123) # set seed for results comparison

# Profile the program

Rprof (file=LessNaiveBoot.out" ,line.profiling =TRUE)
ResultsLNB<-LessNaiveBoot (subBioData, subR)

Rprof (append=F)

# make an aprof object
LessNaiveBootAprof <- aprof(LessNaiveBoot.R" ,LessNaiveBoot.out" )

# Summarize the gains
summary (LessNaiveBootAprof)

R Example 2.8.

## Largest attainable speed-up factor for the entire program
##

## when 1 line is sped-up with factor (S):

#i#

##  Speed up factor (S) of a line

## 1 2 4 8 16 S => Infx*x
## Linex: 7 : 1.00 1.49 1.97 2.35 2.61 2.92

## Linex: 8 : 1.00 1.17 1.29 1.35 1.39 1.42

## Linex: 6 : 1.00 1.02 1.03 1.04 1.04 1.04

## Linex: 4 : 1.00 1.00 1.00 1.00 1.00 1.00

##
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## Lowest attainable execution time for the entire program when
##

## lines are sped-up with factor (S):
#i#

##  Speed up factor (S) of a line

#i# 1 2 4 8 16

## All lines 29.02 14.51 7.26 3.63 1.81
## Linex: 7 : 29.02 19.48 14.71 12.33 11.13

## Linex: 8 : 29.02 24.70 22.54 21.46 20.92
## Linex: 6 : 29.02 28.42 28.12 27.97 27.89
## Linex: 4 : 29.02 29.01 29.00 29.00 29.00
##

#i# Total sampling time: 29.02 seconds

## * Expected improvement at current scaling
## ** Asymtotic max. improvement at current scaling

We see that pre-allocation has given us a clear improvement! Starting off
with an execution time of about 266 seconds, we were able to shave off 235
seconds (an improvement of roughly 850%) from the execution time by removing
some obvious causes of slowdown in our code. Before, we continue we should
test whether our new function gives the same results as our previous version.

## OnlineRcode27.R

## test 1f results are equal
all.equal(as.numeric(ResultsNB) ,as.numeric(ResultsLNB))
## TRUE

This is indeed the case. We have successfully optimized the function. How-
ever, were these changes the best candidates for a speed-up? Or, is there more
room for improvement? Let’s take a detailed look at our improved function to
find out.
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plot(LessNaiveBootAprof)

LessNaiveBoot.R Density in execution time(s)

0 5 10 15
L 1 1 I

1 LessNaiveBoot <— .

2 function(x,R){ o

3 avg<-mean(x$) .

4 .

5 results<—array(dim=c(R,nlevels(x8ite))) .

6 for(i in 1:R){ =

7 index<—sample(seq_len(nrow(x)),replace=TRUE)

8 results|i,]<—tapply(x$[index],x$ite[index], —
9 function(X) mean(X)-avg) .

10} .

11 return(results) .

12} 5

Figure 2.2: Execution-time density plot for the function LessNaiveBoot. Here
we clearly see that the largest amount of time is again spent in line 8. However,
on which function in line 8 should we focus on now?
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Eye-balling figure 2.2, we see that most time is spent in line 7, and the table
returned by aprof above shows that it should be worthwhile to further optimize
the functions in line 7. However, we now also see that it is no longer quite as
obvious where we should focus our optimisation efforts in line 7, because there
are several functions active in that line (see figure 2.2).

To help identify which function is slowing down our calculations in line 7, we
will next take a targeted look at the functions in line 7. To achieve this we can
use aprof’s function targetedSummary and take a more detailed look at the
functions being called in line 6. We now clearly see which functions are taking
the most time within line 7 of our code. The function targetedSummary returns
the execution time spent within each function, expressed both in the amount
of calls in the record returned by the R profiler and in run time. Please, note
that when a function within another function is ’called’ by the R profiler, both
functions get a hit (’Calls’). In this case, therefore, the outermost function
tapply gets the most 'Calls’. Let’s run targetedSummary and print the first
ten elements, which are the ten most-frequently called functions:

R Example 2.9.

head (targetedSummary(target=7,LessNaiveBootAprof),10)

#i# Function Calls Time
## 1 tapply 953 19.06
## 2 lapply 771 15.42
##t 3 L8 443 8.86
## 4 FUN 442 8.84
## 5 mean 402 8.04
## 6 split 297 5.94
## 7 split.default 296 5.92
## 8 as.factor 161 3.22
## 9O mean.default 129 2.58
## 10 unlist 77 1.54

We see that the vast majority of time is spent within such R functions as
tapply, lapply, split, split.default, mean, mean.default and as.factor. How-
ever, as we can see in figure 2.2, we never used the functions lapply, split.de f ault
or as.factor in line 7 . Upon investigation we see that these functions show up
in the output from targetedSummary because they are are called within tapply
(type page(tapply) to use R’s pager to confirm this in the code of tapply). The
function tapply is their parent function. We can get this information directly
from targetedSummary by setting the ”findParent” option to ”TRUE”:
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R Example 2.10.

## OnlineRcode30.R

## check if the target line %s also 7 on your system
head(targetedSummary (target=7,LessNaiveBootAprof ,findParent=TRUE),10)

#i# Function Parent Calls Time
## 1 tapply L7 953 19.06
## 2 lapply tapply 771 15.42
## 3 L8 FUN 443 8.86
## 4 FUN lapply 442 8.84
## 5 mean L8 402 8.04
## 6 split lapply 297 5.94
## 7 split.default split 296 5.92
## 8 as.factor split.default 161 3.22
## 9 mean.default mean 129 2.58
## 10 unlist tapply 77 1.54

Now we see the nesting of all functions within their parent functions, we see
that tapply is called in line 7 (L7), lapply within tapply, line 8 (L8) is called
from with our function FUN (this is where we set function(X) in tapply, which in
turn calls the function mean and so on). We now can conclude that most time is
spent in the function tapply which calls lapply. And looking further we see that
within lapply a large ammount of time is spent executing the function mean.
Interestingly we also see that mean is the parent function of mean.de fault (and
mean.default is therefore a lower-level function of mean). As we have stated
in 1.4.1, higher level function are easy to use (they do auto-formatting of data,
error checking, and other useful checks). However, these checks can be seen
as overhead that slow down computation, and we can avoid some overhead by
using the lower-level version of mean: mean.default. Lets adapt your previous
code and call mean.de fault directly:

R Example 2.11.

## OnlineRcode31.R

## Less mnaive
fastBoot<-function(x,R){
avg<-mean (x$S)

results<-array(dim=c(R,nlevels(x$site)))

for(i in 1:R){
index<-sample(seq_len(nrow(x)) ,replace=TRUE)
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results[i,]<-tapply(x$S[index],x$site[index],
function(X) mean.default(X)-avg)

}

return(results)

}

# Save the function to a source code file
dump (fastBoot" ,file='fastBoot.R" )

Next lets find out if our code is any faster and, importantly, see if your results
are still the same.

R Example 2.12.

## OnlineRcode32.R

## reload our saved file
source (fastBoot.R" )

set.seed(123) # set seed for results comparison

# Profile the program

Rprof (file=fastBoot.out" ,line.profiling =TRUE)
ResultsFB<-fastBoot (subBioData,subR)

Rprof (append=F)

## test 1f results are equal
all.equal (as.numeric(ResultsNB),as.numeric(ResultsFB))

## TRUE

# make an aprof object
fastBootAprof <- aprof (fastBoot.R" ,'fastBoot.out" )

# Summarize the gains
summary (fastBootAprof)
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R Example 2.13.

## Largest attainable speed-up factor for the entire program
#i#

#i# when 1 line is sped-up with factor (S):

##

##  Speed up factor (S) of a line

## 1 2 4 8 16 S => Inf*x
## Linex: 7 1.00 1.62 2.35 3.03 3.55 4.28

## Linex: 8 : 1.00 1.07 1.10 1.12 1.13 1.14

## Linex: 6 : 1.00 1.05 1.08 1.10 1.10 1.11

## Linex: 4 1.00 1.00 1.00 1.00 1.00 1.00

##

## Lowest attainable execution time for the entire program when
##

## lines are sped-up with factor (S):
#i#

##  Speed up factor (S) of a line

## 1 2 4 8 16

## All lines 15.660 7.830 3.915 1.958 0.979
## Linex: 7 : 15.660 9.660 6.660 5.160 4.410

## Linex: 8 : 15.660 14.670 14.175 13.928 13.804
## Linex: 6 : 15.660 14.870 14.475 14.277 14.179
## Linex: 4 : 15.660 15.650 15.645 15.643 15.641
#it

#it Total sampling time: 15.66 seconds
## *x [Expected improvement at current scaling
## ¢ Asymtotic max. improvement at current scaling

Indeed, by using the lower-level version of mean and we have eliminated some
overhead. We are able to cut the execution time by roughly 50%. However, we
now have to be more cautious, as we are using a lower-level function and these
tend to be less robust. For instance, mean is versitile and can be used on e.g.
dates:

R Example 2.14.

## OnlineRcode34.R

dates<-as.Date(c(02/27/99" , 02/27/91" , 01/14/95" ), %m/%d/%y" )
mean (dates)

## [1] 1995-02-12"

While mean.de fault fails:
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R Example 2.15.

mean.default (dates)
## Warning: argument is not numeric or logical: returning NA

## [1] NA

This illustrates that there are dangers in optimizing code: optimized code
loses generality. Optimized function tend to work on an ever narrowing set of
conditions. This is important to realize as we optimize further, that the number
of problems for which we can use our increasingly faster bootstrap code will now
start to decrease.

We can continue with a final optimization step. The table above shows us
that line 7 is still the slowest line in our program, and that optimization of this
line will likely yield the best returns. Therefore let’s investigate which functions
within line 7 are taking up the most time.

R Example 2.16.

head(targetedSummary (target=7,fastBootAprof,findParent=TRUE), 10)

## Function Parent Calls Time
## 1 tapply L7 599 11.98
## 2 lapply tapply 398 7.96
## 3 split lapply 258 5.16
## 4 split.default split 258 5.16
## 5 as.factor split.default 1256 2.50
## 6 L8 FUN 114 2.28
#H T FUN lapply 107 2.14
## 8 unlist tapply 99 1.98
## 9 mean.default L8 86 1.72
## 10 sort as.factor 49 0.98

We again see the nesting of all functions within their parent functions: tapply
is called in line 7 (L7), lapply within tapply, split within lapply and split.de fault
within split. These are now the functions (within line 7) that take the most
time. Upon investigation we see that they are concerned with ordering our data
into groups, from which we calculate site means. Clearly, it is the grouping of
our pseudo-ecological dataset that is now causing the greatest slowdowns.
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We are using a ”data.frame” to store the data, and in R ”data.frames” are
special forms of lists, that are very useful as they store multiple types of data
(e.g. integers, characters, factors) within one single data.frame. However, this
usefulness seems to come at a costs: before the site means can be calculated
the information in the data has to be extracted out of the data.frame and then
ordered per site. This is slowing things down. To speed-up execution time here,
we could abandon the data.frame class and adopt a N x S matrix, where each
column contains the data for a specific site. This will be quicker as we have
essentially extracted and ordered the relevent information ourselves prior to
staring the bootstrap. We can then calculate means with the highly optimized
function colMeans (see the main document for an example). This is a form
of "memoization”, where we remove the need to repeatedly order and extract
data. This would likely work in this simple example, but not all datasets will
be easily converted to matrices (a matrix can only contain one type of data).
Therefore, if we did this we will make our program far less general.

We have already achieved an impressive speed-up (from 266 seconds to 16)
and therefore we can be confident that we have a sufficiently efficient program in
serial. In the next section (3) we start our final speed-up exercise; running our
code in parallel. One thing to note, as pointed out by an anonymous reviewer
of this document, is that we could replace our function fastBoot with a version
that contains no loops at all:

R Example 2.17.

NoLoopsfastBoot <- function(x, R) {
avg<-mean (x$S)
t(replicate(R, {
index <- sample(seq_len(nrow(x)), replace=TRUE)
tapply (x$S[index], x$site[index],
function(X) mean.default(X)-avg)
19D)

This version is the equivalent of fastBoot, it’s not particulary faster or
slower.

R Example 2.18.

set.seed(123)
system.time (noloops<-NoLoopsfastBoot (x=subBioData,R=100))
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#i# user system elapsed
## 1.604 0.024 1.631

set.seed(123)
system.time (loop<-fastBoot (x=subBioData,R=100))

#i# user system elapsed
## 1.460 0.004 1.466

all.equal(as.numeric(noloops),as.numeric(loop))

## [1] TRUE

However, it has as explicit benefit that you don’t have to worry about pre-
allocation: the R functions used already do this efficiently behind the scences.
This can be an efficient way of programming, though some may find the code
harder to read and less clear.
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3 PARALLEL COMPUTING

Parallel computing divides calculations into smaller problems and solves these
simultaneously using multiple computing elements (hereafter “workers”). Par-
allel computing, once prominently used only in supercomputing (e.g. Hager &
Wellein, 2010), is today commonplace as most desktop computers and laptops
have CPUs with multiple “cores”. Parallel computing has also become rela-
tively straightforward to implement, but is not implemented by default in R
(Knaus et al., 2009). In the next sections we provide an introduction to parallel
programming. The benefits of parallelism can be great, however before imple-
menting parallel-programming or investing in hardware, a handful of basic rules
are worth reviewing.

1.

A common misconception is that when more processes are run in paral-
lel the faster the problem will be solved (Hager & Wellein, 2010). This
misconception is easily seen by applying Amdahl’s Law (Fig. 3 in the
maintext), which shows that the possible speed-up is asymptotically re-
lated to the amount of parallel processes. Even when a large fraction of
the code can be run in parallel the maximum speed-up is limited (and
each additional worker offers diminishing returns). Applying both profil-
ing and Amdahl’s law can identify the optimal amount of parallel processes
beforehand. We provide this functionality in the package aprof.

. Parallel computation incurs overhead. Initializing a parallel computation

takes some time, including communication between devices or across nodes
to copy code and data. When individual jobs are not reasonably intensive
compared to the time it takes to initiate the parallelisation (i.e. the ra-
tio of computation to communication is low), repeatedly starting parallel
threads will deteriorate overall performance. This sometimes means that
one should not use all workers available, especially for smaller repetitive
tasks.

Avoid over-parallelisation, and do not assign more workers than available.
If the machine is used for additional tasks besides calculation, leave some
resources (i.e. physical cores) for other processes. If not, the system may
become unstable.

In most computing devices, memory (RAM) is shared among parallel pro-
cesses (Schmidberger et al., 2009). Therefore, each of N processes running
in parallel will only receive 1/N of the available memory. If memory is not
available within a thread, threads will automatically attempt to “borrow”
memory from another process. While parallel workers wait for memory
to become available, overhead is drastically increased to the point that
execution of the problem in serial may be faster. One can use R functions
as object.size to determine memory usage in an algorithm.

. Independence of random number sequences must be ensured for valid sci-

entific results (e.g. L’Ecuyer, 2012). A crucial consideration when conduct-
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ing operations that rely on random numbers is that all parallel calculations
have unique sequences that will not overlap and can be reproduced. Spe-
cific techniques are available that ensure independence of random number
sequences within R (e.g. L’Ecuyer, 1999, section 3.4)).

3.1 PARALLEL COMPUTING IN R

Programming in parallel in short, involves starting a main process, often called
the parent process, which (1) initializes the calculations, (2) divides them and
sends these as ”jobs” to ”child” processes and (3) waits for the ”child” processes
to return results once they have completed.

R has multiple packages to execute parallel code. These packages include
foreach, multicore and snow to name a few (Weston & Computing, 2013;
Urbanek, 2011; Tierney et al., 2013), and some packages for parallel calculations
on a graphics processing unit or ’GPU” (e.g. gputools Buckner et al., 2013).
In this tutorial we will use the package parallel which is shipped with the core
version of R (since R version 2.14.0). In this document we will focus on parallel
computing on a single machine (i.e. a laptop) with two or more cores (these
techniques will also work on servers with many more cores). We do not focus
on parallel computing via clusters or using several computers connected via
ethernet, though the reader should be aware that these operations are readily
available and easy to implement in R (see e.g. the snow package Tierney et al.,
2013).

Take special care when using programs (e.g. a custom BLAS library, pqR)
that automatically make use of parallel operations, as these can easily cause the
proliferation of jobs far beyond the amount of workers if used within parallel
algorithms.

3.2  PARALLEL CALCULATIONS USING FORKING (UNIX SYSTEMS
INCLUDING MAC)

One of the easiest ways of conducting parallel computations in R is through
forking. However, this can only be done on unix machines (essentially anything
but Windows). In the next section (3.5) we give an example for windows. Win-
dows users should not skip this part, as we address some key issues for parallel
computing. They may, however, skip running most of the code examples. In
these sections, we use so-called implicit parallelism (this is nice as most of the
setup is done by the system and the user does not need to worry about it).
So-called ”explicit parallelism” is also possible in R, and here the user will have
more control over the process. However, we do not discuss explicit parallelism
here. More important considerations for parallel computing are given in the
main document.
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3.3 NUMBER OF WORKERS

One thing that needs to be ensured in parallel computing is that we avoid over-
parallelization. We should not assign more jobs then there are ”workers”, or we
will surely paralyse our code. Therefore it is important to find out how many
physical workers are available (for details see the main document). In R we can
do this using the following code:

R Example 3.1.

require(parallel)
## Loading required package: parallel

ncores<-detectCores ()
print (ncores)

## [1] 8

We see that the computer on which this document was made, has 8 cores.
However we should watch out, as we are working on a multi-threaded machine.
However, we don’t want to use all the cores when running these codes, as we are
using our machine for more than just computation (e.g. writing this document).
This is why we adjust the output of detectCores, below, to ensure we don’t use
all the resources (physical cores and dual-threaded capabilities) for computation.
We do this to ensure stability of the system by leaving enough computing power
for the other things we need to do. If you are using a dedicated machine (e.g.
on a server) you can of course assign all the workers available to you (though
even then it may be smart to leave some idle).

R Example 3.2.

require(parallel)
ncores<-detectCores()/2
print (ncores)

## [1] 4
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3.4 RANDOM NUMBERS

Another thing we need to consider before we start is that bootstrapping relies
on random number generation. We therefore need to ensure that the sequences
of random number generated by R, within each child process, are truly indepen-
dent. We therefore need each parallel stream to have a separate random seed.
We must also consider that not all seeds are equally good as pseudo Random
Number Generators (RNG) - as they are called - are typically also periodic,
meaning that sequences will eventually repeat. If seeds are not chosen well,
streams with each parallel calculation may overlap and will therefore no longer
be independent. Lastly, we would also like our random numbers to be repeat-
able when we keep the same seed. To make sure all this takes place we change
the random number generator in use to the L’Ecuyer RNG (L’Ecuyer, 1999)
with RNGkind(” L' Ecuyer — CM RG”), which is a random number generator
specifically designed for use in parallel computations. This ensures that we will
have independent and reproducible random numbers.

R Example 3.3.

RNGkind (L'Ecuyer-CMRG" )

Now that we know how many workers we have available and we know which
RNG to use, let’s build our first parallel algorithm to test if we can reproduce
random numbers. We will generate random values, in parallel, from a normal
distribution using rnorm. To do this, we will utilize the function mcparallel
in R. You will see that, as we are using "implicit parallelism”, its usage is
remarkably simple. Note that when you build parallel algorithms you should
avoid using any GUI elements (e.g. graph plotting, printing) as they may lead
to problems. The code for windows users is given in 3.5.

R Example 3.4.

require(parallel)

ncores<-2
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children<-vector(1list" , ncores)

# change the random number generator
RNGkind (L'Ecuyer-CMRG" )

## set an wnitial seed
set.seed(20130808)

## The following will make runs from mcparallel reproducible
mc.reset.stream()

## inittalize each child process

for(i in 1l:ncores){
children[[i]l]<-mcparallel (rnorm(4))

}

# collect results
randomnumbers<-parallel::mccollect(children)

Let’s see if we can reproduce these by rerunning the code with the original
seed:

R Example 3.5.

## OnlineRcode44.R

## reset an initial seed
set.seed(20130808)
mc.reset.stream()

## re-initialize each child process

for(i in 1l:ncores){
children[[i]l]<-mcparallel (rnorm(4))

}

## collect results
randomnumbers2<-parallel::mccollect(children)

Now lets see if the random numbers are identical:
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## OnlineRcode45.R

print (randomnumbers)

## $°6598°

## [1] -0.6172 0.1962
##

## $°6599°

## [1] 0.4541 -0.1770

print (randomnumbers2)

## $°6600°

## [1] -0.6172 0.1962
##

## $°6601°

## [1] 0.4541 -0.1770

0.6680 -1.0425

0.3327 -0.4369

0.6680 -1.0425

0.3327 -0.4369

3 PARALLEL COMPUTING

Success! We now know how to conduct a parallel computation via forking,

and ensure we have reproducible results.

problem and see what our gains are.

Let’s apply this to our bootstrap

3.4.1 THE PARALLEL BOOTSTRAPPING ALGORITHM VIA FORKING

Building a parallel algorithm to conduct our bootstrap, will be relatively easy.
However, we will need to find a way to split our calculations. In this case the
most logical place to split the calculations into equal parts would be to divide
the number of re-samples among workers. The following is one way to do this:

R Example 3.6.

## OnlineRcode46.R

subR<-1000

## Set the number of workers we will use

ncores<-3

## Split the jobs

splitR<-table(cut (1:subR,ncores,labels=F))

print (splitR)

##
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## 1 2 3
## 334 333 333

As can be seen, we have now produced an equal split among 3 workers. Next,
let’s start our parallel bootstrap - by sending our (almost) equal job splits to
the different children. As each of the children are independent processes we opt
to not use a profiler to time the execution of this process. Instead we record
the start and end times. The equivalent of the below code for windows users is
given in section 3.5. Note that the windows code is slightly simplier, and also
works well on *unix systems.

R Example 3.7.

## OnlineRcode47.R

## load the parallel package
require(parallel)

## save the start time
tp0 <- structure(.Internal(Sys.time()))

## initialize a list where we can store the id of each child
children<-vector(1list" , ncores)

## send the division of work in splitR to each of the cores
for(i in 1l:ncores){
children[[i]] <- mcparallel(fastBoot (subBioData,
splitR[i]))

}

## Wait for the child processes mamed in "children" to finish
results <- mccollect(children)

## Record end time
tpl <- structure(.Internal(Sys.time()))

## Calculate execution time

tp <- tpl-tpO

Which gives us:

print(tp)
[1] 5.529923
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3 PARALLEL COMPUTING

That’s it. We completed a parallel execution of the bootstrap and the final
execution time of our program was about 5.5 seconds. This means that we
gained a relative speed-up of 280% above our fastest serial code!

3.5 ALTERNATIVE PARALLEL BOOTSTRAPPING ALGORITHM
(INCLUDING WINDOWS)

Adapting the above guidelines for windows is straight forward.

R Example 3.8.

## OnlineRcode48.R
require(parallel)

## number of workers
ncores<-2

## set an original seed
set.seed(20130808)
mclapply(rep(4,ncores) ,rnorm)

## [[1]]

## [1] -0.6172 0.1962 0.6680 -1.0425
##

## [[2]]

## [1]1 0.4541 -0.1770 0.3327 -0.4369

## reset the original seed
set.seed(20130808)
mclapply (rep(4,ncores) ,rnorm)

## [[1]]

## [1] -0.6172 0.1962 0.6680 -1.0425
##

## [[2]]

## [1] 0.4541 -0.1770 0.3327 -0.4369

Again, as in section 3.4, we succeeded in generating repeatable random num-
bers that are independent with each parallel process. Next let’s finish the par-
allel bootstrap for windows. The following deploys the same parallel bootstrap
as we did before:
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R Example 3.9.

## OnlineRcode49.R

## load the parallel package
require(parallel)

##initialize the problem
subR<-1000

## Set the number of workers we will use
ncores<-3

## Split the jobs
splitR<-table(cut(1:subR,ncores,labels=F))

## save the start time
tp0 <- structure(.Internal(Sys.time()))

## send the diviston of work in splitR to each of the cores
results <- mclapply(splitR,function(X)
fastBoot (subBioData,X))

## Record end time
tpl <- structure(.Internal(Sys.time()))

## Calculate execution time
tp <- tpl-tpO

3.6 THE END GAINS

The final question that needs to be answered is, in the end, how much did we
gain when we conduct the full problem? That being 10 000 bootstrap resamples
on the full dataset with 750 000 records. We have summarized the full run time
of each program in table 3.1, here we see that in the end we have sped-up
execution of our problem by a factor of &~ 18.8 (from 1 hour 3 minutes to 3.35
minutes). This is a significant improvement.

3.7 CLOSING REMARKS

Parallel computation via cloud computing and computing clusters are also be-
coming common at many institutions (e.g. Harvard University’s Odyssey Clus-
ter), increasing the value to learn parallelisation techniques for the future. Be-
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Program NaiveBoot LessNaiveBoot DatatableBoot Parallel
Execution 1 hour and 3 38 minutes 12 minutes 3.35 minutes
time minutes

Table 3.1: The end gains. Required execution time for each of the program
versions to conduct 10 000 bootstrap resamples on a dataset of 750 000 records.

yond this, it is now possible for scientists to implement massively parallelised
code on graphics cards (or graphics processing units, GPUs), which have hun-
dreds to thousands of processors, and are relatively cheap (starting at only a
few hundred dollars). New developments, such as the CUDA platform and
programming model (Nvidia, 2007), which enables execution of C, C++ and
Fortran code on GPUs, are freely available to scientists. Such prospects show
that we are only starting to scrape the surface of computationally feasibility.
Most scientists use desktop or laptop computers (Hannay et al., 2009), and in
recent years most of these computers have become capable of parallel computing
(Wilson, 1995). Coincidentally, many computationally intensive problems in
the biological science rely on so-called ‘embarrassingly parallel computations’
(Grama, 2003), where a very large fraction of all calculations can be completed
in parallel. Consequently, parallel computing is potentially the most useful
technique highlighted here for certain problems, and as we show in our here (see
2.1), implementing code in parallel is also one of the simplest ways of speeding
up an analysis. We hope that we have shown here that there is no reason not
to take advantage of all the computing power available at our fingertips today.
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4 BOOTSTRAPPING LARGE DATA IN R

R loads and stores objects in memory, and when an object is comparable in size
to the size of the (virtual) memory, R slows to a crawl. Worse, when a dataset is
larger than the available memory, R will fail to load it. When this happens, one
can either buy more RAM, or use a more memory efficient algorithm (see the
section on ”large data” in the main document for more details). In this section
we give an example on how to implement the previously optimized bootstrap
code in a memory efficient way using a package designed to store objects on hard
drives rather than RAM: package ff (Adler et al., 2014). This package only
”"maps” to the data stored on a disk, and thus it allows working with datasets
that do not fit in memory.

We chose to highlight this package as it is relatively easy in use. For instance,
the data structures it provides behave (almost) like normal R objects (as if they
were stored in RAM), making it more intuitive for R users. In combination with
the package fibase (de Jonge et al., 2014), user have - to a large extent - the
functionality from the R’s base package:

1. support for multiple data types 'double’, ’logical’, 'raw’ and ’integer’ (and
others)

2. basic operators as (4, —, , /, <, >, == and more)

3. basic mathematical functions (sqrt, logl0, log2, loglp, exp, cos, sin, cum-
sum, ete)

4. most data manipulation tools (subset, with, within, table, tabulate, merge,
ffdfdply and more)

5. summary statistics (sum, min, max, range, quantile, hist)

The package also works well with other ”big data” packages as bigglm and ff
files (on the disk) can be shared by multiple ff R objects (in the RAM) making
it possible to exploit parallelism.

Lets start our short example by loading data. As an example we will write our
previously created dataset to the harddrive, and then load it as a ”ff object”.
We can then ilustrate the steps required to ”load” a large dataset into R as
a”flatfile”. Before we start, however, lets see how large our dataset is:

R Example 4.1.

object.size(BioData) [1]/1048600

## [1] 5.776
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We see that BioData is pretty small, only about 6mb, not really a large
dataset but it will suite our purposes for illustration. Next lets write it to the
disk and create a ”ff” object (which creates a accociated "fI” file on the disk).

R Example 4.2.

write.table(BioData, file = biodata.txt" , sep="" , row.names=FALSE)

require (£ff)

require (ffbase)

ffBioData <- read.table.ffdf(file=biodata.txt" ,
sep=" , header=TRUE,
colClasses=c(tumeric" ,‘'factor" ))

Here we use read.table.ffdf to read the semi-colon seperated file from the disk
and create a ff object. Note that we specify the colClasses to ensure the process
of reading and creating the ff object and file goes quicker and smoother. The
function basically reads in the data sequantially in chunks and creates a ff file
(on the disk) which it then links to the R object fiBiodata (in the RAM). The
creation of a ff object may take a long time if your data is really big. Note that
in these cases you can save a ff object for later use with the save. f fdf () function,
so you don’t have to do this everytime. Next, lets see how much smaller the ff
object is in R’s memory:

R Example 4.3.

object.size(ffBioData) [1]/1048600

## [1] 0.06248

It is considerable smaller, but at the same time it "acts” exactly the same as
our object BioData (which is loaded in the memory): we can use many of the
standard R functions normally.
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R Example 4.4.

## OnlineRcodeb.R
dim(ffBioData)

## [1] 750000 2
nlevels(ffBioData$site)
## [1] 1000

max (ffBioData$s)

# [1] 37

quantile (ffBioData$s)

# 0% 25% 50% 75% 100%
## 0 12 15 18 37

The only difference is that in these cases, the data was not read from memory
but sequentially in blocks from the disk. One drawback of this method is that
it is much faster to conduct operations on object that are stored in the memory
(it can be an order of magnitude slower).

R Example 4.5.
## OnlineRcodeb55.R
system.time(replicate(100,mean(BioData$s)))

#i# user system elapsed
# 0.076 0.000 0.078

system. time(replicate(100,mean(ffBioData$s)))

#i# user system elapsed
# 0.788 0.192 0.983

With this in mind, lets continue to the actual implementation of the boot-
strap code. In this example we took care to use common functions from base R
that should be familiar to most. You can go ahead and run this function but
note that it takes some time to complete.
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R Example 4.6.

ffBoot<-function(x,R,N=N){
avg<-mean(x$S)
results<-array(dim=c(R,nlevels(x$site)))

for(i in 1:R){
results[i,]<-sapply(levels(x$site) ,function(X)
mean (x$S [ffBiodata$site==X] [sample(1:N,replace=TRUE)])-avg)

}

return(results)

dump (ffBoot" ,file=ffBoot.R" )

In the above example is a simple implementation of a bootstrap code, how-
ever it is possible to implement more complex versions where the user has much
finer control over the operation of reading the data sequentially from disk. For
instance, using the function ”ffdfdply” we can specify exactly how much data
can be extracted in one chunk and loaded in RAM (using the option BATCH-
BYTES). This could allow one to optimize the function depending on your
machine and data. We refer the reader to the ”ff” and ”ffbase” package man-
uals for greater detail and more examples if more control is needed. However,
as many base functions will already work on ff objects, you now already have
the basic tools to conduct the most common operations in R with this short
tutorial.
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5 EXTENDING R: HIGH PERFORMANCE WITH
COMPILED CODE

Sometimes the only way to make your code run faster is to rewrite it in a lower-
level language. In fact many high-level languages, like R, have modules written
in C or Fortran for greater speed (e.g., R’s vectorised functions). Programs
written in lower-level languages sometimes require more development time and
tend to be more complex to code and debug but when performance bottlenecks
are caused by language limitations (Fig. 1.3), refactoring may be the only
option. In the final sections of this document, we will show you how to make C
do the heavy lifting by extending R with C. This can be a complex operation
for those not too familiar with programming. However, even those with little
programming experience in C should be able to follow the simple examples
outlined here. We do however advise to exapand your experience with C a bit
before trying this on your own examples.

In this section we provide what is hopefully a user-friendly guide to writing
R-extensions in C 7. Before we start with another ecological example, we will
run through the setup of the system and extend the simple example we used in
section 1.3 to C. Readers should take care because calling compiled code from
R can be rough and small errors in your C code may cause R to crash (e.g.
segfaults - or memory access violations - are common). So, do this at your own
risk, and make sure to save crucial analyses and data before you start. We
refer to the ”Writing R Extensions” manual for detailed information 8. All the
examples given below were tested on Windows, Mac and Linux machines.

5.1 GETTING STARTED WITH EXTENDING R
5.1.1 GETTING STARTED UNDER WINDOWS

Unfortunately windows is not the most friendly environment for extending your
R code with C, and you will have to take a few extra steps to get things done
compared with your *UNIX based brethren. Luckily it is not difficult, as the
good people developing R have bundled all the tools you need in one zip-file
"Rtools”, which you will need to download ° and install '°. This installation
contains all the tools you need to build packages and compile C code for use in
R. Once you have downloaded and installed the Rtools, you will need to take
the following steps to change your environment variables. More detailed help

7At the end of this tutorial some readers may wish to try Rccp (Eddelbuettel & Francois,
2011), which is an R-package that attempts to ease the integration of R and C. As we show,
Recep is in no way required to write your own extensions, but for those who feel uneasy with
writing C extensions or require easy transfer of data between R and C, the Rccp package will
provide help.

8http://stuff.mit.edu/afs/sipb/project/r-project/arch/i386_rhel3/1ib/R/doc/
manual/R-exts.html

9http://cran.r-project.org/bin/windows/Rtools/

10the documentation for these tools can be found on this webpage http://cran.r-project.
org/doc/manuals/R-admin.html#The-Windows-toolset
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can be found in the R FAQ !

1. Change your PATH variables properly. To do this in the newer versions
of Windows (e.g. Vista, Windows 7) go to the ’Control Panel’, then click
on ’User Accounts’ and select ’Change my environmental variables’ in the
left panel 2.

2. Now we create a new environment variable with 'Variable name’ PATH.
And set as "Variable value’ the following paths ’...\Rtools\bin;...\Rtools\gcc-
4.6.3\bin;...\R-3.1.0\bin’, where ... refers to the directories on your ma-
chine where Rtools and R is located, respectively. These paths correspond
to the versions of Rtools (31) and R (3.1.0) on our Windows test machine.

3. Restart your computer.

5.2 WRITING C CODE

Providing a comprehensive guide on coding in C is far beyond the scope of this
tutorial. Luckily there are many online resources on C and C++ freely available.
If you are a beginner at C, these guides will help you write simple C and C++
code within only a few hours of self study. This is fortunate, because, as we
will show below, often only very simple programs are needed to speed-up code
considerably. In this tutorial, we will give some basic pointers that should help
to get you started with C code meant for use in R. We will start, step by step,
by rewriting a simplified version of the R code in section 1.3. We use this code
as a means to illustrate the steps you need to take to ”load a dynamic library”
to call C functions from R. It is not an example of typical program that could
benefit from calling C from R (in constrast to the program in section 6).
The code in R looks like this:

R Example 5.1.

SimpleR<-function () {
answer<-numeric (N)
for (i in 1:N) { answer[i]<-(N/(1+N))}
return(answer)

}

Mhttp://cran.r-project.org/bin/windows/base/rw-FAQ. html#
How-do-I-set-environment-variables_003f

12For other versions of Windows see http://cran.r-project.org/bin/windows/base/
rw-FAQ.html#How-do-I-set-environment-variables_003f
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The same function in C looks like this:

R Example 5.2.

/* Rewrite of InterpreterQuirks.R */
void SimpleC(int *nc, double *dnc, double *answerc) {

int n = ncl[0];
double dn = dnc[0];
int i;

for (i=0; i<m; i++){
answerc[i] = (dn/(1+dn));
}

}

Before we can time the execution of the program in C we need to compile it,
load it into R and create a wrapper function. However, before we do so, perhaps
we should provide a very quick run through of the meaning of the different code
elements in C, compared to how we code in R. Those familiar with C, and don’t
feel the need for a short refresher, can skip the next part.

5.2.1 C CODING IN A NUTSHELL

C code is surely different from R, but even with no C experience one should be
able to comprehend exactly what is going on. Therefore, let’s have a look at
the individual elements of the program SimpleC and highlight the differences
with R. In the first line we find a ”preprocessor” directive, the ” #include” part.
This tells the compiler that we want to use functions from the "header files”
called R.h and Rmath.h in our program. Header files are libraries that contain
functions. When coding in C many function are not available by default as in
R, but we can gain access to many C functions by including correct header files
in the first lines of our code. Think of it as loading a package in R. Note that we
don’t need these header files in this example (it will run perfectly well without
it). We just added it as an example to show how you can include functions, even
a bunch of functions you know and love from R, by loading pre-made libraries
in your C functions.

Next we see sections of code between ” /*” and ”*/” | we can use these as we
use # in R code, to comment sections for our convenience. The next important
line is where we start our C function, with ”void”. This line tells the compiler
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that there is a function named SimpleC, with an integer input ”int *nc¢” and
double (i.e. floating point) inputs ” double *answerc” and ” double dnc”, and that
the function should not return anything (”?void”). Usually in C we would start
with something like a main function, for instance the command ”int main()”
would make a function called main that returns an integer. However, R requires
that C functions start with void, as they should not return anything '3. The
operations work by sending an empty vector (e.g. full of zeroes) from R to
SimpleC' called xanswer which is modified by SimpleC. We then access it in
R in its modified state. It is called ”*answer” (not ”answer”) because the 7*”
specifies that it is a pointer, which specifies the location of an R object in the
memory .

We also see that, just as in R, our functions are encapsulated by ”curly
braces” ({ and }) which signal the start and end of functions or ”if” statements.
Inside the ”curly braces”, we see that as in R, input and data are stored in
variables, however, in C one must declare the specific type of each variable
before it is used. As seen above for instance, we create two integers variables
with ”intn” and ”inti”, where we explicitly declare not only the name, but
also the type of data that it will contain (integers, or whole numbers without
decimals). Some basic types include char, int, float and double (char for
characters, int for integers and float and double for numbers with decimals).
We then continue to assign values from the pointers N and dN, and this is
because we need real values for n and N for calculation. Remember that a
pointer only tells us where an R object is in the memory, not its value (and
we can’t really calculate with memory locations of objects). Also, one should
always double check the math in C code, so that we are sure that we are not
dividing a double by an integer (which is why we created double dnc in addition
to int ne in the above example).

One other thing you will notice is that the indexing of vectors starts at 0,
so the first element of a vector V is not found by the command V[1] but with
the command V[0]. In C and C++ vectors always start with 0, this is actually
customary in computer science and many other programming languages (with
R being the odd one in this sense). Next we see that for loops are initiated in
a slightly different fashion with ” for(i = 0;¢ < n;i + +)”. This specifies that
the loop starts its iteration with i = 0 (corresponding to the first element of
the vector), stops when i<n and is incremented at each iteration with 1 (i4++).

.99

Finally, we end each line of code within a C program with a semi-colon ”;

5.3 COMPILING C CODE AND CREATING SHARED LIBRARIES

Now that we have some code written in C, we need to compile it and create a
”shared library” from which it can be dynamically loaded into R. To do this

13This is the case when we use C and .C to call our function, as you will see later in a
slightly more complex version: we can manipulate R objects and return them if we want to.

14Pointers literally ”point” to locations in memory. So the vectors are first created in R,
and then instead of copying every element of a potentially very large vector, we simply pass
its location to the C function and get proceed with our calculations.
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we will need the standard compilers and libraries for our operating system '°.

Windows users will have acquired them in section 5.1.1. Mac users should
download the Xcode application followed by the Command Line Tools package.
Linux users should acquire the correct packages for doing so. On Ubuntu the
correct packages can be installed with:

sudo apt-get update
sudo apt-get install build-essential r-base-dev

In many cases these will be already installed on a *UNIX system, so this
should work without extra effort. Once you are certain all tools are ready, we
can start. One advantageous way to code in C for usage in R, is to do so ”inline”
within your R scripts. This way everything is in one place that needs to be.
One way to code C in R is through using the sink and cat commands. In this
way we use R to create the files.

R Example 5.3.

sink(Simple.c" )

cat ("
/* Rewrite of InterpreterQuirks.R */
void SimpleC(int *nc, double *dnc, double *answerc){

int n = nc[0];
double dn = dnc[0];

int 1i;

for (i=0; i<n; i++){
answerc[i] = (dn/(1+dn));
}

}
"

sink (NULL)

15We need a compiler as it will translate the programs we write into an executable that the
computer can "understand” and execute.
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If you copy and paste the above, you should have a file in your working
directory called ” Simple.c” that has the above c-code as its contents. You can
use the command file.show(”Simple.c’) in R to confirm this. Now that we
have this stored as a file, let us compile it and create a shared object that we
can load in R. Again we can do this from R if we want to (or you can use any
command line tools you have 1. If you are working from the command line,
which may be the easiest approach if you are a Mac user, you can create a shared
library for R by typing (in the directory you saved Simple.c) "R CMD SHLIB
-0 Simple.so Simple.c”. This commands calls R to create shared objects (for
loading into R). It accepts as arguments a list of files with extensions .o .c, .cpp,
and .f (which are object files, C, C++, or FORTRAN sources, respectively).
For more details see the R documentation for writing R extensions '7. We can
do the same from R by invoking the system command (the following code is for
Unix and Mac users further in the document).

R Example 5.4.

system(R® CMD SHLIB -o Simple.so Simple.c" )

When using Windows you should change the ”.so” into ”.dll” or you may
receive a warning:

R Example 5.5.

system(R CMD SHLIB -o Simple.dll Simple.c" )

Now that we have compiled Simple.c into a shared object (Simple.so) or a
”dynamic-link library” (Microsoft’s implementation of shared objects: Simple.dll),
which can be dynamically loaded in R, all we need to do before using it is to
create a wrapper function in R. Crucial components of the wrapper function
are 1) the R function that calls compiled C code .C() and 2) the dyn.load()
function which loads shared objects. A typical wrapper function (in Unix/Mac)
will look like this:

16These tools are included in the Rtools download for Windows see 5.1.1
http://stuff.mit.edu/afs/sipb/project/r-project/arch/i386_rhel3/1ib/R/doc/
manual/R-exts.html
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R Example 5.6.

## OnlineRcode62.R

## change to dyn.load("Simple.dll") when on windows
dyn.load(Simple.so" )

SimpleCWrapper <- function(N){

out <- .C(SimpleC" ,

nc = as.integer(N),
as.double(N),
answer = as.double(rep(0,N))

)

dnc

return(out$answer)

Within the function .C we call our C function SimpleC, followed by all the
commands which need to be passed to it. However, Windows users will have
created a Simple.dll file instead of a Simple.so file, so the wrapper function for
Windows is:

R Example 5.7.

## OnlineRcode63.R
dyn.load(Simple.dll" )
SimpleCWrapper <- function(N){

out <- .C(SimpleC" ,

nc = as.integer(N),
dnc = as.double(N),
answer = as.double(rep(0,N))
)

return(out$answer)

One thing that is very important is that we ensure that the variables we
send to the compiled code correspond exactly to what is expected (e.g. types
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and names), or the code may crash. The final bit of the wrapper organizes the
output of the function and returning what we are interested in. If you change
your C code, always make sure to use dyn.unload to remove it. That’s it! Now
that we have a wrapper function, we are ready to test it:

R Example 5.8.
## OnlineRcodeb4.R
system. time (Canswers<-SimpleCWrapper(le6))

#i# user system elapsed
# 0.000 0.004 0.007

system. time (Ranswers<-SimpleR(1e6))

#i# user system elapsed
## 1.332 0.000 1.335

identical (Canswers,Ranswers)

## [1] TRUE

We see that we have succesfully called a C function from R that gives us
identical results to our R-version. Now that we have all the tools to extend R,
we can start with a more serious example.
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6 CALLING C FROM R: OPTIMIZING A POPULATION
MODEL

In the next and final section, we will apply all skills we learned so far to a
practical problem in ecology and evolution: a stochastic population model. As
specified in the general guidelines in section 1.2, we will start with slow code,
then apply profiling, optimize our function first fully in R and only then continue
towards compiled code. This is always the recommended approach (Wilson
et al., 2012), for any optimization problem.

6.1 A STOCHASTIC 2-SPECIES POPULATION MODEL

We will start by building a simple model of the population dynamics of two
species which compete for a common resource, where competition and growth
rates are subject to random stochastic environmental variation. The equations
describing the competitive dynamics are given by a standard Lotka-Volterra
2-species competition model:

o (- ()
ar - K

e (- ()
a7 K '

Here, (1) and (z2) are the (populations) densities of species 1 and 2 respec-
tively, aqs is a competition coefficient, representing the competitive effect of
species 2 on species 1 (1) and ag; represents the effect species 1 has on species
2. In this version we will assume that each species has its own growth rate r; or
r9, but that the two species have equal constant carrying capacity (K). Growth
rates and competition coefficients are distributed as follows:

(6.1)

r1 ~ norm(uy,o1)
ro ~ norm(us, o2)
Qg ~ nOTm(ulz, 012)

Qa1 ~ TlO?”m(,uzl, 021)

(6.2)

Let us imagine that our goal would be to follow the population changes
of these two species on an evolutionary time scale, say 1 million generations.
Therefore, before we continue to translate this population model into R, let’s
first setup some constants and parameters. We will set the simulation time, N,
initially to 1% of our goal of 1 million, so we can rapidly profile our code.

R Example 6.1.
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## OnlineRcode65.R

## Simulation time
N <= 10000

Next we need to set the model parameters: mean competition coefficients,
variances and carrying capacity.

R Example 6.2.

## OnlineRcode66.R

alpha.means<-c(1.29,1.29)
alpha.sd<-c(0.01,0.01)
r.means<-c(1.03,1.03)
r.sd<-c(0.01,0.01)
CarryingCapacity<-1000

Now let’s define a population model, at first crudely and naively coded.

R Example 6.3.

## OnlineRcode67.R

NaiveLotka<-function(T =N,
am = alpha.means,
as = alpha.sd,
rm = r.means,
rs = r.sd,
K = CarryingCapacity){

pop<-data.frame(SP1=1,5P2=1,time=1)
for(i in 2:T){
SP1<-pop$SP1[i-1]*rnorm(1,rm[1] ,rs[1])=*
(1-(pop$SP1[i-1]+(rnorm(1,am[2] ,as[2])*pop$SP2[i-1]))/K)
SP2<-pop$SP2[i-1]*rnorm(1,rm[2] ,rs[2])*
(1-(pop$SP2[i-1]+(rnorm(1,am[1],as[1])*pop$SP1[i-11))/K)
pop<-rbind(pop,c(SP1,SP2,1i))

}

return(pop)
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}

## Save the function to a source code file for profiling
dump (WaiveLotka" ,file=WaiveLotka.R" )

With the model function NaiveLotka defined, we can profile the code as
we did earlier to find bottlenecks. At each optimization step we compared the
results to earlier versions to ensure that these were correct (see fig. 6.4). To
do this remember to set the same random seed every time before executing the
program (use set.seed).

R Example 6.4.

## OnlineRcode68.R

## reload our program so everything matches up exactly
source(NaiveLotka.R" )

## Switch on R's profiler
Rprof (file=NaiveLotka.out" ,line.profiling =TRUE)

## Set seed so we can reproduce our resulst
set.seed (1)

## Run NaiveLotka to start our simulation
ResultsNaive<-NaiveLotka()

## stop profiling

Rprof (append=F)

After profiling the NaiveLotka function, let’s first plot the execution density
of each code line to find the rough bottlenecks. See figure 6.1 for the details.

R Example 6.5.

## OnlineRcode69.R

## Load Amdahl's profiler
require (aprof)
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NaiveLotkaAprof <- aprof(NaiveLotka.R" ,NaiveLotka.out" )

plot(NaiveLotkaAprof)

NaivelLotka.R Density in execution time(s)
0 2 4 6
L 1 1 ]
1 Naivelotka <— .
2 function(T =N, .
3 am = alpha.means, 5
4 as = alpha.sd, 5
5 rm =r.means, o
6 rs =r.sd, o
7 K = CarryingCapacity){ .
8 .
9 pop<-data.frame(SP1=1,SP2=1 time=1) .
10 for(iin 2:T){ .
1 SP1<—pop$P1[i-1]*rnorm(1,rm[1],rs[1])* —
12 (1=(pop®P1[i—1]+(rnorm(1,am[2],as[2])*popSP2[i-1]))/K) O
13 SP2<—pop$P2[i-1]*rnorm(1,rm[2],rs[2])* —

14 (1-(pop$HP2[i—1]+(rnorm(1,am[1],as[1])*popSP1[i—1]))/K) o
15 pop<-rbind(pop,c(SP1,SP2,i))

16} .
17 o
18  return(pop) .
19 } .

Figure 6.1: The time spent executing each line of the program NaiveLotka. We
clearly see that the inefficient operations associated with growing the data.frame
(line 15 of the code) are taking most of the system’s resources.

Next let’s find out whether optimization in theoretically worthwhile:
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6 CALLING C FROM R: OPTIMIZING A POPULATION MODEL

## OnlineRcode71.R

summary (NaiveLotkaAprof)

##
#i#
##
#i#
##
#i#
#i#
##
#i#
##
#i#
##
#i#
##
#i#
##
#i#
#i#
##
#i#
##
#i#
##
#i#

Largest attainable speed-up factor for the entire program

when 1 line is sped-up with factor (S):

a line
4

2.59
1.08
1.06

= = W

16 S —> Infx*x
52 4.30 5.51
09 1.10 1.11
07 1.08 1.09

Lowest attainable execution time for the entire program when

lines are sped-up with factor (S):

4

2.340
3.615
8.685
8.805

Speed up factor (S) of
1 2
Linex: 15 : 1.00 1.69
Line*x: 13 : 1.00 1.05
Linex: 11 1.00 1.04
Speed up factor (S) of a line
1 2
A1l lines 9.360 4.680
Line*x: 15 : 9.360 5.530
Line*x: 13 : 9.360 8.910
Linex: 11 9.360 8.990
Total sampling time:

9.36

8 16

1.170 0.585
2.657 2.179
8.572 8.516
8.712 8.666

seconds

* Expected improvement at current scaling
** Asymtotic max. improvement at current scaling

The combination of the output from Fig. 6.1 and the table returned by aprof

show clearly that 1) most time is spent in line 15, and 2) that optimization of
line 15 is worthwhile. Hence we should stop growing data.frames with the rbind
function. Therefore, let us improve our code.

R Example 6.7.

## OnlineRcode72.R

N=10000
#start with pre-allocating the end results in the memory
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population <- data.frame(SPl=numeric(N),SP2=numeric(N),T=1:N)
#set initial population
population[1,] <- c(1,1,1)
#define new function
LessNaiveLotka<-function( T =N,
pop = population,

am = alpha.means,

as = alpha.sd,

rm = r.means,

rs = r.sd,

K = CarryingCapacity){

for(i in 2:T){
pop$SP1[i]<-pop$SP1[i-1]*rnorm(1l,rm[1],rs[1])*
(1-(pop$sP1[i-1]+(rnorm(1,am[2] ,as [2])*pop$SP2[i-1])) /K)

pop$SP2[i]<-pop$SP2[i-1]*rnorm(1,rm[2] ,rs[2])*
(1-(pop$sSP2[i-1]+(rnorm(1,am[1] ,as[1]) *pop$SP1[i-1]1)) /K)
}

return (pop)

}

## Save the function to a source code file
dump (LessNaiveLotka" ,file=LessNaiveLotka.R" )

Now if we profile our new function LessNaiveLotka (go ahead and try it),
and plot the output we will see that first we have reduced execution time by
approximately 50%, and that most time is now spend within the actual calcula-
tions of competition. To be precise, most time is spend in lines 11 and 14. The
output from the aprof function also suggests that focusing on optimizing both
these lines would be worthwhile. However, as we can see (in fig. 6.2) there are
many functions within these lines. So which one is hogging our resources? To
find out, we can use the function targetedSummary from the package aprof
on lines 11 and 14.

R Example 6.8.

## OnlineRcode74.R

source(LessNaiveLotka.R" )
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LessNaivelotka.R Density in execution time(s)

00 02 04 06 08 1.0 1.2
1 1 1 1 1 1 ]

1 LessNaivelotka <— .
2 function(T =N, O
3 pop = population, .
4 am = alpha.means, .
5] as = alpha.sd, 5
6 rm =r.means, o
7 rs =r.sd, .
8 K = CarryingCapacity){ .
9 .
10 for(iin 2:T){ R
11 pop®P1[il<—popHP1[i-1]*rnorm(1,rm[1],rs[1])*
12 (1-(pop$P1[i-1]+(rnorm(1,am[2],as[2])*popSP2[i—1]))/K) .
13 .
14 pop®P2[il<—popHP2[i-1]*rnorm(1,rm[2],rs[2])*
15 (1=(pop$HP2[i-11+(rnorm(1,am[1],as[1])*popHP1[i—1]))/K) o
16} o
17 .
18 return(pop) .
19 } o

Figure 6.2: The time spend executing each line in our improved program Less-
NaiveLotka. Now we see that most time is spend in lines 11 and 14. However,
which functions are taking up most of the execution time within these lines?

Rprof (file=LessNaiveLotka.out" ,line.profiling =TRUE)

set.seed(1)

ResultsLessNaive<-LessNaiveLotka()
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Rprof (append=F)

R Example 6.9.

## OnlineRcode75.R

## Read in profiler output, and create aprof class
LessNaiveLotkaAprof <- aprof(LessNaiveLotka.R" ,LessNaiveLotka.out" )

## take a closer look at lines 11 and 14
targetedSummary (target=11,LessNaiveLotkaAprof)

## Function Calls Time
## 1 $.data.frame 30 0.60
## 2 [L 27 0.54
## 3 [[.data.frame 25 0.50
## 4 %in% 15 0.30
## 5 match 8 0.16
## 6 <Anonymous> 4 0.08
## 7 rnorm 4 0.08
## 8 all 3 0.06
## 9 $<-.data.frame 3 0.06
## 10 .subset2 2 0.04
## 11 * 1 0.02
## 12 .External 1 0.02
## 13 nargs 1 .0.02
## 14 sys.call 1 0.02

targetedSummary(target=14,LessNaiveLotkaAprof)

## Function Calls Time
## 1 $.data.frame 34 0.68
## 2 [C 29 0.58
## 3 [[.data.frame 27 0.54
## 4 %in% 11 0.22
## 5 match 9 0.18
## 6 rnorm 5 0.10
## 7 <Anonymous> 4 0.08
## 8 .External 4 0.08
## 9 $<-.data.frame 2 0.04
## 10 sys.call 2 0.04
## 11 all 1 0.02
## 12 NROW 1 0.02

Now we can narrow down on the slowest part of our program LessN aiveLotka.
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We see that the operations surrounding our choice of data format are slowing
things down. Just as was the case in section 2.1 our choice for using data. frame
is causing us trouble. Remember that dataframes in R are very useful for storing
multiple type of data (e.g. integers, characters, factors etc.). However we don’t
really need this functionality of a dataframe because we only use one type of
data in this simulation. We can therefore switch to a far more efficient way of
storing a single data type: matrices. Our code will require only a few changes:

R Example 6.10.

## OnlineRcode76.R

## swithing from data.frame to a matrizc
population <- matrix(c(numeric(N),numeric(N),1:N),ncol=3,nrow=N,byrow=F)

## set initial population
population[1,] <- c(1,1,1)

MatrixLotka<-function(T=N,
pop=population,
am=alpha.means,
as=alpha.sd,
Irm=r.means,
rs=r.sd,
K=CarryingCapacity){

for(i in 2:T){
popli,1]1<-popli-1,1]*rnorm(1,rm[1],rs[1])*
(1-(pop[i-1,1]+(rnorm(1,am[2] ,as[2])*pop[i-1,2]))/K)
popli,2]<-popli-1,2]*rnorm(1,rm[2] ,rs[2])*
(1-(pop[i-1,2]+(rnorm(1,am[1],as[1])*pop[i-1,1]1))/K)
}

return(pop)

}

## Save the function to a source code file
dump (MatrixLotka" ,file=MatrixLotka.R" )

Next we quickly find out how much we have gained, by profiling again.

R Example 6.11.

## OnlineRcode77.R
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## reload our program so everything matches up exzactly
source (MatrixLotka.R" )

## Load Amdahl's profiler
require (aprof)

## Switch on R's profiler
Rprof (file=MatrixLotka.out" ,line.profiling =TRUE)

## reset seed and start simulation
set.seed(1)

## Run MatrizLotka
ResultsMatrix<-MatrixLotka()

## stop profiling
Rprof (append=F)

R Example 6.12.

## OnlineRcode79.R

## See what the potential returns of optimization are
MatrixLotkaAprof <- aprof(MatrixLotka.R" ,MatrixLotka.out" )
summary (MatrixLotkaAprof)

## Largest attainable speed-up factor for the entire program
##

#it when 1 line is sped-up with factor (S):

##

##  Speed up factor (S) of a line

#i# 1 2 4 8 16 S —-> Infx*x*

## Linex: 14 : 1.00 1.33 1.60 1.78 1.88 2.00

## Linex: 11 : 1.00 1.24 1.41 1.52 1.57 1.64

##

## Lowest attainable execution time for the entire program when
##

#it lines are sped-up with factor (S):
##

##  Speed up factor (S) of a line

#i# 1 2 4 8 16
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MatrixLotka.R Density in execution time(s)

0.00 0.05 0.10 0.15
L | | |

1 MatrixLotka <— o
2 function(T=N, o
3 pop=population, o
4 am=alpha.means, o
5 as=alpha.sd, .
6 rm=r.means, a
7 rs=r.sd, o
8 K=CarryingCapacity){ 5
9 .
10 for(iin 2:T){ o

11 popli,1]<—pop[i-1,1]*rnorm(1,rm[1],rs[1])*
12 (1=(pop[i-1,1]+(rnorm(1,am[2],as[2])*pop[i-1,2]))/K) .

14 popli,2]<—pop[i-1,2]*rnorm(1,rm[2],rs[2])*
15 (1=(popl[i-1,2]+(rnorm(1,am[1],as[1])*pop[i-1,1]))/K) 5

16} .
17 .
18  return(pop) N
19 } .

Figure 6.3: The time spent executing each line of our program MatrixLotka.
The program has been sped up considerably, but again most time is spent in
lines 11 and 14.

## All lines 0.3600 0.1800 0.0900 0.0450 0.0225
## Linex: 14 : 0.3600 0.2700 0.2250 0.2025 0.1913
## Linex: 11 : 0.3600 0.2900 0.2550 0.2375 0.2287
##

## Total sampling time: 0.36 seconds

## * Expected improvement at current scaling

## *x Asymtotic max. improvement at current scaling

We see that these simple changes have sped-up our code by a whopping
speed-up factor of 18 compared to the previous version! Clearly, choosing the
correct way to store data and simulation results is something one should always
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consider. At this point our program is already quite efficient and would likely
suit most purposes. However, for the sake of the exercise, let us continue to see
if the calculations can be further optimized. If we plot the execution time per
line of code, we again see in Fig. 6.3 that most time is spent executing lines 11
and 14. However, as these lines contain too many functions to easily identify
the slowest parts, we will again look at these lines in detail. In the below code
we use the function readLineDensity from aprof as an automatic way to find
the two lines with the most calls (which on our laptop was 11 and 14).

R Example 6.13.

LineDens<-readLineDensity(MatrixLotkaAprof)

TopLines<-LineDens$Line.Numbers [order (1/LineDens$Call.Density) ]

targetedSummary (target=TopLines[1] ,MatrixLotkaAprof)

i Function Calls Time
##t 1 rnorm 6 0.12
## 2 .External 2 0.04

targetedSummary (target=TopLines [2] ,MatrixLotkaAprof)

## Function Calls Time
## 1 .External 3 0.06
## 2 rnorm 3 0.06

Now we see something interesting, the profiler has only sampled the ”call
stack” - the list of active R functions - a handful of times (as can be seen in the
number of calls). This is because our programs executes too fast, we therefore
don’t have a decent view on what is taking most of the time. Depending on
the speed of your machine you may even get an error returned, which relates
from the program running so fast that no samples were made by R’s profiler.
There are two solutions to this; 1) increase the sampling interval in Rprof or
2) increase the simulation size. Let us do the latter to get a better picture of
what is going on.

R Example 6.14.
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## Rerun with more simulations so we get enough samples.
N=100000

## Pre-allocate
population <- matrix(c(numeric(N),numeric(N),1:N),
ncol=3,nrow=N, byrow=F)

## Set initial population
population([1,] <- c(1,1,1)

## Reset seed and start stmulation
set.seed (1)

## Switch on R's profiler
Rprof (file=LongMatrixLotka.out" ,line.profiling =TRUE)

## Run MatrizLotka
ResultsMatrix<-MatrixLotka()

## Stop profiling
Rprof (append=F)

Take a look again:

R Example 6.15.

## OnlineRcode82.R

## make aprof object
LongMatrixLotkaAprof <- aprof(MatrixLotka.R" , LongMatrixLotka.out" )

## Calculate line denstity
LineDens <- readLineDensity(LongMatrixLotkaAprof)

## sort line numbers descending
TopLines <- LineDens$Line.Numbers[order(1/LineDens$Call.Density)]

## take a closer look
targetedSummary(target = TopLines[1], LongMatrixLotkaAprof)

## Function Calls Time
## 1 rnorm 38 0.76
## 2 = 3 0.06
## 3 + 3 0.06
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## 4 * 2 0.04
## 5 / 10.02

targetedSummary(target = TopLines[2], LongMatrixLotkaAprof)

## Function Calls Time
## 1 rnorm 28 0.56
## 2 = 2 0.04
## 3 * 1 0.02

The program now takes slightly longer to finish, and so we have more samples
to determine what functions are consuming the most resources in lines 11 and
14. In this case, slow downs are now caused by basic operators in R, —, +, (),
and random number generation (rnorm). Usually these operators are very fast,
at least when we use these in a vectorized fashion.

In this example the change of the population depends on its previous state,
which must be calculated first, so we can’t avoid the loop. However, since the
distributions of the random numbers do not depend on the population state,
the calls to rnorm() can be vectorized, which does speed up the simulation
somewhat.

R Example 6.16.

## OnlineRcode83.R

MatrixLotka2 <- function(T = N, pop population, am = alpha.means,
as = alpha.sd, rm = r.means, rs = r.sd, K = CarryingCapacity) {

rl <- rnorm(T, rm[1], rs[1])
al <- rnorm(T, am[1], as[1])
r2 <- rnorm(T, rm[2], rs[2])
a2 <- rnorm(T, am[2], as[2])

for (i in 2:T) {
popli, 1] <- popli -
(a2[i] * popli -

[

, 11 * r1[i] * (1 - (popli - 1, 1] +
, 21))/K)

=

[y

popli, 2] <= popli - 1, 2] * r2[i] * (1 - (popl[i - 1, 2] +
(a1[i] * popli - 1, 11))/K)
}

return (pop)
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If more speed-up is needed, the only thing left to do is to drop towards a
lower-level and compiled language (i.e. creating our own vectorized function).
This is exactly what we will do in the next section.

6.2 THE FINAL STEP: THE POPULATION MODEL IN COMPILED
CODE

In the example in section 5.2 we made a very simple C program which we called
in R with the function .C'. Using the .C function was traditionally the way to
call C code in R, in this our final optimization step, we will however use R’s .Call
functionality ®. You can think of .Call as the more sophisticated nephew of
.C', which allows you do to much more within your C functions. In fact it allows
a user to write C code using internal R data structures. Through the .Call
interface, we can pass R objects directly to C, manipulate them, use functions
to extract the information from them, return them to R, even create R objects
in C and finally call R functions from C to use on our R object directly *°. If one
needs this functionality .Call is the way to go. However, the drawback is that
it is more complex than using the .C interface. Therefore, before we continue
to produce a replacement compiled code for our population model in R, we will
first discuss some basic aspects. If any further questions arise on this issue we
advise readers to consult the official ” Writing R Extensions” manual 2°.

6.2.1 WORKING WITH R OBJECTS

Programming C code for usage via .Call is very similar to programming for
the .C interface, but there are some clear differences. First, we need to call a
specific header file, Rinternals.h, which includes definitions for using R’s inter-
nal structures (in short ”the low level coding” behind R objects and variables)
21, We will need this to create and manipulate R objects in C. Next thing to
know is that functions used with .C'all should always accept and return SEX Ps
(SEXP stands for 7S Expression” and is a structure originally defined by the
R developers). Remember that in our previous example in 5.2 our C function
started with void, which meant that the function did not return anything. Now,
as we need to return a SEX P, all our C functions should therefore start with
SEXP, as follows:

R Example 6.17.

181t is strongly recommended to always start writing in pure R, then .C' and then .Call.

19There are a couple of extra reason .Call would be preferred above .C, for instance when
manipulating character vectors. See the ”Writing R Extensions” manual for more examples:
http://cran.r-project.org/doc/manuals/R-exts.html

20http://cran.r-project.org/doc/manuals/R-exts.html.

21Readers who would like more information should consult http://cran.r-
project.org/doc/manuals/R-ints.html.
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/* Rcode72.R */

SEXP OurCFunction(SEXP A, SEXP B, SEXP N) {

After loading some key header files, our functions start with SEX P and all
inputs (A, B and N) are also declared as SEX P. We include the Rinternals.h
header file (which is crucial for manipulating R internal structures) while the
other header files (Rmath.h, R.h) include functions that we will use later. More
information on all the header files available can be found here 22. The next step
is to put some operations into our C function. We will do this in the following
two sections, where we will pass R objects to C, create R objects in C, return
them to R and dabble with random numbers. After that we will have all the
information we need to create our population model in C.

6.2.2 SEXPTYPES

Before we can pass R objects to C and create them in C, we need to know a
little more about the different types of SEX Ps. Table 6.2.2, shows a selection of
some common data variables as they are known in R, C and their SEXPTY PE
equivalents. We will now use these in a C function below.

R Example 6.18.

/* Rcode73.R */

2?http://cran.r-project.org/doc/manuals/R-exts.html#0rganization-of-header-files.
- Note that by reviewing the source code of a header file, one can also find out which functions
are available.
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SEXP OurCFunction(SEXP A, SEXP B) {

/* assign pointers to R objects */
double *a=REAL(A);
double *b=REAL(B);

/* creat new R objects in C for result storage. */
SEXP RESULT;

/* protect and allocate R objects in C. */
/* and assign pointer. */

PROTECT (RESULT=allocVector (REALSXP,1)) ;
double *result=REAL(RESULT);

/* unprotect R objects in C. */
UNPROTECT (1) ;

/* return our results to R */
return RESULT;

}

Here we see a few new commands. First you will notice the ”vector accessors”
functions/MACROS (REAL, INTEGER)?® which do what you expect, they
access R objects of the same type. You will need to call them every time you
want to access an R object (of the same type). This can get messy, as a bunch of
REAL calls repeated every time we handle an R object won’t improve legibility.
A way around this is use pointers, as we do above.

Another important consideration is that after we create a variable in our C
code (with SEX Presults) , we assign its type and size with allocVector(REALSX P, n)
2 within the PROTECT function. This is because we are now working at
such a low-level that we have to worry about housekeeping. That is R fre-
quently checks if allocated memory is not being used, and then marks it as
as re-usable, in a process called garbage collection 2°. We have to actively
protect our new R objects from garbage collection. An important rule is that
before we return our results, all the PROTECT's called must be balanced with
calls to UNPROTECT. Therefore, if we protect ten objects, we must call
UNPROTECT(10) before returning anything.

23http://cran.r-project.org/doc/manuals/r-release/R-exts.html# Vector-accessor-functions
24There are more commands, such as allocMatrix. We refer readers to the ”Writing R
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R type C equivalent SEXPTYPE
character char STRSXP
integer int INTSXP

logical | int (bool in C99) LGLSXP
numeric double REALSXP

Table 6.1: This table was adapted from a more complete set on http://cran.
r-project.org/doc/manuals/R-exts.html#Details-of-R-types.

6.2.3 RANDOM NUMBER GENERATORS

The R random number generators and and many probability distribution are
callable from C 26. This is an immensely useful feature for our stochastic pop-
ulation model. A key thing to remember when using the R random number
generators is that we have to call GetRNGstate() and after values have been
generated, call PutRNGstate(). These functions respectively read (or create)
the random seed (the ”.Random.seed” in R) and update it after use. Note that
when one uses R’s rnorm or any other rxxxx (random number) functions, as we
do below, should also be enclosed in calls to GetRNGstate and PutRNGstate.
A range of distribution functions are available 27, along with the mathematical
functions 2® and mathematical constant 2° required to create custom proba-
bility density functions. Note that these familiar distribution functions only
become available by including the header file Rmath.h. Including this in our
above example code we now have:

R Example 6.19.

/* Rcode74.R */

SEXP OurCFunction(SEXP A, SEXP B) {

/* assign pointers to R objects */
double *a=REAL(A);

Extensions” manual
25http://cran.r-project.org/doc/manuals/R-exts.html#Garbage-Collection.
26see http://cran.r-project.org/doc/manuals/R-exts.html#Random_number_generation
2"http://cran.r-project.org/doc/manuals/R-exts.html#Distribution-functions
28nttp://cran.r-project.org/doc/manuals/R-exts.html#Mathematical-functions
29nttp://cran.r-project.org/doc/manuals/R-exts.html#Mathematical-constants
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double *b=REAL(B);

/* creat new R objects in C for result storage. */
SEXP RESULT;

/* protect and allocate R objects in C. */
/* and assign pointer. */

PROTECT (RESULT=allocVector (REALSXP,1));
double *result=REAL(RESULT);

/* use rnorm, in which we update the random number generator statex/
GetRNGstate();

result[0] = rnorm(al[0],b[0]);
PutRNGstate();

/* unprotect R objects in C. */
UNPROTECT (1) ;

/* return our results to R */
return RESULT;

}

The next steps are to compile this code and create a shared object. Then we
load it in R to see if it works. After saving the above file as ” OurCFunction.c”,
we ran this from the R console:

R Example 6.20.

## OnlineRcode87.R

## create shared object, windows users should remember
## to use OurCFunction.dll
system(® CMD SHLIB -o OurCFunction.so OurCFunction.c" )

## load shared object
dyn.load(OurCFunction.so" )

## set seed
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set.seed(1)

.Call(DurCFunction" ,A = as.double(0),B = as.double(1))

## [1] 0.4608

set.seed (1)
rnorm(1)

## [1] 0.4608

And that is it: we created our first C function in which we handled an R
object, created R objects and used the random number generator. However,
in the end, basically what we have done is create a less robust and less useful
version of rnorm, which is a pretty useless accomplishment. Therefore why
don’t we continue with a more useful exercise, our population model.
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6.2.4 THE FINAL MODEL

Without any further delay, let’s use all our new knowledge on the .Call interface
and translate our model in C. The full model in C, coded ”in line” for use in R,
is:

R Example 6.21.

## OnlineRcode89.R

/*Stochastic Lotka example in Cx*/
#include <R.h>

#include <Rmath.h>

#include <Rinternals.h>

SEXP lotkac(SEXP time, SEXP alphamean, SEXP alphasd,
SEXP rmean, SEXP rsd, SEXP K)

{

int n=length(time);
int i;

/* creat new R objects in C. */
SEXP P1, P2, result;

/* protect and allocate R objects in C. */
PROTECT (P1=allocVector (REALSXP,n)) ;
PROTECT (P2=allocVector (REALSXP,n)) ;

/* set list that returns results to R/
PROTECT (result = allocVector (VECSXP, 2));

/* assign pointers to R objects */
double *pl1=REAL(P1);

double *p2=REAL(P2);

double *am=REAL (alphamean) ;

double *as=REAL(alphasd) ;

double *rm=REAL(rmean) ;

double *rs=REAL(rsd);

76



6 CALLING C FROM R: OPTIMIZING A POPULATION MODEL

double *k=REAL(K);
double R, A;

/* set initial population sizesx*/
p2[0]=1.0;
pl1[0]=1.0;

for(i=1; i<m; i++) {
/* actual simulation, in which we update the random number generator*/

GetRNGstate();
R = rnorm(rm[0],rs[0]);
PutRNGstate() ;
GetRNGstate();
A = rnorm(am[1],as[1]);
PutRNGstate();

pi[il = pili-1] * R *(1-(p1[i-11+(A*p2[i-11))/k[01);

GetRNGstate();
R = rnorm(rm[1],rs[1]);
PutRNGstate();
GetRNGstate();
A = rnorm(am[0],as[0]);
PutRNGstate() ;

p2[i] = p2[i-1] * R *(1-(p2[i-1]+(A*p1[i-1]))/k[0]);

}

/* unprotect R objects in C. */

SET_VECTOR_ELT (result, 0, P1);
SET_VECTOR_ELT (result, 1, P2);
UNPROTECT (3) ;

return result;

}

We saved the above code as ”lotka.c” in our working directory. Most of the
above code should be familiar by now, but we included a few new pieces of code.
The first we see is length(time), which returns the length of SEXP time, length()
is one of the many useful R function we can call in C (when we include the
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correct header files 3°). We also see the statement results alloc Vector(VECSXP,
2), with this we define a new SEXP 3! as list, with which we are able to return
multiple results. We use this to return both population vectors, P1 and P2,
specifying the population state at each time step by setting them as objects in
the list results. This is done with the command SET-VECTOR_ELT (result, 0,
P1) and SET_-VECTOR_ELT(result, 0, 21). These set P1 as the first element
of the list and P2 as the second. Next, let’s continue by executing (e.g. ”copy
and pasting”) the above into R. We now should have a file called lotka.c in
our working directory. We can now compile our program, and create a shared
object.

R Example 6.22.

system(® CMD SHLIB -o lotka.so lotka.c" )

Again, don’t forget to change lotka.so to lotka.dll in 2 places in the above
code if you are a Windows user. We then load our shared object, and create
a more user friendly wrapper function. Finally, we time it to see what all the
effort has gained us.

R Example 6.23.

dyn.load(lotka.so" )

LotkaCWrapper<-function(time=1:N,alphamean=alpha.means,
alphasd=alpha.sd,rmean=r.means,rsd=r.sd, K=CarryingCapacity)

{

out <- .Call(lotkac" ,
time=as.double(time),
alphamean=as.double(alphamean) ,
alphasd=as.double(alphasd),
rmean=as.double(rmean),
rsd=as.double(rsd),

30Functions can be found by searching through the source code of the different header files,
by looking through C code written by the R developers or by reading the manual - see e.g.
http://cran.r-project.org/doc/manuals/R-exts.html#Utility-functions

31See  for more types http://cran.r-project.org/doc/manuals/R-exts.html#
Details-of-R-types
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Program NaiveLotka MatrixLotka  LotkaCWrapper
Execution 18 hours and 28.7 seconds 4.6 seconds
time 24 minutes

Table 6.2: The end gains. Required execution time for each of the previously
defined programs to conduct a single simulation of the stochastic Lotka-Volterra
population model over 1 million generations.

K=as.double (K))

return(out)

set.seed (1)

N=10000

LotkaCT<-system.time(
ResultsC <- LotkaCWrapper ()
) [3]

print (LotkaCT)

## elapsed
##  0.009

We see that when N is 10000, using C proved to be * 34 times faster than
our most efficient R program. When comparing it to our inefficient first naive R
code, we actually sped things up by a factor 1016 times! This a serious speed-
up, that show that exactly the same results are possible in only a fraction of
the time (see Fig. 6.4).

6.3 THE END GAINS

We have gone through much effort to optimize our code, so lets see if it was
worth it. Table 6.2 below shows the benchmark results when executing the
full problem (our model for 1 000 000 years) for our code versions NaiveLotka,
MatrixLotka and our final C version called through LotkaCWrapper.

In the end we gained a spectacular improvement above our original code for
the full problem, with the C version finishing within 4.6 seconds compared to
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Figure 6.4: The results for all four version of our population model, the panels
A,B,C and D show the results from NaiveLotka, LessNaiveLotka, MatrixLotka
and LotkaC(Wrapper) respectively. The green and red lines indicate the popu-
lations for species 1 and 2. We see that in each different version of our program
the results are identical and reproducible. The only thing that differs greatly is
the time you need to wait to get these results.

18.4 hours for the pure R version. That is a speed-up factor of more than 14 000!
Regardless of the C execution we also see that by applying a simple corrections
to our code (pre-allocating data and using an appropriate data storage class:
matrix), we already went from 18.4 hours to 28.7 seconds. This really shows
that learning how to program and efficiently is worthwhile: non-trivial gains in
efficiency are possible with relatively very little effort.
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6.4 SUMMARY

In this example, we optimized a simple stochastic two-species Lotka-Volterra
competition model. It includes the operations used in many ecological and
evolutionary simulations: basic mathematical operations, randomly sampling
statistical distributions, and saving simulation results in large datasets. Addi-
tionally, as change depends on the state of the population in a previous time
step (a Markovian process), a single run cannot be conducted in parallel. We
start with a naively coded example where we grow a dataset and consecutively
profiled and optimized the algorithm in the following steps:

1. Profiling showed that most time was spent growing our results, we there-
fore switch to pre-allocating a data.frame in the memory.

2. Most time was then spent manipulating a data.frame, as the problem
concerns numeric data we don’t need the functionality of a data.frame
(which can store many data types in one object). We therefore switch to
the simpler matrix class for data storage.

3. Finally we refactor the model in C, calling our C function from R.

As with the bootstrap example, we record the execution time with increasing
time-steps and illustrate that the potential gains increase well beyond this with
the number of computations (Table 6.3).

Naive R R Byte Compiler C

1 minute 37.81 ms 18.08 ms 5 ms
1 hour 3 sec 1.5 sec 38 ms
1 day 15 sec 7.75 sec 2 sec
1 month* 83.89 sec  44.98 sec 11 sec
1 year* 4.95 min  2.73 min 1 min

Table 6.3: Observed and projected execution times for the different code versions
of a two species stochastic population model. Each row shows the expected
execution time for each code version using the slowest code as a baseline. Time
units are denoted by milliseconds ("ms”), seconds ("sec”) and minutes ("min”).
*Statistics in these rows are predicted from fitted trends and were not timed
directly.

6.5 USEFUL TOOLS

At the end of this tutorial, we list a handful of very useful tools. We hope that
these tools will may be of use when trying to speed-up code or working with
compiled code in R.
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6.5.1 THE R BYTE COMPILER

A very neat and relatively new tool with which to quickly speed-up many (but
sadly not all) problems, is the use of the R-byte compiler. This tool translates R
code into more compact numeric ”byte codes”. These form instruction sets that
are specifically designed for efficient execution by the interpreter. If we were to
use the byte compiler on our function M atrixLotka from earlier we would have
obtained a speed-up of roughly 200%, which is not bad at all, but still much
slower than calling our C function.

R Example 6.24.

N=10000

set.seed(1)

ByteCompileLotka<-compiler::cmpfun(MatrixLotka)

system. time (ResultsByteCompile <- ByteCompileLotka())

6.5.2 Rccp

Once you start moving on from this tutorial and start extending your R code
with more complex functions in C, you may run into issues with the translation
or transferring of more complex data (than in our example) from R to your
C and C++ programs. A great tool to makes this (and more) much easier is
Repp. Repp is a R package that strives to make it easy for anyone who wants
to connect C or C++ to R. Rcpp makes it straightforward to pass data from R
to C++, and vice versa.

Additionally the Recp community provides some informative tutorials on how
to use Recep to extend R; we recommend these by the authors 32 and Hadley
Wickam 33. We use Repp to optimize an evolutionary model in Appendix C,
achieving a considerable speed-up, as shown in the main document.

32http://cran.r-project.org/web/packages/Rcpp/vignettes/Repp-introduction. pdf
33nttp://adv-r.had.co.nz/Rcpp.html

82



6 CALLING C FROM R: OPTIMIZING A POPULATION MODEL

6.5.3 PROFILERS FOR COMPILED CODE

For those who will continue to write more seriously compiled code there are a
few profilers available for compiled code. These should prove useful if you really
need to squeeze every bit of inefficiency out of a program 34.

6.6 CLOSING REMARKS

Writing efficient code poses both obvious and subtle challenges. However, mak-
ing the most of available computing resources can provide tremendous improve-
ments in speed for a wide variety of common problems. Our benchmark results
show that efficiency gains of orders of magnitude are possible (e.g. tables 3.1
& 6.2). Code optimization can therefore contribute more to research projects
than simply decreasing the waiting time for an analysis to finish. With greater
efficiency in code, researchers can explore more complex models and datasets,
better test the sensitivity of models to assumptions, and extend models to larger
scales (spatial, taxonomic, or temporal).

If you are wondering where to go from here? How can you futher improve
your code and programming skills? Our answer would be: share your code! Roc-
chini & Neteler (2012) advocated open code in ecology and active sharing among
ecologists and we underscore this here. Free repository hosting services, such as
GitHub (github.com), in combination with open-source and popular platforms
like R help facilitate code sharing. Code sharing, in turn, provides an opportu-
nity to reach out to other scientists for code review, a highly cost-effective way
to eliminate bugs and improve code (Wilson et al., 2012). Simultaneously, these
sources enable discussing and learning coding approaches with other scientists
with a range of coding expertise. Code sharing is therefore a highly effective
way to keep track of advances in computational strategies that are constantly
evolving. As these advances are more accessible today than ever before, we
encourage biologists to benefit from code sharing by sharing ecological code on
repositories like GitHub (where the code for the package aprof can be freely
accessed ).

The goal of this document was to show the reader some basic techniques on
how to identify bottlenecks and speed-up R code. We hope that we have suc-
ceeded in this aspect and that some knowledge can be gained from the examples
we gave, enough for researchers to apply these methods to their own work. We
hope to have showed that the tools presented here can expand the feasibility
of large, computationally complex and sophisticated modelling projects. today.
Thinking bigger is possible.

34nttp://cran.r-project.org/doc/manuals/r-release/R-exts.html#
Profiling-compiled-code
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