
Ev
al

ua
tio

n
C

op
y

Compute Express LinkTM (CXLTM)
Specification

October 2020

Revision 2.0

Ev
al

ua
tio

n
C

op
y

- 1 -
C6124.0003 BN/FCURCI 39895222v1

LEGAL NOTICE FOR THIS PUBLICLY-AVAILABLE SPECIFICATION FROM COMPUTE EXPRESS LINK CONSORTIUM, INC.

© 2019-2020 COMPUTE EXPRESS LINK CONSORTIUM, INC. ALL RIGHTS RESERVED.

This CXL Specification Revision 1.1 (this “CXL Specification” or this “document”) is owned by and is proprietary to Compute Express Link
Consortium, Inc., a Delaware nonprofit corporation (sometimes referred to as “CXL” or the “CXL Consortium” or the “Company”) and/or its
successors and assigns.

NOTICE TO USERS WHO ARE MEMBERS OF THE CXL CONSORTIUM:

If you are a Member of the CXL Consortium (sometimes referred to as a “CXL Member”), and even if you have received this publicly-available version
of this CXL Specification after agreeing to CXL Consortium’s Evaluation Copy Agreement (a copy of which is available
https://www.computeexpresslink.org/download-the-specification, each such CXL Member must also be in compliance with all of the following CXL
Consortium documents, policies and/or procedures (collectively, the “CXL Governing Documents”) in order for such CXL Member’s use and/or
implementation of this CXL Specification to receive and enjoy all of the rights, benefits, privileges and protections of CXL Consortium membership: (i)
CXL Consortium’s Intellectual Property Policy; (ii) CXL Consortium’s Bylaws; (iii) any and all other CXL Consortium policies and procedures; and (iv)
the CXL Member’s Participation Agreement.

NOTICE TO NON-MEMBERS OF THE CXL CONSORTIUM:

If you are not a CXL Member and have received this publicly-available version of this CXL Specification, your use of this document is subject to your
compliance with, and is limited by, all of the terms and conditions of the CXL Consortium’s Evaluation Copy Agreement (a copy of which is available at
https://www.computeexpresslink.org/download-the-specification).

In addition to the restrictions set forth in the CXL Consortium’s Evaluation Copy Agreement, any references or citations to this document must
acknowledge the Compute Express Link Consortium, Inc.’s sole and exclusive copyright ownership of this CXL Specification. The proper copyright
citation or reference is as follows: “© 2019-2020 COMPUTE EXPRESS LINK CONSORTIUM, INC. ALL RIGHTS RESERVED.” When making
any such citation or reference to this document you are not permitted to revise, alter, modify, make any derivatives of, or otherwise amend the referenced
portion of this document in any way without the prior express written permission of the Compute Express Link Consortium, Inc.

Except for the limited rights explicitly given to a non-CXL Member pursuant to the explicit provisions of the CXL Consortium’s Evaluation Copy
Agreement which governs the publicly-available version of this CXL Specification, nothing contained in this CXL Specification shall be deemed as
granting (either expressly or impliedly) to any party that is not a CXL Member: (ii) any kind of license to implement or use this CXL Specification or any
portion or content described or contained therein, or any kind of license in or to any other intellectual property owned or controlled by the CXL
Consortium, including without limitation any trademarks of the CXL Consortium.; or (ii) any benefits and/or rights as a CXL Member under any CXL
Governing Documents.

LEGAL DISCLAIMERS FOR ALL PARTIES:

THIS DOCUMENT AND ALL SPECIFICATIONS AND/OR OTHER CONTENT PROVIDED HEREIN IS PROVIDED ON AN “AS IS” BASIS. TO
THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, COMPUTE EXPRESS LINK CONSORTIUM, INC. (ALONG WITH THE
CONTRIBUTORS TO THIS DOCUMENT) HEREBY DISCLAIM ALL REPRESENTATIONS, WARRANTIES AND/OR COVENANTS, EITHER
EXPRESS OR IMPLIED, STATUTORY OR AT COMMON LAW, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, VALIDITY, AND/OR NON-INFRINGEMENT.
In the event this CXL Specification makes any references (including without limitation any incorporation by reference) to another standard’s setting
organization’s or any other party’s (“Third Party”) content or work, including without limitation any specifications or standards of any such Third Party
(“Third Party Specification”), you are hereby notified that your use or implementation of any Third Party Specification: (i) is not governed by any of
the CXL Governing Documents; (ii) may require your use of a Third Party’s patents, copyrights or other intellectual property rights, which in turn may
require you to independently obtain a license or other consent from that Third Party in order to have full rights to implement or use that Third Party
Specification; and/or (iii) may be governed by the intellectual property policy or other policies or procedures of the Third Party which owns the Third
Party Specification. Any trademarks or service marks of any Third Party which may be referenced in this CXL Specification is owned by the respective
owner of such marks.

NOTICE TO ALL PARTIES REGARDING THE PCI-SIG UNIQUE VALUE PROVIDED IN THIS CXL SPECIFICATION:

NOTICE TO USERS: THE UNIQUE VALUE THAT IS PROVIDED IN THIS CXL SPECIFICATION IS FOR USE IN VENDOR DEFINED
MESSAGE FIELDS, DESIGNATED VENDOR SPECIFIC EXTENDED CAPABILITIES, AND ALTERNATE PROTOCOL NEGOTIATION ONLY
AND MAY NOT BE USED IN ANY OTHER MANNER, AND A USER OF THE UNIQUE VALUE MAY NOT USE THE UNIQUE VALUE IN A
MANNER THAT (A) ALTERS, MODIFIES, HARMS OR DAMAGES THE TECHNICAL FUNCTIONING, SAFETY OR SECURITY OF THE PCI-
SIG ECOSYSTEM OR ANY PORTION THEREOF, OR (B) COULD OR WOULD REASONABLY BE DETERMINED TO ALTER, MODIFY,
HARM OR DAMAGE THE TECHNICAL FUNCTIONING, SAFETY OR SECURITY OF THE PCI-SIG ECOSYSTEM OR ANY PORTION
THEREOF (FOR PURPOSES OF THIS NOTICE, “PCI-SIG ECOSYSTEM” MEANS THE PCI-SIG SPECIFICATIONS, MEMBERS OF PCI-SIG
AND THEIR ASSOCIATED PRODUCTS AND SERVICES THAT INCORPORATE ALL OR A PORTION OF A PCI-SIG SPECIFICATION AND
EXTENDS TO THOSE PRODUCTS AND SERVICES INTERFACING WITH PCI-SIG MEMBER PRODUCTS AND SERVICES).

https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification

Ev
al

ua
tio

n
C

op
y

Contents

 Compute Express Link Specification
October 26, 2020 3
Revision 2.0, Version 1.0

Contents

1.0 Introduction ..27
1.1 Audience ..27
1.2 Terminology / Acronyms ..27
1.3 Reference Documents..30
1.4 Motivation and Overview..30

1.4.1 Compute Express Link...30
1.4.2 Flex Bus..32

1.5 Flex Bus Link Features ...35
1.6 Flex Bus Layering Overview...35
1.7 Document Scope..37

2.0 Compute Express Link System Architecture...39
2.1 Type 1 CXL Device ...39
2.2 Type 2 CXL Device ...40

2.2.1 Bias Based Coherency Model ...41
2.2.1.1 Host Bias ...42
2.2.1.2 Device Bias ...42
2.2.1.3 Mode Management...43
2.2.1.4 Software Assisted Bias Mode Management...43
2.2.1.5 Hardware Autonomous Bias Mode Management..43

2.3 Type 3 CXL Device ...44
2.4 Multi Logical Device ..44

2.4.1 LD-ID for CXL.io and CXL.mem..45
2.4.1.1 LD-ID for CXL.mem...45
2.4.1.2 LD-ID for CXL.io ...45

2.4.2 Pooled Memory Device Configuration Registers ...45
2.5 CXL Device Scaling ..47

3.0 Compute Express Link Transaction Layer..48
3.1 CXL.io...48

3.1.1 CXL.io Endpoint..49
3.1.2 CXL Power Management VDM Format ...50

3.1.2.1 Credit and PM Initialization...54
3.1.3 CXL Error VDM Format ..55
3.1.4 Optional PCIe Features Required for CXL...56
3.1.5 Error Propagation ..56
3.1.6 Memory Type Indication on ATS...56
3.1.7 Deferrable Writes...57

3.2 CXL.cache ..58
3.2.1 Overview..58
3.2.2 CXL.cache Channel Description...59

3.2.2.1 Channel Ordering..59
3.2.2.2 Channel Crediting ...59

3.2.3 CXL.cache Wire Description ..60
3.2.3.1 D2H Request ...60
3.2.3.2 D2H Response ..61
3.2.3.3 D2H Data...61
3.2.3.4 H2D Request ...62
3.2.3.5 H2D Response ..62
3.2.3.6 H2D Data...63

3.2.4 CXL.cache Transaction Description ...63
3.2.4.1 Device to Host Requests ..63
3.2.4.2 Device to Host Response ...74

Ev
al

ua
tio

n
C

op
y

Contents

 Compute Express Link Specification
October 26, 2020 4
Revision 2.0, Version 1.0

3.2.4.3 Host to Device Requests ..76
3.2.4.4 Host to Device Response ...77

3.2.5 Cacheability Details and Request Restrictions..79
3.2.5.1 GO-M Responses...79
3.2.5.2 Device/Host Snoop-GO-Data Assumptions ..79
3.2.5.3 Device/Host Snoop/WritePull Assumptions ...79
3.2.5.4 Snoop Responses and Data Transfer on CXL.cache Evicts...80
3.2.5.5 Multiple Snoops to the Same Address ..80
3.2.5.6 Multiple Reads to the Same Cache Line..80
3.2.5.7 Multiple Evicts to the Same Cache Line ..80
3.2.5.8 Multiple Write Requests to the Same Cache Line ...80
3.2.5.9 Normal Global Observation (GO)..80
3.2.5.10 Relaxed Global Observation (FastGO)..81
3.2.5.11 Evict to Device-Attached Memory ...81
3.2.5.12 Memory Type on CXL.cache...81
3.2.5.13 General Assumptions ..81
3.2.5.14 Buried Cache State Rules...82

3.3 CXL.mem..83
3.3.1 Introduction ...83
3.3.2 QoS Telemetry for Memory...84

3.3.2.1 QoS Telemetry Overview...84
3.3.2.2 Reference Model for Host Support of QoS Telemetry..85
3.3.2.3 Memory Device Support for QoS Telemetry...86

3.3.3 M2S Request (Req) ..94
3.3.4 M2S Request with Data (RwD) ..97
3.3.5 S2M No Data Response (NDR)..98
3.3.6 S2M Data Response (DRS) ...99
3.3.7 Forward Progress and Ordering Rules .. 100

3.4 Transaction Ordering Summary ... 101
3.5 Transaction Flows to Device-Attached Memory.. 103

3.5.1 Flows for Type 1 and Type 2 Devices .. 103
3.5.1.1 Notes and Assumptions .. 103
3.5.1.2 Requests from Host... 104
3.5.1.3 Requests from Device in Host and Device Bias... 109

3.5.2 Type 2 and Type 3 Memory Flows .. 112
3.5.2.1 Speculative Memory Read.. 112

3.6 Flows for Type 3 Devices ... 113

4.0 Compute Express Link Link Layers... 115
4.1 CXL.io Link Layer ... 115
4.2 CXL.mem and CXL.cache Common Link Layer... 117

4.2.1 Introduction .. 117
4.2.2 High-Level CXL.cache/CXL.mem Flit Overview ... 119
4.2.3 Slot Format Definition .. 124

4.2.3.1 H2D and M2S Formats... 125
4.2.3.2 D2H and S2M Formats... 131

4.2.4 Link Layer Registers... 139
4.2.5 Flit Packing Rules.. 139
4.2.6 Link Layer Control Flit... 141
4.2.7 Link Layer Initialization... 145
4.2.8 CXL.cache/CXL.mem Link Layer Retry... 146

4.2.8.1 LLR Variables..147
4.2.8.2 LLCRD Forcing ... 149
4.2.8.3 LLR Control Flits ... 151
4.2.8.4 RETRY Framing Sequences.. 151
4.2.8.5 LLR State Machines ... 152
4.2.8.6 Interaction with Physical Layer Reinitialization... 156

Ev
al

ua
tio

n
C

op
y

Contents

 Compute Express Link Specification
October 26, 2020 5
Revision 2.0, Version 1.0

4.2.8.7 CXL.cache/CXL.mem Flit CRC ... 157
4.2.9 Poison and Viral ..158

4.2.9.1 Viral .. 158

5.0 Compute Express Link ARB/MUX .. 160
5.1 Virtual LSM States... 161

5.1.1 Additional Rules for Local vLSM Transitions .. 164
5.1.2 Rules for Virtual LSM State Transitions Across Link.. 164

5.1.2.1 General Rules ... 164
5.1.2.2 Entry to Active Exchange Protocol ... 164
5.1.2.3 Status Synchronization Protocol... 165
5.1.2.4 State Request ALMP.. 167
5.1.2.5 State Status ALMP ... 169
5.1.2.6 Unexpected ALMPs ... 171

5.1.3 Applications of the vLSM State Transition Rules.. 172
5.1.3.1 Initial Link Training .. 172
5.1.3.2 Status Exchange Snapshot Example.. 175
5.1.3.3 L1 Abort Example... 176

5.2 ARB/MUX Link Management Packets... 177
5.2.1 ARB/MUX Bypass Feature ... 178

5.3 Arbitration and Data Multiplexing/Demultiplexing .. 179

6.0 Flex Bus Physical Layer .. 180
6.1 Overview ... 180
6.2 Flex Bus.CXL Framing and Packet Layout... 181

6.2.1 Ordered Set Blocks and Data Blocks..181
6.2.2 Protocol ID[15:0]... 182
6.2.3 x16 Packet Layout .. 183
6.2.4 x8 Packet Layout... 184
6.2.5 x4 Packet Layout... 187
6.2.6 x2 Packet Layout... 187
6.2.7 x1 Packet Layout... 187
6.2.8 Special Case: CXL.io -- When a TLP Ends on a Flit Boundary.. 187
6.2.9 Framing Errors ... 188

6.3 Link Training.. 190
6.3.1 PCIe vs Flex Bus.CXL Mode Selection.. 190

6.3.1.1 Hardware Autonomous Mode Negotiation ... 190
6.3.1.2 CXL 2.0 Versus CXL 1.1 Negotiation .. 194
6.3.1.3 Flex Bus.CXL Negotiation with Maximum Supported Link

Speed of 8GT/s or 16GT/s ... 196
6.3.1.4 Link Width Degradation and Speed Downgrade.. 197

6.4 Recovery.Idle and Config.Idle Transitions to L0 .. 197
6.5 L1 Abort Scenario ... 197
6.6 Exit from Recovery.. 197
6.7 Retimers and Low Latency Mode ... 197

6.7.1 SKP Ordered Set Frequency and L1/Recovery Entry.. 198

7.0 Switching ...201
7.1 Overview ... 201

7.1.1 Single VCS Switch... 201
7.1.2 Multiple VCS Switch ..202
7.1.3 Multiple VCS Switch with MLD Ports..203

7.2 Switch Configuration and Composition... 204
7.2.1 CXL Switch Initialization Options... 204

7.2.1.1 Static Initialization ... 204
7.2.1.2 Fabric Manager Boots First .. 205
7.2.1.3 Fabric Manager and Host Boot Simultaneously.. 207

Ev
al

ua
tio

n
C

op
y

Contents

 Compute Express Link Specification
October 26, 2020 6
Revision 2.0, Version 1.0

7.2.2 Sideband Signal Operation .. 208
7.2.3 Binding and Unbinding... 209

7.2.3.1 Binding and Unbinding of a Single Logical Device Port .. 209
7.2.3.2 Binding and Unbinding of a Pooled Device .. 211

7.2.4 PPB and vPPB Behavior for MLD Ports ... 214
7.2.4.1 MLD Type 1 Configuration Space Header ... 215
7.2.4.2 MLD PCI-Compatible Configuration Registers .. 215
7.2.4.3 MLD PCI Express Capability Structure .. 215
7.2.4.4 MLD PPB Secondary PCI Express Capability Structure.. 218
7.2.4.5 MLD Physical Layer 16.0 GT/s Extended Capability ... 219
7.2.4.6 MLD Physical Layer 32.0 GT/s Extended Capability ... 219
7.2.4.7 MLD Lane Margining at the Receiver Extended Capability....................................... 220

7.2.5 MLD ACS Extended Capability .. 220
7.2.6 MLD PCIe Extended Capabilities ..220
7.2.7 MLD Advanced Error Reporting Extended Capability ... 220
7.2.8 MLD DPC Extended Capability .. 222

7.3 CXL.io, CXL.cache/CXL.mem Decode and Forwarding.. 222
7.3.1 CXL.io ... 222

7.3.1.1 CXL.io Decode.. 222
7.3.1.2 CXL 1.1 Support.. 223

7.3.2 CXL.cache... 223
7.3.3 CXL.mem .. 223

7.3.3.1 CXL.mem Request Decode... 223
7.3.3.2 CXL.mem Response Decode ... 224
7.3.3.3 QoS Message Aggregation ... 224

7.3.4 FM Owned PPB CXL Handling... 224
7.4 CXL Switch PM.. 224

7.4.1 CXL Switch ASPM L1 ... 224
7.4.2 CXL Switch PCI-PM and L2 ... 224
7.4.3 CXL Switch Message Management.. 224

7.5 CXL Switch RAS.. 226
7.6 Fabric Manager Application Programming Interface... 226

7.6.1 CXL Fabric Management..226
7.6.2 Fabric Management Model ... 227
7.6.3 FM Command Transport Protocol... 228
7.6.4 CXL Switch Management... 229

7.6.4.1 Initial Configuration... 229
7.6.4.2 Dynamic Configuration .. 229
7.6.4.3 MLD Port Management.. 229

7.6.5 MLD Component Management... 230
7.6.6 Management Requirements for System Operations... 230

7.6.6.1 Initial System Discovery .. 230
7.6.6.2 CXL Switch Discovery ... 231
7.6.6.3 MLD and Switch MLD Port Management ... 231
7.6.6.4 Event Notifications .. 231
7.6.6.5 Binding Ports and LDs on a Switch... 231
7.6.6.6 Unbinding Ports and LDs on a Switch... 232
7.6.6.7 Hot-Add and Managed Hot-Removal of Devices ...232
7.6.6.8 Surprise Removal of Devices... 233

7.6.7 Fabric Management Application Programming Interface ... 233
7.6.7.1 Switch Event Notifications Command Set... 234
7.6.7.2 Virtual Switch Command Set .. 240
7.6.7.3 Unbind vPPB (Opcode 5202h) ... 242
7.6.7.4 MLD Port Command Set.. 243
7.6.7.5 MLD Component Command Set.. 246

7.6.8 Fabric Management Event Records .. 252
7.6.8.1 Physical Switch Event Records... 252

Ev
al

ua
tio

n
C

op
y

Contents

 Compute Express Link Specification
October 26, 2020 7
Revision 2.0, Version 1.0

7.6.8.2 Virtual CXL Switch Event Records... 253
7.6.8.3 MLD Port Event Records ... 254

8.0 Control and Status Registers ... 256
8.1 Configuration Space Registers .. 257

8.1.1 PCI Express Designated Vendor-Specific Extended Capability (DVSEC) ID Assignment... 257
8.1.2 CXL Data Object Exchange (DOE) Type Assignment ... 258
8.1.3 PCIe DVSEC for CXL Device.. 258

8.1.3.1 DVSEC CXL Capability (Offset 0Ah).. 260
8.1.3.2 DVSEC CXL Control (Offset 0Ch)... 261
8.1.3.3 DVSEC CXL Status (Offset 0Eh).. 262
8.1.3.4 DVSEC CXL Control2 (Offset 10h) .. 262
8.1.3.5 DVSEC CXL Status2 (Offset 12h)... 262
8.1.3.6 DVSEC CXL Lock (Offset 14h) ... 263
8.1.3.7 DVSEC CXL Capability2 (Offset 16h) ... 263
8.1.3.8 DVSEC CXL Range registers... 263

8.1.4 Non-CXL Function Map DVSEC .. 268
8.1.4.1 Non-CXL Function Map Register 0 (Offset 0Ch) ... 269
8.1.4.2 Non-CXL Function Map Register 1 (Offset 10h).. 269
8.1.4.3 Non-CXL Function Map Register 2 (Offset 14h).. 270
8.1.4.4 Non-CXL Function Map Register 3(Offset 18h)... 270
8.1.4.5 Non-CXL Function Map Register 4 (Offset 1Ch) ... 270
8.1.4.6 Non-CXL Function Map Register 5 (Offset 20h).. 270
8.1.4.7 Non-CXL Function Map Register 6 (Offset 24h).. 271
8.1.4.8 Non-CXL Function Map Register 7(Offset 28h)... 271

8.1.5 CXL 2.0 Extensions DVSEC for Ports..271
8.1.5.1 CXL Port Extension Status (Offset 0Ah) ... 272
8.1.5.2 Port Control Extensions (Offset 0Ch) .. 273
8.1.5.3 Alternate Bus Base (Offset 0E... h)274
8.1.5.4 Alternate Bus Limit (Offset 0Fh) .. 274
8.1.5.5 Alternate Memory Base (Offset 10h) ... 274
8.1.5.6 Alternate Memory Limit (Offset 12h)... 274
8.1.5.7 Alternate Prefetchable Memory Base (Offset 14h).. 275
8.1.5.8 Alternate Prefetchable Memory Limit (Offset 16h) ... 275
8.1.5.9 Alternate Memory Prefetchable Base High (Offset 18h)... 275
8.1.5.10 Alternate Prefetchable Memory Limit High (Offset 1Ch) .. 275
8.1.5.11 CXL RCRB Base (Offset 20h).. 276
8.1.5.12 CXL RCRB Base High (Offset 24h) ... 276

8.1.6 GPF DVSEC for CXL Port..276
8.1.6.1 GPF Phase 1 Control (Offset 0Ch)... 277
8.1.6.2 GPF Phase 2 Control (Offset 0Eh) ... 277

8.1.7 GPF DVSEC for CXL Device... 278
8.1.7.1 GPF Phase 2 Duration (Offset 0Ah) .. 279
8.1.7.2 GPF Phase 2 Power (Offset 0Ch) ... 279

8.1.8 PCIe DVSEC for Flex Bus Port.. 279
8.1.9 Register Locator DVSEC... 279

8.1.9.1 Register Offset Low (Offset Varies)... 281
8.1.9.2 Register Offset High (Offset Varies).. 281

8.1.10 MLD DVSEC ... 281
8.1.10.1 Number of LD Supported (Offset 0Ah) ... 282
8.1.10.2 FLR LD-ID Hot Reset Vector (Offset 0Ch)... 282

8.1.11 Table Access DOE... 282
8.1.11.1 Read Entry ... 283

8.1.12 Memory Device Configuration Space Layout ... 284
8.1.12.1 PCI Header - Class Code Register (Offset 09h).. 284
8.1.12.2 Memory Device PCIe Capabilities and Extended Capabilities.................................284

8.2 Memory Mapped Registers ... 284
8.2.1 CXL 1.1 Upstream and Downstream Port Registers .. 286

Ev
al

ua
tio

n
C

op
y

Contents

 Compute Express Link Specification
October 26, 2020 8
Revision 2.0, Version 1.0

8.2.1.1 CXL 1.1 Downstream Port RCRB.. 286
8.2.1.2 CXL 1.1 Upstream Port RCRB.. 288
8.2.1.3 Flex Bus Port DVSEC... 290

8.2.2 CXL 1.1 Upstream and Downstream Port Subsystem Component Registers 293
8.2.3 CXL 2.0 Component Registers .. 294
8.2.4 Component Register Layout and Definition.. 294
8.2.5 CXL.cache and CXL.mem Registers... 294

8.2.5.1 CXL Capability Header Register (Offset 0x0).. 296
8.2.5.2 CXL RAS Capability Header (Offset: Varies) .. 297
8.2.5.3 CXL Security Capability Header (Offset: Varies).. 297
8.2.5.4 CXL Link Capability Header (Offset:Varies) ... 297
8.2.5.5 CXL HDM Decoder Capability Header (Offset: Varies).. 297
8.2.5.6 CXL Extended Security Capability Header (Offset: Varies)....................................... 298
8.2.5.7 CXL IDE Capability Header (Offset: Varies).. 298
8.2.5.8 CXL Snoop Filter Capability Header (Offset: Varies) ... 298
8.2.5.9 CXL RAS Capability Structure ... 298
8.2.5.10 CXL Security Capability Structure... 302
8.2.5.11 CXL Link Capability Structure ... 303
8.2.5.12 CXL HDM Decoder Capability Structure... 307
8.2.5.13 CXL Extended Security Capability Structure .. 319
8.2.5.14 CXL IDE Capability Structure... 320
8.2.5.15 CXL Snoop Filter Capability Structure .. 322

8.2.6 CXL ARB/MUX Registers ..323
8.2.6.1 ARB/MUX Arbitration Control Register for CXL.io (Offset 0x180) 323
8.2.6.2 ARB/MUX Arbitration Control Register for CXL.cache and CXL.mem (Offset

0x1C0) ... 323
8.2.7 BAR Virtualization ACL Register Block... 323

8.2.7.1 BAR Virtualization ACL Size Register (Offset 00h) ... 324
8.2.8 CXL Device Register Interface ... 325

8.2.8.1 CXL Device Capabilities Array Register (Offset 00h)... 326
8.2.8.2 CXL Device Capability Header Register (Offset Varies).. 326
8.2.8.3 Device Status Registers (Offset Varies)... 327
8.2.8.4 Mailbox Registers (Offset Varies)... 327
8.2.8.5 Memory Device Registers ... 333

8.2.9 CXL Device Command Interface... 335
8.2.9.1 Events.. 336
8.2.9.2 Firmware Update..347
8.2.9.3 Timestamp .. 351
8.2.9.4 Logs.. 352
8.2.9.5 Memory Device Commands... 355
8.2.9.6 FM API Commands .. 386

9.0 Reset, Initialization, Configuration and Manageability .. 388
9.1 Compute Express Link Boot and Reset Overview ... 388

9.1.1 General .. 388
9.1.2 Comparing CXL and PCIe Behavior... 389

9.1.2.1 Switch Behavior .. 389
9.2 Compute Express Link Device Boot Flow ... 391
9.3 Compute Express Link System Reset Entry Flow .. 391
9.4 Compute Express Link Device Sleep State Entry Flow ... 392
9.5 Function Level Reset (FLR) .. 393
9.6 Cache Management.. 394
9.7 CXL Reset.. 394

9.7.1 Effect on the Contents of the Volatile HDM.. 396
9.7.2 Software Actions ... 396

9.8 Global Persistent Flush (GPF) ..397
9.8.1 Host and Switch Responsibilities... 397
9.8.2 Device Responsibilities... 398

Ev
al

ua
tio

n
C

op
y

Contents

 Compute Express Link Specification
October 26, 2020 9
Revision 2.0, Version 1.0

9.8.3 Energy Budgeting ... 399
9.9 Hot-Plug .. 402
9.10 Software Enumeration .. 405
9.11 CXL 1.1 Hierarchy..405

9.11.1 PCIe Software View of the CXL 1.1 Hierarchy... 405
9.11.2 System Firmware View of CXL 1.1 Hierarchy.. 406
9.11.3 OS View of CXL 1.1 Hierarchy ... 406
9.11.4 CXL 1.1 Hierarchy System Firmware Enumeration Flow ...406
9.11.5 CXL 1.1 device discovery... 406
9.11.6 CXL 1.1 Devices with Multiple Flex Bus Links... 408

9.11.6.1 Single CPU Topology..408
9.11.6.2 Multiple CPU Topology.. 410

9.12 CXL 2.0 Enumeration... 411
9.12.1 CXL 2.0 Root Ports ... 411
9.12.2 CXL 2.0 Virtual Hierarchy .. 411
9.12.3 Enumerating CXL 2.0 Capable Downstream Ports... 412
9.12.4 CXL 1.1 Device Connected to CXL 2.0 Capable Downstream Port ... 414
9.12.5 CXL 2.0 Host/Switches with CXL 1.1 Devices - Example ...417
9.12.6 Mapping of Link and Protocol Registers in CXL 2.0 VH ... 419

9.13 Software View of HDM .. 420
9.13.1 Memory Interleaving ... 421
9.13.2 The CXL Memory Device Label Storage Area ... 425

9.13.2.1 Overall LSA Layout .. 426
9.13.2.2 Label Index Blocks... 427
9.13.2.3 Common Label Properties ... 429
9.13.2.4 Region Labels... 429
9.13.2.5 Namespace Labels... 431
9.13.2.6 Vendor Specific Labels .. 432

9.14 CXL OS Firmware Interface Extensions ... 432
9.14.1 CXL Early Discovery Table (CEDT)... 432

9.14.1.1 CEDT Header..432
9.14.1.2 CXL Host Bridge Structure (CHBS).. 433

9.14.2 CXL _OSC ... 433
9.14.2.1 Rules for Evaluating _OSC.. 435

9.15 Manageability Model for CXL Devices..437

10.0 Power Management ... 438
10.1 Statement of Requirements ... 438
10.2 Policy-Based Runtime Control - Idle Power - Protocol Flow ... 438

10.2.1 General .. 438
10.2.2 Package-Level Idle (C-state) Entry and Exit Coordination .. 438

10.2.2.1 PMReq Message Generation and Processing Rules .. 439
10.2.3 PkgC Entry Flows .. 440
10.2.4 PkgC Exit Flows.. 442
10.2.5 Compute Express Link Physical Layer Power Management States .. 443

10.3 Compute Express Link Power Management.. 443
10.3.1 Compute Express Link PM Entry Phase 1 .. 444
10.3.2 Compute Express Link PM Entry Phase 2 .. 444
10.3.3 Compute Express Link PM Entry Phase 3 .. 446
10.3.4 Compute Express Link Exit from ASPM L1 .. 448

10.4 CXL.io Link Power Management ... 448
10.4.1 CXL.io ASPM Phase L1 Entry ... 448
10.4.2 CXL.io ASPM Phase 2 Entry.. 449
10.4.3 CXL.io ASPM Phase 3 Entry.. 449

10.5 CXL.cache + CXL.mem Link Power Management .. 450

Ev
al

ua
tio

n
C

op
y

Contents

 Compute Express Link Specification
October 26, 2020 10
Revision 2.0, Version 1.0

11.0 Security... 451
11.1 CXL IDE .. 451

11.1.1 Scope ... 451
11.1.2 CXL.io IDE... 453
11.1.3 CXL.cachemem IDE High Level Overview.. 453
11.1.4 CXL.cachemem IDE Architecture .. 454
11.1.5 Encrypted PCRC ..456
11.1.6 CXL.cachemem IDE Cryptographic Keys and IV .. 457
11.1.7 CXL.cachemem IDE Modes... 458

11.1.7.1 Discovery of Integrity Modes and Settings ... 458
11.1.7.2 Negotiation of Operating Mode and Settings .. 458

11.1.8 Rules for MAC Aggregation .. 458
11.1.9 Early MAC Termination .. 461
11.1.10 Handshake to Trigger the Use of Keys .. 464
11.1.11 Error Handling.. 464
11.1.12 Switch Support .. 465

12.0 Reliability, Availability and Serviceability .. 466
12.1 Supported RAS Features.. 466
12.2 CXL Error Handling... 466

12.2.1 Protocol and Link Layer Error Reporting.. 467
12.2.1.1 CXL 1.1 Downstream Port (DP) Detected Errors... 468
12.2.1.2 CXL 1.1 Upstream Port (UP) Detected Errors...469
12.2.1.3 CXL 1.1 RCiEP Detected Errors... 470

12.2.2 CXL 2.0 Root Ports, Downstream Switch Ports, and Upstream Switch Ports.........................470
12.2.3 CXL Device Error Handling ... 471

12.2.3.1 CXL.mem and CXL.cache Errors... 472
12.2.3.2 Memory Error Logging and Signaling Enhancements.. 472
12.2.3.3 CXL Device Error Handling Flows.. 474

12.3 CXL Link Down Handling.. 474
12.4 CXL Viral Handling.. 474

12.4.1 Switch Considerations .. 475
12.4.2 Device Considerations.. 475

12.5 CXL Error Injection.. 476

13.0 Performance Considerations ... 477

14.0 CXL Compliance Testing ..478
14.1 Applicable Devices Under Test (DUTs) .. 478
14.2 Starting Configuration/Topology (Common for All Tests) .. 478

14.2.1 Test Topologies... 479
14.2.1.1 Single Host, Direct Attached SLD EP (SHDA).. 479
14.2.1.2 Single Host, Switch Attached SLD EP (SHSW) ... 479
14.2.1.3 Single Host, Fabric Managed, Switch Attached SLD EP (SHSW-FM).................... 480
14.2.1.4 Dual Host, Fabric Managed, Switch Attached SLD EP (DHSW-FM)....................... 481
14.2.1.5 Dual Host, Fabric Managed, Switch Attached MLD EP (DHSW-FM-MLD) 482

14.3 CXL.cache and CXL.io Application Layer/Transaction Layer Testing ... 483
14.3.1 General Testing Overview... 483
14.3.2 Algorithms ... 484
14.3.3 Algorithm 1a: Multiple Write Streaming ... 484
14.3.4 Algorithm 1b: Multiple Write Streaming with Bogus Writes .. 485
14.3.5 Algorithm 2: Producer Consumer Test.. 486
14.3.6 Test Descriptions .. 487

14.3.6.1 Application Layer/Transaction Layer Tests .. 487
14.4 Link Layer Testing ... 490

14.4.1 RSVD Field Testing CXL.cache/CXL.mem (Requires Exerciser)... 490
14.4.1.1 Device Test.. 490

Ev
al

ua
tio

n
C

op
y

Contents

 Compute Express Link Specification
October 26, 2020 11
Revision 2.0, Version 1.0

14.4.1.2 Host Test..490
14.4.2 CRC Error Injection RETRY_PHY_REINIT (Protocol Analyzer Required) 490
14.4.3 CRC Error Injection RETRY_ABORT (Protocol Analyzer Required).. 491

14.5 ARB/MUX .. 492
14.5.1 Reset to Active Transition (Requires Protocol Analyzer) ...492
14.5.2 ARB/MUX Multiplexing (Requires Protocol Analyzer)... 492
14.5.3 Active to L1.x Transition (If Applicable) (Requires Protocol Analyzer) 493
14.5.4 L1.x State Resolution (If Applicable) (Requires Protocol Analyzer) .. 494
14.5.5 Active to L2 Transition (Requires Protocol Analyzer) ... 494
14.5.6 L1 to Active Transition (If Applicable).. 495
14.5.7 Reset Entry... 495
14.5.8 Entry into L0 Synchronization (Requires Protocol Analyzer) .. 495
14.5.9 ARB/MUX Tests Requiring Injection Capabilities .. 496

14.5.9.1 ARB/MUX Bypass (Requires Protocol Analyzer) ... 496
14.5.9.2 PM State Request Rejection (Requires Protocol Analyzer) 496
14.5.9.3 Unexpected Status ALMP ... 496
14.5.9.4 ALMP Error .. 497
14.5.9.5 Recovery Re-entry ... 497

14.6 Physical Layer ... 498
14.6.1 Protocol ID Checks (Requires Protocol Analyzer)... 498
14.6.2 NULL Flit (Requires Protocol Analyzer) ... 498
14.6.3 EDS Token (Requires Protocol Analyzer) ... 498
14.6.4 Correctable Protocol ID Error.. 499
14.6.5 Uncorrectable Protocol ID Error... 499
14.6.6 Unexpected Protocol ID... 500
14.6.7 Sync Header Bypass (Requires Protocol Analyzer) (If Applicable) .. 500
14.6.8 Link Speed Advertisement (Requires Protocol Analyzer) ... 500
14.6.9 Recovery.Idle/Config.Idle Transition to L0 (Requires Protocol Analyzer) 501
14.6.10 Drift Buffer (If Applicable) ... 501
14.6.11 SKP OS Scheduling/Alternation (Requires Protocol Analyzer) (If Applicable)....................... 501
14.6.12 SKP OS Exiting the Data Stream (Requires Protocol Analyzer) (If Applicable)....................... 502
14.6.13 Link Speed Degradation - CXL Mode ... 502
14.6.14 Link Speed Degradation Below 8GT/s... 502
14.6.15 Uncorrectable Mismatched Protocol ID Error .. 503
14.6.16 Link Initialization Resolution..503
14.6.17 Hot Add Link Initialization Resolution ... 504
14.6.18 Tests Requiring Injection Capabilities.. 505

14.6.18.1 TLP Ends On Flit Boundary (Requires Protocol Analyzer).. 505
14.6.18.2 Failed CXL Mode Link Up..506

14.7 Switch Tests... 506
14.7.1 Initialization Tests... 507

14.7.1.1 VCS initial Configuration... 507
14.7.2 Reset Propagation .. 508

14.7.2.1 Host PERST# Propagation.. 508
14.7.2.2 LTSSM Hot Reset..509
14.7.2.3 Secondary Bus Reset (SBR) Propagation ... 510

14.7.3 Managed Hot Plug - Adding a New Endpoint Device .. 511
14.7.3.1 Managed Add of an SLD Component to a VCS ... 512
14.7.3.2 Managed Add of an MLD Component to an Unbound Port (Unallocated

Resource) ... 512
14.7.3.3 Managed Add of an MLD Component to an SLD Port.. 513

14.7.4 Managed Hot Plug-Removing an Endpoint Device .. 513
14.7.4.1 Managed Removal of an SLD Component from a VCS.. 513
14.7.4.2 Managed Removal of a MLD Component from a Switch .. 513
14.7.4.3 Removal of a Device from an Unbound Port.. 514

14.7.5 Bind/Unbind Operations ... 514

Ev
al

ua
tio

n
C

op
y

Contents

 Compute Express Link Specification
October 26, 2020 12
Revision 2.0, Version 1.0

14.7.5.1 Binding Unallocated Resources to Hosts... 514
14.7.5.2 Unbinding Resources from Hosts without Removing the Endpoint Devices ... 515

14.7.6 Error Injection... 516
14.7.6.1 AER Error Injection... 516

14.8 Configuration Register Tests .. 518
14.8.1 Device Presence ..518
14.8.2 CXL Device Capabilities.. 519
14.8.3 DOE Capabilities..520
14.8.4 DVSEC Control Structure .. 521
14.8.5 DVSEC CXL Capability... 522
14.8.6 DVSEC CXL Control.. 522
14.8.7 DVSEC CXL Lock ... 523
14.8.8 DVSEC CXL Capability2.. 524
14.8.9 Non-CXL Function Map DVSEC .. 525
14.8.10 CXL2.0 Extensions DVSEC for Ports Header... 525
14.8.11 Port Control Override ... 526
14.8.12 GPF DVSEC Port Capability .. 527
14.8.13 GPF Port Phase1 Control... 528
14.8.14 GPF Port Phase2 Control... 528
14.8.15 GPF DVSEC Device Capability ... 529
14.8.16 GPF Device Phase2 Duration ... 529
14.8.17 GPF Device Phase1 Duration ... 530
14.8.18 Flex Bus Port DVSEC Capability Header ... 530
14.8.19 DVSEC Flex Bus Port Capability.. 531
14.8.20 Register Locator ..532
14.8.21 MLD DVSEC Capability Header ... 532
14.8.22 MLD DVSEC Number of LD Supported.. 533
14.8.23 Table Access DOE... 534
14.8.24 PCI Header - Class Code Register .. 534

14.9 Reset and Initialization Tests ... 535
14.9.1 Warm Reset Test ... 535
14.9.2 Cold Reset Test.. 535
14.9.3 Sleep State Test ..535
14.9.4 Function Level Reset Test ... 536
14.9.5 Flex Bus Range Setup Time.. 536
14.9.6 FLR Memory .. 537
14.9.7 CXL_Reset Test .. 537
14.9.8 Global Persistent Flush (GPF) (Requires Protocol Analyzer).. 539

14.9.8.1 Host and Switch Test..539
14.9.8.2 Device Test.. 540

14.9.9 Hot-Plug Test ... 540
14.10 Power Management Tests... 541

14.10.1 Pkg-C Entry (Device Test) .. 541
14.10.2 Pkg-C Entry Reject (Device Test) (Requires Exerciser) .. 541
14.10.3 Pkg-C Entry (Host Test) .. 542

14.11 Security.. 543
14.11.1 Component Measurement and Authentication ... 543

14.11.1.1 DOE CMA Instance... 543
14.11.1.2 FLR While Processing DOE CMA Request.. 543
14.11.1.3 OOB CMA While in Fundamental Reset ... 544
14.11.1.4 OOB CMA While Function gets FLR.. 544
14.11.1.5 OOB CMA During Conventional Reset .. 545

14.11.2 Link Integrity and Data Encryption CXL.io IDE ... 546
14.11.2.1 CXL.io Link IDE Streams Functional ... 546
14.11.2.2 CXL.io Link IDE Streams Aggregation.. 546

Ev
al

ua
tio

n
C

op
y

Contents

 Compute Express Link Specification
October 26, 2020 13
Revision 2.0, Version 1.0

14.11.2.3 CXL.io Link IDE Streams PCRC.. 547
14.11.2.4 CXL.io Selective IDE Stream Functional ... 548
14.11.2.5 CXL.io Selective IDE Streams Aggregation.. 548
14.11.2.6 CXL.io Selective IDE Streams PCRC.. 549

14.11.3 CXL.Cache/MEM IDE..550
14.11.3.1 Data Encryption – Decryption and Integrity Testing with Containment Mode for

MAC Generation and Checking .. 550
14.11.3.2 Data Encryption – Decryption and Integrity Testing with Skid Mode for MAC

Generation and Checking ... 550
14.11.3.3 Key Refresh... 551
14.11.3.4 Early MAC Termination.. 551
14.11.3.5 Error Handling ... 552

14.11.4 Certificate Format/Certificate Chain... 553
14.11.5 Security RAS.. 554

14.11.5.1 CXL.io Poison Inject from Device .. 554
14.11.5.2 CXL.cache Poison Inject from Device .. 555
14.11.5.3 CXL.cache CRC Inject from Device.. 557
14.11.5.4 CXL.mem Poison Injection ... 558
14.11.5.5 CXL.mem CRC Injection... 559
14.11.5.6 Flow Control Injection.. 560
14.11.5.7 Unexpected Completion Injection .. 562
14.11.5.8 Completion Timeout Injection.. 563
14.11.5.9 Memory Error Injection and Logging ... 564
14.11.5.10CXL.io Viral Inject from Device ... 565
14.11.5.11CXL.cache Viral inject from device.. 566

14.11.6 Security Protocol and Data Model .. 568
14.11.6.1 SPDM Get_Version... 568
14.11.6.2 SPDM Get_Capabilities .. 569
14.11.6.3 SPDM Negotiate_Algorithms... 570
14.11.6.4 SPDM Get_Digests ... 571
14.11.6.5 SPDM Get Cert... 571
14.11.6.6 SPDM CHALLENGE .. 572
14.11.6.7 SPDM Get_Measurements Count.. 573
14.11.6.8 SPDM Get_Measurements All ... 574
14.11.6.9 SPDM Get_Measurements Repeat with Signature... 575
14.11.6.10SPDM Challenge Sequences ... 576
14.11.6.11SPDM ErrorCode Unsupported Request.. 578
14.11.6.12SPDM Major Version Invalid .. 578
14.11.6.13SPDM ErrorCode Unexpected Request .. 579

14.12 Reliability, Availability, and Serviceability... 579
14.12.1 RAS Configuration .. 581

14.12.1.1 AER Support ... 581
14.12.1.2 CXL.io Poison Injection from Device to Host.. 582
14.12.1.3 CXL.cache Poison Injection.. 582
14.12.1.4 CXL.cache CRC Injection (Protocol Analyzer Required)... 584
14.12.1.5 CXL.mem Poison Injection ... 585
14.12.1.6 CXL.mem CRC Injection (Protocol Analyzer Required) .. 586
14.12.1.7 Flow Control Injection.. 586
14.12.1.8 Unexpected Completion Injection .. 587
14.12.1.9 Completion Timeout... 588

14.13 Memory Mapped Registers ... 588
14.13.1 CXL Capability Header.. 588
14.13.2 CXL RAS Capability Header .. 589
14.13.3 CXL Security Capability Header.. 589
14.13.4 CXL Link Capability Header .. 590
14.13.5 CXL HDM Capability Header ..590
14.13.6 CXL Extended Security Capability Header ... 591
14.13.7 CXL IDE Capability Header.. 591

Ev
al

ua
tio

n
C

op
y

Contents

 Compute Express Link Specification
October 26, 2020 14
Revision 2.0, Version 1.0

14.13.8 CXL HDM Decoder Capability Register.. 592
14.13.9 CXL HDM Decoder Commit .. 592
14.13.10CXL HDM Decoder Zero Size Commit.. 593
14.13.11CXL Snoop Filter Capability Structure... 593
14.13.12CXL Device Capabilities Array Register ... 594
14.13.13Device Status Registers Capabilities Header Register .. 594
14.13.14Primary Mailbox Registers Capabilities Header Register...595
14.13.15Secondary Mailbox Registers Capabilities Header Register... 595
14.13.16Memory Device Registers Capabilities Header Register .. 596

14.14 Memory Device Tests .. 596
14.14.1 DVSEC CXL Range 1 Size Low Registers... 596
14.14.2 DVSEC CXL Range 2 Size Low Registers... 597

14.15 Sticky Register Tests .. 598
14.15.1 Sticky Register Test.. 598

14.16 Device Capability and Test Configuration Control ... 599
14.16.1 CXL Device Test Capability Advertisement ... 600
14.16.2 Device Capabilities to Support the Test Algorithms ... 602
14.16.3 Debug Capabilities in Device ... 605

14.16.3.1 Error Logging ... 605
14.16.3.2 Event Monitors .. 605

14.16.4 Compliance Mode DOE (Optional) .. 606
14.16.4.1 Compliance Mode Capability .. 607
14.16.4.2 Compliance Mode Status..607
14.16.4.3 Compliance Mode Halt All.. 608
14.16.4.4 Compliance Mode Multiple Write Streaming...608
14.16.4.5 Compliance Mode Producer Consumer ... 609
14.16.4.6 Bogus Writes ..610
14.16.4.7 Inject Poison... 610
14.16.4.8 Inject CRC... 611
14.16.4.9 Inject Flow Control .. 611
14.16.4.10Toggle Cache Flush ... 612
14.16.4.11Inject MAC Delay... 612
14.16.4.12Insert Unexpected MAC... 613
14.16.4.13Inject Viral.. 613
14.16.4.14Inject ALMP in Any State ... 614
14.16.4.15Ignore Received ALMP ... 614
14.16.4.16Inject Bit Error in Flit ... 615

A Taxonomy ... 616
A.1 Accelerator Usage Taxonomy..616
A.2 Bias Model Flow Example – From CPU .. 617
A.3 CPU Support for Bias Modes.. 618

A.3.1 Remote Snoop Filter ... 618
A.3.2 Directory in Accelerator Attached Memory ... 618

A.4 Giant Cache Model.. 619

B Protocol Tables for Memory .. 621
B.1 Type 2 Requests .. 621

B.1.1 Forward Flows for Type 2 Devices .. 624
B.2 Type 3 Requests .. 626
B.3 Type 2 RwD.. 627
B.4 Type 3 RwD.. 628

Figures
1 Conceptual Diagram of Accelerator Attached to Processor via CXL...31
2 Fan-out and Pooling Enabled by Switches ..32

Ev
al

ua
tio

n
C

op
y

Contents

 Compute Express Link Specification
October 26, 2020 15
Revision 2.0, Version 1.0

3 CPU Flex Bus Port Example...33
4 Flex Bus Usage Model Examples ..34
5 Remote Far Memory Usage Model Example..34
6 CXL Downstream Port Connections..35
7 Conceptual Diagram of Flex Bus Layering ..36
8 CXL Device Types ..39
9 Type 1 - Device with Cache...40
10 Type 2 Device - Device with Memory..41
11 Type 2 Device - Host Bias ..42
12 Type 2 Device - Device Bias ..42
13 Type 3 - Memory Expander...44
14 Flex Bus Layers -- CXL.io Transaction Layer Highlighted...49
15 CXL Power Management Messages Packet Format..51
16 Power Management Credits and Initialization..54
17 CXL MEFN Messages Packet Format...56
18 ATS 64-bit Request with CXL Indication ...57
19 ATS Translation Completion Data Entry with CXL Indication ..57
20 CXL.cache Channels ...59
21 CXL.cache Read Behavior...64
22 CXL.cache Read0 Behavior..65
23 CXL.cache Device to Host Write Behavior ..66
24 CXL.cache WrInv Transaction ..67
25 WOWrInv/F with FastGO/ExtCmp..68
26 CXL.cache Read0-Write Semantics..69
27 CXL.cache Snoop Behavior ...76
28 Legend... 104
29 Example Cacheable Read from Host.. 104
30 Example Read for Ownership from Host.. 105
31 Example Non Cacheable Read from Host .. 106
32 Example Ownership Request from Host - No Data Required.. 106
33 Example Flush from Host.. 107
34 Example Weakly Ordered Write from Host... 107
35 Example Write from Host with Invalid Host Caches..108
36 Example Write from Host with Valid Host Caches ... 108
37 Example Device Read to Device-Attached Memory ..109
38 Example Device Write to Device-Attached Memory in Host Bias.. 110
39 Example Device Write to Device-Attached Memory ... 111
40 Example Host to Device Bias Flip .. 112
41 Example MemSpecRd... 113
42 Read from Host.. 113
43 Write from Host... 114
44 Flex Bus Layers - CXL.io Link Layer Highlighted ... 116
45 Flex Bus Layers - CXL.cache + CXL.mem Link Layer Highlighted .. 118
46 CXL.cache/.mem Protocol Flit Overview .. 119
47 CXL.cache/.mem All Data Flit Overview..119
48 Example of a Protocol Flit from Device to Host ..119
49 H0 - H2D Req + H2D Resp .. 125
50 H1 - H2D Data Header + H2D Resp + H2D Resp... 125
51 H2 - H2D Req + H2D Data Header .. 126
52 H3 - 4 H2D Data Header.. 126
53 H4 - M2S RwD Header.. 127
54 H5 - M2S Req ... 127
55 H6 - MAC .. 128
56 G0 - H2D/M2S Data ... 128
57 G0 - M2S Byte Enable... 129

Ev
al

ua
tio

n
C

op
y

Contents

 Compute Express Link Specification
October 26, 2020 16
Revision 2.0, Version 1.0

58 G1 - 4 H2D Resp.. 129
59 G2 - H2D Req + H2D Data Header + H2D Resp ... 130
60 G3 - 4 H2D Data Header + H2D Resp... 130
61 G4 - M2S Req + H2D Data Header .. 131
62 G5 - M2S RwD Header + H2D Resp ..131
63 H0 - D2H Data Header + 2 D2H Resp + S2M NDR.. 132
64 H1 - D2H Req + D2H Data Header .. 132
65 H2 - 4 D2H Data Header + D2H Resp .. 133
66 H3 - S2M DRS Header + S2M NDR.. 133
67 H4 - 2 S2M NDR .. 134
68 H5 - 2 S2M DRS Header... 134
69 H6 - MAC .. 135
70 G0 - D2H/S2M Data ... 135
71 G0 - D2H Byte Enable ... 136
72 G1 - D2H Req + 2 D2H Resp .. 136
73 G2 - D2H Req + D2H Data Header + D2H Resp ... 137
74 G3 - 4 D2H Data Header .. 137
75 G4 - S2M DRS Header + 2 S2M NDR .. 138
76 G5 - 2 S2M NDR .. 138
77 G6 - 3 S2M DRS Header... 139
78 LLCRD Flit Format (Only Slot 0 is Valid. Others are Reserved) ... 144
79 Retry Flit Format (Only Slot 0 is Valid. Others are Reserved).. 144
80 Init Flit Format (Only Slot 0 is Valid. Others are Reserved) .. 145
81 IDE Flit Format (Only Slot 0 is Valid. Others are Reserved).. 145
82 Retry Buffer and Related Pointers... 150
83 CXL.cache/mem Replay Diagram... 156
84 Flex Bus Layers - CXL ARB/MUX Highlighted... 160
85 Entry to Active Protocol Exchange.. 165
86 Example Status Exchange... 166
87 CXL Entry to Active Example Flow .. 168
88 CXL Entry to PM State Example ... 169
89 CXL Recovery Exit Example Flow... 170
90 CXL Exit from PM State Example ... 171
91 Both DP and UP Hide Recovery Transitions from ARB/MUX... 172
92 Both DP and UP Notify ARB/MUX of Recovery Transitions ... 173
93 DP Hides Initial Recovery, UP Does Not..174
94 UP Hides Initial Recovery, DP Does Not..175
95 Snapshot Example During Status Synchronization... 176
96 L1 Abort Example... 177
97 ARB/MUX Link Management Packet Format .. 177
98 Flex Bus Layers -- Physical Layer Highlighted ... 180
99 Flex Bus x16 Packet Layout.. 183
100 Flex Bus x16 Protocol Interleaving Example .. 184
101 Flex Bus x8 Packet Layout .. 185
102 Flex Bus x8 Protocol Interleaving Example... 186
103 Flex Bus x4 Packet Layout .. 187
104 CXL.io TLP Ending on Flit Boundary Example.. 188
105 Flex Bus Mode Negotiation During Link Training (Sample Flow)... 194
106 NULL Flit w/EDS and Sync Header Bypass Optimization.. 199
107 NULL Flit w/EDS and 128/130b Encoding .. 200
108 Example of a Single VCS Switch... 201
109 Example of a Multiple VCS Switch with SLD Ports... 202
110 Example of a Multiple Root Switch Port with Pooled Memory Devices.. 203
111 Static CXL Switch With Two VCSs... 204
112 Example of CXL Switch Initialization When FM Boots First.. 205

Ev
al

ua
tio

n
C

op
y

Contents

 Compute Express Link Specification
October 26, 2020 17
Revision 2.0, Version 1.0

113 Example of CXL Switch after Initialization Completes ... 206
114 Example of Switch with Fabric Manager and Host Boot Simultaneously... 207
115 Example of Switch with Single Power-on/Reset Domain Post Configuration.. 208
116 Example of Binding and Unbinding of an SLD Port... 209
117 Example of CXL Switch Configuration After an Unbind Command.. 210
118 Example of CXL Switch Configuration after a Bind Command... 211
119 Example of a CXL Switch Before Binding of LDs Within Pooled Device...212
120 Example of a CXL Switch After Binding of LD-ID 1 Within Pooled Device .. 213
121 Example of a CXL Switch After Binding of LD-IDs 0 and 1 Within Pooled Device ... 214
122 CXL Switch with a Downstream Link Auto-Negotiated to Operate as CXL 1.1.. 223
123 Example of Fabric Management Model ..227
124 FM API Message Format .. 228
125 Example of MLD Management Requiring Tunneling... 230
126 PCIe DVSEC for CXL Device ... 259
127 Non-CXL Function Map DVSEC ..268
128 CXL 2.0 Extensions DVSEC for Ports.. 271
129 GPF DVSEC for CXL Port ... 276
130 GPF DVSEC for CXL Device .. 278
131 Register Locator DVSEC with 3 Register Block Entries .. 280
132 MLD DVSEC...282
133 CXL 1.1 Memory Mapped Register Regions..286
134 CXL Downstream Port RCRB.. 287
135 CXL 1.1 Upstream Port RCRB.. 289
136 PCIe DVSEC for Flex Bus Port ... 290
137 CXL HDM Decoder n Size Low Register (Offset 20h*n+18h)... 313
138 CXL Memory Device Registers .. 325
139 Mailbox Registers ... 329
140 PMREQ/RESETPREP Propagation by CXL Switch .. 390
141 CXL Device Reset Entry Flow... 392
142 CXL Device Sleep State Entry Flow... 393
143 PCIe Software View of CXL 1.1 Hierarchy .. 405
144 One CPU Connected to a Dual-Headed CXL Device Via Two Flex Bus Links ... 408
145 Two CPUs Connected to One CXL Device Via Two Flex Bus Links ... 410
146 CXL 2.0 Downstream Port State Diagram .. 413
147 CXL 1.1 Device MMIO Address Decode - Example .. 415
148 CXL 1.1 Device Configuration Space Decode - Example... 416
149 CXL 2.0 Physical Topology - Example... 417
150 CXL 2.0 Virtual Hierarchy - Software View .. 418
151 CXL Link/Protocol Registers – CXL 1.1 Host and CXL 1.1 Device.. 419
152 CXL Link/Protocol Registers – CXL 2.0 Root Ports and CXL 2.0 Devices ... 420
153 CXL Link/Protocol Registers in a CXL Switch ... 420
154 One Level Interleaving at Switch - Example ... 423
155 Two Level Interleaving ... 424
156 Three Level Interleaving Example... 425
157 Overall LSA Layout .. 426
158 The Fletcher64 Checksum Algorithm in C... 427
159 Sequence Numbers in Label Index Blocks .. 428
160 PkgC Entry Flow Initiated by Device - Example... 440
161 PkgC Entry Flows for Type 3 Device - Example... 441
162 PkgC Exit Flows - Triggered by Device Access to System Memory .. 442
163 PkgC Exit Flows - Execution Required by Processor... 443
164 CXL Link PM Phase 1... 444
165 CXL Link PM Phase 2... 445
166 CXL PM Phase 3 .. 447
167 Electrical Idle .. 447

Ev
al

ua
tio

n
C

op
y

Contents

 Compute Express Link Specification
October 26, 2020 18
Revision 2.0, Version 1.0

168 ASPM L1 Entry Phase 1..449
169 CXL.cachemem IDE Showing Aggregation of 5 Flits ... 454
170 CXL.cachemem IDE Showing Aggregation Across 5 Flits Where One Flit Contains MAC Header in Slot 0

455
171 More Detailed View of a 5 Flit MAC Epoch Example ... 455
172 Mapping of AAD Bytes for the Example Shown in Figure 171.. 456
173 Inclusion of the PCRC mechanism into AES-GCM encryption .. 457
174 Inclusion of the PCRC mechanism into AES-GCM decryption.. 457
175 MAC Epochs and MAC Transmission in Case of Back-to-Back Traffic (a) Earliest MAC Header Transmit (b)

Latest MAC Header Transmit in the Presence of Multi-Data Header... 459
176 Example of MAC Header Being Received in the Very First Flit of the Current MAC_Epoch........................... 460
177 Early Termination and Transmission of Truncated MAC Flit... 462
178 CXL.cachemem IDE Transmission with Truncated MAC Flit .. 462
179 Link Idle Case After Transmission of Aggregation Flit Count Number of Flits .. 463
180 CXL 1.1 Error Handling... 467
181 CXL 1.1 DP Detects Error .. 468
182 CXL 1.1 UP Detects Error .. 469
183 CXL 1.1 RCiEP Detects Error .. 470
184 CXL 2.0 Memory Error Reporting Enhancements... 473
185 Example Test Topology... 478
186 Example SHDA Topology.. 479
187 Example Single Host, Switch Attached, SLD EP (SHSW) Topology .. 480
188 Example SHSW-FM Topology... 481
189 Example DHSW-FM Topology .. 482
190 Example DHSW-FM-MLD Topology... 483
191 Representation of False Sharing Between Cores (on Host) and CXL Devices.. 484
192 Flow Chart of Algorithm 1a .. 485
193 Flow Chart of Algorithm 1b.. 486
194 Execute Phase for Algorithm 2 ... 487
195 Minimum Configurations for Switch Compliance Testing .. 506
196 PCIe DVSEC for Test Capability..600
197 Profile D - Giant Cache Model... 619

Tables
1 Terminology / Acronyms..27
2 Reference Documents ...30
3 LD-ID Link Local TLP Prefix...45
4 MLD PCI Express Registers ..46
5 CXL Power Management Messages -- Data Payload Fields Definitions ..51
6 PMREQ Field Definitions ..54
7 Optional PCIe Features Required For CXL..56
8 CXL.cache Channel Crediting ...60
9 CXL.cache - D2H Request Fields...60
10 Non Temporal Encodings ..61
11 CXL.cache - D2H Response Fields..61
12 CXL.cache - D2H Data Header Fields ..61
13 CXL.cache – H2D Request Fields ..62
14 CXL.cache - H2D Response Fields..62
15 RSP_PRE Encodings ...62
16 Cache State Encoding for H2D Response...63
17 CXL.cache - H2D Data Header Fields ..63
18 CXL.cache. – Device to Host Requests..69
19 D2H Request (Targeting Non Device-Attached Memory) Supported H2D Responses73
20 D2H Request (Targeting Device-Attached Memory) Supported Responses ...74

Ev
al

ua
tio

n
C

op
y

Contents

 Compute Express Link Specification
October 26, 2020 19
Revision 2.0, Version 1.0

21 D2H Response Encodings..74
22 CXL.cache – Mapping of Host to Device Requests and Responses ...77
23 H2D Response Opcode Encodings..77
24 Allowed Opcodes Per Buried Cache State..83
25 Impact of DevLoad Indication on Host Request Rate Throttling ..85
26 Recommended Host Adjustment to Request Rate Throttling ...86
27 Factors for Determining IntLoad...87
28 Additional Factors for Determining DevLoad in MLDs..92
29 M2S Request Fields ..94
30 M2S Req Memory Opcodes ..95
31 Meta Data Field Definition ...95
32 Meta0-State Value Definition (Type 2 Devices)..96
33 Snoop Type Definition ..96
34 M2S Req Usage...96
35 M2S RwD Fields..97
36 M2S RwD Memory Opcodes...98
37 M2S RwD Usage ...98
38 S2M NDR Fields..98
39 S2M NDR Opcodes..99
40 DevLoad Definition ...99
41 S2M DRS Fields ... 100
42 S2M DRS Opcodes... 100
43 Upstream Ordering Summary... 101
44 Downstream Ordering Summary... 102
45 CXL.cache/CXL.mem Flit Header Definition..120
46 Type Encoding ... 120
47 Legal values of Sz and BE Fields.. 121
48 CXL.cache/CXL.mem Credit Return Encodings ... 122
49 ReqCrd/DataCrd/RspCrd Channel Mapping ... 122
50 Slot Format Field Encoding.. 123
51 H2D/M2S Slot Formats..123
52 D2H/S2M Slot Formats..124
53 CXL.cache/CXL.mem Link Layer Control Types ..141
54 CXL.cache/CXL.mem Link Layer Control Details .. 141
55 Control Flits and Their Effect on Sender and Receiver States.. 152
56 Local Retry State Transitions... 154
57 Remote Retry State Transition.. 156
58 Virtual LSM States Maintained Per Link Layer Interface.. 161
59 ARB/MUX Multiple Virtual LSM Resolution Table.. 162
60 ARB/MUX State Transition Table... 163
61 vLSM State Resolution After Status Exchange .. 166
62 ALMP Byte 2 and Byte 3 Encoding.. 178
63 Flex Bus.CXL Link Speeds and Widths for Normal and Degraded Mode... 181
64 Flex Bus.CXL Protocol IDs... 182
65 Protocol ID Framing Errors... 189
66 Modified TS1/TS2 Ordered Set for Flex Bus Mode Negotiation.. 191
67 Additional Information on Symbols 8-9 of Modified TS1/TS2 Ordered Set.. 192
68 Additional Information on Symbols 12-14 of Modified TS1/TS2 Ordered Sets .. 192
69 CXL 2.0 Versus CXL1.1 Link Training Resolution ... 195
70 Rules of Enable Low Latency Mode Features... 198
71 CXL Switch Sideband Signal Requirements..208
72 MLD Type 1 Configuration Space Header.. 215
73 MLD PCI-Compatible Configuration Registers... 215
74 MLD PCI Express Capability Structure... 215
75 MLD Secondary PCI Express Capability Structure ... 218

Ev
al

ua
tio

n
C

op
y

Contents

 Compute Express Link Specification
October 26, 2020 20
Revision 2.0, Version 1.0

76 MLD Physical Layer 16.0 GT/s Extended Capability..219
77 MLD Physical Layer 32.0 GT/s Extended Capability..219
78 MLD Lane Margining at the Receiver Extended Capability... 220
79 MLD ACS Extended Capability .. 220
80 MLD Advanced Error Reporting Extended Capability... 221
81 MLD PPB DPC Extended Capability ..222
82 CXL Switch Message Management ... 225
83 CXL Switch RAS... 226
84 FM API Message Format .. 228
85 Common FM API Message Header.. 233
86 Switch Event Notifications Command Set Requirements.. 234
87 Event Notification Payload ... 234
88 Physical Switch Command Set Requirements ... 235
89 Identify Switch Device Response Payload... 235
90 Get Physical Port State Request Payload... 236
91 Get Physical Port State Response Payload ... 236
92 Get Physical Port State Port Information Block Format .. 237
93 Get Physical Port State Request Payload... 239
94 Send PPB CXL.io Configuration Request Payload.. 239
95 Send PPB CXL.io Configuration Response Payload ..239
96 Virtual Switch Command Set Requirements .. 240
97 Get Virtual CXL Switch Info Request Payload .. 240
98 Get Virtual CXL Switch Info Response Payload... 240
99 Get Virtual CXL Switch Info VCS Information Block Format.. 241
100 Bind vPPB Request Payload... 242
101 Unbind vPPB Request Payload... 242
102 Generate AER Event Request Payload... 243
103 MLD Port Command Set Requirements..243
104 Tunnel Management Command Request Payload .. 244
105 Tunnel Management Command Response Payload... 244
106 Send LD CXL.io Configuration Request Payload... 245
107 Send LD CXL.io Configuration Response Payload ... 245
108 Send LD CXL.io Memory Request Payload.. 245
109 Send LD CXL.io Memory Request Response Payload... 246
110 MLD Component Command Set Requirements..246
111 Get LD Info Response Payload ... 247
112 Get LD Allocations Response Payload .. 247
113 LD Allocations List Format ... 248
114 Set LD Allocations Request Payload .. 248
115 Set LD Allocations Response Payload... 248
116 Payload for Get QoS Control Response, Set QoS Control Request, and Set QoS Control Response 249
117 Get QoS Status Response Payload ... 250
118 Payload for Get QoS Allocated BW Response, Set QoS Allocated BW Request, and Set QoS Allocated BW

Response.. 251
119 Payload for Get QoS BW Limit Response, Set QoS BW Limit Request, and Set QoS BW Limit Response

252
120 Physical Switch Events Record Format... 252
121 Virtual CXL Switch Event Record Format... 253
122 MLD Port Event Records Payload.. 254
123 Register Attributes ... 256
124 CXL DVSEC ID Assignment... 257
125 CXL DOE Type Assignment .. 258
126 PCI Express DVSEC Register Settings for CXL Device .. 260
127 Non-CXL Function Map DVSEC ..269
128 CXL 2.0 Extensions DVSEC for Ports - Header .. 272

Ev
al

ua
tio

n
C

op
y

Contents

 Compute Express Link Specification
October 26, 2020 21
Revision 2.0, Version 1.0

129 GPF DVSEC for CXL Port - Header .. 277
130 GPF DVSEC for CXL Device - Header ... 278
131 Register Locator DVSEC - Header ... 280
132 MLD DVSEC - Header.. 282
133 Coherent Device Attributes- Data Object Header .. 283
134 Read Entry Request ... 283
135 Read Entry Response.. 283
136 Memory Device PCIe Capabilities and Extended Capabilities... 284
137 CXL Memory Mapped Registers Regions ... 285
138 CXL 1.1 Downstream Port PCIe Capabilities and Extended Capabilities.. 287
139 CXL 1.1 Upstream Port PCIe Capabilities and Extended Capabilities.. 290
140 PCI Express DVSEC Header Registers Settings for Flex Bus Port .. 291
141 CXL Subsystem Component Register Ranges.. 294
142 CXL_Capability_ID Assignment ..295
143 CXL.cache and CXL.mem Architectural Register Discovery ... 296
144 CXL.cache and CXL.mem Architectural Register Header Example ... 296
145 Device Trust Level .. 303
146 CXL Extended Security Structure Entry Count .. 319
147 Root Port n Security Policy Register... 319
148 Root Port n ID Register... 319
149 BAR Virtualization ACL Register Block Layout ... 324
150 Command Return Codes ... 331
151 CXL Memory Device Capabilities Identifiers ... 334
152 CXL Device Command Opcodes .. 335
153 Common Event Record Format..336
154 General Media Event Record ... 337
155 DRAM Event Record .. 338
156 Memory Module Event Record ... 341
157 Vendor Specific Event Record .. 341
158 Get Event Records Input Payload.. 342
159 Get Event Records Output Payload..342
160 Clear Event Records Input Payload ..343
161 Get Event Interrupt Policy Output Payload... 345
162 Set Event Interrupt Policy Input Payload... 347
163 Get FW Info Output Payload.. 348
164 Transfer FW Input Payload... 350
165 Activate FW Input Payload ... 351
166 Get Timestamp Output Payload .. 351
167 Set Timestamp Input Payload... 352
168 Get Supported Logs Output Payload... 352
169 Get Supported Logs Supported Log Entry .. 353
170 Get Log Input Payload.. 353
171 Get Log Output Payload .. 353
172 CEL Output Payload .. 354
173 CEL Entry Structure ... 355
174 CXL Memory Device Command Opcodes.. 356
175 Identify Memory Device Output Payload ... 358
176 Get Partition Info Output Payload... 360
177 Set Partition Info Input Payload... 361
178 Get LSA Input Payload ... 361
179 Get LSA Output Payload.. 361
180 Set LSA Input Payload.. 362
181 Get Health Info Output Payload... 363
182 Get Alert Configuration Output Payload .. 366
183 Set Alert Configuration Input Payload .. 368

Ev
al

ua
tio

n
C

op
y

Contents

 Compute Express Link Specification
October 26, 2020 22
Revision 2.0, Version 1.0

184 Get Shutdown State Output Payload... 369
185 Set Shutdown State Input Payload... 369
186 Get Poison List Input Payload... 370
187 Get Poison List Output Payload ... 371
188 Media Error Record.. 372
189 Inject Poison Input Payload ... 373
190 Clear Poison Input Payload.. 373
191 Get Scan Media Capabilities Input Payload... 374
192 Get Scan Media Capabilities Output Payload... 374
193 Scan Media Input Payload .. 375
194 Get Scan Media Results Output Payload.. 377
195 Get Security State Output Payload... 379
196 Set Passphrase Input Payload .. 380
197 Disable Passphrase Input Payload.. 381
198 Unlock Input Payload ... 381
199 Passphrase Secure Erase Input Payload .. 382
200 Security Send Input Payload ... 383
201 Security Receive Input Payload..384
202 Security Receive Output Payload .. 384
203 Get SLD QoS Control Output Payload and Set SLD QoS Control Input Payload ... 384
204 Get SLD QoS Status Output Payload ... 386
205 CXL FM API Command Opcodes ... 386
206 Event Sequencing for Reset and Sx Flows... 389
207 GPF Energy Calculation Example... 401
208 Memory Decode Rules in Presence of One CPU/Two Flex Bus Links.. 409
209 Memory Decode Rules in Presence of Two CPU/Two Flex Bus Links ... 411
210 Label Index Block Layout .. 427
211 Region Label Layout.. 430
212 Namespace Label Layout.. 431
213 Vendor Specific Label Layout ... 432
214 CEDT Header .. 432
215 CEDT Structure Types .. 433
216 CHBS Structure.. 433
217 Interpretation of CXL _OSC Support Field .. 434
218 Interpretation of CXL _OSC Control Field, Passed in via Arg3.. 435
219 Interpretation of CXL _OSC Control Field, Returned Value ... 435
220 Runtime-Control - CXL Versus PCIe Control Methodologies.. 438
221 PMReq(), PMRsp() and PMGo Encoding ..440
222 Mapping of PCIE IDE to CXL.io.. 453
223 CXL RAS Features... 466
224 Device Specific Error Reporting and Nomenclature Guidelines... 471
225 Cache CRC Injection Request .. 491
226 Cache CRC Injection Request .. 491
227 Link Initialization Resolution Table ..504
228 Hot Add Link Initialization Resolution Table .. 505
229 MAC Header Insertion Setup... 552
230 MAC Inserted in MAC Epoch Setup... 553
231 IO Poison Injection Request... 554
232 Multi-Write Streaming Request..555
233 Cache Poison Injection Request... 556
234 Multi-Write Streaming Request..556
235 Cache CRC Injection Request .. 557
236 Multi-Write Streaming Request..557
237 Mem-Poison Injection Request ..558
238 Multi-Write Streaming Request..558

Ev
al

ua
tio

n
C

op
y

Contents

 Compute Express Link Specification
October 26, 2020 23
Revision 2.0, Version 1.0

239 MEM CRC Injection Request... 559
240 Multi-Write Streaming Request..560
241 Flow Control Injection Request ..561
242 Multi-Write Streaming Request..561
243 Unexpected Completion Injection Request ..562
244 Multi-Write Streaming Request..562
245 Completion Timeout Injection Request..563
246 Multi-Write Streaming Request..563
247 Poison Injection Request... 564
248 Multi-Write Streaming Request..565
249 IO viral Injection Request .. 566
250 Multi-Write Streaming Request..566
251 Cache viral Injection Request .. 567
252 Multi-Write Streaming Request..567
253 Register 1: CXL.cache/CXL.mem LinkLayerErrorInjection .. 580
254 Register 2: CXL.io LinkLayer Error injection ..581
255 Register 3: Flex Bus LogPHY Error injections ... 581
256 DVSEC Registers ... 600
257 DVSEC CXL Test Lock (offset 0Ah).. 600
258 DVSEC CXL Test Capability1 (offset 0Ch) .. 600
259 Device CXL Test Capability2 (Offset 10h) .. 601
260 DVSEC CXL Test Configuration Base Low (Offset 14h).. 601
261 DVSEC CXL Test Configuration Base High (Offset 18h)... 602
262 Register 1: StartAddress1 (Offset 00h) ... 602
263 Register 2: WriteBackAddress1 (Offset 08h) .. 602
264 Register 3: Increment (Offset 10h).. 602
265 Register 4: Pattern (Offset 18h)..602
266 Register 5: ByteMask (Offset 20h) ... 602
267 Register 6: PatternConfiguration (Offset 28h) ... 603
268 Register 7: AlgorithmConfiguration (Offset 30h) .. 603
269 Register 8: DeviceErrorInjection (Offset 38h)... 604
270 Register 9: ErrorLog1 (Offset 40h) .. 605
271 Register 10: ErrorLog2 (Offset 48h)..605
272 Register 11: ErrorLog3 (Offset 50h)..605
273 Register 12: EventCtrl (Offset 60h) ... 606
274 Register 13: EventCount (Offset 68h) .. 606
275 Compliance Mode – Data Object Header ... 606
276 Compliance Mode Return Values .. 606
277 Compliance Mode Availability Request ..607
278 Compliance Mode Availability Response ... 607
279 Compliance Mode Status .. 607
280 Compliance Mode Status Response... 607
281 Compliance Mode Halt All .. 608
282 Compliance Mode Halt All Response... 608
283 Enable Multiple Write Streaming Algorithm on the Device ... 608
284 Compliance Mode Multiple Write Streaming Response.. 609
285 Enable Producer Consumer Algorithm on the Device.. 609
286 Compliance Mode Producer Consumer Response .. 609
287 Enable Bogus Writes Injection into Compliance Mode Write Stream Algorithms ... 610
288 Inject Bogus Writes Response... 610
289 Enable Poison Injection into.. 610
290 Poison Injection Response ... 610
291 Enable CRC Error into Traffic... 611
292 CRC Injection Response... 611
293 Enable Flow Control injection... 611

Ev
al

ua
tio

n
C

op
y

Contents

 Compute Express Link Specification
October 26, 2020 24
Revision 2.0, Version 1.0

294 Flow Control Injection Response... 611
295 Enable Cache Flush Injection .. 612
296 Cache Flush Injection Response .. 612
297 MAC Delay Injection .. 612
298 MAC Delay Response .. 612
299 Unexpected MAC Injection... 613
300 Unexpected MAC Injection Response.. 613
301 Enable Viral Injection.. 613
302 Flow Control Injection Response... 613
303 Inject ALMP Request ... 614
304 Inject ALMP Response.. 614
305 Ignore Received ALMP Request ... 614
306 Ignore Received ALMP Response .. 614
307 Inject Bit Error in Flit Request.. 615
308 Inject Bit Error in Flit Response ..615
309 Accelerator Usage Taxonomy ... 616
310 Field Encoding Abbreviations ... 621
311 Type 2 Memory Request ... 622
312 Type 2 Request Forward Sub-Table .. 624
313 Type 3 Memory Request ... 626
314 Type 2 Memory RwD... 627
315 Type 3 Memory RwD... 628

Ev
al

ua
tio

n
C

op
y

Revision History

 Compute Express Link Specification
October 26, 2020 25
Revision 2.0, Version 1.0

Revision History

Revision Description Date

1.0 Initial release. March, 2019

1.1

Added Reserved and ALMP terminology definition to Terminology/Acronyms table and
also alphabetized the entries. Completed update to CXL terminology (mostly figures);
removed disclaimer re: old terminology. General typo fixes. Added missing figure
caption in Transaction Layer chapter. Modified description of Deferrable Writes in
Section 3.1.7 to be less restrictive. Added clarification in Section 3.2.5.13 that ordering
between CXL.io traffic and CXL.cache traffic must be enforced by the device (e.g.,
between MSIs and D2H memory writes). Removed ExtCmp reference in ItoMWr &
MemWr. Flit organization clarification: updated Figure 45 and added example with
Figure 47. Fixed typo in Packing Rules MDH section with respect to H4. Clarified that
Advanced Error Reporting (AER) is required for CXL. Clarification on data interleave
rules for CXL.mem in Section 3.3.7. Updated Table 60, “ARB/MUX State Transition
Table” to add missing transitions and to correct transition conditions. Updated
Section 5.1.2 to clarify rules for ALMP state change handshakes and to add rule around
unexpected ALMPs. Updated Section 5.2.1 to clarify that ALMPs must be disabled when
multiple protocols are not enabled. Updates to ARB/MUX flow diagrams. Fixed typos in
the Physical Layer interleave example figures (LCRC at the end of the TLPs instead of
IDLEs). Updated Table 65 to clarify protocol ID error detection and handling. Added
Section 6.6 to clarify behavior out of recovery. Increased the HDM size granularity from
1MB to 256MB (defined in the Flex Bus Device DVSEC in Control and Status Registers
chapter). Updated Viral Status in the Flex Bus Device DVSEC to RWS (from RW).
Corrected the RCRB BAR definition so fields are RW instead of RWO. Corrected typo in
Flex Bus Port DVSEC size value. Added entry to Table 141 to clarify that upper 7K of the
64K MEMBAR0 region is reserved. Corrected Table 206 so the PME-Turn_Off/Ack
handshake is used consistently as a warning for both PCIe and CXL mode. Update
Section 10.2.3 and Section 10.2.4 to remove references to EA and L2. Updated
Section 12.2.2 to clarify device handling of non-function errors. Added additional
latency recommendations to cover CXL.mem flows to Section 13.0; also changed
wording to clarify that the latency guidelines are recommendations and not
requirements. Added compliance test chapter.

June, 2019

Ev
al

ua
tio

n
C

op
y

Revision History

 Compute Express Link Specification
October 26, 2020 26
Revision 2.0, Version 1.0

§ §

2.0

Incorporated Errata for the Compute Express Link Specification Revision 1.1. Renamed
L1.1 - L1.4 to L1.0 - L1.3 in the ARB/MUX chapter to make consistent with PCIe
naming.
Added new chapter for CXL Switching (Chapter 7.0). Added CXL Integrity and Data
Encryption definition to the Security chapter. Added support for hot-plug, persistent
memory, memory error reporting, and telemetry.
Removed the Platform Architecture chapter
Change to CXL.mem QoS Telemetry definition to use message-based load passing from
Device to host using newly defined 2-bit DevLoad field passed in all S2M messages.
Transaction Layer (Chapter 3.0) - Update to ordering tables to clarify reasoning for 'Y'
(bypassing).
Link Layer (Chapter 4.0) - Updates for QoS and IDE support. ARB/MUX chapter
clarifications around vLSM transitions and ALMPS status synchronization handshake
and resolution.
Physical Layer (Chapter 6.0) - Updates around retimer detection, additional check
during alternate protocol negotiation, and clarifications around CXL operation without
32GT/s support. Major compliance chapter update for CXL2.0 features.
Add Register, mailbox command, and label definitions for the enumeration and
management of both volatile and persistent memory CXL devices.
Switching (Chapter 7.0) - Incorporated 0.7 draft review feedback
Control and Status Registers (Chapter 8.0) - Updated DVSEC ID 8 definition to be more
scalable, deprecated Error DOE in favor of CXL Memory Configuration Interface ECR,
updated HDM decoder definition to introduce DPASkip, Added CXL Snoop filter
capability structure, Merged CXL Memory Configuration Interface ECR, incorporated 0.7
draft review feedback
Reset, Initialization, Configuration and Manageability (Chapter 9.0) - Aligned device
reset terminology with PCI Express, Moved MEFN into different class of CXL VDMs,
removed cold reset section, replaced eFLR section with CXL Reset, additional
clarifications regarding GPF behavior, added firmware flow for detecting retimer
mismatch in CXL 1.1 system, added Memory access/config access/error reporting flows
that describe CXL 1.1 device below a switch, added section that describes memory
device label storage, added definition of CEDT ACPI table, incorporated 0.7 draft review
feedback
Reliability, Availability and Serviceability (Chapter 12.0) - Added detailed flows that
describe how a CXL 1.1 device, DP and UP detected errors are logged and signaled,
clarified that CXL 2.0 device must keep track of poison received, updated memory error
reporting section per CXL Memory Configuration Interface ECR, incorporated 0.7 draft
review feedback
Added Appendix B to define legal CXL.mem request/response messages and device
state for Type 2 and Type 3 devices.
Updated to address member feedback.
Incorporated PCRC updates.
Incorporated QoS (Synchronous Load Reporting) changes.
Updated viral definition to cover the switch behavior.

October 26, 2020

Revision Description Date

Ev
al

ua
tio

n
C

op
y

Introduction

 Compute Express Link Specification
October 26, 2020 27
Revision 2.0, Version 1.0

1.0 Introduction

1.1 Audience
The information in this document is intended for anyone designing or architecting any
hardware or software associated with Compute Express Link (CXL) or Flex Bus.

1.2 Terminology / Acronyms
Please refer to the PCI Express Specification for additional terminology and acronym
definitions beyond those listed in Table 1.

Table 1. Terminology / Acronyms

Term / Acronym Definition

AAD Additional Authentication Data - data that is integrity protected but not encrypted

Accelerator Devices that may be used by software running on Host processors to offload or perform any type of
compute or I/O task. Examples of accelerators include programmable agents (such as GPU/GPGPU),
fixed-function agents, or reconfigurable agents such as FPGAs.

ACL Access Control List

ACPI Advanced Configuration and Power Interface

AES-GCM Authenticated Encryption standard defined in NIST publication [AES-GCM]

AIC Add In Card

ALMP ARB/MUX Link Management Packet

BAR Base Address Register as defined in PCI Express Specification

BW Bandwidth

CDAT Coherent Device Attribute Table, a table describing performance characteristics of a CXL device or a CXL
switch.

CEDT CXL Early Discovery Table

CHBCR CXL Host Bridge Component Registers

CIE Corrected Internal Error

Cold reset As defined in the PCI Express Specification

CXL Compute Express Link, a low-latency, high-bandwidth link that supports dynamic protocol muxing of
coherency, memory access, and IO protocols, thus enabling attachment of coherent accelerators or
memory devices.

CXL.cache Agent coherency protocol that supports device caching of Host memory.

CXL.io PCIe-based non coherent I/O protocol with enhancements for accelerator support.

CXL.mem Memory access protocol that supports device-attached memory.

DCOH This refers to the Device Coherency agent on the device that is responsible for resolving coherency with
respect to device caches and managing Bias states

Ev
al

ua
tio

n
C

op
y

Introduction

 Compute Express Link Specification
October 26, 2020 28
Revision 2.0, Version 1.0

DMTF Distributed Management Task Force

DOE Data Object Exchange

DP Downstream Port. A physical port that can be a root port or switch downstream port.

DPA Device Physical Address

DSP Downstream Switch Port

ECRC End to End CRC

Flex Bus A flexible high-speed port that is configured to support either PCI Express or Compute Express Link.

Flex Bus.CXL CXL protocol over a Flex Bus interconnect.

FLR Function Level Reset

FM The Fabric Manager is an entity separate from the Switch or Host firmware that controls aspects of the
system related to binding and management of pooled ports and devices.

FM owned PPB An FM owned PPB is a link containing traffic from multiple VCSs or an unbound physical port.

Fundamental Reset As defined in the PCI Express Specification

GPF Global Persistent Flush

HBM High Bandwidth Memory

HDM Host-managed Device Memory. Device-attached memory mapped to system coherent address space and
accessible to Host using standard write-back semantics. Memory located on a CXL device can either be
mapped as HDM or PDM.

Home Agent This is the agent on the Host that is responsible for resolving system wide coherency for a given address

Hot Reset As defined in the PCI Express Specification

HPA Host Physical Address

HW Hardware

IDE Integrity and Data Encryption

IP2PM Independent Power Manager to (Master) Power Manager, PM messages from the device to the host.

LD A Logical Device is the entity that represents a CXL Endpoint bound to a VCS. An SLD device contains one
LD. An MLD device contains multiple LDs.

Link Layer Clock Link Layer Clock is the FLIT datapath clock of the CXL.cache/mem link layer where max frequency in this
generation is 1 GHz (32GT/s * 16 lanes = 1 flit).

LTR Latency Tolerance Reporting

MAC Message Authentication Code also referred to as Tag or Integrity value

MAC Epoch Set of flits which are aggregated together for MAC computation

MC Memory Controller

MCTP Management Component Transport Protocol

MLD Device Multi-Logical Device is a Pooled Type 3 component that contains one LD reserved for the FM configuration
and control and one to sixteen LDs that can be bound to VCSs.

MLD Port An MLD Port is one that has linked up with a Type 3 Pooled Component. The port is natively bound to an
FM-owned PPB inside the switch.

MMIO Memory Mapped IO

Multi-Logical Link A link connecting to a Multi-Logical Device

Table 1. Terminology / Acronyms

Term / Acronym Definition

Ev
al

ua
tio

n
C

op
y

Introduction

 Compute Express Link Specification
October 26, 2020 29
Revision 2.0, Version 1.0

Native Width This is the maximum possible expected negotiated link width.

P2P Peer to peer

PCIe PCI Express

PCIe RCiEP PCIe Root Complex Integrated Endpoint.

PCRC CRC-32 computed on the flit plaintext content. Encrypted PCRC is used to provide robustness against hard
and soft faults internal to the encryption and decryption engines.

PDM Private Device memory. Device-attached memory not mapped to system address space or directly
accessible to Host as cacheable memory. Memory located on PCIe devices is of this type. Memory located
on a CXL device can either be mapped as PDM or HDM.

PM Power Management

PM2IP (Master) Power Manager to Independent Power Manager, PM messages from the host to the device,

PPB PCI-to-PCI Bridge inside a CXL switch that is FM-owned. The port connected to a PPB can be
disconnected, PCIe, CXL 1.1, CXL 2.0 SLD, or CXL 2.0 MLD.

QoS Quality of Service

RAS Reliability Availability and Serviceability

RCEC Root Complex Event Collector, collects errors from PCIe RCiEPs.

RCRB Root Complex Register Block as defined in PCI Express Specification

Reserved The contents, states, or information are not defined at this time. Reserved register fields must be read
only and must return 0 (all 0’s for multi-bit fields) when read. Reserved encodings for register and packet
fields must not be used. Any implementation dependent on a Reserved field value or encoding will result
in an implementation that is not CXL-spec compliant. The functionality of such an implementation cannot
be guaranteed in this or any future revision of this specification. Flit, Slot, and message reserved bits
should be set to 0 by the sender and the receiver should ignore them.

RSVD or RV Reserved

SF Snoop Filter

SLD Single Logical Device

Smart I/O Enhanced I/O with additional protocol support.

SPDM Security Protocol and Data Model

SVM Shared Virtual Memory

SW Software

TCB Trusted Computing Base - refers to the set of hardware, software and/or firmware entities that security
assurances depend upon

TEE Trusted Execution Environment

UEFI Unified Extensible Firmware Interface

UIE Uncorrected Internal Error

UP Upstream Port. A physical port that can be a switch upstream port or Endpoint port.

USP Upstream Switch Port

VCS The Virtual CXL Switch includes entities within the physical switch belonging to a single VH. It is identified
using the VCS-ID.

VDM Vendor Defined Message

Table 1. Terminology / Acronyms

Term / Acronym Definition

Ev
al

ua
tio

n
C

op
y

Introduction

 Compute Express Link Specification
October 26, 2020 30
Revision 2.0, Version 1.0

1.3 Reference Documents

1.4 Motivation and Overview

1.4.1 Compute Express Link

CXL is a dynamic multi-protocol technology designed to support accelerators and
memory devices. CXL provides a rich set of protocols that include I/O semantics similar
to PCIe (i.e., CXL.io), caching protocol semantics (i.e., CXL.cache), and memory access
semantics (i.e., CXL.mem) over a discrete or on-package link. CXL.io is required for
discovery and enumeration, error report, and host physical address (HPA) lookup.
CXL.mem and CXL.cache protocols may be optionally implemented by the particular
accelerator or memory device usage model. A key benefit of CXL is that it provides a
low-latency, high-bandwidth path for an accelerator to access the system and for the
system to access the memory attached to the CXL device. Figure 1 below is a
conceptual diagram showing a device attached to a Host processor via CXL.

VH Virtual Hierarchy is everything from the RP down, including the RP, PPB, and Endpoints. It is identified as
VH. Hierarchy ID means the same as PCIe.

VMM Virtual Machine Manager

vPPB Virtual PCI-to-PCI Bridge inside a CXL switch that is host-owned. A vPPB can be bound to a disconnected,
PCIe, CXL 1.1, CXL 2.0 SLD, or LD within an MLD component.

Warm Reset As defined in the PCI Express Specification

Table 2. Reference Documents

Document Chapter Reference Document No./Location

PCI Express Base Specification Revision 5.0 or
later N/A www.pcisig.com

ACPI Specification 6.3 or later Various www.uefi.org

UEFI Specification 2.8 or later Various www.uefi.org

PCI Firmware Specification 3.2 or later Various www.pcisig.com

MCTP Base Specification (DSP0236) 1.3.1 or
later Various https://www.dmtf.org/dsp/DSP0236

Security Protocol and Data Model Specification
1.1.0 or later Various https://www.dmtf.org/dsp/DSP0274

Table 1. Terminology / Acronyms

Term / Acronym Definition

http://www.pcisig.com

Ev
al

ua
tio

n
C

op
y

Introduction

 Compute Express Link Specification
October 26, 2020 31
Revision 2.0, Version 1.0

The CXL 2.0 specification enables additional usage models beyond CXL 1.1, while being
fully backwards compatible with CXL 1.1 (and CXL 1.0). It enables managed hot-plug,
security enhancements, persistent memory support, memory error reporting, and
telemetry. CXL 2.0 also enables single-level switching support for fan-out as well as the
ability to pool devices across multiple virtual hierarchies, including multi-domain
support of memory devices. Figure 2 demonstrates memory and accelerator
disaggregation through single level switching, in addition to fan-out, across multiple
virtual hierarchies, each represented by a unique color. CXL 2.0 also enables these
resources (memory or accelerators) to be off-lined from one domain and on-lined into
another domain, allowing the resources to be time-multiplexed across different virtual
hierarchies, depending on their resource demand.

CXL protocol is compatible with PCIe CEM Form Factor (4.0 and later), all form factors
relating to EDSFF SSF-TA-1009 (revision 2.0 and later) and other form factors that
support PCIe.

Figure 1. Conceptual Diagram of Accelerator Attached to Processor via CXL

Host
Memory

Accelerator
Memory

(Optional)

Accelerator Logic

CXL.io (PCIe)
Discovery
Register Access
Configuration
Initialization
Interrupts
DMA
ATS
Error Signaling

CXL.cache
Coherent requests

CXL.mem
Memory Flows

Coherence/Cache Logic PCIe Logic

Core Core I/O Device

CXL.cache CXL.mem CXL.io

Host
Processor

Accelerator

Compute Express Link (CXL)

Ev
al

ua
tio

n
C

op
y

Introduction

 Compute Express Link Specification
October 26, 2020 32
Revision 2.0, Version 1.0

1.4.2 Flex Bus

A Flex Bus port allows designs to choose between providing native PCIe protocol or CXL
over a high-bandwidth, off-package link; the selection happens during link training via
alternate protocol negotiation and depends on the device that is plugged into the slot.
Flex Bus uses PCIe electricals, making it compatible with PCIe retimers, and form
factors that support PCIe.

Figure 3 provides a high-level diagram of a Flex Bus port implementation, illustrating
both a slot implementation and a custom implementation where the device is soldered
down on the motherboard. The slot implementation can accommodate either a Flex
Bus.CXL card or a PCIe card. One or two optional retimers can be inserted between the
CPU and the device to extend the channel length. As illustrated in Figure 4, this flexible
port can be used to attach coherent accelerators or smart I/O to a Host processor.

Figure 2. Fan-out and Pooling Enabled by Switches

CPU CPU CPU CPU

Switch Switch Switch

PCIe or CXL
Device

PCIe or CXL
Device

PCIe or CXL
Device

PCIe or CXL
DeviceMLD

LD#0

LD#1

Ev
al

ua
tio

n
C

op
y

Introduction

 Compute Express Link Specification
October 26, 2020 33
Revision 2.0, Version 1.0

Figure 3. CPU Flex Bus Port Example

Ev
al

ua
tio

n
C

op
y

Introduction

 Compute Express Link Specification
October 26, 2020 34
Revision 2.0, Version 1.0

Figure 5 illustrates how a Flex Bus.CXL port can be used as a memory expansion port.

Figure 4. Flex Bus Usage Model Examples

Figure 5. Remote Far Memory Usage Model Example

Ev
al

ua
tio

n
C

op
y

Introduction

 Compute Express Link Specification
October 26, 2020 35
Revision 2.0, Version 1.0

Figure 6 illustrates the connections supported below a CXL Downstream port.

1.5 Flex Bus Link Features
Flex Bus provides a point-to-point interconnect that can transmit native PCIe protocol
or dynamic multi-protocol CXL to provide I/O, caching, and memory protocols over
PCIe electricals. The primary link attributes include support of the following features:

• Native PCIe mode, full feature support as defined in the PCIe specification
• CXL mode, as defined in this specification
• Configuration of PCIe vs CXL protocol mode
• Signaling rate of 32 GT/s, degraded rate of 16GT/s or 8 GT/s in CXL mode
• Link width support for x16, x8, x4, x2 (degraded mode), and x1 (degraded mode)

in CXL mode
• Bifurcation (aka Link Subdivision) support to x4 in CXL mode

1.6 Flex Bus Layering Overview
Flex Bus architecture is organized as multiple layers, as illustrated in Figure 7. The CXL
transaction (protocol) layer is subdivided into logic that handles CXL.io and logic that
handles CXL.mem and CXL.cache; the CXL link layer is subdivided in the same manner.
Note that the CXL.mem and CXL.cache logic are combined within the transaction layer
and within the link layer. The CXL link layer interfaces with the CXL ARB/MUX, which
interleaves the traffic from the two logic streams. Additionally, the PCIe transaction and
data link layers are optionally implemented and, if implemented, are permitted to be
converged with the CXL.io transaction and link layers, respectively. As a result of the
link training process, the transaction and link layers are configured to operate in either
PCIe mode or CXL mode. While a host CPU would most likely implement both modes,
an accelerator AIC is permitted to implement only the CXL mode. The logical sub-block

Figure 6. CXL Downstream Port Connections

PC
Ie

 o
r C

XL

De
vi

ce

PC
Ie

 D
ev

ice

CXL Switch

CX
L S

LD

Co
m

po
ne

nt

CX
L M

LD

Co
m

po
ne

nt

PC
Ie

 o
r C

XL

De
vi

ce

 CXL Downstream Ports

Ev
al

ua
tio

n
C

op
y

Introduction

 Compute Express Link Specification
October 26, 2020 36
Revision 2.0, Version 1.0

of the Flex Bus physical layer is a converged logical physical layer that can operate in
either PCIe mode or CXL mode, depending on the results of alternate mode negotiation
during the link training process.

Figure 7. Conceptual Diagram of Flex Bus Layering

Ev
al

ua
tio

n
C

op
y

Introduction

 Compute Express Link Specification
October 26, 2020 37
Revision 2.0, Version 1.0

1.7 Document Scope
This document specifies the functional and operational details of the Flex Bus
interconnect and the CXL protocol. It describes the CXL usage model and defines how
the transaction, link, and physical layers operate. Reset, power management, and
initialization/configuration flows are described. Additionally, RAS behavior is described.
Please refer to the PCIe specification for PCIe protocol details.

The contents of this document are summarized in the following chapter highlights:
• Section 2.0, “Compute Express Link System Architecture” – This chapter describes

different profiles of devices that might attach to a CPU root complex over a CXL
capable link. For each device profile, a description of the typical workload and
system resource usage is provided along with an explanation of which CXL
capabilities are relevant for that workload. Additionally, a Bias Based coherency
model is introduced which optimizes the performance for accesses to device-
attached memory depending on whether the memory is in host bias, during which
the memory is expected to be accessed mainly by the Host, or device bias, during
which the memory is expected to be accessed mainly by the device.

• Section 3.0, “Compute Express Link Transaction Layer” – The transaction layer
chapter is divided into subsections that describe details for CXL.io, CXL.cache, and
CXL.mem. The CXL.io protocol is required for all implementations, while the other
two protocols are optional depending on expected device usage and workload. The
transaction layer specifies the transaction types, transaction layer packet
formatting, transaction ordering rules, and crediting. The CXL.io protocol is based
on the “Transaction Layer Specification” chapter of the PCIe base specification; any
deltas from the PCIe base specification are described in this chapter. These deltas
include PCIe Vendor Defined Messages for reset and power management,
modifications to the PCIe ATS request and completion formats to support
accelerators, and Deferred Writes instruction definitions. For CXL.cache, this
chapter describes the channels in each direction (i.e., request, response, and data),
the transaction opcodes that flow through each channel, and the channel crediting
and ordering rules. The transaction fields associated with each channel are also
described. For CXL.mem, this chapter defines the message classes in each
direction, the fields associated with each message class, and the message class
ordering rules. Finally, this chapter provides flow diagrams that illustrate the
sequence of transactions involved in completing host-initiated and device-initiated
accesses to device-attached memory.

• Section 4.0, “Compute Express Link Link Layers” – The link layer is responsible for
reliable transmission of the transaction layer packets across the Flex Bus link. This
chapter is divided into subsections that describe details for CXL.io and for
CXL.cache and CXL.mem. The CXL.io protocol is based on the “Data Link Layer
Specification” chapter of the PCIe base specification; any deltas from the PCIe base
specification are described in this chapter. For CXL.cache and CXL.mem, the 528-bit
flit layout is specified. The flit packing rules for selecting transactions from internal
queues to fill the three slots in the flit are described. Other features described for
CXL.cache and CXL.mem include the retry mechanism, link layer control flits, CRC
calculation, and viral and poison.

• Section 5.0, “Compute Express Link ARB/MUX” – The ARB/MUX arbitrates between
requests from the CXL link layers and multiplexes the data to forward to the
physical layer. On the receive side, the ARB/MUX decodes the flit to determine the
target to forward transactions to the appropriate CXL link layer. Additionally, the
ARB/MUX maintains virtual link state machines for every link layer it interfaces
with, processing power state transition requests from the local link layers and
generating ARB/MUX link management packets to communicate with the remote
ARB/MUX.

• Section 6.0, “Flex Bus Physical Layer” – The Flex Bus physical layer is responsible
for training the link to bring it to operational state for transmission of PCIe packets

Ev
al

ua
tio

n
C

op
y

Introduction

 Compute Express Link Specification
October 26, 2020 38
Revision 2.0, Version 1.0

or CXL flits. During operational state, it prepares the data from the CXL link layers
or the PCIe link layer for transmission across the Flex Bus link; likewise, it converts
data received from the link to the appropriate format to pass on to the appropriate
link layer. This chapter describes the deltas from the PCIe base specification to
support the CXL mode of operation. The framing of the CXL flits and the physical
layer packet layout are described. The mode selection process to decide between
CXL mode or PCIe mode, including hardware autonomous negotiation and software
controlled selection is also described. Finally, CXL low latency modes are described.

• Section 7.0, “Switching” – This chapter provides an overview of different CXL
switching configurations and describes rules for how to configure switches.
Additionally, the Fabric Manager application interface is specified.

• Section 8.0, “Control and Status Registers” – This chapter provides details of the
Flex Bus and CXL control and status registers. It describes the configuration space
and memory mapped registers that are located in various CXL components.

• Section 9.0, “Reset, Initialization, Configuration and Manageability” – This chapter
describes the flows for boot, reset entry, and sleep state entry; this includes the
transactions sent across the link to initiate and acknowledge entry as well as steps
taken by a CXL device to prepare for entry into each of these states. Additionally,
this chapter describes the software enumeration model of both CXL 1.1 and CXL
2.0 hierarchy and how the System Firmware view of the hierarchy may differ from
the OS view. This chapter discusses different accelerator topologies, i.e., single
CPU, multiple CPUs, and multiple nodes; for each topology, software management
of the multiple Flex Bus links involved is described.

• Section 10.0, “Power Management” – This chapter provides details on protocol
specific link power management and physical layer power management. It
describes the overall power management flow in three phases: protocol specific PM
entry negotiation, PM entry negotiation for ARB/MUX interfaces (managed
independently per protocol), and PM entry process for the physical layer. The PM
entry process for CXL.cache and CXL.mem is slightly different than the process for
CXL.io; these processes are described in separate subsections in this chapter.

• Section 11.0, “Security” – This chapter provides details on the CXL Integrity and
Data Encryption (CXL IDE) scheme used for securing CXL protocol flits transmitted
across the link.

• Section 12.0, “Reliability, Availability and Serviceability” – This chapter describes
the RAS capabilities supported by a CXL host and a CXL device. It describes how
various types of errors are logged and signaled to the appropriate hardware or
software error handling agent. It describes the link down flow and the viral
handling expectation. Finally, it describes the error injection requirements.

• Section 13.0, “Performance Considerations” – This chapter describes hardware and
software considerations for optimizing performance across the Flex Bus link in CXL
mode.

• Section 14.0, “CXL Compliance Testing” – This chapter describes methodologies for
ensuring that a device is compliant with the CXL specification.

§ §

Ev
al

ua
tio

n
C

op
y

Compute Express Link System Architecture

 Compute Express Link Specification
October 26, 2020 39
Revision 2.0, Version 1.0

2.0 Compute Express Link System Architecture

This section describes the performance advantages and key features of CXL. CXL is a
high performance I/O bus architecture used to interconnect peripheral devices that can
be either traditional non-coherent IO devices, memory devices, or accelerators with
additional capabilities. The types of devices that can attach via CXL and the overall
system architecture is described in Figure 8.

Before diving into the details of each type of CXL device, here’s a foreword about where
CXL is not applicable.

Traditional non-coherent IO devices rely primarily on standard Producer-Consumer
ordering models and execute against Host-attached memory. For such devices, there is
little interaction with the Host except for work submission and signaling on work
completion boundaries. Such accelerators also tend to work on data streams or large
contiguous data objects. These devices typically do not need the advanced capabilities
provided by CXL and traditional PCIe is sufficient as an accelerator attach medium.

The following sections describe various profiles of CXL devices.

2.1 Type 1 CXL Device
Type 1 CXL devices have special needs for which having a fully coherent cache in the
device becomes valuable. For such devices, standard Producer-Consumer ordering
models do not work very well. One example of a device with special requirements is to
perform complex atomics that are not part of the standard suite of atomic operations
present on PCIe.

Basic cache coherency allows an accelerator to implement any ordering model it
chooses and allows it to implement an unlimited number of atomic operations. These
tend to require only small amounts of cache which can easily be tracked by standard

Figure 8. CXL Device Types

Root Complex

IO Bridge

IOMMU

Coh
Bridge

CXL Device w/ Memory

DTLB
Optional

Coh Cache

CXL.cache CXL.io

Type 2 CXL Device

Home
Agent

MC

CXL.mem

Host
Memory

Device
Memory

MCRoot Complex

IO Bridge

IOMMU

Coh
Bridge

CXL Device w/o Memory

DTLBCoh Cache

CXL.cache CXL.io

Type 1 CXL Device

Home
Agent

Host
Memory

MC Root Complex

IO Bridge

IOMMU

CXL Memory Expander

CXL.io

Type 3 CXL Device

Home
Agent

MC

CXL.mem

Host
Memory

Device
Memory

MC

Ev
al

ua
tio

n
C

op
y

Compute Express Link System Architecture

 Compute Express Link Specification
October 26, 2020 40
Revision 2.0, Version 1.0

processor snoop filter mechanisms. The size of cache that can be supported for such
devices depends on the host’s snoop filtering capacity. CXL supports such devices using
its optional CXL.cache link over which an accelerator can use CXL.cache protocol for
cache coherency transactions.

2.2 Type 2 CXL Device
Type 2 devices, in addition to fully coherent cache, also have memory, for example
DDR, High Bandwidth Memory (HBM) etc., attached to the device. These devices
execute against memory, but their performance comes from having massive bandwidth
between the accelerator and device-attached memory. The key goal for CXL is to
provide a means for the Host to push operands into device-attached memory and for
the Host to pull results out of device-attached memory such that it doesn’t add
software and hardware cost that offsets the benefit of the accelerator. This spec refers
to coherent system address mapped device-attached memory as Host-managed Device
Memory (HDM).

There is an important distinction between HDM and traditional IO/PCIe Private Device
Memory (PDM). An example of such a device is a GPGPU with attached GDDR. Such
devices have treated device-attached memory as private. This means that the memory
is not accessible to the Host and is not coherent with the rest of the system. It is
managed entirely by the device hardware and driver and is used primarily as
intermediate storage for the device with large datasets. The obvious disadvantage to a
model such as this is that it involves large amounts of copies back and forth from the
Host memory to device-attached memory as operands are brought in and results are
written back. Please note that CXL does not preclude devices with PDM.

Figure 9. Type 1 - Device with Cache

CXL Device

Cache

Host

Host-attached MemoryPrivate device-attached
memory (Optional)

Coherency
Bridge

Ev
al

ua
tio

n
C

op
y

Compute Express Link System Architecture

 Compute Express Link Specification
October 26, 2020 41
Revision 2.0, Version 1.0

At a high level, there are two models of operation that are envisaged for HDM. These
are described below.

2.2.1 Bias Based Coherency Model

The Host-managed Device Memory (HDM) attached to a given device is referred to as
device-attached memory to denote that it is local to only that device. The Bias Based
coherency model defines two states of bias for device-attached memory: Host Bias and
Device Bias. When the device-attached memory is in Host Bias state, it appears to the
device just as regular Host-attached memory does. That is, if the device needs to
access it, it needs to send a request to the Host which will resolve coherency for the
requested line. On the other hand, when the device-attached memory is in Device Bias
state, the device is guaranteed that the Host does not have the line in any cache. As
such, the device can access it without sending any transaction (request, snoops, etc.)
to the Host whatsoever. It is important to note that the Host itself sees a uniform view
of device-attached memory regardless of the bias state. In both modes, coherency is
preserved for device-attached memory.

The key benefits of Bias Based coherency model are:
• Helps maintain coherency for device-attached memory which is mapped to system

coherent address space.
• Helps the device access its local attached memory at high bandwidth without

incurring significant coherency overheads (e.g., snoops to the Host).
• Helps the Host access device-attached memory in a coherent, uniform manner, just

as it would for Host-attached memory.

To maintain Bias modes, a Type 2 CXL Device will:
• Implement the Bias Table which tracks Bias on a page granularity (e.g., 1b per 4KB

page) which can be cached in the device using a Bias Cache.
• Build support for Bias transitions using a Transition Agent (TA). This essentially

looks like a DMA engine for “cleaning up” pages, which essentially means to flush
the host’s caches for lines belonging to that page.

• Build support for basic load and store access to accelerator local memory for the
benefit of the Host.

The bias modes are described in detail below.

Figure 10. Type 2 Device - Device with Memory

CXL Device Host

Host-attached MemoryHost Managed Device
Memory

Coherency
Bridge

Home Agent

Cache

Ev
al

ua
tio

n
C

op
y

Compute Express Link System Architecture

 Compute Express Link Specification
October 26, 2020 42
Revision 2.0, Version 1.0

2.2.1.1 Host Bias

The Host Bias mode typically refers to the part of the cycle when the operands are
being written to memory by the Host during work submission or when results are being
read out from the memory after work completion. During Host Bias mode, coherency
flows allows for high throughput access from the Host to device-attached memory (as
shown by the blue arrows in Figure 11) whereas device access to device-attached
memory is not optimal since they need to go through the host (as shown in green
arrows in Figure 11).

2.2.1.2 Device Bias

The Device Bias mode is used when the device is executing the work, between work
submission and completion, and in this mode, the device needs high bandwidth and low
latency access to device-attached memory.

In this mode, device can access device-attached memory without consulting the Host’s
coherency engines (as shown in red arrows in Figure 12). The Host can still access
device-attached memory but may be forced to give up ownership by the accelerator (as
shown in green arrows in Figure 12). This results in the device seeing ideal latency &
bandwidth from device-attached memory, whereas the Host sees compromised
performance.

Figure 11. Type 2 Device - Host Bias

CXL Device Host

Host-attached MemoryHost Managed Device
Memory

Coherency
Bridge

Home Agent

DCOH

Figure 12. Type 2 Device - Device Bias

CXL Device Host

Host-attached MemoryHost Managed Device
Memory

Coherency
Bridge

Home Agent

DCOH
Bias Flip

Ev
al

ua
tio

n
C

op
y

Compute Express Link System Architecture

 Compute Express Link Specification
October 26, 2020 43
Revision 2.0, Version 1.0

2.2.1.3 Mode Management

There are two envisioned Bias Mode Management schemes – Software Assisted and
Hardware Autonomous. CXL supports both modes. Examples of Bias Flows are present
in Appendix A.

While two modes are described below, it is worth noting that strictly speaking, devices
do not need to implement any bias. In this case, all of device-attached memory
degenerates to Host Bias. This means that all accesses to device-attached memory
must be routed through the Host. An accelerator is free to choose a custom mix of
Software assisted and Hardware autonomous bias management scheme. The Host
implementation is agnostic to any of the above choices.

2.2.1.4 Software Assisted Bias Mode Management

With Software Assistance, we rely on software to know for a given page, which state of
the work execution flow it resides in. This is useful for accelerators with phased
computation with regular access patterns. Based on this, software can best optimize
the coherency performance on a page granularity by choosing Host or Device Bias
modes appropriately.

Here are some characteristics of Software Assisted Bias Mode Management:
• Software Assistance can be used to have data ready at an accelerator before

computation.
• If data is not moved to accelerator memory in advance, it is generally moved on

demand based on some attempted reference to the data by the accelerator.
• In an “on demand” data fetch scenario, the accelerator must be able to find work to

execute, for which data is already properly placed, or it must stall.
• Every cycle that an accelerator is stalled eats into its ability to add value over

software running on a core.
• Simple accelerators typically cannot hide data fetch latencies.

Efficient software assisted data/coherency management is critical to the
aforementioned class of simple accelerators.

2.2.1.5 Hardware Autonomous Bias Mode Management

Software assisted coherency/data management is ideal for simple accelerators, but of
lesser value to complex, programmable accelerators. At the same time, the complex
problems frequently mapped to complex, programmable accelerators like GPUs present
an enormously complex problem to programmers if software assisted coherency/data
movement is a requirement. This is especially true for problems that split computation
between Host and accelerator or problems with pointer based, tree based or sparse
data sets.

The Hardware Autonomous Bias Mode Management, does not rely on software to
appropriately manage page level coherency bias. Rather, it is the hardware which
makes predictions on the bias mode based on the requester for a given page and
adapts accordingly. Key benefits for this model are:

• Provide the same page granular coherency bias capability as in the software
assisted model.

• Eliminate the need for software to identify and schedule page bias transitions prior
to offload execution.

• Provide hardware support for dynamic bias transition during offload execution.
• Hardware support for this model can be a simple extension to the software assisted

model.

Ev
al

ua
tio

n
C

op
y

Compute Express Link System Architecture

 Compute Express Link Specification
October 26, 2020 44
Revision 2.0, Version 1.0

• Link flows and Host support are unaffected.
• Impact limited primarily to actions taken at the accelerator when a Host touches a

Device Biased page and vice-versa.
• Note that even though this is an ostensible hardware driven solution, hardware

need not perform all transitions autonomously – though it may do so if desired.

It is sufficient if hardware provides hints (e.g., “transition page X to bias Y now”) but
leaves the actual transition operations under software control.

2.3 Type 3 CXL Device
A Type 3 CXL Device supports CXL.io and CXL.mem protocols. An example of a Type 3
CXL device is a memory expander for the Host as shown in the figure below.

Since this is not an accelerator, the device does not make any requests over CXL.cache.
The device operates primarily over CXL.mem to service requests sent from the Host.
The CXL.io protocol is primarily used for device discovery, enumeration, error reporting
and management. The CXL.io protocol is permitted to be used by the device for other
IO specific application usages. The CXL architecture is independent of memory
technology and allows for a range of memory organization possibilities depending on
support implemented in the Host.

2.4 Multi Logical Device
CXL 2.0 supports only Type 3 MLD components. An MLD component can partition its
resources into up to 16 isolated Logical Devices. Each Logical Device is identified by a
Logical Device Identifier (LD-ID) in CXL.io and CXL.mem protocols. Each Logical Device
visible to a Virtual Hierarchy (VH) operates as a Type 3 device. The LD-ID is transparent
to software accessing a VH. MLD components have common Transaction and Link
Layers for each protocol across all LDs.

An MLD component has one LD reserved for the FM and up to 16 LDs available for host
binding. The FM owned LD (FMLD) allows the FM to configure resource allocation across
LDs and manage the physical link shared with multiple VCSs. The FMLD’s bus mastering
capabilities are limited to generating error messages. Error messages generated by this
function must only be routed to the FM.

Figure 13. Type 3 - Memory Expander

CXL Device Host

Host-attached MemoryHost Managed Device
Memory

Home Agent

Ev
al

ua
tio

n
C

op
y

Compute Express Link System Architecture

 Compute Express Link Specification
October 26, 2020 45
Revision 2.0, Version 1.0

The MLD component contains one MLD DVSEC (see Section 8.1.9.2) that is only
accessible by the FM and addressable by requests that carry an LD-ID of FFFFh in CXL
LD-ID TLP Prefix. Switch implementations must guarantee that FM is the only entity
that is permitted to use the LD-ID of FFFFh.

An MLD component is permitted to use FM API to configure LDs or have statically
configured LDs. In both of these configurations the configured LD resource allocation is
advertised through MLD DVSEC. In addition, the control registers in MLD DVSEC in the
FMLD is also used by CXL switch to trigger Hot Reset of one or more LDs. See
Section 8.1.10.2 for details.

2.4.1 LD-ID for CXL.io and CXL.mem

LD-ID is a 16 bit Logical Device identifier applicable for CXL.io and CXL.mem requests
and responses. All requests targeting and responses returned by an MLD device must
include LD-ID.

Please refer to Section 4.2.6 for CXL.mem header formatting to carry the LD-ID field.

2.4.1.1 LD-ID for CXL.mem

CXL.mem supports only the lower 4 bits of LD-ID and therefore can support up to 16
unique LD-ID values over the link. Requests and responses forwarded over an MLD Port
are tagged with LD-ID.

2.4.1.2 LD-ID for CXL.io

CXL.io supports carrying 16 bits of LD-ID for all requests and responses forwarded over
an MLD Port. LD-ID 0xFFFF is reserved and is always used by the FM.

CXL.io utilizes the Vendor Defined Local TLP Prefix to carry 16 bits of LD-ID value. The
format for Vendor Defined Local TLP prefix is as follows. CXL LD-ID Vendor Defined
Local TLP prefix uses the VendPrefixL0 Local TLP Prefix type.

2.4.2 Pooled Memory Device Configuration Registers

Each LD is visible to software as one or more PCIe EP Functions. While LD Functions
support all the configuration registers, several control registers that impact common
link behavior are virtualized and have no direct impact on the link. Each function of an
LD must implement the configuration registers as described in the PCIe specification.
Unless otherwise specified, the scope of the configuration registers is as described in
the PCIe specification. For example, MSE – Memory space enable register controls a
function’s response to memory space.

Table 4 lists the set of register fields that have modified behavior when compared to the
PCIe Base Specification.

Table 3. LD-ID Link Local TLP Prefix

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

PCIe Spec Defined LD-ID (15:0) RSVD

Ev
al

ua
tio

n
C

op
y

Compute Express Link System Architecture

 Compute Express Link Specification
October 26, 2020 46
Revision 2.0, Version 1.0

AER – If an event is uncorrectable to the entire MLD, then it must be reported across all
LDs. If the event is specific to a single LD then it must be isolated to that LD.

Table 4. MLD PCI Express Registers

Register/ Capability
Structure Capability Register Fields LD-ID = 0xFFFFh All Other LDs

BIST Register All Fields Supported Hardwired to all 0s

Device Capabilities
Register

Max_Payload_Size_Supported,
Phantom Functions Supported,
Extended Tag Field Supported,
Endpoint L1 Acceptable Latency

Supported Mirrors LD-ID =
0xFFFFh

Endpoint L0s Acceptable Latency Not supported Not supported

Captured Slot Power Limit Value,
Captured Slot Power Scale Supported Mirrors LD-ID =

0xFFFFh

Link Control Register All Fields applicable to PCIe
Endpoint

Supported
(FMLD controls the
fields) L0s not
supported.

Read/Write with no
effect

Link Status Register All Fields applicable to PCIe
Endpoint Supported Mirrors LD-ID =

0xFFFFh

Link Capabilities
Register

All Fields applicable to PCIe
Endpoint Supported Mirrors LD-ID =

0xFFFFh

Link Control 2 Register All Fields applicable to PCIe
Endpoint Supported

Mirrors LD-ID =
0xFFFFh
RW fields are Read/
Write with no effect

Link Status 2 Register All Fields applicable to PCIe
Endpoint Supported Mirrors LD-ID =

0xFFFFh

MSI/MSI-X Capability
Structures All registers Not supported

Each Functions that
requires MSI/MSI-X
must support it.

Secondary PCI Express
Capability Registers

All register sets related to
supported speeds (8, 16, 32 GT/
s)

Supported

Mirrors LD-ID =
0xFFFFh
RO/Hwinit fields are
Read/Write with no
effect

Lane Error Status, Local Data
Parity Mismatch Status Supported Hardwired to all 0s

Received Modified TS Data1
Register, Received Modified TS
Data 2 Register, Transmitted
Modified TS Data1 Register,
Transmitted Modified TS Data 2
Register,

Supported Mirrors LD-ID =
0xFFFFh

Lane Margining Supported Not supported

L1 Substates Extended
Capability Not supported Not supported

AER Registers that apply to Endpoint
functions Supported Supported per LD

Ev
al

ua
tio

n
C

op
y

Compute Express Link System Architecture

 Compute Express Link Specification
October 26, 2020 47
Revision 2.0, Version 1.0

2.5 CXL Device Scaling
CXL Device Scaling limitations permit only a single Type 1 or Type 2 device per VH to be
enabled.

§ §

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 48
Revision 2.0, Version 1.0

3.0 Compute Express Link Transaction Layer

3.1 CXL.io
CXL.io provides a non-coherent load/store interface for I/O devices. Figure 14 shows
where the CXL.io transaction layer exists in the Flex Bus layered hierarchy. Transaction
types, transaction packet formatting, credit-based flow control, virtual channel
management, and transaction ordering rules follow the PCIe definition; please refer to
the “Transaction Layer Specification” chapter of the PCI Express Base Specification for
details. This chapter highlights notable PCIe operational modes or features that are
used for CXL.io.

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 49
Revision 2.0, Version 1.0

3.1.1 CXL.io Endpoint

A CXL Device is required to support operating in both CXL 1.1 and CXL 2.0 modes. The
CXL Alternate Protocol negotiation determines the mode of operation. When the link is
configured to operate in CXL 1.1 mode a CXL.io endpoint must be exposed to software
as a PCIe RCiEP, and when configured to operate in CXL 2.0 mode must be exposed to
software as PCI Express Endpoint. Please refer to the PCIe 5.0 Base Specification for
more details. Please refer to Section 9.12.

Figure 14. Flex Bus Layers -- CXL.io Transaction Layer Highlighted

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 50
Revision 2.0, Version 1.0

A CXL.io endpoint function that participates in CXL protocol must not generate INTx
messages. Non-CXL Function Map DVSEC (Section 8.1.4) enumerates functions that do
not participate in CXL.cache or CXL.mem. Even though not recommended, these non-
CXL functions are permitted to generate INTx messages.

CXL.io endpoints functions of MLD component, including non-CXL functions are not
permitted to generate INTx messages.

3.1.2 CXL Power Management VDM Format

The CXL power management messages are sent as PCIe Vendor Defined Type 0
messages with a 4 DW data payload. These include the PMREQ, PMRSP, and PMGO
messages. Figure 15 provides the format for the CXL PM VDM messages. The following
are the characteristics of these messages:

• Fmt and Type fields are set to indicate message with data. All messages use routing
of “Local-Terminate at Receiver”. Message Code is set to Vendor Defined Type 0.

• Vendor ID field is set to 1E98h1.
• Byte 15 of the message header contains the VDM Code and is set to the value of

“CXL PM Message.” (68h)
• The 4 DW Data Payload contains the CXL PM Logical Opcode (e.g., PMREQ, GPF)

and any other information related to the CXL PM message. Details of fields within
the Data Payload are described in Table 5.

If a CXL component receives PM VDM with poison (EP=1), the receiver shall drop such
a message. Since the receiver is able to continue regular operation after receiving such
a VDM, it shall treat this event as an advisory non-fatal error.

If the receiver Power Management Unit (PMU) does not understand the contents of PM
VDM Payload, it shall silently drop that message and shall not signal an uncorrectable
error.

1. NOTICE TO USERS: THE UNIQUE VALUE THAT IS PROVIDED IN THIS SPECIFICATION FOR USE IN
VENDOR DEFINED MESSAGE FIELDS, DESIGNATED VENDOR SPECIFIC EXTENDED CAPABILITIES,
AND ALTERNATE PROTOCOL NEGOTIATION ONLY AND MAY NOT BE USED IN ANY OTHER
MANNER, AND A USER OF THE UNIQUE VALUE MAY NOT USE THE UNIQUE VALUE IN A MANNER
THAT (A) ALTERS, MODIFIES, HARMS OR DAMAGES THE TECHNICAL FUNCTIONING, SAFETY OR
SECURITY OF THE PCI-SIG ECOSYSTEM OR ANY PORTION THEREOF, OR (B) COULD OR WOULD
REASONABLY BE DETERMINED TO ALTER, MODIFY, HARM OR DAMAGE THE TECHNICAL
FUNCTIONING, SAFETY OR SECURITY OF THE PCI-SIG ECOSYSTEM OR ANY PORTION THEREOF
(FOR PURPOSES OF THIS NOTICE. 'PCI-SIG ECOSYSTEM' MEANS THE PCI-SIG SPECIFICATIONS,
MEMBERS OF PCI-SIG AND THEIR ASSOCIATED PRODUCTS AND SERVICES THAT INCORPORATE
ALL OR A PORTION OF A PCISIG SPECIFICATION AND EXTENDS TO THOSE PRODUCTS AND
SERVICES INTERFACING WITH PCI-SIG MEMBER PRODUCTS AND SERVICES).

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 51
Revision 2.0, Version 1.0

Figure 15. CXL Power Management Messages Packet Format

T
9

0
Type

10100

TagRequester ID

Reserved

Reserved Vendor ID = 1E98h

1234567012345670123456701234567
+3+2+1+0

TC AT
00

Length
0000000100

Message Code - Vendor
Defined Type 0

VDM Code - CXL PM
Message = 68h

RPM Logical Opcode

Payload[23:0]Payload[7:0]

Payload[71:64] Payload[87:80]

Payload[39:32] Payload[55:48]

PM Agent ID Parameter[7:0] Parameter[15:8]

Payload[15:8] Payload[31:24]

Payload[47:40] Payload[63:56]

Payload[79:72] Payload[95:88]

AttrE
P

T
D

Fmt
011

T
8

A
tt
r

R T
H

PCIe
VDM

Ty pe 0
Header

4DW of
Data

Payload

Table 5. CXL Power Management Messages -- Data Payload Fields Definitions

Field Description Notes

PM Logical Opcode[7:0]

Power Management Command:
00h - AGENT_INFO
02h - RESETPREP
04h - PMREQ (PMRSP and PMGO)
06h - Global Persistent Flush (GPF)
FEh - CREDIT_RTN

PM Agent ID[6:0]

PM2IP:
Reserved

IP2PM:
PM agent ID assigned to the device.
Host communicates the PM Agent ID to device via the
TARGET_AGENT_ID field of the very first CREDIT_RTN
message.

A device does not
consume this value
when it receives a
message from the
Host.

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 52
Revision 2.0, Version 1.0

Parameter[15:0]

CREDIT_RTN(PM2IP and IP2PM):
Reserved

AGENT_INFO(PM2IP and IP2PM):
[0] - REQUEST (set) /RESPONSE_N (cleared)
[7:1] - INDEX
All others reserved

PMREQ(PM2IP and IP2PM):
[0] - REQUEST (set) /RESPONSE_N (cleared)
[2] - GO
All others reserved

RESETPREP(PM2IP and IP2PM):
[0] - REQUEST (set) /RESPONSE_N (cleared)
All others reserved

GPF(PM2IP and IP2PM):
[0] - REQUEST (set) /RESPONSE_N (cleared)
All others reserved

Table 5. CXL Power Management Messages -- Data Payload Fields Definitions

Field Description Notes

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 53
Revision 2.0, Version 1.0

Payload[95:0]

CREDIT_RTN:
[7:0] NUM_CREDITS (PM2IP and IP2PM)
[14:8] TARGET_AGENT_ID (Valid during the first
PM2IP message, reserved in all other cases)
All others bits are reserved

AGENT_INFO (Request and Response):
if Param.Index == 0,
[7:0] - CAPABILITY_VECTOR
[0] - Always set to indicate support for PM messages
defined in CXL 1.1 spec.
[1] - Support for GPF messages.
[7:2] - Reserved
all others reserved
else
all reserved
All other bits are reserved.

RESETPREP (Request and Response):
[7:0] - ResetType
0x01 => host space transition from S0 to S1;
0x03 => host space transition from S0 to S3;
0x04 => host space transition from S0 to S4;
0x05 => host space transition from S0 to S5;
0x10 => Host space reset (host space partition
reset)
[15:8] - PrepType
0x00 => General Prep
All others reserved
[17:16] - Reserved
All other bits are reserved.

PMREQ:
[31:0] - PCIe LTR format (as defined in Bytes 12-15
of PCIe LTR message, see Table 6)
All others bits are reserved

GPF:
[7:0] - GPFType
[0] - Set to indicate powerfail is imminent. Only valid
for Phase 1 request messages
[1] - Set to indicate device must flush its caches. Only
valid for Phase 1 request messages
[7:2] - Reserved
[15:8] - GPFStatus
[8] - Set to indicate Cache Flush phase encountered
an error. Only valid for Phase 1 responses and Phase 2
requests;
[15:9] - Reserved
[17:16] - Phase
0x01 => Phase 1
0x02 => Phase 2
All others reserved

All other bits are reserved.

CXL Agent must treat
the
TARGET_AGENT_ID
field as Reserved when
returning credits to
Host.

Only Index 0 is defined
for AGENT_INFO, all
other Index values are
reserved.

Table 5. CXL Power Management Messages -- Data Payload Fields Definitions

Field Description Notes

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 54
Revision 2.0, Version 1.0

3.1.2.1 Credit and PM Initialization

PM Credits and initialization process is link local. Figure 16 illustrates the use of
PM2IP.CREDIT_RTN and PM2IP.AGENT_INFO messages to initialize Power Management
messaging protocol intended to facilitate communication between the Downstream Port
PMU and the Upstream Port PMU. A CXL switch provides an aggregation function for PM
messages as described in Section 9.1.2.1.

GPF messages do not require credits and the receiver shall not generate CREDIT_RTN
in response to GPF messages.

The CXL Upstream Port PMU must be able to receive and process CREDIT_RTN
messages without dependency on any other PM2IP messages. Also, CREDIT_RTN
messages do not use a credit. The CREDIT_RTN messages are used to initialize and
update the TX credits on each side, so that flow control can be managed appropriately.
During the very first CREDIT_RTN message during PM Initialization, the credits being
sent via NUM_CREDITS field represent the number of credit-dependent PM messages
that the initiator of CREDIT_RTN can receive from the other end. During the
subsequent CREDIT_RTN messages, the NUM_CREDITS field represents the number of
PM credits that were freed up since the last CREDIT_RTN message in the same
direction. The very first CREDIT_RTN message is also used by the Downstream Port
PMU to assign a PM_AGENT_ID to the Upstream Port PMU. This ID is communicated via

Table 6. PMREQ Field Definitions

Payload Bit Position LTR Field

[31:24] Snoop Latency[7:0]

[23:16] Snoop Latency[15:8]

[15:8] No-Snoop Latency[7:0]

[7:0] No-Snoop Latency[15:8]

Figure 16. Power Management Credits and Initialization

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 55
Revision 2.0, Version 1.0

the TARGET_AGENT_ID field in the CREDIT_RTN message. The Upstream Port PMU
must wait for the CREDIT_RTN message from the Downstream Port PMU before
initiating any IP2PM messages.

An Upstream Port PMU must support at least one credit, where a credit implies having
sufficient buffering to sink a PM2IP message with 128 bits of payload.

After credit initialization, the Upstream Port PMU must wait for an AGENT_INFO
message from the Downstream Port PMU. This message contains the
CAPABILITY_VECTOR of the PM protocol of the Downstream Port PMU. Upstream Port
PMU must send its CAPABILITY_VECTOR to the Downstream Port PMU in response to
the AGENT_INFO Req from the Downstream Port PMU. When there is a mismatch,
Downstream Port PMU may implement a compatibility mode to work with a less capable
Upstream Port PMU. Alternatively, Downstream Port PMU may log the mismatch and
report an error, if it does not know how to reliably function with a less capable
Upstream Port PMU.

There is an expectation from the Upstream Port PMU that it restores credits to the
Downstream Port PMU as soon as a message is received. Downstream Port PMU can
have multiple messages in flight, if it was provided with multiple credits. Releasing
credits in a timely manner will provide better performance for latency sensitive flows.

The following list summarizes the rules that must be followed by a Upstream Port PMU.
• Upstream Port PMU must wait to receive a PM2IP.CREDIT_RTN message before

initiating any IP2PM messages.
• Upstream Port PMU must extract TARGET_AGENT_ID field from the first PM2IP

message received from the Downstream Port PMU and use that as its
PM_AGENT_ID in future messages.

• Upstream Port PMU must implement enough resources to sink and process any
CREDIT_RTN messages without dependency on any other PM2IP or IP2PM
messages or other message classes.

• Upstream Port PMU must implement at least one credit to sink a PM2IP message.
• Upstream Port PMU must return any credits to the Downstream Port PMU as soon

as possible to prevent blocking of PM message communication over CXL Link.
• Upstream Port PMU are recommended to not withhold a credit for longer than 10us.

3.1.3 CXL Error VDM Format

The CXL Error Messages are sent as PCIe Vendor Defined Type 0 messages with no data
payload. Presently, this class includes a single type of message, namely Memory Error
Firmware Notification (MEFN). Figure 17 provides the format for the CXL Error VDM
messages.

The following are the characteristics of the MEFN message:
• Fmt and Type fields are set to indicate message with no data.
• The message is sent using routing of “Routed to Root Complex”. It is always

initiated by a device.
• Message Code is set to Vendor Defined Type 0.
• Vendor ID field is set to 1E98h.
• Byte 15 of the message header contains the VDM Code and is set to the value of

“CXL Error Message.” (00h)
• Bytes 8, 9, 12, 13 are set to 0.
• Bits [7:4] of Byte 14 are set to 0. Bits [3:0] of Byte 14 are used to communicate

the Firmware Interrupt Vector (abbreviated as FW Interrupt Vector in Figure 17).

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 56
Revision 2.0, Version 1.0

The encoding of FW Interrupt Vector field is host specific and thus not defined by the
CXL specification. A host may support more than one type of Firmware environments
and this field may be used to indicate to the host which one of these environments is to
process this message.

3.1.4 Optional PCIe Features Required for CXL

Table 7 lists optional features per the PCIe Specification that are required to enabled
CXL.

3.1.5 Error Propagation

CXL.cache and CXL.mem errors detected by the device are propagated to the Upstream
Port over the CXL.io traffic stream. These errors are logged as correctable and
uncorrectable internal errors in the PCIe AER registers.

3.1.6 Memory Type Indication on ATS

Requests to certain memory regions can only be issued on CXL.io and not on
CXL.cache. It is up to the Host to decide what these memory regions are. For example,
on x86 systems, the Host may choose to restrict access to Uncacheable (UC) type
memory over CXL.io only. The Host indicates such regions by means of an indication on
ATS completion to the device.

ATS requests sourced from a CXL device must set the “Source-CXL” bit.

Figure 17. CXL MEFN Messages Packet Format

Table 7. Optional PCIe Features Required For CXL

Optional PCIe Feature Notes

Data Poisoning by transmitter

ATS Only required if .cache is present (e.g. only for Type 1 & Type 2 devices
but not for Type 3 devices)

Additional VCs and TCs beyond
VC0/TC0 VC0, optional VC1 for QoS

Advanced Error Reporting (AER)

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 57
Revision 2.0, Version 1.0

64-bit: DWORD3, Byte 3, Bit 3; 32-bit: DWORD2, Byte 3, Bit 3 as defined below

0b - Indicates request initiated by a Function that does not support Memory Type
Indication on ATS

1b - Indicates request initiated by a Function that supports Memory Type Indication on
ATS. As stated above all CXL Device Functions must set this bit.

Note: This bit is Reserved in the ATS request as defined by the PCIe spec.

ATS translation completion from the Host will carry the indication that requests to a
given page can only be issued on CXL.io using the following bit, “Issue-on-CXL.io”, in
the Translation Completion Data Entry:

DWORD1, Byte 2, Bit 1 as defined below

0b - Requests to the page can be issued on all CXL protocols.

1b - Requests to the page can be issued by the Function on CXL.io only. It is a Function
violation to issue requests to the page using CXL.Cache protocol.

Note: This bit is Reserved in the ATS completion as defined by the PCIe spec.

3.1.7 Deferrable Writes

Deferrable Writes defined in CXL specification are only applicable when operating in
CXL 1.1 mode. Refer to PCIe Specification for this functionality when operating in CXL
2.0 mode. Deferrable Writes enable scalable work submission to a CXL device by
multiple software entities without explicit locks or software synchronization. Deferrable
Writes are downstream non-posted memory writes. The completion for a Deferrable
Write allows the device to indicate whether the command was successfully accepted or
if it needs to be deferred.

On CXL.io, a Deferrable Write is sent as a NPMemWr32/64 transaction which has the
following encodings (please note that the encoding for NPMemWr32 is deprecated in
PCIe):

Fmt[2:0] - 010b/011b

Figure 18. ATS 64-bit Request with CXL Indication

Figure 19. ATS Translation Completion Data Entry with CXL Indication

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 58
Revision 2.0, Version 1.0

Type[4:0] - 11011b

Since Deferrable Write is non-posted, the device is expected to send a Cpl response.
The Completion Status field in the Cpl (with a Byte Count of ‘4) indicates whether work
was successfully accepted or not. Successful work submission is accompanied by a
“Successful Completion” Completion Status. Unsuccessful work submission is
accompanied by a “Memory Request Retry Status” Completion Status. The encodings
for these are:

Successful Completion (SC) - 000b

Memory Request Retry Status (MRS) - 010b

3.2 CXL.cache

3.2.1 Overview

The CXL.cache protocol defines the interactions between the Device and Host as a
number of requests that each have at least one associated response message and
sometimes a data transfer. The interface consists of three channels in each direction:
Request, Response, and Data. The channels are named for their direction, D2H for
Device to Host and H2D for Host to Device, and the transactions they carry, Request,
Response, and Data as shown in Figure 20. The independent channels allow different
kinds of messages to use dedicated wires and achieve both decoupling and a higher
effective throughput per wire.

D2H Request carries new requests from the Device to the Host. The requests typically
target memory. Each request will receive zero, one or two responses and at most one
64-byte cacheline of data. The channel may be back pressured without issue. D2H
Response carries all responses from the Device to the Host. Device responses to snoops
indicate the state the line was left in the device caches, and may indicate that data is
being returned to the Host to the provided data buffer. They may still be blocked
temporarily for link layer credits, but should not require any other transaction to
complete to free the credits. D2H Data carries all data and byte-enables from the
Device to the Host. The data transfers can result either from implicit (as a result of
snoop) or explicit write-backs (as a result of cache capacity eviction). In all cases a full
64-byte cacheline of data will be transferred. D2H Data transfers must make progress
or deadlocks may occur. They may be blocked temporarily for link layer credits, but
must not require any other transaction to complete to free the credits.

H2D Request carries requests from the Host to the Device. These are snoops to
maintain coherency. Data may be returned for snoops. The request carries the location
of the data buffer to which any return data should be written. H2D Requests may be
back pressured for lack of device resources; however, the resources must free up
without needing D2H Requests to make progress. H2D Response carries ordering
messages and pulls for write data. Each response carries the request identifier from the
original device request to indicate where the response should be routed. For write data
pull responses, the message carries the location where the data should be written. H2D
Responses can only be blocked temporarily for link layer credits. H2D Data delivers the
data for device read requests. In all cases a full 64-byte cacheline of data will be
transferred. H2D Data transfers can only be blocked temporarily for link layer credits.

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 59
Revision 2.0, Version 1.0

3.2.2 CXL.cache Channel Description

3.2.2.1 Channel Ordering

In general, all of the CXL.cache channels must work independently of each other to
ensure that forward progress is maintained. For example, since requests from the
device to the Host to a given address X will be blocked by the Host until it collects all
snoop responses for this address X, linking the channels would lead to deadlock.

However, there is a specific instance where ordering between channels must be
maintained for the sake of correctness. The Host needs to wait until Global Ordering
(GO) messages, sent on H2D Response, are observed by the device before sending
subsequent snoops for the same address. To limit the amount of buffering needed to
track GO messages, the Host assumes that GO messages that have been sent over
CXL.cache in a given cycle cannot be passed by snoops sent in a later cycle.

For transactions that have multiple concurrent messages within a single channel (e.g.,
FastGO and ExtCmp), the device/Host should assume that they can arrive in any order.
For transactions that have multiple messages on a single channel with an expected order
(e.g., WritePull and GO for WrInv) the Device/Host must ensure they are observed
correctly using serializing messages (e.g. the Data message between WritePull and GO
for WrInv as shown in Figure 24).

3.2.2.2 Channel Crediting

To maintain the modularity of the interface no assumptions can be made on the ability
to send a message on a channel since link layer credits may not be available at all
times. Therefore, each channel must use a credit for sending any message and collect
credit returns from the receiver. During operation, the receiver returns a credit
whenever it has processed the message (i.e., freed up a buffer). It is not required that
all credits are accounted for on either side, it is sufficient that credit counter saturates
when full. If no credits are available, the sender must wait for the receiver to return
one. The table below describes which channels must drain to maintain forward progress
and which can be blocked indefinitely.

Figure 20. CXL.cache Channels

D2H
Req

D2H
Resp

D2H
Data

H2D
Req

H2D
Resp

H2D
Data

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 60
Revision 2.0, Version 1.0

3.2.3 CXL.cache Wire Description

The definition of each of the fields for each CXL.cache Channel is below.

3.2.3.1 D2H Request

Table 8. CXL.cache Channel Crediting

Channel
Forward
Progress
Condition

Blocking condition Description

D2H Request (Req) Credited to Host Indefinite Needs Host buffer, could be held by
earlier requests

D2H Response (Resp) Pre-allocated

Temporary link layer back pressure is
allowed.
Host may block waiting for H2D
Response to drain.

Headed to specified Host buffer

D2H Data Pre-allocated
 Temporary link layer back pressure is
allowed.
Host may block for H2D Data to drain.

Headed to specified Host buffer

H2D Request (Req) Credited to
Device

Must make progress. Temporary back
pressure is allowed.

May be temporarily back pressured due
to lack of availability of D2H Response or
D2H Data credits

H2D Response (Resp) Pre-allocated Link layer only, must make progress.
Temporary back pressure is allowed. Headed to specified device buffer

H2D Data Pre-allocated Link layer only, must make progress.
Temporary back pressure is allowed. Headed to specified device buffer

Table 9. CXL.cache - D2H Request Fields

D2H Request Width Description

Valid 1 The request is valid.

Opcode 5 The opcode specifies the operation of the request. Details in Table 18

Address [51:6] 46 Carries the physical address of coherent requests.

CQID 12

Command Queue ID: The CQID field contains the ID of the tracker entry
that is associated with the request. When the response and data is
returned for this request, the CQID is sent in the response or data
message indicating to the device which tracker entry originated this
request.
Implementation Note: CQID usage depends on the round-trip transaction
latency and desired bandwidth. To saturate link bandwidth for a x16 link
@32GT/s, 11 bits of CQID should be sufficient.

NT 1 For cacheable reads the NonTemporal field is used as a hint to indicate to
the Host how it should be cached. Details in Table 10

RSVD 14

Total 79

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 61
Revision 2.0, Version 1.0

3.2.3.2 D2H Response

3.2.3.3 D2H Data

Table 10. Non Temporal Encodings

NonTemporal Definition

1b0 Default behavior. This is Host implementation specific.

1b1 Requested line should be moved to Least Recently Used (LRU) position

Table 11. CXL.cache - D2H Response Fields

D2H Response Width Description

Valid 1 The response is valid

Opcode 5 The opcode specifies the what kind of response is being signaled. Details in
Table 21

UQID 12 Unique Queue ID: This is a reflection of the UQID sent with the H2D
Request and indicates which Host entry is the target of the response

RSVD 2

Total 20

Table 12. CXL.cache - D2H Data Header Fields

D2H Data Header Width Description

Valid 1 The Valid signal indicates that this is a valid data message.

UQID 12
Unique Queue ID: This is a reflection of the UQID sent with the H2D
Response and indicates which Host entry is the target of the data
transfer.

ChunkValid 1

In case of a 32B transfer on CXL.cache, this indicates what 32 byte
chunk of the cacheline is represented by this transfer. If not set, it
indicates the lower 32B and if set, it indicates the upper 32B. This
field is ignored for a 64B transfer.

Bogus 1

The Bogus field indicates that the data associated with this evict
message was returned to a snoop after the D2H request was sent
from the device but before a WritePull was received for the evict.
This data is no longer the most current, so it should be dropped by
the Host.

Poison 1 The Poison field is an indication that this data chunk is corrupted and
should not be used by the Host.

RSVD 1

Total 17

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 62
Revision 2.0, Version 1.0

3.2.3.3.1 Byte Enable

Although Byte Enable is technically part of the data header, it is not sent on the flit
along with the rest of the data header fields. Instead, it is sent only if the value is not
all 1’s, as a data chunk as described in Section 4.2.2. The Byte Enable field is 64 bits
wide and indicates which of the bytes are valid for the contained data.

3.2.3.4 H2D Request

3.2.3.5 H2D Response

Table 13. CXL.cache – H2D Request Fields

H2D Request Width Description

Valid 1 The Valid signal indicates that this is a valid request.

Opcode 3 The Opcode field indicates the kind of H2D request. Details in Table 22

Address [51:6] 46 The Address field indicates which cacheline the request targets.

UQID 12 Unique Queue ID: This indicates which Host entry is the source of the
request

RSVD 2

Total 64

Table 14. CXL.cache - H2D Response Fields

H2D Response Width Description

Valid 1 The Valid field indicates that this is a valid response to the device.

Opcode 4 The Opcode field indicates the type of the response being sent. Details
in Table 23

RspData 12
The response Opcode determines how the RspData field is interpreted
as shown in Table 23. Thus, depending on Opcode, it can either contain
the UQID or the MESI information in bits [3:0] as shown in Table 16.

RSP_PRE 2 RSP_PRE carries performance monitoring information. Details in
Table 15

CQID 12 Command Queue ID: This is a reflection of the CQID sent with the D2H
Request and indicates which device entry is the target of the response.

RSVD 1

Total 32

Table 15. RSP_PRE Encodings

RSP_PRE[1:0] Response

00 Host Cache Miss to Local CPU socket
memory

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 63
Revision 2.0, Version 1.0

3.2.3.6 H2D Data

3.2.4 CXL.cache Transaction Description

3.2.4.1 Device to Host Requests

3.2.4.1.1 Device to Host (D2H) CXL.cache Request Semantics

For device to Host requests there are four different semantics: CXL.cache Read,
CXL.cache Read0, CXL.cache Read0/Write, and CXL.cache Write. All device to Host
CXL.cache transactions fall into the one of these four semantics, though the allowable
responses and restrictions for each request type within a given semantic are different.

01 Host Cache Hit

10 Host Cache Miss to Remote CPU socket
memory

11 Reserved

Table 16. Cache State Encoding for H2D Response

Cache State Encoding

Invalid (I) 4’b0011

Shared (S) 4’b0001

Exclusive (E) 4’b0010

Modified (M) 4’b0110

Error (Err) 4’b0100

Table 17. CXL.cache - H2D Data Header Fields

H2D Data Header Width Description

Valid 1 The Valid field indicates that this is a valid data to the device.

CQID 12
Command Queue ID: This is a reflection of the CQID sent with the
D2H Request and indicates which device entry is the target of the
data transfer.

ChunkValid 1

In case of a 32B transfer on CXL.cache, this indicates what 32 byte
chunk of the cacheline is represented by this transfer. If not set, it
indicates the lower 32B and if set, it indicates the upper 32B. This
field is ignored for a 64B transfer.

Poison 1 The Poison field indicates to the device that this data is corrupted and
as such should not be used.

GO-Err 1
The GO-ERR field indicates to the agent that this data is the result of
an error condition and should not be cached or provided as response
to snoops.

RSVD 8

Total 24

Table 15. RSP_PRE Encodings

RSP_PRE[1:0] Response

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 64
Revision 2.0, Version 1.0

3.2.4.1.2 CXL.cache Read

CXL.cache Reads must have a D2H request credit and send a request message on the
D2H CXL.cache request channel. CXL.cache Read requests require zero or one
response (GO) message and data messages totaling a single 64 byte cacheline of data.
Both the response, if present, and data messages are directed at the device tracker
entry provided in the initial D2H request packet’s CQID field. The device entry must
remain active until all the messages from the Host have been received. To ensure
forward progress the device must have a reserved data buffer to be able to accept all
64 bytes of data immediately after the request is sent. However, the device may
temporarily be unable to accept data from the Host due to prior data returns not
draining. Once both the response message and the data messages have been received
from the Host, the transaction can be considered complete and the entry deallocated
from the device.

The figure below shows the elements required to complete a CXL.cache Read. Note that
the response (GO) message can be received before, after, or between the data
messages.

3.2.4.1.3 CXL.cache Read0

CXL.cache Read0 must have a D2H request credit and send a message on the D2H
CXL.cache request channel. CXL.cache Read0 requests receive a response message but
no data messages. The response message is directed at the device entry indicated in
the initial D2H request message’s CQID value. Once the GO message is received for

Figure 21. CXL.cache Read Behavior

Device Host

D2H
Read Request

Message

H2D
Response (GO)

Message – Not present for
RdCurr

H2D
Data Message (32 B)

H2D
Data Message (32 B)

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 65
Revision 2.0, Version 1.0

these requests, they can be considered complete and the entry deallocated from the
device. A data message must not be sent by the Host for these transactions. Most
special cycles (e.g., CLFlush) and other miscellaneous requests fall into this category.
Details in Table 18.

The following figure shows the elements required to complete a CXL.cache Read0
transaction.

3.2.4.1.4 CXL.cache Write

CXL.cache Write must have a D2H request credit before sending a request message on
the D2H CXL.cache request channel. Once the Host has received the request message,
it is required to send either two separate or one merged GO-I and WritePull message.
The GO message must never arrive at the device before the WritePull but it can arrive
at the same time in the combined message. If the transaction requires posted
semantics then a combined GO-I/WritePull message can be used. If the transaction
requires non-posted semantics, then WritePull will be issued first followed by the GO-I
when the non-posted write is globally observed.

Upon receiving the GO-I message, the device will consider the store done from a
memory ordering and cache coherency perspective, giving up snoop ownership of the
cacheline (if the CXL.cache message is an Evict).

The WritePull message triggers the device to send data messages to the Host totaling
exactly 64 bytes of data, though any number of byte enables can be set.

A CXL.cache write transaction is considered complete by the device once the device has
received the GO-I message, and has sent the required data messages. At this point the
entry can be deallocated from the device.

Figure 22. CXL.cache Read0 Behavior

Device Host

D2H
Read0 Request

Message

H2D
Response (GO)

Message

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 66
Revision 2.0, Version 1.0

The Host considers a write to be done once it has received all 64 bytes of data, and has
sent the GO-I response message. All device writes and Evicts fall into the CXL.cache
Write semantic.

See Section Multiple Evicts to the Same Cache Line for more information on restrictions
around multiple active write transactions.

Figure 23 shows the elements required to complete a CXL.cache Write transaction (that
matches posted behavior). The WritePull (or the combined GO_WritePull) message
triggers the data messages. There are restrictions on Snoops and WritePulls. See
Section Device/Host Snoop/WritePull Assumptions for more details.

Figure 24 shows a case where the WritePull is a separate message from the GO (for
example: strongly ordered uncacheable write).

Figure 25 shows the Host FastGO plus ExtCmp responses for weakly ordered write
requests.

Figure 23. CXL.cache Device to Host Write Behavior

Device Host

D2H
Write Request

Message

H2D
GO+Write Pull

combined Message

D2H
Data Message

D2H
Data Message

DONE

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 67
Revision 2.0, Version 1.0

Figure 24. CXL.cache WrInv Transaction

Device Host

D2H
Write Request

Message

H2D
Write Pull Message

D2H
Data Message

D2H
Data Message

H2D Go Message

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 68
Revision 2.0, Version 1.0

3.2.4.1.5 CXL.cache Read0-Write Semantics

CXL.cache Read0-Write requests must have a D2H request credit before sending a
request message on the D2H CXL.cache request channel. Once the Host has received
the request message, it is required to send one merged GO-I and WritePull message.

The WritePull message triggers the device to send the data messages to the Host,
which together transfer exactly 64 bytes of data though any number of byte enables
can be set.

A CXL.cache Read0-write transaction is considered complete by the device once the
device has received the GO-I message, and has sent the all required data messages. At
this point the entry can be deallocated from the device.

The Host considers a read0-write to be done once it has received all 64 bytes of data,
and has sent the GO-I response message. ItoMWr falls into the Read0-Write category.

Figure 25. WOWrInv/F with FastGO/ExtCmp

Device Host

D2H
Write Request

Message

H2D
combined FastGO and Write Pull

Message

D2H
Data Message

D2H
Data Message

H2D
ExtCmp Message

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 69
Revision 2.0, Version 1.0

Table 18 summarizes all the opcodes available from Device to Host.

Figure 26. CXL.cache Read0-Write Semantics

Device Host

D2H
Read0-Write Request

Message

H2D
Rsp GO-I/WritePull Message

DONE

Table 18. CXL.cache. – Device to Host Requests (Sheet 1 of 2)

CXL.cache Opcode Semantic Opcode

RdCurr Read 00001

RdOwn Read 00010

RdShared Read 00011

RdAny Read 00100

RdOwnNoData Read0 00101

ItoMWr Read0-Write 00110

MemWr Read0-Write 00111

CLFlush Read0 01000

CleanEvict Write 01001

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 70
Revision 2.0, Version 1.0

3.2.4.1.6 RdCurr

These are full cacheline read requests from the device for lines to get the most current
data, but not change the existing state in any cache, including in the Host. The Host
does not need to track the cacheline in the device that issued the RdCurr. RdCurr gets a
data but no GO. The device receives the line in the Invalid state which means it gets
one use of the line and cannot cache it.

3.2.4.1.7 RdOwn

These are full cacheline reads requests from the device for lines to be cached in any
writeable state. Typically, RdOwn request receives the line in Exclusive (GO-E) or
Modified (GO-M) state. Lines in Modified state must not be dropped, and have to be
written back to the Host.

Under error conditions, a RdOwn request may receive the line in Invalid (GO-I) or Error
(GO-Err) state. Both will return synthesized data of all1s. The device is responsible for
handling the error appropriately.

3.2.4.1.8 RdShared

These are full cacheline read requests from the device for lines to cached in Shared
state. Typically, RdShared request receives the line in Shared (GO-S) state.

Under error conditions, a RdShared request may receive the line in Invalid (GO-I) or
Error (GO-Err) state. Both will return synthesized data of all1s. The device is
responsible for handling the error appropriately.

3.2.4.1.9 RdAny

These are full cacheline read requests from the device for lines to cached in any state.
Typically, RdAny request receives the line in Shared (GO-S), Exclusive (GO-E) or
Modified (GO-M) state. Lines in Modified state must not be dropped, and have to be
written back to the Host.

Under error conditions, a RdAny request may receive the line in Invalid (GO-I) or Error
(GO-Err) state. Both will return synthesized data of all1s. The device is responsible for
handling the error appropriately.

3.2.4.1.10 RdOwnNoData

These are requests to get exclusive ownership of the cacheline address indicated in the
address field. The typical response is Exclusive (GO-E).

Under error conditions, a RdOwnNoData request may receive the line in Error (GO-Err)
state. The device is responsible for handling the error appropriately.

DirtyEvict Write 01010

CleanEvictNoData Write 01011

WOWrInv Write 01100

WOWrInvF Write 01101

WrInv Write 01110

CacheFlushed Read0 10000

Table 18. CXL.cache. – Device to Host Requests (Sheet 2 of 2)

CXL.cache Opcode Semantic Opcode

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 71
Revision 2.0, Version 1.0

3.2.4.1.11 ItoMWr

This command requests exclusive ownership of the cacheline address indicated in the
address field and atomically writes the cacheline back to the Host. The device
guarantees the entire line will be modified, so no data needs to be transferred to the
device. The typical response is GO-I-WritePull, which is sent once the request is
granted ownership. The device must not retain a copy of the line.

If an error occurs, then GO-Err-WritePull is sent instead. The device sends the data to
the Host, which drops it. The device is responsible for handling the error as
appropriate.

3.2.4.1.12 MemWr

The command behaves like the ItoMWr in that it atomically requests ownership of a
cacheline and then writes a full cacheline back to the fabric. However, it differs from
ItoMWr in where the data is written. Only if the command hits in a cache will the data
be written there; on a miss the data will be written to directly to memory. The typical
response is GO-I-WritePull once the request is granted ownership. The device must not
retain a copy of the line.

If an error occurs, then GO-Err-WritePull is sent instead. The device sends the data to
the Host, which drops it. The device is responsible for handling the error as
appropriate.

3.2.4.1.13 ClFlush

This is a request to the Host to invalidate the cacheline specified in the address field.
The typical response is GO-I that will be sent from the Host upon completion in
memory.

However, the Host may keep tracking the cacheline in Shared state if the Core has
issued a Monitor to an address belonging in the cacheline. Thus, the Device must not
rely on CLFlush/GO-I as an only and sufficient condition to flip a cacheline from Host to
Device bias mode. Instead, the Device must initiate RdOwnNoData and receive an H2D
Response of GO-E before it updates its Bias Table and may subsequently access the
cacheline without notifying the Host.

Under error conditions, a ClFlush request may receive the line in the Error (GO-Err)
state. The device is responsible for handling the error appropriately.

3.2.4.1.14 CleanEvict

This is a request to the Host to evict a full 64 byte Exclusive cacheline from the device.
Typically, CleanEvict receives GO-WritePull or GO-WritePullDrop. Receiving any means
the device must relinquish snoop ownership of the line. For GO-WritePull the device will
send the data as normal. For GO-WritePullDrop the device simply drops the data.

Once the device has issued this command and the address is subsequently snooped,
but before the device has received the GO-WritePull or GO-WritePullDrop, the device
must set the Bogus field in all D2H Data messages to indicate the data is now stale.

CleanEvict requests also guarantee to the Host that the device no longer contains any
cached copies of this line. Only one CleanEvict from the device may be pending on
CXL.cache for any given cacheline address.

CleanEvict is only expected for host-attached memory range of addresses. For device-
attached memory range, the equivalent operation can be completed internally within
the device without sending a transaction to the Host.

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 72
Revision 2.0, Version 1.0

3.2.4.1.15 DirtyEvict

This is a request to the Host to evict a full 64 byte Modified cacheline from the device.
Typically, DirtyEvict receives GO-WritePull from the Host at which point the device must
relinquish snoop ownership of the line and send the data as normal.

Once the device has issued this command and the address is subsequently snooped,
but before the device has received the GO-WritePull, the device must set the Bogus
field in all D2H Data messages to indicate the data is now stale.

DirtyEvict requests also guarantee to the Host that the device no longer contains any
cached copies of this line. Only one DirtyEvict from the device may be pending on
CXL.cache for any given cacheline address.

In error conditions, a GO-Err-WritePull will be received. The device will send the data as
normal, and the Host will drop it. The device is responsible for handling the error as
appropriate.

DirtyEvict is only expected for host-attached memory range of addresses. For device-
attached memory range, the equivalent operation can be completed internally within
the device without sending a transaction to the Host.

3.2.4.1.16 CleanEvictNoData

This is a request for the device to update the Host that a clean line is dropped in the
device. The sole purpose of this request is to update any snoop filters in the Host and
no data will be exchanged.

CleanEvictNoData is only expected for host-attached memory range of addresses. For
device-attached memory range, the equivalent operation can be completed internally
within the device without sending a transaction to the Host.

3.2.4.1.17 WOWrInv

This is a weakly ordered write invalidate line request of 0-63 bytes for write combining
type stores. Any combination of byte enables may be set.

Typically, WOWrInv receives a FastGO-WritePull followed by an ExtCmp. Upon receiving
the FastGO-WritePull the device sends the data to the Host. For host-attached memory,
the Host sends the ExtCmp once the write is complete in memory.

In error conditions, a GO-Err-Writepull will be received. The device will send the data as
normal, and the Host will drop it. The device is responsible for handling the error as
appropriate. An ExtCmp will still be sent by the Host after the GO-Err in all cases.

3.2.4.1.18 WOWrInvF

Same as WOWrInv (rules and flows), except it is a write of 64 bytes.

3.2.4.1.19 WrInv

This is a write invalidate line request of 0-64 bytes. Typically, WrInv receives a WritePull
followed by a GO. Upon getting the WritePull the device sends the data to the Host. The
Host sends GO once the write complete in memory (both, host-attached or device-
attached).

In error conditions, a GO-Err is received. The device is responsible for handling the
error as appropriate.

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 73
Revision 2.0, Version 1.0

3.2.4.1.20 CacheFlushed

This is an indication sent by the device to inform the Host that its caches are flushed,
and it no longer contains any cachelines in the Shared, Exclusive or Modified state. The
Host can use this information to clear its snoop filters and block snoops to the device
and return a GO. Once the device receives the GO, it is guaranteed to not receive any
snoops from the Host until the device sends the next cacheable D2H Request.

For requests targeting device-attached memory, if the region is in Device Bias, no
transaction is expected on CXL.cache since the Device can complete those requests
internally. If the region is in Host Bias, the table below shows how the device should
expect the response.

Table 19. D2H Request (Targeting Non Device-Attached Memory) Supported H2D
Responses

D2H Request

W
ri

te
P

u
ll

G
O

_
W

ri
te

P
u

ll

Ex
tC

m
p

G
O

_
W

ri
te

P
u

ll_
D

ro
p

Fa
st

G
O

_
W

ri
te

P
u

ll

G
O

_
ER

R
_

W
ri

te
P

u
ll

G
O

-E
rr

G
O

-I

G
O

-S

G
O

-E

G
O

-M

CLFlush X X

RdShared X X X

RdAny X X X X X

ItoMWr X X

MemWr X X

CacheFlushed X

RdCurr

RdOwn X X X X

RdOwnNoData X X

CleanEvict X X

DirtyEvict X X

CleanEvictNoData X

WOWrInv X X X

WOWrInvF X X X

WrInv X X X

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 74
Revision 2.0, Version 1.0

CleanEvict, DirtyEvict and CleanEvictNoData targeting device-attached memory should
always be completed internally by the device, regardless of bias state. For D2H
Requests that receive a response on CXL.mem, the CQID associated with the
CXL.cache request is reflected in the Tag of the CXL.mem MemRdFwd or MemWrFwd
command. For MemRdFwd, the caching state of the line is reflected in the MetaValue
field as described in Table 32.

3.2.4.2 Device to Host Response

Responses are directed at the Host entry indicated in the UQID field in the original H2D
request message.

Table 20. D2H Request (Targeting Device-Attached Memory) Supported Responses

D2H Request Response on CXL.mem Response on CXL.cache

RdCurr MemRdFwd (For Success
Conditions)

GO-Err Bit set in H2D DH,
Synthesized Data with all 1s (For
Error Conditions)

RdOwn MemRdFwd (For Success
Conditions)

GO-Err on H2D Response,
Synthesized Data with all 1s (For
Error Conditions)

RdShared MemRdFwd (For Success
Conditions)

GO-Err on H2D Response,
Synthesized Data with all 1s (For
Error Conditions)

RdAny MemRdFwd (For Success
Conditions)

GO-Err on H2D Response,
Synthesized Data with all 1s (For
Error Conditions)

RdOwnNoData MemRdFwd (For Success
Conditions)

GO-Err on H2D Response,
Synthesized Data with all 1s (For
Error Conditions)

ItoMWr None Same as host-attached memory

MemWr None Same as host-attached memory

CLFlush MemRdFwd (For Success
Conditions)

GO-Err on H2D Response (For
Error Conditions)

CleanEvict NA NA

DirtyEvict NA NA

CleanEvictNoData NA NA

WOWrInv MemWrFwd (For Success
Conditions)

GO_ERR_WritePull on H2D
Response (For Error Conditions)

WOWrInvF MemWrFwd (For Success
Conditions)

GO_ERR_WritePull on H2D
Response (For Error Conditions)

WrInv None Same as host-attached memory

CacheFlushed None Same as host-attached memory

Table 21. D2H Response Encodings

Device CXL.cache Rsp Opcode

RspIHitI 00100

RspVHitV 00110

RspIHitSE 00101

RspSHitSE 00001

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 75
Revision 2.0, Version 1.0

3.2.4.2.1 RspIHitI

In general, this is the response that a device provides to a snoop when the line was not
found in any caches. If the device returns RspIHitI for a snoop, the Host can assume
the line has been cleared from that device.

3.2.4.2.2 RspVHitV

In general, this is the response that a device provides to a snoop when the line was hit
in the cache and no state change occurred. If the device returns an RspVHitV for a
snoop, the Host can assume a copy of the line is present in one or more places in that
device.

3.2.4.2.3 RspIHitSE

In general, this is the response that a device provides to a snoop when the line was hit
in a clean state in at least one cache and is now invalid. If the device returns an
RspIHitSE for a snoop, the Host can assume the line has been cleared from that device.

3.2.4.2.4 RspSHitSE

In general, this is the response that a device provides to a snoop when the line was hit
in a clean state in at least one cache and is now downgraded to shared state. If the
device returns an RspSHitSE for a snoop, the Host should assume the line is still in the
device.

3.2.4.2.5 RspSFwdM

This response indicates to the Host that the line being snooped is now in S state in the
device, after having hit the line in Modified state. The device may choose to downgrade
the line to Invalid. This response also indicates to the Host snoop tracking logic that 64
bytes of data will be transferred on the D2H CXL.cache Data Channel to the Host data
buffer indicated in the original snoop’s destination (UQID).

3.2.4.2.6 RspIFwdM

(aka HITM) This response indicates to the Host that the line being snooped is now in I
state in the device, after having hit the line in Modified state. The Host may now
assume the device contains no more cached copies of this line. This response also
indicates to the Host snoop tracking logic that 64 bytes of data will be transferred on
the D2H CXL.cache Data Channel to the Host data buffer indicated in the original
snoop’s destination (UQID).

3.2.4.2.7 RspVFwdV

This response indicates that the device is returning the current data to the Host and
leaving the state unchanged. The Host must only forward the data to the requestor
since there is no state information.

RspSFwdM 00111

RspIFwdM 01111

RspVFwdV 10110

Table 21. D2H Response Encodings

Device CXL.cache Rsp Opcode

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 76
Revision 2.0, Version 1.0

3.2.4.3 Host to Device Requests

Snoops from the Host need not gain any credits besides local H2D request credits. The
device will always send a Snoop Response message on the D2H CXL.cache Response
channel. If the response is of the Rsp*Fwd* format, then the device must respond with
64 bytes of data via the D2H Data channel, directed at the UQID from the original
snoop request message. If the response is not Rsp*Fwd*, the Host can consider the
request complete upon receiving all of the snoop response messages. The device can
stop tracking the snoop once the response has been sent for non-data forwarding
cases, or after both the last chunk of data has been sent and the response has been
sent.

The figure below shows the elements required to complete a CXL.cache snoop. Note
that the response message can be received by the Host with any relative order with the
data messages. The byte enable field is always all 1s for Snoop data transfers.

Figure 27. CXL.cache Snoop Behavior

Device Host
H2D

Snoop Request Message

D2H
Response (Rsp-X) Message

if RspIFwdM

D2H
Data Message

DONE (if NOT Rsp*Fwd*)

D2H
Data Message

DONE (if RspIFwdM)

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 77
Revision 2.0, Version 1.0

3.2.4.3.1 SnpData

These are snoop requests from the Host for lines that are intended to be cached in
either Shared or Exclusive state at the requester (the Exclusive state can be cached at
the requester only if all devices respond with RspI). This type of snoop is typically
triggered by data read requests. A device that receives this snoop must either
invalidate or downgrade all cachelines to Shared state. If the device holds dirty data it
must return it to the Host.

3.2.4.3.2 SnpInv

These are snoop requests from the Host for lines that are intended to be granted
ownership and Exclusive state at the requester. This type of snoop is typically triggered
by write requests. A device that receives this snoop must invalidate all cachelines. If
the device holds dirty data it must return it to the Host.

3.2.4.3.3 SnpCur

This snoop gets the current version of the line, but doesn’t require change of any cache
state in the hierarchy. It is only sent on behalf of the RdCurr request. If the device
holds data in Modified state it must return it to the Host. The cache state can remain
unchanged in both the device and Host, and the Host should not update its caches.

3.2.4.4 Host to Device Response

Table 22. CXL.cache – Mapping of Host to Device Requests and Responses

O
p

co
d

e

R
sp

IH
it

I

R
sp

V
h

it
V

R
sp

S
H

it
S

E

R
sp

IH
it

S
E

R
sp

S
Fw

d
M

R
sp

IF
w

d
M

R
sp

V
Fw

d
V

SnpData ‘001 X X X X

SnpInv ‘010 X X X

SnpCurr ‘011 X X X X X X

Table 23. H2D Response Opcode Encodings

H2D Response Class Encoding RspData

WritePull 0001 UQID

GO 0100 MESI

GO_WritePull 0101 UQID

ExtCmp 0110 Don’t Care

GO_WritePull_Drop 1000 UQID

Fast_GO 1100 Don’t Care

Fast_GO_WritePull 1101 UQID

GO_ERR_WritePull 1111 UQID

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 78
Revision 2.0, Version 1.0

3.2.4.4.1 WritePull

This response tells the device to send the write data to the Host, but not to change the
state of the line. This is used for WrInv where the data is needed before the GO-I can
be sent. This is because GO-I is the notification that the write was completed by I/O.

3.2.4.4.2 GO

The Global Observation (GO) message conveys that read requests are coherent and
that write requests are coherent and consistent. It is an indication that the transaction
has been observed by the system device and the MESI state that is encoded in the
RspType field indicates what state the data associated with the transaction should be
put in for the requester’s caches. Details in Table 14.

If the Host returns Modified state to the device, then the device is responsible for the
dirty data and cannot drop the line without writing it back to the Host.

If the Host returns Invalid or Error state to the device, then the device must use the
data at most once and not cache the data. Error responses to reads and cacheable
write requests (for example, RdOwn or ItoMWr) will always be the result of an abort
condition, so modified data can be safely dropped in the device.

3.2.4.4.3 GO_WritePull

This is a combined GO + WritePull message. No cache state is transferred to the device.
The GO+WritePull message is used for posted write types.

3.2.4.4.4 ExtCmp

This response indicates that the data that was previously locally ordered (FastGO) has
been observed throughout the system. Most importantly, accesses to memory will
return the most up to date data.

3.2.4.4.5 GO_WritePull_Drop

This message has the same semantics as Go_WritePull, except that the device should
not send data to the Host. This response can be sent in place of GO_WritePull when the
Host determines that the data is not required. This response will never be sent for
partial writes since the byte enables will always need to be transferred.

3.2.4.4.6 Fast_GO

Similar to GO, but only indicates that the request is locally observed. There will be a
later ExtCmp message when the transaction is fully observable in memory. Devices that
do not implement the Fast_GO feature may ignore this message and wait for the
ExtCMP.

3.2.4.4.7 Fast_GO_WritePull

Similar to GO_WritePull, but only indicates that the request is locally observed. There
will be a later ExtCmp message when the transaction is fully observable in memory.
Devices that do not implement the Fast_GO feature may ignore the GO message and
wait for the ExtCMP. Data must always be sent for the WritePull though. No cache state
is transferred to the device.

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 79
Revision 2.0, Version 1.0

3.2.4.4.8 GO_ERR_WritePull

Similar to GO_WritePull, but indicates that there was an error with the transaction that
should be handled properly in the device. Data must be sent to the Host for the
WritePull, and the Host will drop the data. No cache state is transferred to the device
(assumed Error). An ExtCmp is still sent if it is expected by the originating request.

3.2.5 Cacheability Details and Request Restrictions

These details and restrictions apply to all devices.

3.2.5.1 GO-M Responses

GO-M responses from the Host indicate that the device is being granted the sole copy
of modified data. The device must cache this data and write it back when it is done.

3.2.5.2 Device/Host Snoop-GO-Data Assumptions

When the Host returns a GO response to a device, the expectation is that a snoop
arriving to the same address of the request receiving the GO would see the results of
that GO. For example, if the Host sends GO-E for an RdOwn request followed by a
snoop to the same address immediately afterwards, then one would expect the device
to transition the line to M state and reply with an RspIFwdM response back to the Host.
In order to implement this principle, CXL.cache link layer ensures that the device will
receive the two messages in separate slots to make the order completely
unambiguous.

When the Host is sending a snoop to the device, the requirement is that no GO
response will be sent to any requests with that address in the device until after the
Host has received a response for the snoop and all implicit writeback (IWB) data (dirty
data forwarded in response to a snoop) has been received.

When the Host returns data to the device for a read type request, and GO for that
request has not yet been sent to the device, the Host may not send a snoop to that
address until after the GO message has been sent. Since the new cache state is
encoded in the response message for reads, sending a snoop to an address without
having received GO, but after having received data, is ambiguous to the device as to
what the snoop response should be in that situation.

Fundamentally, the GO that is associated with a read request also applies to the data
returned with that request. Sending data for a read request implies that data is valid,
meaning the device can consume it even if the GO has not yet arrived. The GO will
arrive later and inform the device what state to cache the line in (if at all) and whether
or not the data was the result of an error condition (such as hitting an address region
the device was not allowed to access).

3.2.5.3 Device/Host Snoop/WritePull Assumptions

The device requires that the Host cannot have both a WritePull and H2D Snoop active
on CXL.cache to a given 64 byte address. The Host may not launch a snoop to a 64
byte address until all WritePull data from that address has been received by the Host.
Conversely, the Host may not launch a WritePull for a write until the Host has received
the snoop response (including data in case of Rsp*Fwd*) for any snoops to the pending
writes address. Any violation of these requirements will mean that the Bogus field on
the D2H Data channel will be unreliable.

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 80
Revision 2.0, Version 1.0

3.2.5.4 Snoop Responses and Data Transfer on CXL.cache Evicts

In order to snoop cache evictions (for example, DirtyEvict) and maintain an orderly
transfer of snoop ownership from the device to the Host, cache evictions on CXL.cache
must adhere to the following protocol.

If a device Evict transaction has been issued on the CXL.cache D2H request channel,
but has not yet processed its WritePull from the Host, and a snoop hits the WB, the
device must track this snoop hit. When the device begins to process the WritePull, the
device must set the Bogus field in all of the D2H data messages sent to the Host. The
intent is to communicate to the Host that the request data was already sent as IWB
data, so the data from the Evict is potentially stale.

3.2.5.5 Multiple Snoops to the Same Address

The Host is only allowed to have one snoop outstanding to a given cacheline address to
a given device at one time. The Host must wait until it has received both the snoop
response and all IWB data (if any) before dispatching the next snoop to that address.

3.2.5.6 Multiple Reads to the Same Cache Line

Multiple read requests (cacheable or uncacheable) to the same cacheline are allowed
only in the following specific cases where host tracking state is consistent regardless of
the order requests are processed. The Host can freely reorder requests, so the device is
responsible for ordering requests when required. For host memory, multiple RdCurr
and/or CLFlush are allowed. For these commands the device ends in I-state, so there is
no inconsistent state possible for host tracking of a device cache. With Type 2 devices,
in addition to RdCurr and/or CLFlush, multiple RdOwnNoData (bias flip request) is
allowed for device attached memory. This case is allowed because with device attached
memory the host does not track the device's cache so re-ordering in the host will not
create ambiguous state between device and host.

3.2.5.7 Multiple Evicts to the Same Cache Line

Multiple Evicts to the same cacheline are not allowed. All Evict messages from the
Device provide a guarantee to the Host that the evicted cacheline will no longer be
present in the Device's caches.

Thus, it is a coherence violation send another Evict for the same cacheline without an
intervening cacheable Read/Read0 request to that address.

3.2.5.8 Multiple Write Requests to the Same Cache Line

Multiple WrInv/WOWrInv/ItoMWr/MemWr to the same cacheline are allowed to be
outstanding on CXL.cache. The host or switch can freely reorder requests, and the
Device may receive corresponding H2D Responses in reordered fashion. However, it is
generally recommended that the Device should issue no more than one outstanding
Write request for a given cacheline, and order multiple write requests to the same
cacheline one after another whenever stringent ordering is warranted.

3.2.5.9 Normal Global Observation (GO)

Normal Global Observation (GO) responses are sent only after the Host has guaranteed
that request will have next ownership of the requested cacheline. GO messages for
requests carry the cacheline state permitted through the MESI state or indicate that the
data should only be used once and whether or not an error occurred.

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 81
Revision 2.0, Version 1.0

3.2.5.10 Relaxed Global Observation (FastGO)

FastGO is only allowed for requests that do not require strict ordering. The Host may
return the FastGO once the request is guaranteed next ownership of the requested
cacheline within the socket, but not necessarily in the system. Requests that receive a
FastGO response and require completion messages are usually of the write combining
memory type and the ordering requirement is that there will be a final completion
(ExtCmp) message indicating that the request is at the stage where it is fully observed
throughout the system.

3.2.5.11 Evict to Device-Attached Memory

Device Evicts to device-attached memory are not allowed on CXL.cache. The device is
only allowed to issue WrInv, WOWrInv* to device-attached memory.

3.2.5.12 Memory Type on CXL.cache

To source requests on CXL.cache, devices need to get the Host Physical Address (HPA)
from the Host by means of an ATS request on CXL.io. Due to memory type restrictions,
on the ATS completion, the Host indicates to the device if a HPA can only be issued on
CXL.io as described in Section 3.1.6. The device is not allowed to issue requests to such
HPAs on CXL.cache.

3.2.5.13 General Assumptions

1. The Host will NOT preserve ordering of the CXL.cache requests as delivered by the
device. The device must maintain the ordering of requests for the case(s) where
ordering matters. For example, if D2H memory writes need to be ordered with
respect to a MSI (on CXL.io), it is up to the device to implement the ordering. This
is made possible by the non-posted nature of all requests on CXL.cache.

2. The order chosen by the Host will be conveyed differently for reads and writes. For
reads, a Global Observation (GO) message conveys next ownership of the
addressed cacheline; the data message conveys ordering with respect to other
transactions. For writes, the GO message conveys both next ownership of the line
and ordering with respect to other transactions.

3. The device may cache ownership and internally order writes to an address if a prior
read to that address received either GO-E or GO-M.

4. For reads from the device, the Host transfers ownership of the cacheline with the
GO message, even if the data response has not yet been received by the device.
The device must respond to a snoop to a cacheline which has received GO, but if
data from the current transaction is required (e.g., a RdOwn to write the line) the
data portion of the snoop is delayed until the data response is received.

5. The Host must not send a snoop for an address where the device has received a
data response for a previous read transaction but has not yet received the GO.
Refer to Section 3.2.5.2

6. Write requests (other than Evicts) such as WrInv, WOWrInv*, ItoMWr and MemWr
will never respond to WritePulls with data marked as Bogus.

7. The Host must not send two cacheline data responses to the same device request.
The device may assume one-time use ownership (based on the request) and begin
processing for any part of a cacheline received by the device before the GO
message. Final state information will arrive with the GO message, at which time the
device can either cache the line or drop it depending on the response.

8. For a given transaction, H2D Data transfers must come in consecutive packets in
natural order with no interleaved transfers from other lines.

9. D2H Data transfer of a cacheline must come in consecutive packets with no
interleaved transfers from other lines. The data must come in natural chunk order,

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 82
Revision 2.0, Version 1.0

that is, 64B transfers must complete the lower 32B half first, since snoops are
always cacheline aligned.

10. Device snoop responses in D2H Response must not be dependent on any other
channel or on any other requests in the device besides the availability of credits in
the D2H Response channel. The Host must guarantee that the responses will
eventually be serviced and return credits to the device.

11. The Host must not send a second snoop request to an address until all responses,
plus data if required, for the prior snoop are collected.

12. H2D Response and H2D Data messages to the device must drain without the need
for any other transaction to make progress.

13. The Host must not return GO-M for data that is not actually modified with respect
to memory.

14. The Host must not write unmodified data back to memory.
15. Except for WOWrInv and WOWrInF, all other writes are strongly ordered

3.2.5.14 Buried Cache State Rules

Whenever the Device initiates a new request on CXL.Cache protocol, Buried Cache
state refers to the state of the cacheline registered in the Device's Coherency engine
(DCOH) for which a particular request is being sent.

Buried Cache State Rules:
• The Device must not issue a Read for a cacheline if it is buried in Modified,

Exclusive, or Shared state.
• The Device must not issue RdOwnNoData if the cacheline is buried in Modified or

Exclusive state. The Device may request for ownership in Exclusive state as an
upgrade request from Shared state.

• The Device must not issue a Read0-Write if the cacheline is buried in Modified,
Exclusive, or Shared state.

• All *Evict opcodes must adhere to apropos use case. For example, the Device is
allowed to issue DirtyEvict for a cacheline only when it is buried in Modified state.
For performance benefits, it is recommended that the Device should not silently
drop a cacheline in Exclusive or Shared state and instead use CleanEvict* opcodes
towards the Host.

• The CacheFlushed Opcode is not specific to a cacheline, it is an indication to the
Host that all of the Device's caches are flushed. Thus, the Device must not issue
CacheFlushed if there is any cacheline buried in Modified, Exclusive, or Shared
state.

Table 24 describes which Opcodes in D2H requests are allowed for a given Buried
Cache State:

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 83
Revision 2.0, Version 1.0

3.3 CXL.mem

3.3.1 Introduction

The CXL Memory Protocol is called CXL.mem, and it is a transactional interface between
the CPU and Memory. It uses the phy and link layer of Compute Express Link (CXL)
when communicating across dies. The protocol can be used for multiple different
Memory attach options including when the Memory Controller is located in the Host
CPU, when the Memory Controller is within an Accelerator device, or when the Memory
Controller is moved to a memory buffer chip. It applies to different Memory types
(volatile, persistent, etc.) and configurations (flat, hierarchical, etc.) as well.

Table 24. Allowed Opcodes Per Buried Cache State

D2H Requests Buried Cache State

Opcodes Semantic Modified Exclusive Shared Invalid

RdCurr Read X

RdOwn Read X

RdShared Read X

RdAny Read X

RdOwnNoData Read0 X X

ItoMWr Read0-Write X

MemWr Read0-Write X

CLFlush Read0 X

CleanEvict Write X

DirtyEvict Write X

CleanEvictNoData Write X X

WOWrInv Write X

WOWrInvF Write X

WrInv Write X

CacheFlushed Read0 X

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 84
Revision 2.0, Version 1.0

The coherency engine in the CPU interfaces with the Memory (Mem) using CXL.mem
requests and responses. In this configuration, the CPU coherency engine is regarded as
the CXL.mem Master and the Mem device is regarded as the CXL.mem Subordinate.
The CXL.mem Master is the agent which is responsible for sourcing CXL.mem requests
(reads, writes, etc.) and a CXL.mem Subordinate is the agent which is responsible for
responding to CXL.mem requests (data, completions, etc.).

When the Subordinate is an Accelerator, CXL.mem protocol assumes the presence of a
device coherency engine (DCOH). This agent is assumed to be responsible for
implementing coherency related functions such as snooping of device caches based on
CXL.mem commands and update of Meta Data fields. Support for memory with Meta
Data is optional but this needs to be negotiated with the Host in advance. The
negotiation mechanisms are outside the scope of this specification. If Meta Data is not
supported by device-attached memory, the DCOH will still need to use the Host
supplied Meta Data updates to interpret the commands. If Meta Data is supported by
device-attached memory, it can be used by Host to implement a coarse snoop filter for
CPU sockets.

CXL.mem transactions from Master to Subordinate are called “M2S” and transactions
from Subordinate to Master are called “S2M”.

Within M2S transactions, there are two message classes:
• Request without data - generically called Requests (Req)
• Request with Data - (RwD)

Similarly, within S2M transactions, there are two message classes:
• Response without data - generically called No Data Response (NDR)
• Response with data - generically called Data Response (DRS)

The next sections describe the above message classes and opcodes in detail.

3.3.2 QoS Telemetry for Memory

QoS Telemetry for Memory is a mechanism for memory devices to indicate their current
load level (DevLoad) in each response message for CXL.mem requests. This enables
the host to meter the rate of CXL.mem requests to portions of devices, individual
devices, or groups of devices as a function of their load level, optimizing the
performance of those memory devices while limiting fabric congestion. This is
especially important for CXL hierarchies containing multiple memory types (e.g., DRAM
and persistent memory) and/or Multi-Logical-Device (MLD) components.

Certain aspects of QoS Telemetry are mandatory for current CXL memory devices while
other aspects are optional. CXL switches have no unique requirements for supporting
QoS Telemetry. It is strongly recommended for hosts to support QoS Telemetry as
guided by the reference model contained in this section.

3.3.2.1 QoS Telemetry Overview

The overall goal of QoS Telemetry is for memory devices to provide immediate and on-
going DevLoad feedback to their associated hosts, for use in dynamically adjusting host
request rate throttling. If a device or set of devices become overloaded, the associated
hosts increase their amount of request rate throttling. If such devices become
underutilized, the associated hosts reduce their amount of request rate throttling. QoS
Telemetry is architected to help hosts avoid overcompensating or undercompensating.

Host memory request rate throttling is optional and primarily implementation specific.

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 85
Revision 2.0, Version 1.0

To accommodate memory devices supporting multiple types of memory more optimally,
a device is permitted to implement multiple QoS Classes, which are identified sets of
traffic, between which the device supports differentiated QoS and significant
performance isolation. For example, a device supporting both DRAM and persistent
memory might implement two QoS Classes, one for each type of supported memory.
Providing significant performance isolation may require independent internal resources;
e.g., individual request queues for each QoS Class.

This version of the specification does not provide architected controls for providing
bandwidth management between device QoS Classes.

MLDs provide differentiated QoS on a per-LD basis. MLDs have architected controls
specifying the allocated bandwidth fraction for each LD when the MLD becomes
overloaded. When the MLD is not overloaded, LDs can use more than their allocated
bandwidth fraction, up to specified fraction limits based on maximum sustained device
bandwidth.

The DevLoad indication from CXL 1.1 memory devices will always indicate Light Load,
allowing those devices to operate as best they can with hosts that support QoS
Telemetry, though they cannot have their memory request rate actively metered by the
host. Light Load is used instead of Optimal Load in case any CXL 1.1 devices share the
same host throttling range with current memory devices. If 1.1 devices were to
indicate Optimal Load, they would overshadow the DevLoad of any current devices
indicating Light Load.

3.3.2.2 Reference Model for Host Support of QoS Telemetry

Host support for QoS Telemetry is strongly recommended but not mandatory.

QoS Telemetry provides no architected controls for host QoS Telemetry. However, if a
host implements independent throttling for multiple distinct sets of memory devices
below a given Root Port, the throttling must be based on HDM ranges, which are
referred to as host throttling ranges.

The reference model in this section covers recommended aspects for how a host should
support QoS Telemetry. Such aspects are not mandatory, but they should help
maximize the effectiveness of QoS Telemetry in optimizing memory device performance
while providing differentiated QoS and reducing CXL fabric congestion.

Each host is assumed to support distinct throttling levels on a throttling-range basis,
represented by Throttle[Range]. Throttle[Range] is periodically adjusted by conceptual
parameters NormalDelta & SevereDelta. During each sampling period for a given
Throttle[Range], the host records the highest DevLoad indication reported for that
throttling range, referred to as LoadMax.

Table 25. Impact of DevLoad Indication on Host Request Rate Throttling

DevLoad Indication Returned in Responses Host Request Rate Throttling

Light Load Reduce throttling (if any) soon

Optimal Load Make no change to throttling

Moderate Overload Increase throttling immediately

Severe Overload Invoke heavy throttling immediately

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 86
Revision 2.0, Version 1.0

Any increments or decrements to Throttle[Range] should not overflow or underflow
legal values.

Throttle[Range] is expected to be adjusted periodically, every tH nanoseconds unless a
more immediate adjustment is warranted. The tH parameter should be configurable by
platform-specific software, and ideally configurable on a per-throttling-range basis.
When tH expires, the host should update Throttle[Range] based on LoadMax, as shown
in Table 26, then reset LoadMax to its minimal value.

Round-trip fabric time is the sum of the time for a request message to travel from host
to device, plus the time for a response message to travel from device to host. The
optimal value for tH is anticipated to be a bit larger than the average round-trip fabric
time for the associated set of devices; e.g., a few hundred nanoseconds. To avoid
overcompensation by the host, time is needed for the received stream of DevLoad
indications in responses to reflect the last Throttle[Range] adjustment before the host
makes a new adjustment.

If the host receives a Moderate Overload or Severe Overload indication, it is strongly
recommended for the host to make an immediate adjustment in throttling, without
waiting for the end of the current tH sampling period. Following that, the host should
reset LoadMax and then wait tH nanoseconds before making an additional throttling
adjustment, in order to avoid overcompensating.

3.3.2.3 Memory Device Support for QoS Telemetry

3.3.2.3.1 QoS Telemetry Register Interfaces

An MLD must support a specified set of MLD commands from the MLD Component
Command Set as documented in Section 7.6.7.5. These MLD commands provide access
to a variety of architected capability, control, and status registers for a Fabric Manager
to use via the FM API.

If an SLD supports the Memory Device Command set, it must support a specified set of
SLD QoS Telemetry commands. See Section 8.2.9.5. These SLD commands provide
access to a variety of architected capability, control, and status fields for management
by system software via the CXL Device Register interface.

Each “architected QoS Telemetry” register is one that is accessible via the above
mentioned MLD commands, SLD commands, or both.

3.3.2.3.2 Memory Device QoS Class Support

Each CXL memory device may support one or more QoS Classes. The anticipated
typical number is one to four, but higher numbers are not precluded. If a device
supports only one type of media, it may be common for it to support one QoS Class. If
a device supports two types of media, it may be common for it to support two QoS
Classes. A device supporting multiple QoS Classes is referred to as a multi-QoS device.

Table 26. Recommended Host Adjustment to Request Rate Throttling

LoadMax Recorded by Host Recommended Host Adjustment to Request Rate Throttling

Light Load Throttle[Range] decremented by NormalDelta

Optimal Load Throttle[Range] unchanged

Moderate Overload Throttle[Range] incremented by NormalDelta

Severe Overload Throttle[Range] incremented by SevereDelta

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 87
Revision 2.0, Version 1.0

This version of the specification does not provide architected controls for providing
bandwidth management between device QoS Classes. Still, it is strongly recommended
that multi-QoS devices track and report DevLoad indications for different QoS Classes
independently, and that implementations provide as much performance isolation
between different QoS Classes as possible.

3.3.2.3.3 Memory Device Internal Loading (IntLoad)

A CXL memory device must continuously track its internal loading, referred to as
IntLoad. A multi-QoS device should do so on a per-QoS-Class basis.

A device must determine IntLoad based at least on its internal request queuing. For
example, a simple device may monitor the instantaneous request queue depth to
determine which of the four IntLoad indications to report. It may also incorporate other
internal resource utilizations, as summarized in Table 27.

The actual method of IntLoad determination is device-specific, but it is strongly
recommended that multi-QoS devices implement separate request queues for each
QoS Class. For complex devices, it is recommended for them to determine IntLoad
based on internal resource utilization beyond just request queue depth monitoring.

Though the IntLoad described in this section is a primary factor in determining which
DevLoad indication is returned in device responses, there are other factors that may
come into play, depending upon the situation. See Section 3.3.2.3.4 and
Section 3.3.2.3.5.

3.3.2.3.4 Egress Port Backpressure

Even under a consistent Light Load, a memory device may experience flow control
backpressure at its egress port. This is readily caused if an RP is oversubscribed by
multiple memory devices below a switch. Prolonged egress port backpressure usually
indicates that one or more upstream traffic queues between the device and the RP are
full, and the delivery of responses from the device to the host is significantly delayed.
This makes the QoS Telemetry feedback loop less responsive and the overall
mechanism less effective. Egress Port Backpressure is an optional normative
mechanism to help mitigate the negative effects of this condition.

Table 27. Factors for Determining IntLoad

IntLoad Queuing Delay Inside Device Device Internal Resource Utilization

Light Load Minimal Readily handles more requests

Optimal Load Modest to Moderate Optimally utilized

Moderate Overload Significant Limiting throughput and/or degrading efficiency

Severe Overload Very High Heavily overloaded and/or degrading efficiency

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 88
Revision 2.0, Version 1.0

The Egress Port Congestion Supported capability bit and the Egress Port Congestion

Enable control bit are architected QoS Telemetry bits, which indicate support for this
optional mechanism plus a means to enable or disable it. The architected Backpressure
Average Percentage status field returns a current snapshot of the measured egress port
average congestion.

QoS Telemetry architects two thresholds for the percentage of time that the egress port
experiences flow control backpressure. This condition is defined as the egress port
having flits or messages waiting for transmission but is unable to transmit them due to
a lack of suitable flow control credits. If the percentage of congested time is greater
than or equal to Egress Moderate Percentage, the device may return a DevLoad
indication of Moderate Overload. If the percentage of congested time is greater than or
equal to Egress Severe Percentage, the device may return a DevLoad indication of
Severe Overload. The actual DevLoad indication returned for a given response may be
the result of other factors as well.

A hardware mechanism for measuring Egress Port Congestion is described in
Section 3.3.2.3.8.

IMPLEMENTATION NOTE

Egress Port Backpressure Leading to Larger Request Queue Swings

When the QoS Telemetry feedback loop is less responsive, the device's request queue
depth is prone to larger swings than normal.

When the queue depth is increasing, the delay in the host receiving Moderate
Overload or Severe Overload indications results in the queue getting fuller than
normal, in extreme cases filling completely and forcing the ingress port to exert
backpressure to incoming downstream traffic.

When the queue depth is decreasing, the delay in the host receiving Light Load
indications results in the queue getting more empty than normal, in extreme cases
emptying completely, and causing device throughput to drop unnecessarily.

Use of the Egress Port Backpressure mechanism helps avoid upstream traffic queues
between the device and its RP from filling for extended periods, reducing the delay of
responses from the device to the host. This makes the QoS Telemetry feedback loop
more responsive, helping avoid excessive request queue swings.

IMPLEMENTATION NOTE

Minimizing Head-of-Line Blocking with Upstream Responses from MLDs

When one or more upstream traffic queues become full between the MLD and one or
more of its congested RPs, head-of-line (HOL) blocking associated with this
congestion can delay or block traffic targeting other RPs that are not congested.

Egress port backpressure for extended periods usually indicates that the ingress port
queue in the switch Downstream Port above the device is often full. Responses in that
queue targeting congested RPs can block responses targeting uncongested RPs,
reducing overall device throughput unnecessarily.

Use of the Egress Port Backpressure mechanism helps reduce the average depth of
queues carrying upstream traffic. This reduces the delay of traffic targeting
uncongested RPs, increasing overall device throughput.

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 89
Revision 2.0, Version 1.0

3.3.2.3.5 Temporary Throughput Reduction

There are certain conditions under which a device may temporarily reduce its
throughput. Envisioned examples include an NVM device undergoing media
maintenance, a device cutting back its throughput for power/thermal reasons, and a
DRAM device performing refresh. If a device is significantly reducing its throughput
capacity for a temporary period, it may help mitigate this condition by indicating
Moderate Overload or Severe Overload in its responses shortly before the condition
occurs and only as long as really necessary. This is a device-specific optional
mechanism.

The Temporary Throughput Reduction mechanism can give proactive advanced warning
to associated hosts, which can then increase their throttling in time to avoid the
device's internal request queue(s) from filling up and potentially causing ingress port
congestion. The optimum amount of time for providing advanced warning is highly
device-specific, and a function of several factors, including the current request rate, the
amount of device internal buffering, the level/duration of throughput reduction, and the
fabric round-trip time.

A device should not use the mechanism unless conditions truly warrant its use. For
example, if the device is currently under Light Load, it's probably not necessary or
appropriate to indicate an Overload condition in preparation for a coming event.
Similarly, a device that indicates an Overload condition should not continue to indicate
the Overload condition past the point where it's really needed.

The Temporary Throughput Reduction Supported capability bit and the Temporary
Throughput Reduction Enable control bit are architected QoS Telemetry bits, which
indicate support for this optional mechanism plus a means to enable or disable it.

3.3.2.3.6 DevLoad Indication by Multi-QoS & Single-QoS SLDs

For SLDs, the DevLoad indication returned in each response is determined by the
maximum of the device's IntLoad, Egress Port Congestion state, and Temporary
Throughput Reduction state, as detailed in Section 3.3.2.3.3, Section 3.3.2.3.4, and
Section 3.3.2.3.5. For example, if IntLoad indicates Light Load, Egress Port Congestion
indicates Moderate Overload, and Temporary Throughput Reduction does not indicate
an overload, the resulting DevLoad indication for the response is Moderate Overload.

3.3.2.3.7 DevLoad Indication by Multi-QoS & Single-QoS MLDs

For MLDs, the DevLoad indication returned in each response is determined by the same
factors as for SLDs, with additional factors used for providing differentiated QoS on a
per-LD basis. Architected controls specify the allocated bandwidth for each LD as a
fraction of total LD traffic when the MLD becomes overloaded. When the MLD is not
overloaded, LDs can use more than their allocated bandwidth fraction, up to specified
fraction limits based on maximum sustained device bandwidth, independent of overall
LD activity.

Bandwidth utilization for each LD is measured continuously based on current requests
being serviced, plus the recent history of requests that have been completed.

IMPLEMENTATION NOTE

Avoid Unnecessary Use of Temporary Throughput Reduction

Ideally a device should be designed to limit the severity and/or duration of its
temporary throughput reduction events enough to where the use of this mechanism
is not needed.

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 90
Revision 2.0, Version 1.0

Current requests being serviced are tracked by ReqCnt[LD] counters, with one counter
per LD. The ReqCnt counter for an LD is incremented each time a request for that LD is
received. The ReqCnt counter for an LD is decremented each time a response by that
LD is transmitted. ReqCnt reflects instantaneous “committed” utilization, allowing the
rapid reflection of incoming requests, especially when requests come in bursts.

The recent history of requests completed are tracked by CmpCnt[LD, Hist] registers,
with one set of 16 Hist registers per LD. An architected configurable Completion
Collection Interval control for the MLD determines the time interval over which
transmitted responses are counted in the active (newest) Hist register/counter. At the
end of each interval, the Hist register values for the LD are shifted from newer to older
Hist registers, with the oldest value being discarded, and the active (newest) Hist
register/counter being cleared. Further details on the hardware mechanism for
CmpCnt[LD, Hist] are described in Section 3.3.2.3.9.

Controls for LD bandwidth management consist of per-LD sets of registers called QoS
Allocation Fraction[LD] and QoS Limit Fraction[LD]. For each LD, QoS Allocation
Fraction specifies the fraction of current device utilization allocated for the LD across all
its QoS classes. QoS Limit Fraction for each LD specifies the fraction of maximum
sustained device utilization as a fixed limit for the LD across all its QoS classes,
independent of overall LD activity.

Bandwidth utilization for each LD is based on the sum of its associated ReqCnt and
CmpCnt[Hist] counters/registers. CmpCnt[Hist] reflects recent completed requests,
and Completion Collection Interval controls how long this period of history covers; i.e.,
how quickly completed requests are “forgotten”. CmpCnt reflects recent utilization to
help avoid overcompensating for bursts of requests.

Together, ReqCnt & CmpCnt[Hist] provide a simple, fair, & tunable way to compute
average utilization. A shorter response history emphasizes instantaneous committed
utilization, improving responsiveness. A longer response history smooths the average
utilization, reducing overcompensation.

ReqCmpBasis is an architected control register that provides the basis for limiting each
LD’s utilization of the device, independent of overall LD activity. Since ReqCmpBasis is
compared against the sum of ReqCnt[] and CmpCnt[], its maximum value must be
based on the maximum values of ReqCnt[] and CmpCnt[] summed across all active
LDs. The maximum value of Sum(ReqCnt[*]) is a function of the device's internal
queuing and how many requests it can be servicing concurrently. The maximum value
of Sum(CmpCnt[*,*]) is a function of the device's maximum request service rate over
the period of completion history recorded by CmpCnt[], which is directly influenced by
the setting of Completion Collection Interval.

The FM programs ReqCmpBasis, the QoS Allocation Fraction array, and the QoS Limit
Fraction array to control differentiated QoS between LDs. The FM is permitted to derate
ReqCmpBasis below its maximum sustained estimate as a means of limiting power and
heat dissipation.

To determine the DevLoad indication to return in each response, the device does the
following:

Calculate TotalLoad = max(IntLoad[QoS], Egress Port Congestion state, Temporary
Throughput Reduction state);

Calculate ReqCmpTotal and populate ReqCmpCnt[LD] array element

ReqCmpTotal = 0;

For each LD

ReqCmpCnt[LD] = ReqCnt[LD] + Sum(CmpCnt[LD, *]);

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 91
Revision 2.0, Version 1.0

ReqCmpTotal += ReqCmpCnt[LD];

In subsequent algorithms, certain registers have integer and fraction portions,
optimized for implementing the algorithms in dedicated hardware. The integer portion
is described as being 16 bits unsigned, although it is permitted to be smaller or larger
as needed by the specific implementation. It must be sized such that it will never
overflow during normal operation. The fractional portion must be 8 bits. These registers
are indicated by their name being in italics.

If TotalLoad is Moderate Overload or Severe Overload, calculate the adjusted
allocated bandwidth:

ClaimAllocTotal = 0;

SurplusTotal = 0;

For each LD

IMPLEMENTATION NOTE

Avoiding Recalculation of ReqCmpTotal and ReqCmpCnt[] Array

ReqCmpCnt[] is an array that avoids having to recalculate its values later in the
algorithm.

To avoid recalculating ReqCmpTotal and ReqCmpCnt[] array from scratch to
determine the DevLoad indication to return in each response, it is strongly
recommended that an implementation maintains these values on a running basis,
only incrementally updating them as new requests arrive and responses are
transmitted. The details are implementation specific.

IMPLEMENTATION NOTE

Calculating the Adjusted Allocation Bandwidth

When the MLD is overloaded, some LDs may be over their allocation while others are
within their allocation.

• Those LDs under their allocation (especially inactive LDs) contribute to a
“surplus” of bandwidth that can be distributed across active LDs that are above
their allocation.

• Those LDs over their allocation claim “their fair share” of that surplus based on
their allocation, and the load value for these LDs is based on an “adjusted
allocated bandwidth” that includes a prorated share of the surplus.

This adjusted allocation bandwidth algorithm avoids anomalies that otherwise occur
when some LDs are using well below their allocation, especially if they are idle.

IMPLEMENTATION NOTE

Registers with Integer and Fraction Portions

These registers can hold the product of a 16-bit unsigned integer and an 8-bit
fraction, resulting in 24 bits with the radix point being between the upper 16 bits and
the lower 8 bits. Rounding to an integer is readily accomplished by adding 0000.80h
(0.5 decimal) and truncating the lower 8 bits.

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 92
Revision 2.0, Version 1.0

AllocCnt = QoS Allocation Fraction[LD] * ReqCmpTotal;

If this LD is the (single) LD associated with the response

AllocCntSaved = AllocCnt;

If ReqCmpCnt[LD] > AllocCnt then

ClaimAllocTotal += AllocCnt;

Else

SurplusTotal += AllocCnt - ReqCmpCnt[LD];

For the single LD associated with the response

If ReqCmpCnt[LD] > (AllocCntSaved + AllocCntSaved * SurplusTotal /
ClaimAllocTotal) then LD is over its adjusted allocated bandwidth; // Use this
result in the subsequent table

// Perform the bandwidth limit calculation for this LD

If ReqCmpCnt[LD] > QoS Limit Fraction [LD] * ReqCmpBasis then LD is over its limit
BW;

IMPLEMENTATION NOTE

Determination of an LD Being Above its Adjusted Allocated Bandwidth

The preceding equation requires a division, which is relatively expensive to
implement in hardware dedicated for this determination. To enable hardware making
this determination more efficiently, the following derived equivalent equation is
strongly recommended:

ReqCmpCnt[LD] > (AllocCntSaved + AllocCntSaved * SurplusTotal / ClaimAllocTotal)

(ReqCmpCnt[LD] * ClaimAllocTotal) > (AllocCntSaved * ClaimAllocTotal +
AllocCntSaved * SurplusTotal)

(ReqCmpCnt[LD] * ClaimAllocTotal) > (AllocCntSaved * (ClaimAllocTotal +
SurplusTotal))

Table 28. Additional Factors for Determining DevLoad in MLDs

TotalLoad LD Over
Limit BW?

LD Over Adjusted
Allocated BW? Returned DevLoad Indication

Light Load or
Optimal Load

No - TotalLoad

Yes - Moderate Overload

Moderate Overload

No No Optimal Load

No Yes Moderate Overload

Yes - Moderate Overload

Severe Overload
- No Moderate Overload

- Yes Severe Overload

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 93
Revision 2.0, Version 1.0

The preceding table is based on the following key policies for LD bandwidth
management:

• The LD is always subject to its QoS Limit Fraction
• For TotalLoad indications of Light Load or Optimal Load, the LD can exceed its QoS

Allocation Fraction, up to its QoS Limit Fraction
• For TotalLoad indications of Moderate Overload or Severe Overload, LDs with loads

up to QoS Allocation Fraction get throttled less than LDs with loads that exceed
QoS Allocation Fraction

3.3.2.3.8 Egress Port Congestion Measurement Mechanism

This hardware mechanism measures the average egress port congestion on a rolling
percentage basis.

FCBP(Flow Control Backpressured): this binary condition indicates the instantaneous
state of the egress port. It is true if the port has messages or flits available to transmit
but is unable to transmit any of them due to a lack of suitable flow control credits.

Backpressure Sample Interval register: this architected control register specifies the
fixed interval in nanoseconds at which FCBP is sampled. It has a range of 0-31. One
hundred samples are recorded, so a setting of 1 yields 100 nanoseconds of history. A
setting of 31 yields 3.1 µsec of history. A setting of 0 disables the measurement
mechanism, and it must indicate an average congestion percentage of 0.

BPhist[100] bit array: this stores the 100 most recent samples of FCBP. It is not
accessible by software.

Backpressure Average Percentage: when this architected status register is read, it
indicates the current number of Set bits in BPhist[100]. It ranges in value from 0 to
100.

The actual implementation of BPhist[100] and Backpressure Average Percentage is
device specific. Here is a possible implementation approach:

• BPhist[100] is a shift register
• Backpressure Average Percentage is an up/down counter
• With each new FCBP sample:

— If the new sample (not yet in BPhist) and the oldest sample in BPhist are both
0b or both 1b, no change is made to Backpressure Average Percentage.

— If the new sample is 1b and the oldest sample is 0b, increment Backpressure
Average Percentage.

— If the new sample is 0b and the oldest sample is 1b, decrement Backpressure
Average Percentage.

• Shift BPhist[100], discarding the oldest sample and entering the new sample

3.3.2.3.9 Recent Transmitted Responses Measurement Mechanism

This hardware mechanism measures the number of recently transmitted responses on
a per-LD basis in the most recent 16 intervals of a configured time period.

Completion Collection Interval register: this architected control register specifies the
interval over which transmitted responses are counted in an active Hist register. It has
a range is 0-127. A setting of 1 yields 16 ns of history. A setting of 127 yields ~2 µsec
of history. A setting of 0 disables the measurement mechanism, and it must indicate a
response count of 0.

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 94
Revision 2.0, Version 1.0

CmpCnt[LD, 16] registers; these registers track the total of recent transmitted
responses on a per LD basis. CmpCnt[LD, 0] is a counter and is the newest value, while
CmpCnt[LD, 1:15] are registers. These registers are not directly visible to software.

For each LD, at the end of each Completion Collection Interval:
• The 16 CmpCnt[LD, *] register values are shifted from newer to older
• The CmpCnt[LD, 15] Hist register value is discarded
• The CmpCnt[LD, 0] register is cleared and it counts transmitted responses in the

next internal

3.3.3 M2S Request (Req)

The Req message class generically contains reads, invalidates and signals going from
the Master to the Subordinate.

Table 29. M2S Request Fields

Field Bits Description

Valid 1 The valid signal indicates that this is a valid request

MemOpcode 4 Memory Operation – This specifies which, if any, operation needs to be
performed on the data and associated information. Details in Table 30

MetaField 2

Meta Data Field – Up to 3 Meta Data Fields can be addressed. This specifies
which, if any, Meta Data Field needs to be updated. Details of Meta Data
Field in Table 31. If the Subordinate does not support memory with Meta
Data, this field will still be used by the DCOH for interpreting Host
commands as described in Table 32

MetaValue 2

Meta Data Value - When MetaField is not No-Op, this specifies the value the
field needs to be updated to. Details in Table 32. If the Subordinate does not
support memory with Meta Data, this field will still be used by the device
coherence engine for interpreting Host commands as described in Table 32

SnpType 3
Snoop Type - This specifies what snoop type, if any, needs to be issued by
the DCOH and the minimum coherency state required by the Host. Details in
Table 33

Address[51:5] 47
This field specifies the Host Physical Address associated with the
MemOpcode. Addr[5] is provisioned for future usages such as critical chunk
first.

Tag 16

The Tag field is used to specify the source entry in the Master which is pre-
allocated for the duration of the CXL.mem transaction. This value needs to
be reflected with the response from the Subordinate so the response can be
routed appropriately. The exceptions are the MemRdFwd and MemWrFwd
opcodes as described in Table 30

TC 2 Traffic Class - This can be used by the Master to specify the Quality of
Service associated with the request. This is reserved for future usage.

LD-ID[3:0] 4 Logical Device Identifier - This identifies a logical device within a multiple-
logical device.

RSVD 6 Reserved

Total 87

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 95
Revision 2.0, Version 1.0

Table 30. M2S Req Memory Opcodes

Opcode Description Encoding

MemInv Invalidation request from the Master. Primarily for Meta Data updates. No data read or
write required. If SnpType field contains valid commands, perform required snoops. ‘0000

MemRd Normal memory data read operation. If MetaField contains valid commands, perform
Meta Data updates. If SnpType field contains valid commands, perform required snoops. ‘0001

MemRdData

Normal Memory data read operation. MetaField & MetaValue to be ignored. Instead,
update Meta0-State as follows:
If initial Meta0-State value = ‘I’, update Meta0-State value to ‘A’
Else, no update required
If SnpType field contains valid commands, perform required snoops.

‘0010

MemRdFwd

This is an indication from the Host that data can be directly forwarded from device-
attached memory to the device without any completion to the Host. This is typically sent
as a result of a CXL.cache D2H read request to device-attached memory. The Tag field
contains the reflected CQID sent along with the D2H read request. The SnpType is always
NoOp for this Opcode. The caching state of the line is reflected in Meta0-State value.

‘0011

MemWrFwd

This is an indication from the Host to the device that it owns the line and can update it
without any completion to the Host. This is typically sent as a result of a CXL.cache D2H
write request to device-attached memory. The Tag field contains the reflected CQID sent
along with the D2H write request. The SnpType is always NoOp for this Opcode. The
caching state of the line is reflected in Meta0-State value.

‘0100

MemSpecRd

Memory Speculative Read is issued in order to start a memory access before the home
agent has resolved coherence in order to reduce access latency. This command does not
receive a completion message. The Tag, MetaField, MetaValue, and SnpType are
reserved. See a description of the use case in Section 3.5.2.1.

‘1000

MemInvNT
This is similar to the MemInv command except that the NT is a hint that indicates the
invalidation is non-temporal and the writeback is expected soon. However, this is a hint
and not a guarantee.

‘1001

Reserved Reserved
‘0110
‘0111
‘Others

Table 31. Meta Data Field Definition

Meta Field Description Encoding

Meta State Update the Metadata bits with the value in the Meta Data Value field. Details
of MetaValue associated with Meta0-State in Table 32 00

Reserved Reserved
01
10

No-Op No meta data operation. Ignore value in MetaValue field 11

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 96
Revision 2.0, Version 1.0

Valid usage of M2S request semantics are described in Table 34 but are not the
complete set of legal flows. For complete set legal combinations see Appendix B.

Table 32. Meta0-State Value Definition (Type 2 Devices)1

1. Type 3 devices have Meta0-State definition that is host specific, so the definition in this table does not apply for Type 3
devices.

Encoding Description

2’b00

Invalid (I) - Indicates the Host does not have a cacheable copy of the line. The DCOH can
use this information to grant exclusive ownership of the line to the device. When paired
with a MemOpcode = MemInv and SnpType = SnpInv, this is used to communicate that
the device should flush this line from its caches, if cached, to device-attached memory.

2’b10

Any (A) - Indicates the Host may have an shared, exclusive or modified copy of the line.
The DCOH can use this information to interpret that the Host likely wants to update the
line and the device should not be given a copy of the line without first sending a request
to the Host.

2’b11

Shared (S) - Indicates the Host may have at most a shared copy of the line. The DCOH
can use this information to interpret that the Host does not have an exclusive or modified
copy of the line. If the device wants a shared or current copy of the line, the DCOH can
provide this without sending a request to the Host. If the device wants an exclusive copy
of the line, the DCOH will have to send a request to the Host first.

2’b01 Reserved

Table 33. Snoop Type Definition

SnpType Description Description Encoding

No-Op No snoop needs to be performed 000

SnpData Snoop may be required - the requester needs at least a Shared copy of the line.
Device may choose to give an exclusive copy of line as well. 001

SnpCur
Snoop may be required - the requester needs the current value of the line.
Requester guarantees the line will not be cached. Device need not change the state
of the line in its caches, if present.

010

SnpInv Snoop may be required - the requester needs an exclusive copy of the line. 011

Reserved 1xx

Table 34. M2S Req Usage (Sheet 1 of 2)

M2S Req Meta Field Meta
Value SnpType S2M NDR S2M DRS Description

MemRd Meta0-State A SnpInv Cmp-E MemData The Host wants an exclusive copy
of the line

MemRd Meta0-State S SnpData Cmp-S or
Cmp-E MemData The Host wants a shared copy of

the line

MemRd No-Op NA SnpCur Cmp MemData The Host wants a non-cacheable
but current value of the line

MemRd No-Op NA SnpInv Cmp MemData

The Host wants a non-cacheable
value of the line and the device
should invalidate the line from its
caches

MemInv Meta0-State A SnpInv Cmp-E NA The Host wants ownership of the
line without data

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 97
Revision 2.0, Version 1.0

3.3.4 M2S Request with Data (RwD)

The Request with Data (RwD) message class generally contains writes from the Master
to the Subordinate.

MemInvNT Meta0-State A SnpInv Cmp-E NA

The Host wants ownership of the
line without data. However, the
Host expects this to be non-
temporal and may do a writeback
soon.

MemInv Meta0-State I SnpInv Cmp NA The Host wants the device to
invalidate the line from its caches

MemRdData NA NA SnpData Cmp-S or
Cmp-E MemData The Host wants a cacheable copy

in either exclusive or shared state

Table 34. M2S Req Usage (Sheet 2 of 2)

M2S Req Meta Field Meta
Value SnpType S2M NDR S2M DRS Description

Table 35. M2S RwD Fields

Field Bits Description

Valid 1 The valid signal indicates that this is a valid request

MemOpcode 4 Memory Operation – This specifies which, if any, operation needs to be
performed on the data and associated information. Details in Table 36

MetaField 2

Meta Data Field – Up to 3 Meta Data Fields can be addressed. This
specifies which, if any, Meta Data Field needs to be updated. Details of
Meta Data Field in Table 31. If the Subordinate does not support
memory with Meta Data, this field will still be used by the DCOH for
interpreting Host commands as described in Table 32

MetaValue 2

Meta Data Value - When MetaField is not No-Op, this specifies the value
the field needs to be updated to. Details in Table 32. If the Subordinate
does not support memory with Meta Data, this field will still be used by
the device coherence engine for interpreting Host commands as
described in Table 32

SnpType 3
Snoop Type - This specifies what snoop type, if any, needs to be issued
by the DCOH and the minimum coherency state required by the Host.
Details in Table 33

Address[51:6] 46 This field specifies the Host Physical Address associated with the
MemOpcode.

Tag 16

The Tag field is used to specify the source entry in the Master which is
pre-allocated for the duration of the CXL.mem transaction. This value
needs to be reflected with the response from the Subordinate so the
response can be routed appropriately.

TC 2 Traffic Class - This can be used by the Master to specify the Quality of
Service associated with the request. This is reserved for future usage.

Poison 1 This indicates that the data contains an error. The handling of poisoned
data is device specific. Please refer to the Chapter 12 for more details.

LD-ID[3:0] 4 Logical Device Identifier - This identifies a logical device within a
multiple-logical device.

RSVD 6

Total 87

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 98
Revision 2.0, Version 1.0

The definition of other fields are consistent with M2S Req (refer to Section 3.3.3, “M2S
Request (Req)”). Valid usage of M2S RwD semantics are described in Table 37 but are
not complete. For complete set legal combinations see Appendix B.

3.3.5 S2M No Data Response (NDR)

The NDR message class contains completions and indications from the Subordinate to
the Master.

Table 36. M2S RwD Memory Opcodes

Opcode Description Encoding

MemWr

Memory write command. Used for full line writes. If MetaField contains valid commands,
perform Meta Data updates. If SnpType field contains valid commands, perform required
snoops. If the snoop hits a Modified cacheline in the device, the DCOH will invalidate the
cache and write the data from the Host to device-attached memory.

‘0001

MemWrPtl

Memory Write Partial. Contains 64 byte enables, one for each byte
of data. If MetaField contains valid commands, perform Meta Data updates. If SnpType
field contains valid commands, perform required snoops. If the snoop hits a Modified
cacheline in the device, the DCOH will need to perform a merge, invalidate the cache and
write the contents back to device-attached memory.

‘0010

Reserved Reserved Others

Table 37. M2S RwD Usage

M2S Req Meta Field Meta
Value SnpType S2M NDR Description

MemWr Meta0-State I No-Op Cmp The Host wants to write the line back to memory
and does not retain a cacheable copy.

MemWr Meta0-State A No-Op Cmp
The Host wants to write the line back to memory
and retains a cacheable copy in shared, exclusive
or modified state.

MemWr Meta0-State I SnpInv Cmp

The Host wants to write the line back to memory
and does not retain a cacheable copy. In
addition, the Host did not get ownership of the
line before doing this write and needs the device
to snoop-invalidate its caches before doing the
write back to memory.

MemWrPtl Meta0-State I SnpInv Cmp
Same as the above row except the data being
written is partial and the device needs to merge
the data if it finds a copy of the line in its caches.

Table 38. S2M NDR Fields

Field Bits Description

Valid 1 The valid signal indicates that this is a valid request

Opcode 3 Memory Operation – This specifies which, if any, operation needs to be
performed on the data and associated information. Details in Table 39

MetaField 2

Meta Data Field – For devices that support memory with meta data, this
field may be encode with Meta State in response to M2S Req. For devices
that do not or in response to a M2S RwD, this field must be set to the
No-Op encoding. No-Op may also be used by devices if the meta state is
unreliable or corrupted in the device.

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 99
Revision 2.0, Version 1.0

Opcodes for the NDR message class are defined in the table below.

Table 40 defines the DevLoad value used in NDR and DRS messages. The encodings
were assigned to allow CXL1.1 backward compatibility such that the ‘00 value would
cause no impact in the host. The values are linearly increasing if bit 0 is inverted.

Definition of other fields are the same as for M2S message classes.

3.3.6 S2M Data Response (DRS)

The DRS message class contains memory read data from the Subordinate to the
Master.

The fields of the DRS message class are defined in the table below.

MetaValue 2 Meta Data Value – If MetaField is No-Op this field is a don’t care,
otherwise it is Meta Data Field as read from memory.

Tag 16 Tag - This is a reflection of the Tag field sent with the associated M2S
Req or M2S RwD.

LD-ID[3:0] 4 Logical Device Identifier - This identifies a logical device within a
multiple-logical device.

DevLoad 2 Device Load - Indicates device load as defined in Table 40. Values are
used to enforce QoS as described in Section 3.3.2.

Total 30

Table 38. S2M NDR Fields

Field Bits Description

Table 39. S2M NDR Opcodes

Opcode Description Encoding

Cmp Completions for Writebacks, Reads and Invalidates ‘000

Cmp-S Indication from the DCOH to the Host for Shared state ‘001

Cmp-E Indication from the DCOH to the Host for Exclusive ownership ‘010

Table 40. DevLoad Definition

DevLoad Value Queuing Delay
Inside Device Device Internal Resource Utilization Encoding

Light Load Minimal Readily handles more requests ‘00

Optimal Load Modest to Moderate Optimally utilized (Also used as legacy CXL1.1 encoding) ‘01

Moderate Overload Significant Limiting request throughput and/or degrading efficiency ‘10

Severe Overload Very High Heavily overloaded and/or degrading efficiency ‘11

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 100
Revision 2.0, Version 1.0

3.3.7 Forward Progress and Ordering Rules

• Req & RwD message classes, each, need to be credited independently between
each hop in a multi-hop fabric. Back pressure, due to lack of resources at the
destination, is allowed. However, these must eventually drain without dependency
on any other traffic type.

• A CXL.mem Request in the M2S Req channel must not pass a MemRdFwd or a
MemWrFwd, if the Request and MemRdFwd or MemWrFwd are to the same
cacheline address.

• Reason: As described in Table 30, MemRdFwd and MemWrFwd opcodes, sent on the
M2S Req channel are, in fact, responses to CXL.cache D2H requests. The reason
the response for certain CXL.cache D2H requests are on CXL.mem M2S Req
channel is to ensure subsequent requests from the Host to the same address
remain ordered behind it. This allows the host and device to avoid race conditions.
An example of a transaction flow is shown Figure 40. Apart from the above, there is
no ordering requirement for the Req, RwD, NDR & DRS message classes or for
different addresses within the Req message class.

• NDR & DRS message classes, each, need to be pre-allocated at the source. This
guarantees that the responses can sink and ensures forward progress.

Table 41. S2M DRS Fields

Field Bits Description

Valid 1 The valid signal indicates that this is a valid request.

Opcode 3
Memory Operation – This specifies which, if any, operation needs
to be performed on the data and associated information. Details
in Table 42.

MetaField 2

Meta Data Field – For devices that support memory with meta
data, this field can be encoded as Meta State. For devices that do
not, this field must be encoded as No-Op. No-Op encoding may
also be used by devices if the Meta State value is unreliable or
corrupted in the device.

MetaValue 2
Meta Data Value – If MetaField is No-Op this field is a don’t care
otherwise it must encoded the Meta Data field as read from
Memory.

Tag 16 Tag - This is a reflection of the Tag field sent with the associated
M2S Req or M2S RwD.

Poison 1
This indicates that the data contains an error. The handling of
poisoned data is Host specific. Please refer to the Chapter 12 for
more details.

LD-ID[3:0] 4 Logical Device Identifier - This identifies a logical device within a
multiple-logical device.

DevLoad 2 Device Load - Indicates device load as defined in Table 40. Values
are used to enforce QoS as described in Section 3.3.2.

RSVD 9

Total 40

Table 42. S2M DRS Opcodes

Opcode Description Encoding

MemData Memory read data. Sent in response to Reads. ‘000

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 101
Revision 2.0, Version 1.0

• On CXL.mem, writes data is only guaranteed to be visible to a later access after the
write is completed.

• CXL.mem requests need to make forward progress at the device without any
dependency on any device initiated request. This includes any request from the
device on CXL.io or CXL.cache.

• M2S & S2M Data transfer of a cacheline must occur with no interleaved transfers
from other lines. The data must come in natural chunk order, that is, 64B transfers
must complete the lower 32B half first.

3.4 Transaction Ordering Summary
Table 43 captures the upstream ordering cases and Table 44 captures the downstream
ordering cases. Additional detail can be found in Section 3.2.2.1 for CXL.cache and
Section 3.3.7 for CXL.mem. The columns represent a first issued message and the rows
represent a subsequently issued message. The table entry indicates the ordering
relationship between the two messages. The table entries are defined as follows:

• Yes–the second message (row) must be allowed to pass the first (column) to avoid
deadlock.(When blocking occurs, the second message is required to pass the first
message. Fairness must be comprehended to prevent starvation.)

• Y/N–there are no ordering requirements. The second message may optionally pass
the first message or be blocked by it.

• No–the second message must not be allowed to pass the first message. This is
required to support the protocol ordering model.

IMPLEMENTATION NOTE

There are two cases of bypassing with device attached memory where messages in
the M2S RwD channel may pass messages for the same cacheline address in M2S Req
channel.
1. Host generated weakly ordered writes (as showing in Figure 34) may bypass

MemRdFwd and MemWrFwd. The result is the weakly ordered write may bypass
older reads or writes from the Device.

2. For Device initiated RdCurr to the Host, the Host will send a MemRdFwd to the
device after resolving coherency (as shown in Figure 37). After sending the
MemRdFwd the Host may have an exclusive copy of the line (since RdCurr does
not downgrade the coherency state at the target) allowing the Host to
subsequently modify this line and send a MemWr to this address. This MemWr will
not be ordered with respect to the previously sent MemRdFwd.

Both examples are legal because weakly ordered stores (in case #1) and RdCurr (in
case #2) do not guarantee strong consistency.

Table 43. Upstream Ordering Summary

Row Pass
Column?

.io TLPs
(Col 2-5)

S2M NDR/DRS
D2H Rsp/Data

(Col 6)
D2H Req
(Col 7)

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 102
Revision 2.0, Version 1.0

Explanation of row and column headers

Combining all pre-allocated channels into Col 6 and Row E.

Explanation of row and column headers:

In Downstream direction pre-allocated channels are kept separate because of unique
ordering requirements in each.

.io TLPs
(Row A-D) PCIe Base Yes(1) Yes(1)

S2M NDR/DRS
D2H Rsp/Data

(Row E)
Yes(1) Y/N Yes(2)

D2H Req
(Row F) Yes(1) Y/N Y/N

Table 43. Upstream Ordering Summary

Color-coded rationale for cells in Table 43

Yes(1) CXL architecture requirement for Arb/Mux

Yes(2) CXL.cachemem: required for deadlock avoidance

Table 44. Downstream Ordering Summary

Row Pass
Column?

.io TLPs
(Col 2-5)

M2S Req
(Col 8)

M2S RwD
(Col 9)

H2D Req
(Col 10)

H2D Resp
(Col 11)

H2D Data
(Col 12)

.io TLPs
(Row A-D) PCIe Base Yes(1) Yes(1) Yes(1) Yes(1) Yes(1)

M2S Req
(Row G) Yes(1)

a. No(5)
b. Y/N

Y/N Yes(2) Y/N Y/N

M2S RwD
(Row H) Yes(1) Y/N Y/N Yes(2) Y/N Y/N

H2D Req
(Row I) Yes(1) Yes(3) Yes(3) Y/N

a. No(4)
b. Y/N

Yes(3)

H2D Resp
(Row J) Yes(1) Yes(2) Yes(2) Yes(2) Y/N Y/N

H2D Data
(Row K) Yes(1) Yes(2) Yes(2) Yes(2) Y/N Y/N

Color-coded rationale for cells in Table 44

Yes(1) CXL architecture requirement for Arb/Mux

Yes(2) CXL.cachemem: required for deadlock avoidance

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 103
Revision 2.0, Version 1.0

Explanation of table entries:

G8a MemRd*/MemInv* must not pass prior MemFwd* messages to the same cacheline
address. This rule is applicable only for Type-2 devices that receive MemFwd*
messages (Type 3 devices don’t need to implement this rule).

G8b All other cases not covered by rule G8a do not have ordering required (Y/N).

I10 When a CXL.cache device is flushing its cache it must wait for all responses for
cacheable access before sending CacheFlushed message. This is necessary because
host must only observe CacheFlushed after all inflight messages are completed.

I11a Snoops must not pass prior GO* messages to the same cacheline address. GO
messages do not carry the address, so implementations may where address cannot be
inferred from UQID in the GO message will need to apply this rule strictly across all
messages.

I11b Other case not covered by I11a are Y/N.

3.5 Transaction Flows to Device-Attached Memory

3.5.1 Flows for Type 1 and Type 2 Devices

3.5.1.1 Notes and Assumptions

The transaction flow diagrams below are intended to be illustrative of the flows
between the Host and device for access to device-attached Memory using the Bias
Based Coherency mechanism described in Section 2.0. However, these flows are not
comprehensive of every Host and device interaction. The diagrams below make the
following assumptions:

• The device contains a coherency engine which is called DCOH in the diagrams
below.

• The DCOH contains a Snoop Filter which tracks any caches (called Dev cache)
implemented on the device. This is not strictly required, and the device is free to
choose an implementation specific mechanism as long as the coherency rules are
obeyed.

• The DCOH contains a Bias Table lookup mechanism. The implementation of this is
device specific.

• The device specific aspects of the flow, illustrated using Red flow arrows, need not
conform exactly to the pictures below. These can be implemented in a device
specific manner.

Yes(3) CXL.cachemem: performance optimization

No(4) Type 1/2 device: Snoop push GO requirement

No(5) Type 2 device: MemRd*/MemInv* push MemFwd* requirement

Color-coded rationale for cells in Table 44

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 104
Revision 2.0, Version 1.0

3.5.1.2 Requests from Host

Please note that the flows shown in this section (Requests from Host) do not change on
the CXL interface regardless of the bias state of the target region. This effectively
means that the device needs to give the Host a consistent response, as expected by the
Host and shown below.

In the above example, the Host requested a cacheable non-exclusive copy of the line.
The non-exclusive aspect of the request is communicated using the “SnpData”
semantic. In this example, the request got a snoop filter hit in the DCOH, which caused
the device cache to be snooped. The device cache downgraded the state from Exclusive
to Shared and returned the Shared data copy to the Host. The Host is told of the state
of the line using the Cmp-S semantic.

Figure 28. Legend

CXL.mem

CXL.cache

Dev Specific

Figure 29. Example Cacheable Read from Host

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 105
Revision 2.0, Version 1.0

In the above example, the Host requested a cacheable exclusive copy of the line. The
exclusive aspect of the request is communicated using the “SnpInv” semantic, which
asks the device to invalidate its caches. In this example, the request got a snoop filter
hit in the DCOH, which caused the device cache to be snooped. The device cache
downgraded the state from Exclusive to Invalid and returned the Exclusive data copy to
the Host. The Host is told of the state of the line using the Cmp-E semantic.

Figure 30. Example Read for Ownership from Host

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 106
Revision 2.0, Version 1.0

In the above example, the Host requested a non-cacheable copy of the line. The non-
cacheable aspect of the request is communicated using the “SnpCurr” semantic. In this
example, the request got a snoop filter hit in the DCOH, which caused the device cache
to be snooped. The device cache did not need to change its caching state; however, it
gave the current snapshot of the data. The Host is told that it is not allowed to cache
the line using the Cmp semantic.

In the above example, the Host requested exclusive access to a line without requiring
the device to send data. It communicates that to the device using an opcode of MemInv
with a MetaValue of ‘10 (Any), which is significant in this case. It also asks the device to
invalidate its caches with the SnpInv command. The device invalidates its caches and
gives exclusive ownership to the Host as communicated using the Cmp-E semantic.

Figure 31. Example Non Cacheable Read from Host

Figure 32. Example Ownership Request from Host - No Data Required

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 107
Revision 2.0, Version 1.0

In the above example, the Host wants to flush a line from all caches, including the
device’s caches, to device memory. To do so, it uses an opcode of MemInv with a
MetaValue of ‘00 (Invalid) and a SnpInv. The device flushes its caches and returns a
Cmp indication to the Host.

In the above example, the Host issues a weakly ordered write (partial or full line). The
weakly ordered semantic is communicated by the embedded SnpInv. In this example,
the device had a copy of the line cached. This resulted in a merge within the device
before writing it back to memory and sending a Cmp indication to the Host.

Figure 33. Example Flush from Host

Figure 34. Example Weakly Ordered Write from Host

Host DCOH Dev $ Dev Mem

MemWr/MemWrPtlSnpInv
SF Miss

Write

Cmp

Cmp

SnpInv

Rspi, Data

Merge Data

E I

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 108
Revision 2.0, Version 1.0

In the above example, the Host performed a write while guaranteeing to the device
that it no longer has a valid cached copy of the line. The fact that the Host didn’t need
to snoop the device’s caches means it previously acquired an exclusive copy of the line.
The guarantee on no valid cached copy is indicated by a MetaValue of ‘00 (Invalid).

The above example is the same as the previous one except that the Host chose to
retain a valid cacheable copy of the line after the write. This is communicated to the
device using a MetaValue of not ‘00 (Invalid).

Figure 35. Example Write from Host with Invalid Host Caches

Figure 36. Example Write from Host with Valid Host Caches

Host DCOH Dev $ Dev Mem

MemWrMetaValue != 00Snp=No-Op

SF Miss

Write

Cmp

Cmp

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 109
Revision 2.0, Version 1.0

3.5.1.3 Requests from Device in Host and Device Bias

There are two flows shown above.

In the first one, a device read to device attached memory happened to find the line in
Host bias. Since it is in Host bias, the device needs to send the request to the Host to
resolve coherency. The Host, after resolving coherency, sends a MemRdFwd on
CXL.mem to complete the transaction, at which point the device can complete the read
internally.

In the second flow, the device read happened to find the line in Device Bias. Since it is
in Device Bias, the read can be completed entirely within the device itself and no
request needs to be sent to the Host.

Figure 37. Example Device Read to Device-Attached Memory

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 110
Revision 2.0, Version 1.0

There are two flows shown above, both with the line in Host Bias: a weakly ordered
write request and a strongly ordered write request.

In the case of the weakly ordered write request, the request is issued by the device to
the Host to resolve coherency. The Host resolves coherency and sends a CXL.mem
MemWrFwd opcode which carries the completion for the WOWrInv* command on
CXL.cache. The CQID associated with the CXL.cache WOWrInv* command is reflected
in the Tag of the CXL.mem MemWrFwd command. At this point, the device is allowed to
complete the write internally. After sending the MemWrFwd, since the Host no longer
fences against other accesses to the same line, this is considered a weakly ordered
write.

In the second flow, the write is strongly ordered. To preserve the strongly ordered
semantic, the Host fences against other accesses while this write completes. However,
as can be seen, this involves two transfers of the data across the link, which is not
efficient. Unless strongly ordered writes are absolutely required, better performance
can be achieved with weakly ordered writes.

Figure 38. Example Device Write to Device-Attached Memory in Host Bias

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 111
Revision 2.0, Version 1.0

Again, two flows are shown above. In the first case, if a weakly or strongly ordered
write finds the line in Device Bias, the write can be completed entirely within the device
without having to send any indication to the Host.

The second flow shows a device writeback to device-attached memory. Please note that
if the device is doing a writeback to device-attached memory, regardless of bias state,
the request can be completed within the device without having to send a request to the
Host.

Figure 39. Example Device Write to Device-Attached Memory

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 112
Revision 2.0, Version 1.0

Please note that the MemRdFwd will carry the CQID of the RdOwnNoData transaction in
the Tag. The reason for putting the RdOwnNoData completion (MemRdFwd) on
CXL.mem is to ensure that subsequent M2S Req Channel requests from the Host to the
same address are ordered behind the MemRdFwd. This allows the device to assume
ownership of a line as soon as it receives a MemRdFwd without having to monitor
requests from the Host.

3.5.2 Type 2 and Type 3 Memory Flows

3.5.2.1 Speculative Memory Read

To support latency saving, CXL.mem includes a speculative memory read command
(MemSpecRd) which is used to start memory access before the home agent has
resolved coherence. This command does not receive a completion message and can be
dropped arbitrarily. The host, after resolving coherence, may issue a demand read
(MemRd, MemRdOwn) that the device should merge with the earlier MemSpecRd to
achieve latency savings. See Figure 41 for an example of this type of flow.

The MemSpecRd command can be observed while other memory access is in progress
in the device to the same cacheline address. In this condition it is recommended that
the device drops the MemSpecRd.

To avoid performance impact, it is recommended that MemSpecRd commands are
treated as low priority to avoid adding latency to demand accesses. Under loaded
conditions the MemSpecRd can hurt performance because of the extra bandwidth it
consumes and should be dropped when loading of memory or loading of the CXL link is
detected. QoS Telemetry data is one way loading of memory can be detected in the
host or switch.

Figure 40. Example Host to Device Bias Flip

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 113
Revision 2.0, Version 1.0

3.6 Flows for Type 3 Devices
Type 3 devices are memory expanders which neither cache host memory, nor require
active management of a device cache by the Host. Thus, Type 3 devices do not have a
DCOH agent. As such, the Host treats these devices as disaggregated memory
controllers. This allows the transaction flows to Type 3 devices to be simplified to just
two classes, reads and writes, as shown below. The legend shown in Figure 28 also
applies to the transaction flows shown below.

The key difference between M2S reads to Type 2 devices versus Type 3 devices is that
there is no S2M NDR response message from Type 3 devices. Writes to Type 3 device
always complete with a S2M NDR Cmp message just like Type 2 devices.

Figure 41. Example MemSpecRd

Host Device Device
Memory

MemSpecRd
MRd

Data

MemRd
Tracker
Merge

MemData

Figure 42. Read from Host

Ev
al

ua
tio

n
C

op
y

Compute Express Link Transaction Layer

 Compute Express Link Specification
October 26, 2020 114
Revision 2.0, Version 1.0

§ §

Figure 43. Write from Host

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 115
Revision 2.0, Version 1.0

4.0 Compute Express Link Link Layers

4.1 CXL.io Link Layer
The CXL.io link layer acts as an intermediate stage between the CXL.io transaction
layer and the Flex Bus Physical layer. Its primary responsibility is to provide a reliable
mechanism for exchanging transaction layer packets (TLPs) between two components
on the link. The PCIe Data Link Layer is utilized as the link layer for CXL.io Link layer.
Please refer to chapter titled “Data Link Layer Specification” in PCI Express Base
Specification for details.

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 116
Revision 2.0, Version 1.0

In addition, the CXL.io link layer implements the framing/deframing of CXL.io packets.
CXL.io utilizes the Encoding for 8.0 GT/s and Higher data rates only, refer to section
entitled “Encoding for 8.0GT/s and Higher Data Rates” in the PCI Express Base
Specification for details.

This chapter highlights the notable framing and application of symbols to lanes that are
specific for CXL.io. Note that when viewed on the link, the framing symbol to lane
mapping will be shifted due to additional CXL framing (i.e., two bytes of Protocol ID and
two reserved bytes) and also due to interleaving with other CXL protocols.

Figure 44. Flex Bus Layers - CXL.io Link Layer Highlighted

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 117
Revision 2.0, Version 1.0

For CXL.io, only the x16 Link transmitter and receiver framing requirements described
in the PCI Express Base Specification apply irrespective of the negotiated link width.
The framing related rules for N = 1, 2, 4 and 8 do not apply. For downgraded Link
widths, where number of active lanes is less than x16, a single x16 data stream is
formed using x16 framing rules and transferred over x16/(degraded link width)
degraded link width streams.

CXL.io link layer forwards a framed IO packet to the Flex Bus Physical layer. The Flex
Bus Physical layer framing rules are defined in Chapter 6.0.

The CXL.io link layer must guarantee that if a transmitted TLP ends precisely at the flit
boundary, there must be a subsequent transmitted CXL.io flit. Please refer to
Section 6.2.8 for more details.

4.2 CXL.mem and CXL.cache Common Link Layer

4.2.1 Introduction

The figure below shows where the CXL.cache and CXL.mem link layer exists in the Flex
Bus layered hierarchy.

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 118
Revision 2.0, Version 1.0

As previously mentioned, CXL.cache and CXL.mem protocols use a common Link Layer.
This chapter defines the properties of this common Link Layer. Protocol information,
including definition of fields, opcodes, transaction flows, etc. can be found in
Section 3.2 and Section 3.3.

Figure 45. Flex Bus Layers - CXL.cache + CXL.mem Link Layer Highlighted

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 119
Revision 2.0, Version 1.0

4.2.2 High-Level CXL.cache/CXL.mem Flit Overview

The CXL.cache/mem flit size is a fixed 528b. There are 2B of CRC code and 4 slots of
16B each as shown below.

An example of a Protocol Flit in the device to Host direction is shown below. For detailed
descriptions of slot formats please refer to Section 4.2.3

A “Header” Slot is defined as one that carries a “Header” of link-layer specific
information, including the definition of the protocol-level messages contained in the
rest of the header as well as in the other slots in the flit.

Figure 46. CXL.cache/.mem Protocol Flit Overview

Figure 47. CXL.cache/.mem All Data Flit Overview

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1
0
1
2
3
4
5
6
7

Slot Byte # Slot Byte # Slot Byte # Slot Byte #

Flit Header Header Slot

B
it

 #

CXL
Cache
Mem
Flit

Flit Byte #

CRCGeneric Slot Generic Slot Generic Slot

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1
0
1
2
3
4
5
6
7

Slot Byte # Slot Byte # Slot Byte # Slot Byte #

CXL
Cache
Mem
Flit

B
it

 #

Flit Byte #

CRCData Chunk Data Chunk Data Chunk Data Chunk

Figure 48. Example of a Protocol Flit from Device to Host

H3 S2M DH + S2M Resp

4 5 6 7
Byte #

8 9 10 11 12 13 14 15

V
al

M
em

O
p

M
et

aF
ie

ld
M

et
aV

al
ue

Ta
g[

7:
0]

T
ag

[1
5:

8]
P

oi
R

V

0 1 2 3

0

1

2

3

4

5

6

7

B
it

#

R
sp

C
rd

Ak
S

z
Sl

ot
0

S
lo

t1
S

lo
t2

Ty
pe

R
eq

C
rd

D
at

aC
rd

B
E

Sl
ot

3
[1

:0
]

R
SV

D
S

l3

R
V

V
al

M
em

O
p

M
et

aV
al

ue
M

et
aF

ie
ld T
ag

[1
5:

8]
Ta

g[
7:

0]

LD
-ID

[3
:0

]
R

SV
D

R
SV

D
R

SV
D

R
SV

D

R
SV

DLD
-ID

[3
:0

]

D
ev

Lo
ad

D
ev

Lo
ad

G1 D2H Req + D2H Resp +
D2H Resp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

O
pc

od
e

UQ
ID

[1
0:

3]
U

Q
ID

[2
:0

]

R
S

VD
V

al
O

pc
od

e[
3:

0]
O

4
U

11
U

Q
ID

[6
:0

]
U

Q
ID

[1
1:

7]
R

SV
D

R
V

R
SV

D

A
dd

r[
51

:6
]

N
T

C
Q

ID
[1

:0
]

C
Q

ID
[9

:2
]

O
pc

od
e

V
al

Va
l

C
Q

ID
[1

1:
10

]
R

SV
D

R
SV

D

RS
VD

G2 D2H Req + D2H DH +
D2H Resp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
h

P
oi

Bg
U

Q
ID

[7
:0

]
U

Q
ID

[1
1:

8]
R

V
V

al
O

pc
od

e
U

Q
ID

[9
:2

] R
SV

D

U
Q

ID
[1

:0
]

U
Q

ID
[1

1:
10

]
R

SV
D

R
SV

D

A
dd

r[
51

:6
]

N
T

C
Q

ID
[1

:0
]

C
Q

ID
[9

:2
]

O
pc

od
e

V
al

Va
l

C
Q

ID
[1

1:
10

]
R

SV
D

R
SV

D

RS
VD

Da
ta

4 5 6 7 8 9 10 11 12 13 14 150 1 2 3 0

C
R

C

1

G0 D2H/ S2M Data

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 120
Revision 2.0, Version 1.0

A “Generic” Slot can carry one or more request/response messages or a single 16B
data chunk.

The flit can be composed of a Header Slot and 3 Generic Slots or four 16B Data Chunks.

The flit header utilizes the same definition for both the Upstream as well as the
Downstream ports summarized in the table below.

In general, bits or encodings that are not defined will be marked “Reserved” or “RSVD”
in this specification. These bits should be set to 0 by the sender of the packet and the
receiver should ignore them. Please also note that certain fields with static 0/1 values
will be checked by the receiving Link Layer when decoding a packet. For example,
Control flits have several static bits defined. A Control flit that passes the CRC check
but fails the static bit check should be treated as a standard CRC error or as a fatal
error when in “retry_local_normal” state of the LRSM. Logging and reporting of such
errors is device specific. Checking of these bits reduces the probability of silent error
under conditions where the CRC check fails to detect a long burst error. However, link
layer must not cause fatal error whenever it is under shadow of CRC errors, i.e., its
LRSM is not in “retry_local_normal” state. This is prescribed because all-data-flit can
alias to control messages after a CRC error and those alias cases may result in static bit
check failure.

The following describes how the flit header information is encoded.

Table 45. CXL.cache/CXL.mem Flit Header Definition

Field Name Brief Description Size

Type This field distinguishes between a Protocol or a Control Flit 1

Ak
This is an acknowledgment of 8 successful flit transfers
Reserved for Retry, and Init control flits

1

BE Byte Enable (Reserved for control flits) 1

Sz Size (Reserved for control flits) 1

ReqCrd
Request Credit Return
Reserved for Retry, and Init control flits

4

DataCrd
Data Credit Return
Reserved for Retry, and Init control flits

4

RspCrd
Response Credit Return
Reserved for Retry, and Init control flits

4

Slot 0 Slot 0 Format Type (Reserved for control flits) 3

Slot 1 Slot 1 Format Type (Reserved for control flits) 3

Slot 2 Slot 2 Format Type (Reserved for control flits) 3

Slot 3 Slot 3 Format Type (Reserved for control flits) 3

RSVD Reserved 4

Total 32

Table 46. Type Encoding

Flit Type Description

0 Protocol This is a flit that carries CXL.cache or CXL.mem protocol related
information

1 Control This is a flit inserted by the link layer purely for link layer specific
functionality. These flits are not exposed to the upper layers.

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 121
Revision 2.0, Version 1.0

The Ak field is used as part of the link layer retry protocol to signal CRC-passing receipt
of flits from the remote transmitter. The transmitter sets the Ak bit to acknowledge
successful receipt of 8 flits; a clear Ak bit is ignored by the receiver.

The BE (Byte Enable) and Sz (Size) fields have to do with the variable size of data
messages. To reach its efficiency targets, the CXL.cache/mem link layer assumes that
generally all bytes are enabled for most data, and that data is transmitted at the full
cacheline granularity. When all bytes are enabled, the link layer does not transmit the
byte enable bits, but instead clears the Byte Enable field of the corresponding flit
header. When the receiver decodes that the Byte Enable field is clear, it must
regenerate the byte enable bits as all ones before passing the data message on to the
transaction layer. If the Byte Enable bit is set, the link layer Rx expects an additional
data chunk slot containing byte enable information. Note that this will always be the
last slot of data for the associated request.

Similarly, the Sz field reflects the fact that the CXL.cache/mem protocol allows
transmission of data at the half cacheline granularity. When the Size bit is set, the link
layer Rx expects four slots of data chunks, corresponding to a full cacheline. When the
Size bit is clear, it expects only two slots of data chunks. In the latter case, each half
cacheline transmission will be accompanied by its own data header. A critical
assumption of packing the Size and Byte Enable information in the flit header is that
the Tx flit packer may begin at most one data message per flit.

Note: Multi-Data-Headers are not allowed to be sent when Sz=0 or BE=1 as described in the
flit packing rules in Section 4.2.5.

The following table describes legal values of Sz and BE for various data transfers. For
cases where a 32B split transfer is sent that includes Byte Enables, the trailing Byte
Enables apply only to the 32B sent. The Byte Enable bits that are applicable to that
transfer are aligned based on which half of the cacheline is applicable to the transfer
(BE[63:32] for Upper half or BE[31:0] for the lower half of the cacheline). This means
that each of the split 32B transfers to form a cacheline of data will include Byte Enables
if Byte Enables are needed. Illegal use will cause an uncorrectable error.

The transmitter sets the Credit Return fields to indicate resources available in the co-
located receiver for use by the remote transmitter. Credits are given for transmission
per message class, which is why the flit header contains independent Request,
Response, and Data Credit Return fields. Note that there are no Requests sourced in
S2M direction, and there are no Responses sourced in M2S direction. The details of the
channel mapping are captured in Table 49. Credits returned for channels not supported
by the device or host should be silently discarded. The granularity of credits is per
message. These fields are encoded exponentially, as delineated in the table below.

Note: Messages sent on Data channels require a single data credit for the entire messages.
This means 1 credit allows for one data transfer, including the header of the message,
regardless of whether the transfer is 64B, 32B or contains Byte Enables.

Table 47. Legal values of Sz and BE Fields

Type of Data Transfer 32B Transfer Possible? BE Possible?

CXL.cache H2D Data Yes No

CXL.mem M2S Data No Yes

CXL.cache D2H Data Yes Yes

CXL.mem S2M Data Yes No

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 122
Revision 2.0, Version 1.0

Finally, the Slot Format Type fields encode the Slot Format of both the header slot and
of the other generic slots in the flit (if the Flit Type bit specifies that the flit is a Protocol
Flit). The subsequent sections detail the protocol message contents of each slot format,
but the table below provides a quick reference for the Slot Format field encoding.

Note: Format H6 is defined for use with Integrity and Data Encryption. See details of
requirements for it’s use in Section 11.1.

Table 48. CXL.cache/CXL.mem Credit Return Encodings

Credit Return Encoding[3] Protocol

0 CXL.cache

1 CXL.mem

Credit Return Encoding[2:0] Number of Credits

000 0

001 1

010 2

011 4

100 8

101 16

110 32

111 64

Table 49. ReqCrd/DataCrd/RspCrd Channel Mapping

Credit
Field

Credit Bit 3
Encoding

Link
Direction Channel

ReqCrd

0 - CXL.Cache
Upstream D2H Request

Downstream H2D Request

1 - CXL.Mem
Upstream Reserved

Downstream M2S Request

DataCrd

0 - CXL.Cache
Upstream D2H Data

Downstream H2D Data

1 - CXL.Mem
Upstream S2M Response with Data (DRS)

Downstream M2S Request with Data (RwD)

RspCrd

0 - CXL.Cache
Upstream D2H Response

Downstream H2D Response

1 - CXL.Mem
Upstream S2M No Data Response (NDR)

Downstream Reserved

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 123
Revision 2.0, Version 1.0

The following tables describe the slot format and the type of message contained by
each format for both directions.

Table 50. Slot Format Field Encoding

Slot Format
Encoding H2D/M2S D2H/S2M

Slot 0 Slots 1,2 and 3 Slot 0 Slots 1, 2 and 3

000 H0 G0 H0 G0

001 H1 G1 H1 G1

010 H2 G2 H2 G2

011 H3 G3 H3 G3

100 H4 G4 H4 G4

101 H5 G5 H5 G5

110 H6 RSVD H6 G6

111 RSVD RSVD RSVD RSVD

Table 51. H2D/M2S Slot Formats

Format to Req Type Mapping H2D/M2S

Type Size

H0 CXL.cache Req + CXL.cache Resp 96

H1 CXL.cache Data Header + 2 CXL.cache
Resp 88

H2 CXL.cache Req + CXL.cache Data
Header 88

H3 4 CXL.cache Data Header 96

H4 CXL.mem RwD Header 87

H5 CXL.mem Req Only 87

H6 MAC slot used for link integrity. 96

G0 CXL.cache/ CXL.mem Data Chunk 128

G1 4 CXL.cache Resp 128

G2 CXL.cache Req + CXL.cache Data
Header + CXL.cache Resp 120

G3 4 CXL.cache Data Header + CXL.cache
Resp 128

G4 CXL.mem Req + CXL.cache Data Header 111

G5 CXL.mem RwD Header + CXL.cache
Resp 119

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 124
Revision 2.0, Version 1.0

4.2.3 Slot Format Definition

Slot diagrams in the section include abbreviations for bit field names to allow them to
fit into the diagram. In the context of diagram most abbreviations are obvious, but the
abbreviation list below ensures clarity.

• SL3 = Slot3[2]
• LI3 = LD-ID[3]
• U11 = UQID[11]
• O4 = Opcode[4]
• Val = Valid
• RV = Reserved
• RSVD = Reserved
• Poi = Poison
• Tag15 =Tag[15]
• MV0 = MetaValue[0]
• MV1 = MetaValue[1]
• R11 = RspData[11]

Table 52. D2H/S2M Slot Formats

Format to Req Type Mapping D2H/S2M

Type Size

H0 CXL.cache Data Header + 2 CXL.cache Resp +
CXL.mem NDR 87

H1 CXL.cache Req + CXL.cache Data Header 96

H2 4 CXL.cache Data Header + CXL.cache Resp 88

H3 CXL.mem DRS Header + CXL.mem NDR 70

H4 2 CXL.mem NDR 60

H5 2 CXL.mem DRS Header 80

H6 MAC slot used for link integrity. 96

G0 CXL.cache/ CXL.mem Data Chunk 128

G1 CXL.cache Req + 2 CXL.cache Resp 119

G2 CXL.cache Req + CXL.cache Data Header +
CXL.cache Resp 116

G3 4 CXL.cache Data Header 68

G4 CXL.mem DRS Header + 2 CXL.mem NDR 100

G5 2 CXL.mem NDR 60

G6 3 CXL.mem DRS Header 120

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 125
Revision 2.0, Version 1.0

4.2.3.1 H2D and M2S Formats

Figure 49. H0 - H2D Req + H2D Resp

A
dd

r[5
1:

6]

U
Q

ID
[5

:0
]

U
Q

ID
[1

1:
6]

O
pc

od
e

V
al

R
S

P
_P

R
E

R
V

4 5 6 7
Byte #

8 9 10 11 12 13 14 15

R
S

VD
V

al
O

pc
od

e
R

sp
D

at
a[

2:
0]

R
sp

D
at

a[
10

:3
]

R
11

C
Q

ID
[4

:0
]

C
Q

ID
[1

1:
5]

0 1 2 3

0

1

2

3

4

5

6

7

Bi
t #

R
sp

C
rd

Ak
S

z
Sl

ot
0

Sl
ot

1
S

lo
t2

Ty
pe

R
eq

C
rd

D
at

aC
rd

B
E

S
lo

t3
 [1

:0
]

R
S

V
D

S
l3

R
V

Figure 50. H1 - H2D Data Header + H2D Resp + H2D Resp

4 5 6 7
Byte #

8 9 10 11 12 13 14 15

V
al

C
Q

ID
[6

:0
]

C
Q

ID
[1

1:
7]

C
h

P
oi

G
O

-E
R

S
V

D

R
SP

_P
R

E
R

V

V
al

O
pc

od
e

R
sp

D
at

a[
2:

0]
R

sp
D

at
a[

10
:3

]
R

11
C

Q
ID

[4
:0

]
C

Q
ID

[1
1:

5] R
SP

_P
R

E
R

V

V
al

O
pc

od
e

R
sp

D
at

a[
2:

0]
R

sp
D

at
a[

10
:3

]
R

11
C

Q
ID

[4
:0

]
C

Q
ID

[1
1:

5]
R

S
V

D

0 1 2 3

0

1

2

3

4

5

6

7

Bi
t #

R
sp

C
rd

A
k

S
z

Sl
ot

0
S

lo
t1

S
lo

t2
Ty

pe

R
eq

C
rd

D
at

aC
rd

B
E

S
lo

t3
 [1

:0
]

R
SV

D
S

l3

R
V

O
pc

od
e

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 126
Revision 2.0, Version 1.0

Figure 51. H2 - H2D Req + H2D Data Header

4 5 6 7
Byte #

8 9 10 11 12 13 14 15

Ad
dr

[5
1:

6]

U
Q

ID
[5

:0
]

UQ
ID

[1
1:

6]

O
pc

od
e

Va
l

R
SV

D
Va

l
C

Q
ID

[6
:0

]
C

Q
ID

[1
1:

7]
C

h
Po

i
G

O
-E

R
SV

D
R

SV
D

0 1 2 3

0

1

2

3

4

5

6

7

Bi
t #

R
sp

C
rd

Ak
Sz

Sl
ot

0
Sl

ot
1

Sl
ot

2
Ty

pe

R
eq

C
rd

D
at

aC
rd

BE
Sl

ot
3

[1
:0

]
R

SV
D

Sl
3

R
V

Figure 52. H3 - 4 H2D Data Header

4 5 6 7
Byte #

8 9 10 11 12 13 14 15

Va
l

C
Q

ID
[6

:0
]

C
Q

ID
[1

1:
7]

Ch
Po

i
G

O
-E

RS
VD

Va
l

C
Q

ID
[6

:0
]

C
Q

ID
[1

1:
7]

Ch
Po

i
G

O
-E

RS
VD

Va
l

C
Q

ID
[6

:0
]

C
Q

ID
[1

1:
7]

Ch
Po

i
G

O
-E

RS
VD

Va
l

C
Q

ID
[6

:0
]

C
Q

ID
[1

1:
7]

Ch
Po

i
G

O
-E

RS
VD

0 1 2 3

0

1

2

3

4

5

6

7

Bi
t #

R
sp

C
rd

Ak
Sz

Sl
ot

0
Sl

ot
1

Sl
ot

2
Ty

pe

R
eq

C
rd

Da
ta

C
rd

BE
Sl

ot
3

[1
:0

]
R

SV
D

Sl
3

R
V

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 127
Revision 2.0, Version 1.0

Figure 53. H4 - M2S RwD Header

Ad
dr

[5
1:

6]

4 5 6 7
Byte #

8 9 10 11 12 13 14 15

Va
l

M
em

O
p

M
et

aF
ie

ld
M

et
aV

al
ue

Ta
g[

11
:4

]
Ta

g[
15

:1
2]

Sn
pT

yp
e

Ta
g[

3:
0]

TC
R

V
R

SV
D

Po
i

0 1 2 3

0

1

2

3

4

5

6

7

Bi
t #

R
sp

Cr
d

Ak
Sz

Sl
ot

0
Sl

ot
1

Sl
ot

2
Ty

pe

R
eq

C
rd

D
at

aC
rd

BE
Sl

ot
3

[1
:0

]
R

SV
D

Sl
3

R
V

LD
-ID

[2
:0

]
R

SV
D

LI
3

Figure 54. H5 - M2S Req

Ad
dr

[5
1:

5]

4 5 6 7
Byte #

8 9 10 11 12 13 14 15

Va
l

M
em

O
p

M
et

aF
ie

ld
M

et
aV

al
ue

Ta
g[

11
:4

]
Ta

g[
15

:1
2]

Sn
pT

yp
e

Ta
g[

3:
0]

TC
LD

-ID
[2

:0
]

R
SV

D
R

V
R

SV
D

0 1 2 3

0

1

2

3

4

5

6

7

Bi
t #

R
sp

C
rd

Ak
Sz

Sl
ot

0
Sl

ot
1

Sl
ot

2
Ty

pe

R
eq

C
rd

D
at

aC
rd

BE
Sl

ot
3

[1
:0

]
RS

VD
Sl

3

R
V

LI
3

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 128
Revision 2.0, Version 1.0

Figure 55. H6 - MAC

4 5 6 7
Byte #

8 9 10 11 12 13 14 150 1 2 3

0

1

2

3

4

5

6

7

Bi
t #

R
sp

Cr
d

Ak
Sz

Sl
ot

0
Sl

ot
1

Sl
ot

2
Ty

pe

R
eq

C
rd

D
at

aC
rd

BE
Sl

ot
3

[1
:0

]
R

SV
D

Sl
3

R
V

M
AC

Figure 56. G0 - H2D/M2S Data

0 1 2 3 4 5 6 7
Byte #

8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

Bi
t #

Da
ta

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 129
Revision 2.0, Version 1.0

Figure 57. G0 - M2S Byte Enable

0 1 2 3 4 5 6 7
Byte #

8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

Bi
t #

BE
[3

1:
0]

RS
VD

BE
[6

3:
32

]
Figure 58. G1 - 4 H2D Resp

0 1 2 3 4 5 6 7
Byte #

8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

Bi
t #

R
SP

_P
R

E
R

V

Va
l

O
pc

od
e

R
sp

D
at

a[
2:

0]
R

sp
D

at
a[

10
:3

]
R

11
C

Q
ID

[4
:0

]
C

Q
ID

[1
1:

5] R
SP

_P
R

E
R

V

Va
l

O
pc

od
e

R
sp

D
at

a[
2:

0]
R

sp
D

at
a[

10
:3

]
R

11
C

Q
ID

[4
:0

]
C

Q
ID

[1
1:

5]R
SP

_P
R

E
R

V

Va
l

O
pc

od
e

R
sp

D
at

a[
2:

0]
R

sp
D

at
a[

10
:3

]
R

11
C

Q
ID

[4
:0

]
C

Q
ID

[1
1:

5] R
SP

_P
R

E
R

V

Va
l

O
pc

od
e

R
sp

D
at

a[
2:

0]
R

sp
D

at
a[

10
:3

]
R

11
C

Q
ID

[4
:0

]
C

Q
ID

[1
1:

5]

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 130
Revision 2.0, Version 1.0

Figure 59. G2 - H2D Req + H2D Data Header + H2D Resp

0 1 2 3 4 5 6 7
Byte #

8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

Bi
t #

Ad
dr

[5
1:

6]

U
Q

ID
[5

:0
]

U
Q

ID
[1

1:
6]

O
pc

od
e

Va
l

R
SV

D
Va

l
C

Q
ID

[6
:0

]
C

Q
ID

[1
1:

7]
C

h
Po

i
G

O
-E

R
SV

D

R
SP

_P
R

E
R

V

Va
l

O
pc

od
e

R
sp

D
at

a[
2:

0]
R

sp
D

at
a[

10
:3

]
R

11
C

Q
ID

[4
:0

]
C

Q
ID

[1
1:

5]
R

SV
D

Figure 60. G3 - 4 H2D Data Header + H2D Resp

0 1 2 3 4 5 6 7
Byte #

8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

Bi
t #

V
al

C
Q

ID
[6

:0
]

C
Q

ID
[1

1:
7]

C
h

P
oi

G
O

-E
R

S
V

D

R
SP

_P
R

E
R

V

V
al

O
pc

od
e

R
sp

D
at

a[
2:

0]
R

sp
D

at
a[

10
:3

]
R

11
C

Q
ID

[4
:0

]
C

Q
ID

[1
1:

5]

V
al

C
Q

ID
[6

:0
]

C
Q

ID
[1

1:
7]

C
h

P
oi

G
O

-E
R

S
V

D
V

al
C

Q
ID

[6
:0

]
C

Q
ID

[1
1:

7]
C

h
P

oi
G

O
-E

R
S

V
D

V
al

C
Q

ID
[6

:0
]

C
Q

ID
[1

1:
7]

C
h

P
oi

G
O

-E
R

S
V

D

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 131
Revision 2.0, Version 1.0

4.2.3.2 D2H and S2M Formats

Slot definitions prior to CXL 2.0 ensure all header bits for a message are in contiguous
bits. In CXL 2.0 the S2M NDR message expanded by two bits to fit the 2-bit DevLoad
field. Some slot formats which carry NDR messages now include non-contiguous bits
within the slot. The formats impacted are H4, G4, and G5 and the non-contiguous bits
are denoted as “DevLoad*” (“*” is the special indicator with separate color/pattern for
the NDR message with non-contiguous bits). By expanding the slots in this way,
backward compatible with CXL1.1 slot definition is maintained ensuring only RSVD slot

Figure 61. G4 - M2S Req + H2D Data Header

0 1 2 3 4 5 6 7
Byte #

8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

Bi
t #

Ad
dr

[5
1:

5]

Va
l

M
em

O
p

M
et

aF
ie

ld
M

et
aV

al
ue

Ta
g[

11
:4

]
Ta

g[
15

:1
2]

Sn
pT

yp
e

Ta
g[

3:
0]

TC
R

V
Va

l
C

Q
ID

[6
:0

]
C

Q
ID

[1
1:

7]
C

h
Po

i
G

O
-E

RS
VD

R
SV

D
R

SV
D

LD
-ID

[2
:0

]
R

SV
D

LI
3

Figure 62. G5 - M2S RwD Header + H2D Resp

0 1 2 3 4 5 6 7
Byte #

8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

Bi
t #

Ad
dr

[5
1:

6]

Va
l

M
em

O
p

M
et

aF
ie

ld
M

et
aV

al
ue

Ta
g[

11
:4

]
Ta

g[
15

:1
2]

Sn
pT

yp
e

Ta
g[

3:
0]

TC
R

SV
D

Po
i

R
SP

_P
R

E
R

V

Va
l

O
pc

od
e

R
sp

D
at

a[
2:

0]
R

sp
D

at
a[

10
:3

]
R

11
C

Q
ID

[4
:0

]
C

Q
ID

[1
1:

5]
R

SV
D

LD
-ID

[2
:0

]
R

SV
D

LI
3

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 132
Revision 2.0, Version 1.0

bits are used to expand the headers. Other slot formats which carry a single NDR
message can be expanded and keep the contiguous header bits because the NDR
message is the last message in the slot formats (see formats H0 and H3).

Figure 63. H0 - D2H Data Header + 2 D2H Resp + S2M NDR

4 5 6 7
Byte #

8 9 10 11 12 13 14 15

C
h

Po
i

Va
l

Bg
U

Q
ID

[6
:0

]
U

Q
ID

[1
1:

7]
R

V
Va

l
O

pc
od

e
U

0
U

Q
ID

[8
:1

]
U

Q
ID

[1
1:

9]
R

SV
D

Va
l

O
pc

od
e[

1:
0]

O
pc

od
e[

4:
2]

U
Q

ID
[4

:0
]

U
Q

ID
[1

1:
5]

R
V

Va
l

M
em

O
p

M
V1

Ta
g[

6:
0]

M
et

aF
ie

ld

Ta
g[

14
:7

]
Ta

g1
5

LD
-ID

[3
:0

]
R

SV
D

0 1 2 3

0

1

2

3

4

5

6

7

Bi
t #

R
sp

C
rd

Ak
Sz

Sl
ot

0
Sl

ot
1

Sl
ot

2
Ty

pe

R
eq

C
rd

D
at

aC
rd

BE
Sl

ot
3

[1
:0

]
RS

VD
Sl

3

R
V

R
V

R
V

M
V0

D
ev

Lo
ad

Figure 64. H1 - D2H Req + D2H Data Header

4 5 6 7
Byte #

8 9 10 11 12 13 14 15

Ad
dr

[5
1:

6]

NT

CQ
ID

[1
:0

]
C

Q
ID

[9
:2

]
O

pc
od

e
Va

l

C
h

Po
i

Va
l

Bg

C
Q

ID
[1

1:
10

]
R

SV
D

R
SV

D

R
SV

D
U

Q
ID

[7
:0

]
U

Q
ID

[1
1:

8]
R

V

0 1 2 3

0

1

2

3

4

5

6

7

Bi
t #

R
sp

Cr
d

Ak
Sz

Sl
ot

0
Sl

ot
1

Sl
ot

2
Ty

pe

R
eq

C
rd

D
at

aC
rd

BE
Sl

ot
3

[1
:0

]
R

SV
D

Sl
3

R
V

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 133
Revision 2.0, Version 1.0

Figure 65. H2 - 4 D2H Data Header + D2H Resp

4 5 6 7
Byte #

8 9 10 11 12 13 14 150 1 2 3

0

1

2

3

4

5

6

7

Bi
t #

R
sp

Cr
d

Ak
Sz

Sl
ot

0
Sl

ot
1

Sl
ot

2
Ty

pe

R
eq

C
rd

D
at

aC
rd

BE
Sl

ot
3

[1
:0

]
R

SV
D

Sl
3

R
V

C
h

Po
i

Va
l

Bg
U

Q
ID

[6
:0

]
U

Q
ID

[1
1:

7]
R

V
C

h
Po

i

Va
l

Bg
U

Q
ID

[5
:0

]

R
V

U
Q

ID
[1

1:
6]

Va
l

U
Q

ID
[4

:0
]

U
Q

ID
[1

1:
5]

C
h

Bg
Po

i
R

V
Va

l
U

Q
ID

[3
:0

]
U

Q
ID

[1
1:

4]
C

h
Bg

Po
i

R
V

Va
l

O
pc

od
e[

2:
0]

O
pc

od
e[

4:
3]

U
Q

ID
[5

:0
]

U
Q

ID
[1

1:
6]

R
SV

D
R

SV
D

Figure 66. H3 - S2M DRS Header + S2M NDR

4 5 6 7
Byte #

8 9 10 11 12 13 14 15

Va
l

M
em

O
p

M
et

aF
ie

ld
M

et
aV

al
ue

Ta
g[

7:
0]

Ta
g[

15
:8

]
Po

i
R

V

0 1 2 3

0

1

2

3

4

5

6

7

Bi
t #

R
sp

Cr
d

Ak
Sz

Sl
ot

0
Sl

ot
1

Sl
ot

2
Ty

pe

R
eq

C
rd

D
at

aC
rd

BE
Sl

ot
3

[1
:0

]
R

SV
D

Sl
3

R
V

Va
l

M
em

O
p

M
et

aV
al

ue
M

et
aF

ie
ld Ta

g[
15

:8
]

Ta
g[

7:
0]

LD
-ID

[3
:0

]
R

SV
D

R
SV

D
R

SV
D

R
SV

D

R
SV

DLD
-ID

[3
:0

]

De
vL

oa
d

D
ev

Lo
ad

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 134
Revision 2.0, Version 1.0

Figure 67. H4 - 2 S2M NDR

0

1

2

3

4

5

6

7

Bi
t #

R
sp

C
rd

Ak
Sz

Sl
ot

0
S

lo
t1

Sl
ot

2
Ty

pe

R
eq

Cr
d

D
at

aC
rd

BE
Sl

ot
3

[1
:0

]
RS

VD
Sl

3

RS
VD

Va
l

M
em

O
p

M
et

aV
al

ue
M

et
aF

ie
ld Ta

g[
15

:8
]

Ta
g[

7:
0]

LD
-ID

[3
:0

]
Va

l
M

em
O

p
M

et
aV

al
ue

M
et

aF
ie

ld
Ta

g[
3:

0]
Ta

g[
11

:4
]

Ta
g[

15
:1

2]
LD

-ID
[3

:0
]

4 5 6 7
Byte #

8 9 10 11 12 13 14 150 1 2 3

R
SV

D
R

SV
D

R
SV

D
R

SV
D

R
SV

DD
ev

Lo
ad

*
D

ev
Lo

ad

Figure 68. H5 - 2 S2M DRS Header

4 5 6 7
Byte #

8 9 10 11 12 13 14 150 1 2 3

0

1

2

3

4

5

6

7

Bi
t #

R
sp

C
rd

Ak
S

z
Sl

ot
0

Sl
ot

1
S

lo
t2

Ty
pe

R
eq

C
rd

D
at

aC
rd

B
E

S
lo

t3
 [1

:0
]

R
S

V
D

S
l3

R
V

R
SV

D
R

SV
D

V
al

M
em

O
p

M
et

aF
ie

ld
M

et
aV

al
ue

Ta
g[

7:
0]

Ta
g[

15
:8

]
P

oi

V
al

M
em

O
p

M
et

aF
ie

ld
M

et
aV

al
ue

Ta
g[

7:
0]

Ta
g[

15
:8

]
P

oi
R

SV
DLD

-ID
[3

:0
]

R
V

R
SV

DLD
-ID

[3
:0

]
D

ev
Lo

ad

R
V

D
ev

Lo
ad

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 135
Revision 2.0, Version 1.0

Figure 69. H6 - MAC

4 5 6 7
Byte #

8 9 10 11 12 13 14 150 1 2 3

0

1

2

3

4

5

6

7

Bi
t #

R
sp

Cr
d

Ak
Sz

Sl
ot

0
Sl

ot
1

Sl
ot

2
Ty

pe

R
eq

C
rd

D
at

aC
rd

BE
Sl

ot
3

[1
:0

]
R

SV
D

Sl
3

R
V

M
AC

Figure 70. G0 - D2H/S2M Data

0 1 2 3 4 5 6 7
Byte #

8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

Bi
t #

Da
ta

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 136
Revision 2.0, Version 1.0

Figure 71. G0 - D2H Byte Enable

0 1 2 3 4 5 6 7
Byte #

8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

Bi
t #

BE
[3

1:
0]

RS
VD

BE
[6

3:
32

]
Figure 72. G1 - D2H Req + 2 D2H Resp

0 1 2 3 4 5 6 7
Byte #

8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

Bi
t #

O
pc

od
e

U
Q

ID
[1

0:
3]

U
Q

ID
[2

:0
]

R
SV

D
Va

l
O

pc
od

e[
3:

0]
O

4
U

11
U

Q
ID

[6
:0

]
U

Q
ID

[1
1:

7]
R

SV
D

R
V

R
SV

D

Ad
dr

[5
1:

6]

NT

CQ
ID

[1
:0

]
C

Q
ID

[9
:2

]
O

pc
od

e
Va

l

Va
l

C
Q

ID
[1

1:
10

]
R

SV
D

R
SV

D

R
SV

D

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 137
Revision 2.0, Version 1.0

Figure 73. G2 - D2H Req + D2H Data Header + D2H Resp

0 1 2 3 4 5 6 7
Byte #

8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

Bi
t #

C
h

Po
i

Bg
U

Q
ID

[7
:0

]
U

Q
ID

[1
1:

8]
R

V
Va

l
O

pc
od

e
U

Q
ID

[9
:2

] R
SV

D

UQ
ID

[1
:0

]

U
Q

ID
[1

1:
10

]
R

SV
D

R
SV

D

Ad
dr

[5
1:

6]

NT

CQ
ID

[1
:0

]
C

Q
ID

[9
:2

]
O

pc
od

e
Va

l

Va
l

C
Q

ID
[1

1:
10

]
R

SV
D

R
SV

D

R
SV

D

Figure 74. G3 - 4 D2H Data Header

0

1

2

3

4

5

6

7

Bi
t #

C
h

Po
i

Va
l

Bg
U

Q
ID

[6
:0

]
U

Q
ID

[1
1:

7]
R

V
C

h
Po

i

Va
l

Bg
U

Q
ID

[5
:0

]

R
V

U
Q

ID
[1

1:
6]

Va
l

U
Q

ID
[4

:0
]

U
Q

ID
[1

1:
5]

C
h

Bg
Po

i
R

V
Va

l
U

Q
ID

[3
:0

]
U

Q
ID

[1
1:

4]
C

h
Bg

Po
i

RV

0 1 2 3 4 5 6 7
Byte #

8 9 10 11 12 13 14 15

RS
VD

R
SV

D
R

SV
D

R
SV

D
R

SV
D

R
SV

D
R

SV
D

R
SV

D

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 138
Revision 2.0, Version 1.0

Figure 75. G4 - S2M DRS Header + 2 S2M NDR

0 1 2 3 4 5 6 7
Byte #

8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

Bi
t #

Va
l

M
em

O
p

M
et

aV
al

ue
M

et
aF

ie
ld Ta

g[
15

:8
]

Ta
g[

7:
0]

LD
-ID

[3
:0

]
Va

l
M

em
O

p
M

et
aV

al
ue

M
et

aF
ie

ld
Ta

g[
3:

0]
Ta

g[
11

:4
]

Ta
g[

15
:1

2]
LD

-ID
[3

:0
]

RS
VD

RS
VD

RS
VD

Va
l

M
em

O
p

M
et

aF
ie

ld
M

et
aV

al
ue

Ta
g[

7:
0]

Ta
g[

15
:8

]
Po

i
R

V
RS

VDLD
-ID

[3
:0

]
D

ev
Lo

ad

R
SV

D
D

ev
Lo

ad
*

D
ev

Lo
ad

Figure 76. G5 - 2 S2M NDR

0

1

2

3

4

5

6

7

Bi
t #

Va
l

M
em

O
p

M
et

aV
al

ue
M

et
aF

ie
ld Ta

g[
15

:8
]

Ta
g[

7:
0]

LD
-ID

[3
:0

]
Va

l
M

em
O

p
M

et
aV

al
ue

M
et

aF
ie

ld
Ta

g[
3:

0]
Ta

g[
11

:4
]

Ta
g[

15
:1

2]
LD

-ID
[3

:0
]

0 1 2 3 4 5 6 7
Byte #

8 9 10 11 12 13 14 15

R
SV

D
R

SV
D

R
SV

D
R

SV
D

R
SV

D

R
SV

D
R

SV
D

R
SV

D
R

SV
D

D
ev

Lo
ad

*
D

ev
Lo

ad

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 139
Revision 2.0, Version 1.0

4.2.4 Link Layer Registers

Architectural registers associated with CXL.cache and CXL.mem have been defined in
Section 8.2.5.11

4.2.5 Flit Packing Rules

The packing rules are defined below. It is assumed that a given queue has credits
towards the RX and any protocol dependencies (SNP-GO ordering, for example) have
already been considered:

• Rollover is defined as any time a data transfer needs more than one flit. Note that a
data chunk which contains 128b (format G0), can only be scheduled in Slots 1, 2,
and 3 of a protocol flit since Slot 0 has only 96b available, as 32b are taken up by
the flit header. The following rules apply to Rollover data chunks.
— If there's a rollover of more than 3 16B data chunks, the next flit must

necessarily be an all data flit.
— If there’s a rollover of 3 16B data chunks, Slots 1, Slots 2 and Slots 3 must

necessarily contain the 3 rollover data chunks. Slot 0 will be packed
independently (it is allowed for Slot 0 to have the Data Header for the next
data transfer).

— If there’s a rollover of 2 16B data chunks, Slots 1 and Slots 2 must necessarily
contain the 2 rollover data chunks. Slot 0 and Slot 3 will be packed
independently.

— If there’s a rollover of 1 16B data chunk, Slot 1 must necessarily contain the
rollover data chunk. Slot 0, Slot 2 and Slot 3 will be packed independently.

— If there’s no rollover, each of the 4 slots will be packed independently.
• Care must be taken to ensure fairness between packing of CXL.mem & CXL.cache

transactions. Similarly, care must be taken to ensure fairness between channels
within a given protocol. The exact mechanism to ensure fairness is implementation
specific.

Figure 77. G6 - 3 S2M DRS Header

0 1 2 3 4 5 6 7
Byte #

8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

Bi
t #

R
S

VD

Va
l

M
em

O
p

M
et

aF
ie

ld
M

et
aV

al
ue

Ta
g[

7:
0]

Ta
g[

15
:8

]
Po

i

Va
l

M
em

O
p

M
et

aF
ie

ld
M

et
aV

al
ue

Ta
g[

7:
0]

Ta
g[

15
:8

]
Po

i

Va
l

M
em

O
p

M
et

aF
ie

ld
M

et
aV

al
ue

Ta
g[

7:
0]

Ta
g[

15
:8

]
Po

i
R

SV
D

RS
VDLD

-ID
[3

:0
]

R
SV

D
RS

VDLD
-ID

[3
:0

]

R
SV

D
RS

VDLD
-ID

[3
:0

]

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 140
Revision 2.0, Version 1.0

• Valid messages within a given slot need to be tightly packed. Which means, if a slot
contains multiple possible locations for a given message, the Tx must pack the
message in the first available location before advancing to the next available
location.

• Valid messages within a given flit need to be tightly packed. Which means, if a flit
contains multiple possible slots for a given message, the Tx must pack the message
in the first available slot before advancing to the next available slot.

• Empty slots are defined as slots without any valid bits set and they may be mixed
with other slots in any order as long as other packing rules are followed. For an
example refer to Figure 48 where slot H3 could have no valid bits set indicating an
empty slot, but the 1st and 2nd generic slots, G1 and G2 in the example, may have
mixed valid bits set.

• If a valid Data Header is packed in a given slot, the next available slot for data
transfer (Slot 1, Slot 2, Slot 3 or an all-data flit) will be guaranteed to have data
associated with the header. The Rx will use this property to maintain a shadow copy
of the Tx Rollover counts. This enables the Rx to expect all-data flits where a flit
header is not present.

• For data transfers, the Tx must send 16B data chunks in cacheline order. That is,
chunk order 01 for 32B transfers and chunk order 0123 for 64B transfers.

• A slot with more than one data header (e.g. H5 in the S2M direction, or G3 in the
H2D direction) is called a multi-data header slot or a MDH slot. MDH slots can only
be sent for full cacheline transfers when both 32B chunks are available to pack
immediately. That is, BE = 0, Sz = 1. A MDH slot can only be used if both agents
support MDH (defeature defined in Section 8.2.5.11.7). If MDH is received when
disable it is considered a fatal error.

• A MDH slot format must be chosen by the Tx only if there is more than 1 valid Data
Header to pack in that slot.

• Control flits cannot be interleaved with all-data flits. This also implies that when an
all-data flit is expected following a protocol flit (due to Rollover), the Tx cannot
send a Control flit before the all-data flit.

• For non-MDH containing flits, there can be at most 1 valid Data Header in that flit.
Also, a MDH containing flit cannot be packed with another valid Data Header in the
same flit.

• The maximum number of messages that can be sent in a given flit is restricted to
reduce complexity in the receiver which writes these messages into credited
queues. By restricting the number of messages across the entire flit, the number of
write ports into the receiver’s queues are constrained. The maximum messages in a
flit (sum, across all slots) is:
D2H Request --> 4
D2H Response --> 2
D2H Data Header --> 4
D2H Data --> 4*16B
S2M NDR --> 2
S2M DRS Header --> 3
S2M DRS Data --> 4*16B

H2D Request --> 2
H2D Response --> 4
H2D Data Header --> 4
H2D Data --> 4*16B
M2S Req --> 2
M2S RwD Header --> 1
M2S RwD Data --> 4*16B

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 141
Revision 2.0, Version 1.0

• For a given slot, lower bit positions are defined as bit positions that appear starting
from lower order Byte #. That is, bits are ordered starting from (Byte 0, Bit 0)
through (Byte 15, Bit 7).

• For multi-bit message fields like Address[MSB:LSB], less significant bits will appear
in lower order bit positions.

• Message ordering within a flit is based on flit bit numbering, i.e. the earliest
messages are placed at the lowest flit bit positions and progressively later
messages are placed at progressively higher bit positions. Examples: An M2S Req 0
packed in Slot 0 precedes an M2S Req 1 packed in Slot 1. Similarly, a Snoop packed
in Slot 1 follows a GO packed in Slot 0, and this ordering must be maintained.
Finally, for Header Slot Format H1, an H2D Response packed starting from Byte 7
precedes an H2D Response packed starting from Byte 11.

4.2.6 Link Layer Control Flit

Link Layer Control flits do not follow flow control rules applicable to protocol flits. That
is, they can be sent from an entity without any credits. These flits must be processed
and consumed by the receiver within the period to transmit a flit on the channel since
there are no storage or flow control mechanisms for these flits. The following table lists
all the Controls Flits supported by the CXL.cache/CXL.mem link layer.

In CXL 2.0 a 3-bit CTL_FMT field is added to control messages and uses bits that were
reserved in CXL1.1 control messages. All control messages used in CXL1.1 have this
field encoded as ‘b000 to maintain backward compatibility. This field is used to
distinguish formats added in CXL 2.0 control messages that require a larger payload
field. The new format increases the payload field from 64-bits to 96-bits and uses
CTL_FMT encoding of ‘b001.

Open: A detailed description of the control flits is present below.

Table 53. CXL.cache/CXL.mem Link Layer Control Types

LLCTRL
Encoding

LLCTRL Type
Name Description

Retryable?
(Enters the

LLRB)

‘b0001 RETRY Link layer retry flit No

‘b0000 LLCRD Flit containing only link layer QoS Telemetry, credit return and/or Ack
information, but no protocol information. Yes

‘b0010 IDE
Integrity and Data Encryption control messages.
Use in flows described in Section 11.1 which are introduced in CXL 2.0

Yes

‘b1100 INIT Link layer initialization flit Yes

Others Reserved n/a n/a

Table 54. CXL.cache/CXL.mem Link Layer Control Details (Sheet 1 of 3)

Flit Type CTL_FMT
/ LLCTRL SubType SubType

Description Payload Payload Description

LLCRD 000/0000

0000 RSVD 63:0 RSVD

0001 Acknowledge

2:0 Acknowledge[2:0]

3 RSVD

7:4 Acknowledge[7:4]

63:8 RSVD

Others RSVD 63:0 RSVD

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 142
Revision 2.0, Version 1.0

RETRY 000/0001

0000 RETRY.Idle 63:0 RSVD

0001 RETRY.Req

7:0 Requester’s Retry Sequence
Number (Eseq)

15:8 RSVD

20:16 Contains NUM_RETRY

25:21 Contains NUM_PHY_REINIT (for
debug)

63:26 RSVD

0010 RETRY.Ack

0

Empty: The Empty indicates that
the LLR contains no valid data and
therefore the NUM_RETRY value
should be reset

1
Viral: The Viral bit indicates that
the transmitting agent is in a Viral
state

2 RSVD

7:3
Contain an echo of the
NUM_RETRY value from the
LLR.Req

15:8 Contains the WrPtr value of the
retry queue for debug purposes

23:16 Contains an echo of the Eseq from
the LLR.Req

31:24
Contains the NumFreeBuf value of
the retry queue for debug
purposes

47:32

Viral LD-ID Vector[15:0]: Included
for MLD links to indicate which LD-
ID is impacted by viral. Only
applicable if viral bit (bit 1 of this
payload) is set. bit 0 of the vector
encodes LD-ID =0, bit 1 is LD-
ID=1, etc. Field is treated as
Reserved for ports that do not
support LD-ID.

63:48 RSVD

0011 RETRY.Frame 63:0

Payload is RSVD.
Flit required to be sent before a
RETRY.Req or RETRY.Ack flit to
allow said flit to be decoded
without risk of aliasing.

Others RSVD 63:0 RSVD

Table 54. CXL.cache/CXL.mem Link Layer Control Details (Sheet 2 of 3)

Flit Type CTL_FMT
/ LLCTRL SubType SubType

Description Payload Payload Description

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 143
Revision 2.0, Version 1.0

In the LLCRD flit, the total number of flit acknowledgments being returned is
determined by creating the Full_Ack return value, where

Full_Ack = {Acknowledge[7:4],Ak,Acknowledge[2:0]}, where the Ak bit is from the flit
header.

IDE 001/0010

0000 IDE.Idle 95:0

Payload RSVD
Message Sent as part of IDE flows
to pad sequences with idle flits.
Refer to Chapter 11.0 for details
on the use of this message.

0001 IDE.Start 95:0
Payload RSVD
Message sent to begin flit
encryption.

0010 IDE.TMAC 95:0

MAC Field uses all 96-bits of
payload.
Truncated MAC Message sent to
complete a MAC epoch early. Only
used when no protocol messages
exist to send.

others RSVD 95:0 RSVD

INIT 000/1100
1000 INIT.Param

3:0

Interconnect Version: Version of
CXL the port is compliant with.
CXL 1.0/1.1 = '0001
CXL 2.0 = ‘0010
Others Reserved

7:4 RSVD

12:8 RSVD

23:13 RSVD

31:24
LLR Wrap Value: Value after which
LLR sequence counter should wrap
to zero.

63:32 RSVD

Others RSVD 63:0 RSVD

Table 54. CXL.cache/CXL.mem Link Layer Control Details (Sheet 3 of 3)

Flit Type CTL_FMT
/ LLCTRL SubType SubType

Description Payload Payload Description

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 144
Revision 2.0, Version 1.0

The flit formats for the control flit are illustrated below.
Figure 78. LLCRD Flit Format (Only Slot 0 is Valid. Others are Reserved)

RSVD

0 1 2 3 4 5 6 7
Byte #

8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

Bi
t #

R
sp

Cr
d

Ak
R

SV
D

R
eq

C
rd

D
at

aC
rd

R
SV

D
R

SV
D

0

LL
C

TR
L

Su
bT

yp
e

T=
1

R
V

0x0

Pa
yl

oa
d[

7:
0]

Pa
yl

oa
d[

15
:8

]
Pa

yl
oa

d[
23

:1
6]

Pa
yl

oa
d[

31
:2

4]
Pa

yl
oa

d[
39

:3
2]

Pa
yl

oa
d[

47
:4

0]
Pa

yl
oa

d[
55

:4
8]

Pa
yl

oa
d[

63
:5

6]

C
TL

_F
M

T=
0x

0

Figure 79. Retry Flit Format (Only Slot 0 is Valid. Others are Reserved)

0x0

5 6 7
Byte #

8 9 10 11 12 13 14 15

Bi
t #

0 1 2 3 4

0

1

2

3

4

5

6

7

RSVD

LL
C

TR
L

Su
bT

yp
e

Pa
yl

oa
d[

7:
0]

Pa
yl

oa
d[

15
:8

]
P

ay
lo

ad
[2

3:
16

]
P

ay
lo

ad
[3

1:
24

]
P

ay
lo

ad
[3

9:
32

]
P

ay
lo

ad
[4

7:
40

]
P

ay
lo

ad
[5

5:
48

]
P

ay
lo

ad
[6

3:
56

]

T=
1

R
SV

D
C

TL
_F

M
T=

0x
0

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 145
Revision 2.0, Version 1.0

Note: The RETRY.Req and RETRY.Ack flits belong to the type of flit that receiving devices must
respond to even in the shadow of a previous CRC error. In addition to checking the CRC
of a RETRY flit, the receiving device should also check as many defined bits (those
listed as having hardcoded 1/0 values) as possible in order to increase confidence in
qualifying an incoming flit as a RETRY message.

4.2.7 Link Layer Initialization

Link Layer Initialization must be started after a physical layer link down to link up
transition and the link has trained successfully to L0. During Initialization and after the
Init Flit has been sent the Cache/Mem Link Layer can only send Control-Retry flits until
Link Initialization is complete. The following describes how the link layer is initialized
and credits are exchanged.

Figure 80. Init Flit Format (Only Slot 0 is Valid. Others are Reserved)

0x0

5 6 7
Byte #

8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

Bi
t #

00 1 2 3 4

0

1

2

3

4

5

6

7
R

SV
D

LL
C

TR
L

Su
bT

yp
e

T=
1

Pa
yl

oa
d[

7:
0]

Pa
yl

oa
d[

15
:8

]
Pa

yl
oa

d[
23

:1
6]

Pa
yl

oa
d[

31
:2

4]
Pa

yl
oa

d[
39

:3
2]

Pa
yl

oa
d[

47
:4

0]
Pa

yl
oa

d[
55

:4
8]

Pa
yl

oa
d[

63
:5

6]

R
SV

D
C

TL
_F

M
T=

0x
0

Figure 81. IDE Flit Format (Only Slot 0 is Valid. Others are Reserved)

5 6 7
Byte #

8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

Bi
t #

0 1 2 3 4

0

1

2

3

4

5

6

7

RS
VD

RS
VD

LL
CT

R
L

Su
bT

yp
e

T=
1

P
ay

lo
ad

[7
:0

]

P
ay

lo
ad

[1
5:

8]
P

ay
lo

ad
[2

3:
16

]
P

ay
lo

ad
[3

1:
24

]
P

ay
lo

ad
[3

9:
32

]
P

ay
lo

ad
[4

7:
40

]
P

ay
lo

ad
[5

5:
48

]
P

ay
lo

ad
[6

3:
56

]

C
TL

_F
M

T=
0x

1

P
ay

lo
ad

[7
1:

64
]

P
ay

lo
ad

[7
9:

72
]

P
ay

lo
ad

[8
7:

80
]

P
ay

lo
ad

[9
5:

88
]

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 146
Revision 2.0, Version 1.0

• The Tx portion of the Link Layer must wait until the Rx portion of the Link Layer has
received at least one valid flit that is CRC clean before sending the Control-
INIT.Param flit. Before this condition is met, the Link Layer must transmit only
Control-Retry flits, i.e., Retry.Frame/Req/Ack/Idle flits.
— If for any reason the Rx portion of the Link Layer is not ready to begin

processing flits beyond Control-INIT and Control-Retry, the Tx will stall
transmission of LLCTR-INIT.Param flit

— Retry.Frame/Req/Ack are sent during this time as part of the regular Retry flow.
— Retry.Idle flits are sent prior to sending a Init.Param flit even without a retry

condition to ensure the remote agent can observe a valid flit.
• The Control-INIT.Param flit must be the first non-Control-Retry flit transmitted by

the Link Layer
• The Rx portion of the Link Layer must be able to receive an Control-INIT.Param flit

immediately upon completion of Physical Layer initialization because the very first
valid flit may be a Control-INIT.Param

• Received Control-INIT.Param values (i.e., LLR Wrap Value) must be made “active”,
that is, applied to their respective hardware states within 8 flit clocks of error-free
reception of Control-INIT.Param flit.
— Until an error-free INIT.Param flit is received and these values are applied, LLR

Wrap Value shall assume a default value of 9 for the purposes of ESEQ tracking.
• Any non-Retry flits received before Control-INIT.Param flit will trigger an

Uncorrectable Error.
• Only a single Control-INIT.Param flit is sent. Any CRC error conditions with an

Control-INIT.Param flit will be dealt with by the Retry state machine and replayed
from the Link Layer Retry Buffer.

• Receipt of an Control-INIT.Param flit after an Control-INIT.Param flit has already
been received should be considered an Uncorrectable Error.

• It is the responsibility of the Rx to transmit credits to the sender using standard
credit return mechanisms after link initialization. Each entity should know how
many buffers it has and set its credit return counters to these values. Then, during
normal operation, the standard credit return logic will return these credits to the
sender.

• Immediately after link initialization, the credit exchange mechanism will use the
LLCRD flit format.

• It is possible that the receiver will make available more credits than the sender can
track for a given message class. For correct operation, it is therefore required that
the credit counters at the sender be saturating. Receiver will drop all credits in
receives for unsupported channels (example: Type 3 device receiving any
CXL.Cache credits).

• Credits should be sized to achieve desired levels of bandwidth considering round-
trip time of credit return latency. This is implementation and usage dependent.

4.2.8 CXL.cache/CXL.mem Link Layer Retry

The link layer provides recovery from transmission errors using retransmission, or Link
Layer Retry (LLR). The sender buffers every retryable flit sent in a local link layer retry
buffer (LLRB). To uniquely identify flits in this buffer, the retry scheme relies on
sequence numbers which are maintained within each device. Unlike in PCIe, CXL.cache/
.mem sequence numbers are not communicated between devices with each flit to
optimize link efficiency. The exchange of sequence numbers occurs only through link
layer control flits during a LLR sequence. The sequence numbers are set to a

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 147
Revision 2.0, Version 1.0

predetermined value (zero) during Link Layer Initialization and they are implemented
using a wrap-around counter. The counter wraps back to zero after reaching the depth
of the retry buffer. This scheme makes the following assumptions:

• The round-trip delay between devices is more than the maximum of the link layer
clock or flit period.

• All protocol flits are stored in the retry buffer. See Section 4.2.8.5.1 for further
details on the handling of non-retryable control flits.

Note that for efficient operation, the size of the retry buffer must be more than the
round-trip delay. This includes:

• Time to send a flit from the sender
• Flight time of the flit from sender to receiver
• Processing time at the receiver to detect an error in the flit
• Time to accumulate and, if needed, force Ack return and send embedded Ack

return back to the sender
• Flight time of the Ack return from the receiver to the sender
• Processing time of Ack return at the original sender

Otherwise, the LLR scheme will introduce latency, as the transmitter will have to wait
for the receiver to confirm correct receipt of a previous flit before the transmitter can
free space in its LLRB and send a new flit. Note that the error case is not significant
because transmission of new flits is effectively stalled until successful retransmission of
the erroneous flit anyway.

4.2.8.1 LLR Variables

The retry scheme maintains two state machines and several state variables. Although
the following text describes them in terms of one transmitter and one receiver, both the
transmitter and receiver side of the retry state machines and the corresponding state
variables are present at each device because of the bidirectional nature of the link.
Since both sides of the link implement both transmitter and receiver state machines,
for clarity this discussion will use the term “local” to refer to the entity that detects a
CRC error, and “remote” to refer to the entity that sent the flit that was received
erroneously.

The receiving device uses the following state variables to keep track of the sequence
number of the next flit to arrive.

• ESeq: This indicates the expected sequence number of the next valid flit at the
receiving link layer entity. ESeq is incremented by one (modulo the size of the
LLRB) on error-free reception of a retryable flit. ESeq stops incrementing after an
error is detected on a received flit until retransmission begins (RETRY.Ack message
is received). Link Layer Initialization sets ESeq to 0. Note that there is no way for
the receiver to know that an error was for a non-retryable vs retryable flit. For any
CRC error it will initiate the link layer retry flow as usual, and effectively the
transmitter will resend from the first retryable flit sent.

The sending entity maintains two indices into its LLRB, as indicated below.
• WrPtr: This indexes the entry of the LLRB that will record the next new flit. When

an entity sends a flit, it copies that flit into the LLRB entry indicated by the WrPtr
and then increments the WrPtr by one (modulo the size of the LLRB). This is
implemented using a wrap-around counter that wraps around to 0 after reaching
the depth of the LLRB. Non-Retryable Control flits do not affect the WrPtr. WrPtr
stops incrementing after receiving an error indication at the remote entity
(RETRY.Req message) except as described in the implementation note below, until

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 148
Revision 2.0, Version 1.0

normal operation resumes again (all flits from the LLRB have been retransmitted).
WrPtr is initialized to 0 and is incremented only when a flit is put into the LLRB.

• RdPtr: This is used to read the contents out of the LLRB during a retry scenario.
The value of this pointer is set by the sequence number sent with the
retransmission request (RETRY.Req message). The RdPtr is incremented by one
(modulo the size of the LLRB) whenever a flit is sent, either from the LLRB in
response to a retry request or when a new flit arrives from the transaction layer
and irrespective of the states of the local or remote retry state machines. If a flit is
being sent when the RdPtr and WrPtr are the same, then it indicates that a new flit
is being sent, otherwise it must be a flit from the retry buffer.

The LLR scheme uses an explicit acknowledgment that is sent from the receiver to the
sender to remove flits from the LLRB at the sender. The acknowledgment is indicated
via an ACK bit in the headers of flits flowing in the reverse direction. In CXL.cache, a
single ACK bit represents 8 acknowledgments. Each entity keeps track of the number of
available LLRB entries and the number of received flits pending acknowledgment
through the following variables.

• NumFreeBuf: This indicates the number of free LLRB entries at the entity.
NumFreeBuf is decremented by 1 whenever an LLRB entry is used to store a
transmitted flit. NumFreeBuf is incremented by the value encoded in the Ack/
Full_Ack (Ack is the protocol flit bit AK, Full_Ack defined as part of LLCRD message)
field of a received flit. NumFreeBuf is initialized at reset time to the size of the
LLRB. The maximum number of retry queues at any entity is limited to 255 (8 bit
counter). Also, note that the retry buffer at any entity is never filled to its capacity,
therefore NumFreeBuf is never ‘0. If there is only 1 retry buffer entry available,
then the sender cannot send a Retryable flit. This restriction is required to avoid
ambiguity between a full or an empty retry buffer during a retry sequence that may
result into incorrect operation. This implies if there are only 2 retry buffer entries
left (NumFreeBuf = 2), then the sender can send an Ack bearing flit only if the
outgoing flit encodes a value of at least 1 (which may be a Protocol flit with Ak bit
set), else a LLCRD control flit is sent with Full_Ack value of at least 1. This is
required to avoid deadlock at the link layer due to retry buffer becoming full at both
entities on a link and their inability to send ACK through header flits. This rule also
creates an implicit expectation that you cannot start a sequence of “All Data Flits”
that cannot be completed before NumFreeBuf=2 because you must be able to
inject the Ack bearing flit when NumFreeBuf=2 is reached.

• NumAck: This indicates the number of acknowledgments accumulated at the
receiver. NumAck increments by 1 when a retryable flit is received. NumAck is
decremented by 8 when the ACK bit is set in the header of an outgoing flit. If the
outgoing flit is coming from the LLRB and its ACK bit is set, NumAck does not
decrement. At initialization, NumAck is set to 0. The minimum size of the NumAck
field is the size of the LLRB. NumAck at each entity must be able to keep track of at
least 255 acknowledgments.

The LLR protocol requires that the number of retry queue entries at each entity must
be at least 22 entries (Size of Forced Ack (16) + Max All-Data-Flit (4) + 2) to prevent
deadlock.

IMPLEMENTATION NOTE

WrPtr may continue to increment after receiving Retry.Req message if there are pre-
scheduled All Data Flits that are not yet sent over the link. This implementation will
ensure that All Data Flits not interleaved with other flits are correctly logged into the
Link Layer Retry Buffer.

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 149
Revision 2.0, Version 1.0

4.2.8.2 LLCRD Forcing

Recall that the LLR protocol requires space available in the LLRB to transmit a new flit,
and that the sender must receive explicit acknowledgment from the receiver before
freeing space in the LLRB. In scenarios where the traffic flow is very asymmetric, this
requirement could result in traffic throttling and possibly even starvation.

Suppose that the A→B direction has very heavy traffic, but there is no traffic at all in
the B→A direction. In this case A could exhaust its LLRB size, while B never has any
return traffic in which to embed Acks. In CXL we want to minimize injected traffic to
reserve bandwidth for the other traffic stream(s) sharing the link.

To avoid starvation, CXL must permit LLCRD Control message forcing (injection of a
non-traffic flit to carry an Acknowledge and Credit return), but this function must be
constrained to avoid wasting bandwidth. In CXL, when B has accumulated a
programmable minimum number of Acks to return, B’s CXL.cache/mem link layer will
inject a LLCRD flit to return an Acknowledge. The threshold of pending Acknowledges
before forcing the LLCRD can be adjusted using the “Ack Force Threshold” field in the
“CXL Link Layer Ack Timer Control Register”.

There is also a timer-controlled mechanism to force LLCRD when the timer reaches a
threshold. The timer will clear whenever an ACK/CRD carrying message is sent. It will
increment every link layer clock an ACK/CRD carrying message is not sent and any
Credit value to return is greater than 0 or Acknowledge to return is greater than 1. The
reason the Acknowledge threshold value is specified as “greater than 1”, as opposed to
“greater than 0”, is to avoid repeated forcing of LLCRD when no other retryable flits are
being sent. If the timer incremented when the pending Acknowledge count is “greater
than 0”, there would be a continuous exchange of LLCRD messages carrying
Acknowledges on an otherwise idle link; this is because the LLCRD is itself retryable
and results in a returning Acknowledge in the other direction. The result is that the link
layer would never be truly idle when the transaction layer traffic is idle. The timer
threshold to force LLCRD is configurable using the “Ack or CRD flush retimer” field in
the “CXL Link Layer Ack Timer Control Register”. It should also be noted that the
CXL.cache link layer must accumulate a minimum of 8 Acks to set the ACK bit in a
CXL.cache and CXL.mem flit header. If LLCRD forcing occurred after the accumulation
of 8 Acks, it could result in a negative beat pattern where real traffic always arrives
soon after a forced Ack, but not long enough after for enough Acks to re-accumulate to
set the ACK bit. In the worst case this could double the bandwidth consumption of the
CXL.cache side. By waiting for at least 16 Acks to accumulate, the CXL.cache/mem link
layer ensures that it can still opportunistically return Acks in a protocol flit avoiding the
need to force an LLCRD for Ack return. It is recommended that the Ack Force Threshold
value be set to 16 or greater in the “CXL Link Layer Ack Timer Control Register” to
reduce overhead of LLCRD injection.

It is recommended that link layer prioritize other link layer flits before LLCRD forcing.

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 150
Revision 2.0, Version 1.0

Pseudo-code for forcing function below:

IF (SENDING_ACK_CRD_MESSAGE==FALSE AND (ACK_TO_RETURN >1 OR CRD_TO_RETURN>0))

TimerValue++

ELSE

TimerValue=0

IF (TimerValue >=Ack_or_CRD_Flush_Retimer OR ACK_TO_RETURN >= Ack Force_Threshold)

Force_LLCRD = TRUE

ELSE

Force_LLCRD=FALSE

Note: Ack_or_CRD_Flush_Retimer and Ack_Force_Threshold are values that come from “CXL
Link Layer Ack Timer Control Register”.

Note: LLCRD forcing may also occur for QoS Telemetry load value changes as described in
Section 4.2.6.

Figure 82. Retry Buffer and Related Pointers.

Free entry
Used entryWrPtr

RdPtr
= WrPtr if not in
retry mode

Sender

Receiver

NumAcks Increment after receiving a flit
decrement after returning acks

WrPtr incremented after storing the sent flit.
RdPtr points to the next flit to be sent

Retry queue

NumFreeBuf

Eseq Sequence number of the next flit

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 151
Revision 2.0, Version 1.0

4.2.8.3 LLR Control Flits

The LLR Scheme uses several link layer control flits of the RETRY format to
communicate the state information and the implicit sequence numbers between the
entities.

• RETRY.Req: This flit is sent from the entity that received a flit in error to the
sending entity. The flit contains the expected sequence number (ESeq) at the
receiving entity, indicating the index of the flit in the retry queue at the remote
entity that must be retransmitted. It also contains the NUM_RETRY value of the
sending entity which is defined in Section 4.2.8.5.1. This message is also triggered
as part of the Initialization sequence even when no error is observed as described
in Section 4.2.7.

• RETRY.Ack: This flit is sent from the entity that is responding to an error detected
at the remote entity. It contains a reflection of the NUM_RETRY value from the
corresponding Retry.Req message. The flit contains the WrPtr value at the sending
entity for debug purposes only. The WrPtr value should not be used by the retry
state machines in any way. This flit will be followed by the flit identified for retry by
the ESeq number.

• RETRY.Idle: This flit is sent during the retry sequence when there are no protocol
flits to be sent (see Section 4.2.8.5.2 for details) or a retry queue is not ready to be
sent. For example, it can be used for debug purposes for designs that need
additional time between sending the RETRY.Ack and the actual contents of the LLR
queue.

• RETRY.Frame: This flit is sent in conjunction with a RETRY.Req or RETRY.Ack flit to
prevent aliased decoding of these flits. See Section 4.2.8.5 for further details.

The table below describes the impact of RETRY messages on the local and remote retry
state machines. In this context, the “sender” refers to the Device sending the message
and the “receiver” refers to the Device receiving the message. Note that how this maps
to which device detected the CRC error and which sent the erroneous message depends
on the message type; e.g., for a RETRY.Req sequence, the sender detected the CRC
error, but for a RETRY.Ack sequence, it’s the receiver that detected the CRC error.

4.2.8.4 RETRY Framing Sequences

Recall that the CXL.cache/mem flit formatting specifies an all-data flit for link efficiency.
This flit is encoded as part of the header of the preceding flit and contains no header
information of its own. This introduces the possibility that the data contained in this flit
could happen to match the encoding of a RETRY flit.

This introduces a problem at the receiver. It must be certain to decode the actual
RETRY flit, but it must not falsely decode an aliasing data flit as a RETRY flit. In theory
it might use the header information of the stream it receives in the shadow of a CRC
error to determine whether it should attempt to decode the subsequent flit. Therefore,
the receiver cannot know with certainty which flits to treat as header-containing
(decode) and which to ignore (all-data).

CXL introduces the RETRY.Frame flit for this purpose to disambiguate a control
sequence from an all-data flit (ADF). Due to MDH, 4 ADF can be sent back-to-back.
Hence, a RETRY.Req sequence comprises 5 RETRY.Frame flits immediately followed by a
RETRY.Req flit, and a RETRY.Ack sequence comprises 5 RETRY.Frame flits immediately
followed by a RETRY.Ack flit. This is shown in Figure 83.

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 152
Revision 2.0, Version 1.0

Note: A RETRY.Ack sequence that arrives when a RETRY.Ack is not expected will be treated as
an error by the receiver. Error resolution in this case is device specific though it is
recommended that this results in the machine halting operation. It is recommended
that this error condition not change the state of the LRSM.

4.2.8.5 LLR State Machines

The LLR scheme is implemented with two state machines: Remote Retry State Machine
(RRSM) and Local Retry State Machine (LRSM). These state machines are implemented
by each entity and together determine the overall state of the transmitter and receiver
at the entity. The states of the retry state machines are used by the send and receive
controllers to determine what flit to send and the actions needed to process a received
flit.

4.2.8.5.1 Local Retry State Machine (LRSM)

This state machine is activated at the entity that detects an error on a received flit. The
possible states for this state machine are:

• RETRY_LOCAL_NORMAL: This is the initial or default state indicating normal
operation (no CRC error has been detected).

• RETRY_LLRREQ: This state indicates that the receiver has detected an error on a
received flit and a RETRY.Req sequence must be sent to the remote entity.

• RETRY_LOCAL_IDLE: This state indicates that the receiver is waiting for a
RETRY.Ack sequence from the remote entity in response to its RETRY.Req
sequence. The implementation may require sub-states of RETRY_LOCAL_IDLE to
capture, for example, the case where the last flit received is a Frame flit and the
next flit expected is a RETRY.Ack.

• RETRY_PHY_REINIT: The state machine remains in this state for the duration of a
physical layer retrain.

• RETRY_ABORT: This state indicates that the retry attempt has failed and the link
cannot recover. Error logging and reporting in this case is device specific. This is a
terminal state.

The local retry state machine also has the three counters described below. The
counters and thresholds described below are implementation specific.

• TIMEOUT: This counter is enabled whenever a RETRY.Req request is sent from an
entity and the LRSM state becomes RETRY_LOCAL_IDLE. The TIMEOUT counter is
disabled and the counting stops when the LRSM state changes to some state other
than RETRY_LOCAL_IDLE. The TIMEOUT counter is reset to 0 at link layer
initialization and whenever the LRSM state changes from RETRY_LOCAL_IDLE to
RETRY_LOCAL_NORMAL or RETRY_LLRREQ. The TIMEOUT counter is also reset

Table 55. Control Flits and Their Effect on Sender and Receiver States

RETRY Message Sender State Receiver State

RETRY.Idle Unchanged. Unchanged.

RETRY.Frame + RETRY.Req
Sequence

Local Retry State Machine
(LRSM) is updated. NUM_RETRY
is incremented. See
Section 4.2.8.5.1

Remote Retry State Machine
(RRSM) is updated. RdPtr is set
to ESeq sent with the flit. See
Section 4.2.8.5.3

RETRY.Frame + RETRY.Ack
Sequence RRSM is updated. LRSM is updated.

RETRY.Frame, RETRY.Req, or
RETRY.Ack message that is not
as part of a valid framed
sequence

Unchanged. Unchanged (drop the flit).

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 153
Revision 2.0, Version 1.0

when the Physical layer returns from re-initialization (the LRSM transition through
RETRY_PHY_REINIT to RETRY_LLRREQ). If the counter has reached its threshold
without receiving a Retry.Ack sequence, then the RETRY.Req request is sent again
to retry the same flit. See Section 4.2.8.5.2 for a description of when TIMEOUT
increments. Note: It is suggested that the value of TIMEOUT should be no less than
4096 transfers.

• NUM_RETRY: This counter is used to count the number of RETRY.Req requests
sent to retry the same flit. The counter remains enabled during the whole retry
sequence (state is not RETRY_LOCAL_NORMAL). It is reset to 0 at initialization. It is
also reset to 0 when a RETRY.Ack sequence is received with the Empty bit set or
whenever the LRSM state is RETRY_LOCAL_NORMAL and an error-free retryable flit
is received. The counter is incremented whenever the LRSM state changes from
RETRY_LOCAL_LLRREQ to RETRY_LOCAL_IDLE. If the counter reaches a threshold
(called MAX_NUM_RETRY), then the local retry state machine transitions to the
RETRY_PHY_REINIT. The NUM_RETRY counter is also reset when the Physical layer
exits from LTSSM recovery state (the LRSM transition through RETRY_PHY_REINIT
to RETRY_LLRREQ). Note: It is suggested that the value of MAX_NUM_RETRY
should be no less than 0xA.

• NUM_PHY_REINIT: This counter is used to count the number of physical layer re-
initializations generated during a LLR sequence. The counter remains enabled
during the whole retry sequence (state is not RETRY_LOCAL_NORMAL). It is reset
to 0 at initialization and after successful completion of the retry sequence. The
counter is incremented whenever the LRSM changes from RETRY_LLRREQ to
RETRY_PHY_REINIT. If the counter reaches a threshold (called
MAX_NUM_PHY_REINIT) instead of transitioning from RETRY_LLRREQ to
RETRY_PHY_REINIT, the LRSM will transition to RETRY_ABORT. The
NUM_PHY_REINIT counter is also reset whenever a Retry.Ack sequence is received
with the Empty bit set. Note: It is suggested that the value of
MAX_NUM_PHY_REINIT should be no less than 0xA.

Note that the condition of TIMEOUT reaching its threshold is not mutually exclusive
with other conditions that cause the LRSM state transitions. Retry.Ack sequences can
be assumed to never arrive at the time that the retry requesting device times out and
sends a new RETRY.Req sequence (by appropriately setting the value of TIMEOUT – see
Section 4.2.8.5.2). If this case occurs, no guarantees are made regarding the behavior
of the device (behavior is “undefined” from a Spec perspective and is not validated
from an implementation perspective). Consequently, the LLR Timeout value should not
be reduced unless it can be certain this case will not occur. If an error is detected at the
same time as TIMEOUT reaches its threshold, then the error on the received flit is
ignored, TIMEOUT is taken, and a repeat Retry.Req sequence is sent to the remote
entity.

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 154
Revision 2.0, Version 1.0

Table 56. Local Retry State Transitions (Sheet 1 of 2)

Current Local Retry
State Condition Next Local Retry State Actions

RETRY_LOCAL_NORMAL An error free retryable flit is
received. RETRY_LOCAL_NORMAL

Increment NumFreeBuf using the
amount specified in the ACK or
Full_Ack fields.
Increment NumAck by 1.
Increment Eseq by 1.
NUM_RETRY is reset to 0.
NUM_PHY_REINIT is reset to 0.
Received flit is processed
normally by the link layer.

RETRY_LOCAL_NORMAL
Error free non-retryable flit
(other than Retry.Req
sequence) is received.

RETRY_LOCAL_NORMAL Received flit is processed.

RETRY_LOCAL_NORMAL Error free Retry.Req sequence is
received. RETRY_LOCAL_NORMAL RRSM is updated.

RETRY_LOCAL_NORMAL Error is detected on a received
flit. RETRY_LLRREQ Received flit is discarded.

RETRY_LOCAL_NORMAL PHY_RESET1 / PHY_REINIT2
detected. RETRY_PHY_REINIT None.

RETRY_LLRREQ

NUM_RETRY ==
MAX_NUM_RETRY and
NUM_PHY_REINIT ==
MAX_NUM_PHY_REINIT

RETRY_ABORT Indicate link failure.

RETRY_LLRREQ

NUM_RETRY ==
MAX_NUM_RETRY and
NUM_PHY_REINIT <
MAX_NUM_PHY_REINIT

RETRY_PHY_REINIT

If an error-free Retry.Req or
Retry.Ack sequence is received,
process the flit.
Any other flit is discarded.
RetrainRequest is sent to physical
layer. Increment
NUM_PHY_REINIT.

RETRY_LLRREQ

NUM_RETRY <
MAX_NUM_RETRY and a
Retry.Req sequence has not
been sent.

RETRY_LLRREQ

If an error-free Retry.Req or
Retry.Ack sequence is received,
process the flit.
Any other flit is discarded.

RETRY_LLRREQ

NUM_RETRY <
MAX_NUM_RETRY and a
Retry.Req sequence has been
sent.

RETRY_LOCAL_IDLE

If an error free Retry.Req or
Retry.Ack sequence is received,
process the flit.
Any other flit is discarded.
Increment NUM_RETRY.

RETRY_LLRREQ PHY_RESET1 / PHY_REINIT2
detected. RETRY_PHY_REINIT None.

RETRY_LLRREQ Error is detected on a received
flit RETRY_LLRREQ Received flit is discarded.

RETRY_PHY_REINIT Physical layer still in reinit. RETRY_PHY_REINIT None.

RETRY_PHY_REINIT Physical layer returns from
Reinit. RETRY_LLRREQ

Received flit is discarded.
NUM_RETRY is reset to 0.

RETRY_LOCAL_IDLE

Retry.Ack sequence is received
and NUM_RETRY from Retry.Ack
matches the value of the last
Retry.Req sent by the local
entity

RETRY_LOCAL_NORMAL

TIMEOUT is reset to 0.
If Retry.Ack sequence is received
with Empty bit set, NUM_RETRY is
reset to 0 and NUM_PHY_REINIT
is reset to 0.

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 155
Revision 2.0, Version 1.0

4.2.8.5.2 TIMEOUT Definition

After the local receiver has detected a CRC error, triggering the LRSM, the local Tx
sends a RETRY.Req sequence to initiate LLR. At this time, the local Tx also starts its
TIMEOUT counter.

The purpose of this counter is to decide that either the Retry.Req sequence or
corresponding Retry.Ack sequence has been lost, and that another RETRY.Req attempt
should be made. Recall that it is a fatal error to receive multiple Retry.Ack
sequences(i.e., a subsequent Ack without a corresponding Req is unexpected). To
reduce the risk of this fatal error condition we check NUM_RETRY value returned to
filter out Retry.Ack messages from the prior retry sequence. This is done to remove
fatal condition where a single retry sequence incurs a timeout while the Ack message is
in flight. The TIMEOUT counter should be capable of handling worst-case latency for a
Retry.Req sequence to reach the remote side and for the corresponding Retry.Ack
sequence to return.

Certain unpredictable events (such as low power transitions, etc.) that interrupt link
availability could add a very large amount of latency to the RETRY round-trip. To make
the TIMEOUT robust to such events, instead of incrementing per link layer clock,
TIMEOUT increments whenever the local Tx transmits a flit, protocol or control. Due to
the TIMEOUT protocol, it must force injection of RETRY.Idle flits if it has no real traffic
to send, so that the TIMEOUT counter continues to increment.

4.2.8.5.3 Remote Retry State Machine (RRSM)

The remote retry state machine is activated at an entity if a flit sent from that entity is
received in error by the local receiver, resulting in a link layer retry request (Retry.Req
sequence) from the remote entity. The possible states for this state machine are:

• RETRY_REMOTE_NORMAL: This is the initial or default state indicating normal
operation.

• RETRY_LLRACK: This state indicates that a link layer retry request (Retry.Req
sequence) has been received from the remote entity and a Retry.Ack sequence
followed by flits from the retry queue must be (re)sent.

RETRY_LOCAL_IDLE

Retry.Ack sequence is received
and NUM_RETRY from Retry.Ack
does NOT match the value of
the last Retry.Req sent by the
local entity

RETRY_LOCAL_IDLE Any received retryable flit is
discarded

RETRY_LOCAL_IDLE TIMEOUT has reached its
threshold. RETRY_LLRREQ TIMEOUT is reset to 0.

RETRY_LOCAL_IDLE Error is detected on a received
flit. RETRY_LOCAL_IDLE Any received retryable flit is

discarded.

RETRY_LOCAL_IDLE A flit other than RETRY.Ack/
Retry.Req sequence is received. RETRY_LOCAL_IDLE Any received retryable flit is

discarded.

RETRY_LOCAL_IDLE A Retry.Req sequence is
received. RETRY_LOCAL_IDLE RRSM is updated.

RETRY_LOCAL_IDLE PHY_RESET1 / PHY_REINIT2
detected. RETRY_PHY_REINIT None.

RETRY_ABORT A flit is received. RETRY_ABORT All received flits are discarded.

1. PHY_RESET is the condition of Physical Layer telling the Link Layer it needs to initiate a Link Layer Retry due to exit from LTSSM
Recovery state.

2. PHY_REINIT is the condition of the Link Layer instructing the Phy to retrain.

Table 56. Local Retry State Transitions (Sheet 2 of 2)

Current Local Retry
State Condition Next Local Retry State Actions

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 156
Revision 2.0, Version 1.0

The remote retry state machine transitions are described in the table below.

Note: In order to select the priority of sending flits, the following rules apply:

1. Whenever the RRSM state becomes RETRY_LLRACK, the entity must give priority to
sending the Control flit with Retry.Ack

2. Except RRSM state of RETRY_LLRACK, the priority goes to LRSM state of
RETRY_LLRREQ and in that case the entity must send a Control flit with Retry.Req over
all other flits except an all-data flit sequence.

The overall sequence of replay is shown in Figure 83.

4.2.8.6 Interaction with Physical Layer Reinitialization

On detection of a physical layer LTSSM Recovery, the receiver side of the link layer
must force a link layer retry on the next flit. Forcing an error will either initiate LLR or
cause a current LLR to follow the correct error path. The LLR will ensure that no
retryable flits are dropped during the physical layer reinit. Without initiating a LLR it is
possible that packets/flits in flight on the physical wires could be lost or the sequence
numbers could get mismatched.

Upon detection of a physical layer LTSSM Recovery, the LLR RRSM needs to be reset to
its initial state and any instance of Retry.Ack sequence needs to be cleared in the link
layer and physical layer. The device needs to make sure it receives a Retry.Req
sequence before it ever transmits a RETRY.Ack sequence.

Table 57. Remote Retry State Transition

Current Remote Retry State Condition Next Remote Retry State

RETRY_REMOTE_NORMAL Any flit, other than error free Retry.Req sequence, is
received. RETRY_REMOTE_NORMAL

RETRY_REMOTE_NORMAL Error free Retry.Req sequence received. RETRY_LLRACK

RETRY_LLRACK Retry.Ack sequence not sent. RETRY_LLRACK

RETRY_LLRACK Retry.Ack sequence sent. RETRY_REMOTE_NORMAL

RETRY_LLRACK Physical Layer Reinitialization RETRY_REMOTE_NORMAL

Figure 83. CXL.cache/mem Replay Diagram

Local
(LRSM)

Remote
(RRSM)

X

NORMAL

LLRREQ

IDLE

NORMAL

NORMAL

LLRACK

NORMAL

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 157
Revision 2.0, Version 1.0

4.2.8.7 CXL.cache/CXL.mem Flit CRC

The CXL.cache Link Layer uses a 16b CRC for transmission error detection. The 16b
CRC is over the 528 bit flit. The assumptions about the type errors is as follows:

• Bit ordering runs down each lane
• Bit Errors occur randomly or in bursts down a lane, with majority of errors single bit

random errors.
• Random errors can statistically cause multiple bit errors in a single flit, so it is more

likely to get 2 errors in a flit then 3 errors, and more likely to get 3 errors in a flit
then 4 errors, and so on...

• There is no requirement for primitive polynomial (a polynomial that generates all
elements of an extension field from a base field) since we do have a fixed payload.
Primitive may be the result, but it's not required.

4.2.8.7.1 CRC-16 Polynomial and Detection Properties

The CRC polynomial to be used is 0x1f053.
• The 16b CRC Polynomial has the following properties:
• All Single, double, and triple bit errors detected
• Polynomial selection based on best 4-bit error detection characteristics and perfect

1, 2, 3-bit error detection

4.2.8.7.2 CRC-16 Computation

Below are the 512 bit data masks for use with an XOR tree to produce the 16 CRC bits.
Data Mask bits [511:0] for each CRC bit are applied to the Flit bits [511:0] and XOR is
performed. The resulting CRC bits are included as flit bits [527:512] are defined to be
CRC[15:00]. Pseudo code example for CRC bit 15 of this is CRC[15] = XOR
(DM[15][511:0] AND Flit[511:0]).

The Flit Data Masks for the 16 CRC bits are located below:

DM[15][511:0] =
512'hEF9C_D9F9_C4BB_B83A_3E84_A97C_D7AE_DA13_FAEB_01B8_5B20_4A4C_AE1E_79D9_7753_5D21_DC7F_DD6A_
38F0_3E77_F5F5_2A2C_636D_B05C_3978_EA30_CD50_E0D9_9B06_93D4_746B_2431

DM[14][511:0] =
512'h9852_B505_26E6_6427_21C6_FDC2_BC79_B71A_079E_8164_76B0_6F6A_F911_4535_CCFA_F3B1_3240_33DF_
2488_214C_0F0F_BF3A_52DB_6872_25C4_9F28_ABF8_90B5_5685_DA3E_4E5E_B629

DM[13][511:0] =
512'h23B5_837B_57C8_8A29_AE67_D79D_8992_019E_F924_410A_6078_7DF9_D296_DB43_912E_24F9_455F_C485_
AAB4_2ED1_F272_F5B1_4A00_0465_2B9A_A5A4_98AC_A883_3044_7ECB_5344_7F25

DM[12][511:0] =
512'h7E46_1844_6F5F_FD2E_E9B7_42B2_1367_DADC_8679_213D_6B1C_74B0_4755_1478_BFC4_4F5D_7ED0_3F28_
EDAA_291F_0CCC_50F4_C66D_B26E_ACB5_B8E2_8106_B498_0324_ACB1_DDC9_1BA3

DM[11][511:0] =
512'h50BF_D5DB_F314_46AD_4A5F_0825_DE1D_377D_B9D7_9126_EEAE_7014_8DB4_F3E5_28B1_7A8F_6317_C2FE_
4E25_2AF8_7393_0256_005B_696B_6F22_3641_8DD3_BA95_9A94_C58C_9A8F_A9E0

DM[10][511:0] =
512'hA85F_EAED_F98A_2356_A52F_8412_EF0E_9BBE_DCEB_C893_7757_380A_46DA_79F2_9458_BD47_B18B_E17F_
2712_957C_39C9_812B_002D_B4B5_B791_1B20_C6E9_DD4A_CD4A_62C6_4D47_D4F0

DM[09][511:0] =
512'h542F_F576_FCC5_11AB_5297_C209_7787_4DDF_6E75_E449_BBAB_9C05_236D_3CF9_4A2C_5EA3_D8C5_F0BF_
9389_4ABE_1CE4_C095_8016_DA5A_DBC8_8D90_6374_EEA5_66A5_3163_26A3_EA78

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 158
Revision 2.0, Version 1.0

DM[08][511:0] =
512'h2A17_FABB_7E62_88D5_A94B_E104_BBC3_A6EF_B73A_F224_DDD5_CE02_91B6_9E7C_A516_2F51_EC62_F85F_
C9C4_A55F_0E72_604A_C00B_6D2D_6DE4_46C8_31BA_7752_B352_98B1_9351_F53C

DM[07][511:0] =
512'h150B_FD5D_BF31_446A_D4A5_F082_5DE1_D377_DB9D_7912_6EEA_E701_48DB_4F3E_528B_17A8_F631_7C2F_
E4E2_52AF_8739_3025_6005_B696_B6F2_2364_18DD_3BA9_59A9_4C58_C9A8_FA9E

DM[06][511:0] =
512'h8A85_FEAE_DF98_A235_6A52_F841_2EF0_E9BB_EDCE_BC89_3775_7380_A46D_A79F_2945_8BD4_7B18_BE17_
F271_2957_C39C_9812_B002_DB4B_5B79_11B2_0C6E_9DD4_ACD4_A62C_64D4_7D4F

DM[05][511:0] =
512'hAADE_26AE_AB77_E920_8BAD_D55C_40D6_AECE_0C0C_5FFC_C09A_F38C_FC28_AA16_E3F1_98CB_E1F3_8261_
C1C8_AADC_143B_6625_3B6C_DDF9_94C4_62E9_CB67_AE33_CD6C_C0C2_4601_1A96

DM[04][511:0] =
512'hD56F_1357_55BB_F490_45D6_EAAE_206B_5767_0606_2FFE_604D_79C6_7E14_550B_71F8_CC65_F0F9_C130_
E0E4_556E_0A1D_B312_9DB6_6EFC_CA62_3174_E5B3_D719_E6B6_6061_2300_8D4B

DM[03][511:0] =
512'h852B_5052_6E66_4272_1C6F_DC2B_C79B_71A0_79E8_1647_6B06_F6AF_9114_535C_CFAF_3B13_2403_3DF2_
4882_14C0_F0FB_F3A5_2DB6_8722_5C49_F28A_BF89_0B55_685D_A3E4_E5EB_6294

DM[02][511:0] =
512'hC295_A829_3733_2139_0E37_EE15_E3CD_B8D0_3CF4_0B23_B583_7B57_C88A_29AE_67D7_9D89_9201_9EF9_
2441_0A60_787D_F9D2_96DB_4391_2E24_F945_5FC4_85AA_B42E_D1F2_72F5_B14A

DM[01][511:0] =
512'h614A_D414_9B99_909C_871B_F70A_F1E6_DC68_1E7A_0591_DAC1_BDAB_E445_14D7_33EB_CEC4_C900_CF7C_
9220_8530_3C3E_FCE9_4B6D_A1C8_9712_7CA2_AFE2_42D5_5A17_68F9_397A_D8A5

DM[00][511:0] =
512'hDF39_B3F3_8977_7074_7D09_52F9_AF5D_B427_F5D6_0370_B640_9499_5C3C_F3B2_EEA6_BA43_B8FF_BAD4_
71E0_7CEF_EBEA_5458_C6DB_60B8_72F1_D461_9AA1_C1B3_360D_27A8_E8D6_4863

4.2.9 Poison and Viral

4.2.9.1 Viral

Viral is a containment feature as described in Section 12.4, “CXL Viral Handling” . As
such, when the local socket is in a viral state, it is the responsibility of all off-die
interfaces to convey this state to the remote side for appropriate handling. The
CXL.cache/mem link layer conveys viral status information. As soon as the viral status
is detected locally, the link layer forces a CRC error on the next outgoing flit. If there is
no traffic to send, the transmitter will send a LLCRD flit with a CRC error. It then
embeds viral status information in the Retry.Ack message it generates as part of the
defined CRC error recovery flow.

There are two primary benefits to this methodology. First, by using the RETRY.Ack to
convey viral status, we do not have to allocate a bit for this in protocol flits. Second, it
allows immediate indication of viral and reduces the risk of race conditions between the
viral distribution path and the datapath. These risks could be particularly exacerbated
by the large CXL.cache flit size and the potential limitations in which components
(header, slots) allocate dedicated fields for viral indication.

To support MLD components, first introduced in CXL 2.0, a Viral LD-ID Vector is defined
in the Retry.Ack to encode which LD-ID is impacted by the viral state. This allows viral
to be indicated to any set of Logical Devices. This vector is only applicable when the
primary viral bit is set, and is only applicable to links that support multiple LD-ID

Ev
al

ua
tio

n
C

op
y

Compute Express Link Link Layers

 Compute Express Link Specification
October 26, 2020 159
Revision 2.0, Version 1.0

(referred to as MLD - Multi-Logical Device). Links without LD-ID support (referred to as
SLD - Single Logical Device) will treat the vector as Reserved. For MLD, the encoding of
all zeros indicates that all LD-ID are in viral and is equivalent to an encoding of all ones.

§ §

Ev
al

ua
tio

n
C

op
y

Compute Express Link ARB/MUX

 Compute Express Link Specification
October 26, 2020 160
Revision 2.0, Version 1.0

5.0 Compute Express Link ARB/MUX

The figure below shows where the CXL ARB/MUX exists in the Flex Bus layered
hierarchy. The ARB/MUX provides dynamic muxing of the CXL.io and CXL.cache/
CXL.mem link layer control and data signals to interface with the Flex Bus physical
layer.

Figure 84. Flex Bus Layers - CXL ARB/MUX Highlighted

Ev
al

ua
tio

n
C

op
y

Compute Express Link ARB/MUX

 Compute Express Link Specification
October 26, 2020 161
Revision 2.0, Version 1.0

In the transmit direction, the ARB/MUX arbitrates between requests from the CXL link
layers and multiplexes the data. It also processes power state transition requests from
the link layers: resolving them to a single request to forward to the physical layer,
maintaining virtual link state machines (vLSMs) for each link layer interface, and
generating ARB/MUX link management packets (ALMPs) to communicate the power
state transition requests across the link on behalf of each link layer. Please refer to
Section 10.3, Section 10.4, and Section 10.5 for more details on how the ALMPs are
utilized in the overall flow for power state transitions. In PCIe mode, the ARB/MUX is
bypassed, and thus ALMP generation by the ARB/MUX is disabled.

In the receive direction, the ARB/MUX determines the protocol associated with the CXL
flit and forwards the flit to the appropriate link layer. It also processes the ALMP
packets, participating in any required handshakes and updating its vLSMs as
appropriate.

5.1 Virtual LSM States
The ARB/MUX maintains vLSMs for each CXL link layer it interfaces with, transitioning
the state based on power state transition requests it receives from the local link layer
or from the remote ARB/MUX on behalf of a remote link layer. Table 58 below lists the
different possible states for the vLSMs. PM States and Retrain are virtual states that
can differ across interfaces (CXL.io and CXL.cache and CXL.mem), however all other
states such as LinkReset, LinkDisable and LinkError are forwarded to the Link Layer and
are therefore synchronized across interfaces.

Note: When the Physical Layer enters Hot-Reset or LinkDisable state, that state is
communicated to all link layers as LinkReset or LinkDisable respectively. No ALMPs are
exchanged, irrespective of who requested, for these transitions. LinkError should take
the LTSSM to Detect.

Table 58. Virtual LSM States Maintained Per Link Layer Interface

Virtual LSM State Description

Reset Power-on default state during which initialization occurs

Active Normal operational state

L1.0 Power savings state, from which the link can enter Active via Retrain (maps to PCIe L1)

L1.1 Power savings state, from which the link can enter Active via Retrain (reserved for future use)

L1.2 Power savings state, from which the link can enter Active via Retrain (reserved for future use)

L1.3 Power savings state, from which the link can enter Active via Retrain (reserved for future use)

DAPM Deepest Allowable PM State (not a resolved state; a request that resolves to an L1 substate)

SLEEP_L2 Power savings state, from which the link must go through Reset to reach Active

LinkReset Reset propagation state resulting from software or hardware initiated reset

LinkError Link Error state due to hardware detected errors

LinkDisable Software controlled link disable state

Retrain Transitory state that transitions to Active

Ev
al

ua
tio

n
C

op
y

Compute Express Link ARB/MUX

 Compute Express Link Specification
October 26, 2020 162
Revision 2.0, Version 1.0

The ARB/MUX looks at the state of each vLSM to resolve to a single state request to
forward to the physical layer as specified in Table 59. For example, if current vLSM[0]
state is L1.0 (row = L1.0) and current vLSM[1] state is Active (column = Active), then
the resolved request from the ARB/MUX to the Physical layer will be Active.

Based on the requested state from one or more of the Link Layers, ARB/MUX will
change the state request to the physical layer for the desired link state.

For implementations in which the Link Layers support directing the ARB/MUX to
LinkReset or LinkError or LinkDisable, the ARB/MUX must unconditionally propagate
these requests from the requesting Link Layer to the Physical Layer; this takes priority
over Table 59.

Table 60 describes the conditions under which a vLSM transitions from one state to the
next. A transition to the next state happens after all the steps in the trigger conditions
column are complete. Some of the trigger conditions are sequential and indicate a
series of actions from multiple sources. For example, on the transition from Active to
L1.x state on an Upstream Port, the state transition will not occur until the vLSM has
received a request to enter L1.x from the Link Layer followed by the vLSM sending a
Request ALMP{L1.x} to the remote vLSM. Next the vLSM must wait to receive a Status
ALMP{L1.x} from the remote vLSM. Once all these conditions are met in sequence, the
vLSM will transition to the L1.x state as requested.

Table 59. ARB/MUX Multiple Virtual LSM Resolution Table

Resolved Request from ARB/MUX
to Flex Bus Physical Layer

(Row = current vLSM[0] state;
Column = current vLSM[1] state)

Reset Active L1.0
L1.1

(reserved
for future

use)

L1.2
(reserved
for future

use)

L1.3
(reserved
for future

use)

SLEEP_L
2

Reset RESET Active L1.0 L1.1 or
lower

L1.2 or
lower

L1.3 or
lower SLEEP_L2

Active Active Active Active Active Active Active Active

L1.0 L1.0 Active L1.0 L1.0 L1.0 L1.0 L1.0

L1.1 (reserved for future use) L1.1 or
lower Active L1.0 L1.1 or

lower
L1.1 or
lower

L1.1 or
lower

L1.1 or
lower

L1.2 (reserved for future use) L1.2 or
lower Active L1.0 L1.1 or

lower
L1.2 or
lower

L1.2 or
lower

L1.2 or
lower

L1.3 (reserved for future use) L1.3 or
lower Active L1.0 L1.1 or

lower
L1.2 or
lower

L1.3 or
lower

L1.3 or
lower

SLEEP_L2 SLEEP_L2 Active L1.0 L1.1 or
lower

L1.2 or
lower

L1.3 or
lower SLEEP_L2

Ev
al

ua
tio

n
C

op
y

Compute Express Link ARB/MUX

 Compute Express Link Specification
October 26, 2020 163
Revision 2.0, Version 1.0

Table 60. ARB/MUX State Transition Table

Current vLSM State Next State Upstream Port Trigger Condition Downstream Port Trigger
Condition

Active

L1.x

Upon receiving a Request to enter
L1.x from Link Layer, the ARB/MUX
must initiate a Request ALMP{L1.x}
and receive a Status ALMP{L1.x}
from the remote vLSM

Upon receiving a Request to enter
L1.x from Link Layer and receiving a
Request ALMP{L1.x} from the
Remote vLSM, the ARB/MUX must
send Status ALMP{L1.x} to the
remote vLSM

L2

Upon receiving a Request to enter
L2 from Link Layer the ARB/MUX
must initiate a Request ALMP{L2}
and receive a Status ALMP{L2}
from the remote vLSM

Upon receiving a Request to enter
L2 from Link Layer and receiving a
Request ALMP{L2} from the Remote
vLSM the ARB/MUX must send
Status ALMP{L2} to the remote
vLSM

Reset

Physical Layer transitions from
Recovery to L0 and State Status
ALMP synchronization for Recovery
exit resolves to Reset. (see
Section 5.1.2.3)

N/A

L1 Retrain Upon receiving an ALMP Active
request from remote ARB/MUX

Upon receiving an ALMP Active
request from remote ARB/MUX

Active Retrain

Any of the following conditions are
met:
1) Physical Layer LTSSM enters
Recovery.
2) Physical Layer transitions from
Recovery to L0 and State Status
ALMP synchronization for Recovery
exit resolves to Retrain. (see
Section 5.1.2.3)

Physical Layer LTSSM enters
Recovery.

Retrain Active

Link Layer is requesting Active and
any of the following conditions are
met:
1) Physical Layer transitions from
Recovery to L0 and State Status
ALMP synchronization for Recovery
exit resolves to Active.
2) Physical Layer transitions from
Recovery to L0 and State Status
ALMP synchronization for Recovery
exit does not resolve to Active.
Entry to Active ALMP exchange
protocol is complete. (See
Section 5.1.2.2)
3) Physical Layer has been in L0.
Entry to Active ALMP exchange
protocol is complete. (See
Section 5.1.2.2)

Link Layer is requesting Active and
any of the following conditions are
met:
1) Physical Layer transitions from
Recovery to L0 and State Status
ALMP synchronization for Recovery
exit resolves to Active.
2) Physical Layer transitions from
Recovery to L0 and State Status
ALMP synchronization for Recovery
exit does not resolve to Active.
Entry to Active ALMP exchange
protocol is complete. (See
Section 5.1.2.2)
3) Physical Layer has been in L0.
Entry to Active ALMP exchange
protocol is complete. (See
Section 5.1.2.2)

ANY (Except Disable/
LinkError) LinkReset Physical Layer LTSSM in Hot Reset Physical Layer LTSSM in Hot Reset

ANY (Except LinkError) Disabled Physical Layer LTSSM in Disabled
state

Physical Layer LTSSM in Disabled
state

ANY LinkError
Directed to enter LinkError from
Link Layer or indication of LinkError
from Physical Layer

Directed to enter LinkError from
Link Layer or indication of LinkError
from Physical Layer

L2 Reset Implementation Specific. Refer to
rule 3 in Section 5.1.1.

Implementation Specific. Refer to
rule 3 in Section 5.1.1.

Disabled Reset Implementation Specific. Refer to
rule 3 in Section 5.1.1.

Implementation Specific. Refer to
rule 3 in Section 5.1.1.

Ev
al

ua
tio

n
C

op
y

Compute Express Link ARB/MUX

 Compute Express Link Specification
October 26, 2020 164
Revision 2.0, Version 1.0

5.1.1 Additional Rules for Local vLSM Transitions

1. If any Link Layer requests entry into Retrain to the ARB/MUX, ARB/MUX must
forward the request to the Physical Layer to initiate LTSSM transition to Recovery.
In accordance with the Active to Retrain transition trigger condition - once LTSSM is
in Recovery, ARB/MUX should reflect Retrain to all vLSMs that are in Active state.

2. Once a vLSM is in Retrain state, it is expected that the corresponding Link Layer will
eventually request ARB/MUX for a transition to Active.

3. If the LTSSM moves to Detect, each vLSM must eventually transition to Reset.

5.1.2 Rules for Virtual LSM State Transitions Across Link

This section refers to vLSM state transitions.

5.1.2.1 General Rules

• The link cannot operate for any other protocols if CXL.io protocol is down. (CXL.io
operation is a minimum requirement)

5.1.2.2 Entry to Active Exchange Protocol

The ALMP protocol required for the entry to active consists of 4 ALMP exchanges
between the local and remote vLSMs as seen in Figure 85. Entry to active begins with
an Active State Request ALMP sent to the remote vLSM which responds with an Active
State Status ALMP. The only valid response to an Active State Request is an Active
State Status once the corresponding Link Layer is ready to receive protocol flits. The
remote vLSM must also send an Active State Request ALMP to the local vLSM which
responds with an Active State Status ALMP.

During initial link training, the Upstream Port (UP) must wait for a non-physical layer flit
(i.e. a flit that was not generated by the physical layer of the Downstream Port (DP))
before transmitting any ALMPs (please refer to Section 6.3.1). Thus, during initial link
training, the first ALMP is always sent from the Downstream Port (DP) to the Upstream
Port (UP). If additional Active exchange handshakes occur subsequently (for example,
as part of PM exit), the Active request ALMP can be initiated from either side.

LinkError Reset Implementation Specific. Refer to
rule 3 in Section 5.1.1.

Implementation Specific. Refer to
rule 3 in Section 5.1.1.

LinkReset Reset Implementation Specific. Refer to
rule 3 in Section 5.1.1.

Implementation Specific. Refer to
rule 3 in Section 5.1.1.

Reset Active

Any of the following conditions are
met:
1) Link Layer is asking for Active
and Entry to Active ALMP exchange
protocol is complete (See
Section 5.1.2.2)
2) Physical Layer transitions from
Recovery to L0 and State Status
ALMP synchronization for Recovery
exit resolves to Active. (see
Section 5.1.2.3)

Any of the following conditions are
met:
1) Link Layer is asking for Active
and Entry to Active ALMP exchange
protocol is complete (See
Section 5.1.2.2)
2) Physical Layer transitions from
Recovery to L0 and State Status
ALMP synchronization for Recovery
exit resolves to Active. (see
Section 5.1.2.3)

Table 60. ARB/MUX State Transition Table

Current vLSM State Next State Upstream Port Trigger Condition Downstream Port Trigger
Condition

Ev
al

ua
tio

n
C

op
y

Compute Express Link ARB/MUX

 Compute Express Link Specification
October 26, 2020 165
Revision 2.0, Version 1.0

Once Active State Status ALMP has been sent and received by a vLSM, the vLSM
transitions to Active State.

5.1.2.3 Status Synchronization Protocol

 After highest negotiated speed of operation is reached during initial link training, all
subsequent LTSSM Recovery transitions must be signaled to ARB/MUX. vLSM Status
Synchronization Protocol must be performed after Recovery exit. A Link Layer cannot
conduct any other communication on the link coming out of LTSSM recovery until
Status Synchronization Protocol is complete for the corresponding vLSM. Figure 86
shows an example of Status Synchronization Protocol.

The Status Synchronization Protocol completion requires the following events in the
given order:
1. Status Exchange: Transmit a State Status ALMP, and receive an error free State

Status ALMP. The state indicated in the transmitted State Status ALMP is a
snapshot of the vLSM state. Refer to Section 5.1.2.3.1.

2. A corresponding State Status Resolution based on the sent and received State
Status ALMPs during the synchronization exchange. See Table 61 for determining
the resolved vLSM state.

3. New State Request and Status ALMP exchanges when applicable. This occurs if the
resolved vLSM state is not the same as the Link Layer requested state.

5.1.2.3.1 vLSM Snapshot Rule

A STATUS_EXCHANGE_PENDING variable is used to determine when a snapshot of the
vLSM can be taken. The following rules apply:
1. A snapshot of the vLSM is taken before entry to LTSSM Recovery if the

STATUS_EXCHANGE_PENDING variable is clear for that vLSM.
2. A STATUS_EXCHANGE_PENDING variable is set for a vLSM once a snapshot is

taken.

Figure 85. Entry to Active Protocol Exchange

DP
LTSSM

UP
 LTSSM

CHANNEL
vLSM vLSM

Status = Reset Status = Reset

Status = Active

Status = Active

Ev
al

ua
tio

n
C

op
y

Compute Express Link ARB/MUX

 Compute Express Link Specification
October 26, 2020 166
Revision 2.0, Version 1.0

3. STATUS_EXCHANGE_PENDING variable is cleared on reset or on completion of
Status Exchange (i.e. Transmit a State Status ALMP, and receive an error free State
Status ALMP).

This is to account for situations where a corrupted State Status ALMP during Status
Exchange can lead to additional LTSSM transitions through Recovery. See Figure 95 for
an example of this flow.

Figure 86. Example Status Exchange

Table 61. vLSM State Resolution After Status Exchange

No. Sent Status ALMP Received Status ALMP Resolved vLSM State

1. Reset Reset Reset

2. Reset Active Active

3. Reset L2 Reset

4. Active Reset Active

5. Active Active Active

6. Active Retrain Active

7. Active L1.x Retrain

8. Active L2 Reset

9. Retrain Active Active

10. Retrain Retrain Retrain

11. Retrain L1.x Retrain

12. L1.x Active L1.x

13. L1.x Retrain L1.x

14. L1.x L1.x L1.x

15. L2 Active L2

16. L2 Reset L2

17. L2 L2 L2

DP
LTSSM

UP
LTSSMCHANNEL

Recovery State

Notification of
Recovery Exit

Notification of
Recovery Exit

vLSM[0] vLSM[0]

Notification of
Recovery Entry

Notification of
Recovery Entry

Snapshot = vLSM state
STATUS_EXCHANGE_PENDING = 1

vLSM state transitions
to Retrain if applicable

Snapshot = vLSM state
STATUS_EXCHANGE_PENDING = 1

vLSM state transitions
to Retrain if applicable

STATUS_EXCHANGE_PENDING = 0 STATUS_EXCHANGE_PENDING = 0

STATUS_EXCHANGE_PENDING = 0 STATUS_EXCHANGE_PENDING = 0

Ev
al

ua
tio

n
C

op
y

Compute Express Link ARB/MUX

 Compute Express Link Specification
October 26, 2020 167
Revision 2.0, Version 1.0

5.1.2.3.2 Notes on State Resolution after Status Exchange (Table 61)

• For the rows where the resolved state is Active, the corresponding ARB/MUX must
make sure that protocol flits received immediately after the State Status ALMP from
remote ARB/MUX can be serviced by the Link Layer of the corresponding vLSM.
One way to guarantee this is to ensure that for these cases the Link Layer receiver
is ready before sending the State Status ALMP during Status Exchange.

• Rows 7 and 11 will result in L1 exit flow following state resolution. The
corresponding ARB/MUX must initiate a transition to Active through new State
Request ALMPs. Once both DP and UP vLSMs are in Active, the Link Layers can redo
PM entry negotiation if required. Similarly, for row 10 if reached during PM
negotiation, it is required for both vLSMs to initiate Active request ALMPs.

• When supported, rows 3 and 8 will result in L2 exit flow following state resolution.
Since the LTSSM will eventually move to Detect, each vLSM will eventually
transition to Reset state.

• Rows 7 and 8 are applicable for Upstream Ports only. Since entry into PM is always
initiated by Upstream Port, and it cannot transition its vLSM to PM unless the
Downstream Port has done so, there is no case where these rows can apply for
Downstream Ports.

• Behavior is undefined and implementation specific for combinations not captured in
Table 61.

5.1.2.4 State Request ALMP

The following rules apply for sending a State Request ALMP. A State Request ALMP is
sent to request a state change to Active or PM. For PM, the request can only be initiated
by the ARB/MUX on the Upstream Port.

5.1.2.4.1 For Entry Into Active

• All Recovery state operations must complete before the entry to Active sequence
starts

• An ALMP State Request is sent to initiate the entry into Active State.
• A vLSM must send a Request and receive a Status before the transmitter is

considered active. This is not equivalent to vLSM Active state.
• Protocol layer flits must only be transmitted once the vLSM has reached Active

state.

Figure 87 shows an example of entry into the Active state. The flows in Figure 87 show
four independent actions (ALMP handshakes) that may not necessarily happen in the
order or small time-frame shown. The vLSM transmitter and receiver may become
active independently. Both transmitter and receiver must be active before the vLSM
state is Active. The transmitter becomes active after a vLSM has transmitted a Request
ALMP{Active} and received a Status ALMP{Active}. The receiver becomes active after
a vLSM receives a Request ALMP{Active} and sends a Status ALMP{Active} in
response.

Ev
al

ua
tio

n
C

op
y

Compute Express Link ARB/MUX

 Compute Express Link Specification
October 26, 2020 168
Revision 2.0, Version 1.0

Please refer to Section 5.1.2.2 for rules regarding the Active State Request/Status
handshake protocol.

Figure 87. CXL Entry to Active Example Flow

Normal Operation

DP
LTSSM vLSM[1]vLSM[1] UP

 LTSSM
CHANNELvLSM[0] vLSM[0]

<LTSSM in L0>

DP vLSM[0]
Receiver Active

UP vLSM[0] Receiver
Active

UP vLSM[1] Receiver
Active

DP vLSM[1]
Receiver Active

vLSM[0] = Active

vLSM[0] = Active

vLSM[1] = Active

vLSM[1] = Active

vLSM[0] = ResetvLSM[1] = Reset vLSM[0] = Reset vLSM[1] = Reset

Ev
al

ua
tio

n
C

op
y

Compute Express Link ARB/MUX

 Compute Express Link Specification
October 26, 2020 169
Revision 2.0, Version 1.0

5.1.2.4.2 For Entry into PM State (L1/L2)

• An ALMP State Request is sent to initiate the entry into PM States. Only Upstream
Ports can initiate entry into PM states.

• For Upstream Ports, a vLSM must send a Request and receive a Status before the
PM negotiation is considered complete for the corresponding vLSM.

Figure 88 shows an example of Entry to PM State (L1) initiated by the UP ARB/MUX.
Each vLSM will be ready to enter L1 State once the vLSM has sent a Request ALMP{L1}
and received a Status ALMP{L1} in return or the vLSM has received a Request
ALMP{L1} and sent a Status ALMP{L1} in return. The vLSMs operate independently
and actions may not complete in the order or the timeframe shown. Once all vLSMs are
ready to enter PM State (L1), the Channel will complete EIOS exchange and enter L1.

5.1.2.5 State Status ALMP

5.1.2.5.1 When State Request ALMP is received

• A State Status ALMP is sent after a State Request ALMP is received for entry into
Active State or PM States when entry to the PM state is accepted. No State Status
ALMP is sent if the PM state is not accepted. See Section 10.3, “Compute Express
Link Power Management” for more details.

5.1.2.5.2 Recovery State

• The vLSM will trigger link Recovery if a State Status ALMP is received without a
State Request first being sent by the vLSM except when the State Status ALMP is
received for synchronization purposes (i.e. after link exits Recovery).

Figure 88. CXL Entry to PM State Example

L1

DP
LTSSM vLSM[1]vLSM[1] UP

LTSSM
CHANNELvLSM[0] vLSM[0]

Go to L1
Ok to go to L1

vLSM[0] = Active vLSM[0] = Active vLSM[1] = ActivevLSM[1] = Active

vLSM[0] = L1

vLSM[1] = L1

vLSM[0] = L1

vLSM[1] = L1

Ev
al

ua
tio

n
C

op
y

Compute Express Link ARB/MUX

 Compute Express Link Specification
October 26, 2020 170
Revision 2.0, Version 1.0

Figure 89 shows a general example of Recovery exit. Please refer to Section 5.1.2.3 for
details on the status synchronization protocol.

On Exit from Recovery, the vLSMs on either side of the channel will send a Status ALMP
in order to synchronize the vLSMs. The Status ALMPs for synchronization may trigger a
State Request ALMP if the resolved state and the Link Layer requested state are not the
same, as seen in Figure 90. Refer to Section 5.1.2.3 for the rules that apply during
state synchronization. The ALMP for synchronization may trigger a re-entry to recovery
in the case of unexpected ALMPs. This is explained using the example of initial link
training flows in Section 5.1.3.1. If the resolved states from both vLSMs are the same
as the Link Layer requested state, the vLSMs are considered synchronized and will
continue normal operation.

Figure 89. CXL Recovery Exit Example Flow

Normal Operation

DP
LTSSM vLSM[1]vLSM[1] UP

LTSSM
CHANNELvLSM[0] vLSM[0]

STATE_STS sent to sync vLSMs

May trigger
STATE_REQ if resolved

state and requested
state are different

Recovery State

Notification of
Recovery Exit

Notification of
Recovery Exit

STATE_STS sent to sync vLSMs

Ev
al

ua
tio

n
C

op
y

Compute Express Link ARB/MUX

 Compute Express Link Specification
October 26, 2020 171
Revision 2.0, Version 1.0

Figure 90 shows an example of the exit from a PM State (L1) through Recovery. The DP
vLSM[0] in L1 state receives the Active Request, and the link enters Recovery. After the
exit from recovery, each vLSM sends Status ALMP{L1} to synchronize the vLSMs.
Because the resolved state after synchronization is not equal to the requested state,
Request ALMP{Active} and Status ALMP{Active} handshakes are completed to enter
Active State.

5.1.2.6 Unexpected ALMPs

The following situations describe circumstances where an unexpected ALMP will trigger
link recovery:

• When performing the Status Synchronization Protocol after exit from recovery, any
ALMP other than a Status ALMP is considered an unexpected ALMP and will trigger
recovery.

• When an Active Request ALMP has been sent, receipt of any ALMP other than an
Active State Status ALMP or an Active Request ALMP is considered an unexpected
ALMP and will trigger recovery.

• As outlined in Section 5.1.2.5.2,a State Status ALMP received without a State
Request ALMP first being sent is an unexpected ALMP except during the Status
Synchronization Protocol.

Figure 90. CXL Exit from PM State Example

Recovery State

L0

<L1 Idle>

DP
LTSSM

vLSM[1]vLSM[1] UP
LTSSM

CHANNELvLSM[0] vLSM[0]

vLSM[0] Requested
to enter Active

STATE_STS ALMPs
communicate vLSM

states for syncronization

Notification of
Recovery Exit

Notification of
Recovery Exit

Resolved to L1
STATE_STS !=

requested state,
STATE_REQ sent

vLSM[0] = Active

vLSM[1] = Active

vLSM[0] = Active

vLSM[1] = Active

vLSM[0] = Retrain

vLSM[1] = Retrain

vLSM[0] = Retrain

vLSM[1] = Retrain

vLSM[1] = L1 vLSM[0] = L1 vLSM[0] = L1 vLSM[1] = L1

ARB/MUX takes snapshot of
current vvLSM states before

LTSSM went to Recovery

ARB/MUX takes snapshot of
current vvLSM states before

LTSSM went to Recovery

Ev
al

ua
tio

n
C

op
y

Compute Express Link ARB/MUX

 Compute Express Link Specification
October 26, 2020 172
Revision 2.0, Version 1.0

5.1.3 Applications of the vLSM State Transition Rules

5.1.3.1 Initial Link Training

As the link trains from Gen1 speed to the highest supported speed (Gen3 or higher for
CXL), the LTSSM may go through several Recovery to L0 to Recovery transitions.
Implementations are not required to expose ARB/MUX to all of these Recovery
transitions. Depending on whether these initial Recovery transitions are hidden from
the ARB/MUX or not, four different scenarios can happen for the initial ALMP
handshakes. In all cases, the vLSM state transition rules guarantee that the situation
will resolve itself with the vLSMs reaching Active state. These scenarios are presented
in the following figures. Note that the figures are illustrative examples, and
implementations must follow the rules outlined in the previous sections. Only one vLSM
handshake is shown in the figures, but the similar handshakes can happen for the
second vLSM as well.

Figure 91 shows an example of the scenario where both DP and UP are hiding the initial
recovery transitions from ARB/MUX. Since neither of them saw a notification of
recovery entry, they proceed with the exchange of Active request and status ALMPs to
transition into Active state. Note that the first ALMP (Active request ALMP) is sent from
DP to UP.

Figure 91. Both DP and UP Hide Recovery Transitions from ARB/MUX

DP
LTSSM

UP
 LTSSMCHANNELvLSM[0] vLSM[0]

<LTSSM in L0>

DP vLSM[0]
Receiver Active

UP vLSM[0] Receiver
Active

vLSM[0] = Active

vLSM[0] = Active

vLSM[0] = ResetvLSM[0] = Reset

Ev
al

ua
tio

n
C

op
y

Compute Express Link ARB/MUX

 Compute Express Link Specification
October 26, 2020 173
Revision 2.0, Version 1.0

Figure 92 shows an example where both DP and UP notify the ARB/MUX of at least one
recovery transition during initial link training. In this case, first state status
synchronization ALMPs are exchanged (indicating Reset state), followed by regular
exchange of Active request and status ALMPs (not shown explicitly). Note that the first
ALMP (Reset status) is sent from DP to UP.

Figure 92. Both DP and UP Notify ARB/MUX of Recovery Transitions

DP
LTSSM

UP
LTSSM

CHANNELvLSM[0] vLSM[0]

Initial Link Training

Notification of
Recovery Exit

Active Entry ALMP Handshakes

Notification of
Recovery Exit

Ev
al

ua
tio

n
C

op
y

Compute Express Link ARB/MUX

 Compute Express Link Specification
October 26, 2020 174
Revision 2.0, Version 1.0

Figure 93 shows an example of the scenario where DP hides initial recovery transitions
from the ARB/MUX, but the UP does not. In this case, DP ARB/MUX has not seen
recovery transition, so it begins by sending an Active state request ALMP to the UP. This
is interpreted as an unexpected ALMP by the UP and it triggers link recovery (which
must now be notified to both ARB/MUX, since it is after reaching operation at highest
supported link speed). State status synchronization with state=Reset is performed
followed by regular Active request and status handshakes (not shown explicitly).

Figure 93. DP Hides Initial Recovery, UP Does Not

DP
LTSSM

UP
LTSSM

CHANNELvLSM[0] vLSM[0]

Initial Link Training

Notification of
Recovery Exit

Unexpected ALMP

Recovery State

Notification of
Recovery Exit

Notification of
Recovery Exit

DP did not expose Recovery to
Arb/Mux during training

Active Entry ALMP Handshakes

Ev
al

ua
tio

n
C

op
y

Compute Express Link ARB/MUX

 Compute Express Link Specification
October 26, 2020 175
Revision 2.0, Version 1.0

Figure 94 shows an example of the scenario where the UP hides initial recovery
transitions, but the DP does not. In this case, the DP first sends a Reset status ALMP.
This will cause UP to trigger link recovery as a result of the rules in Section 5.1.2.5
(which must now be notified to both ARB/MUX, since it is after reaching operation at
highest supported link speed). State status synchronization with state=Reset is
performed followed by regular Active request and status handshakes (not shown
explicitly).

5.1.3.2 Status Exchange Snapshot Example

Figure 95 shows an example of a case where a State Status ALMP during Status
Exchange gets corrupted for vLSM[1] on the UP. A corrupted ALMP is when the lower
four DWs don’t match for a received ALMP; it indicates a bit error on the lower four
DWs of the ALMP during transmission. ARB/MUX triggers LTSSM Recovery as a result.
When the recovery entry notification is received for the second Recovery entry, the
snapshot of vLSM[1] on the UP is still Active - since the status exchanges had not
completed successfully.

Figure 94. UP Hides Initial Recovery, DP Does Not

DP
LTSSM

UP
LTSSM

CHANNELvLSM[0] vLSM[0]

Initial Link Training

Unexpected ALMP

Recovery State

Notification of
Recovery Exit

Notification of
Recovery Exit

UP did not expose Recovery to
Arb/Mux during training

Active Entry ALMP Handshakes

Notification of
Recovery Exit

Ev
al

ua
tio

n
C

op
y

Compute Express Link ARB/MUX

 Compute Express Link Specification
October 26, 2020 176
Revision 2.0, Version 1.0

5.1.3.3 L1 Abort Example

Figure 96 shows an example of a scenario that could arise during L1 transition of the
physical link. It begins with successful L1 entry by both vLSMs through corresponding
PM request and status ALMP handshakes. The ARB/MUX even requests the Physical
Layer to take the LTSSM to L1 for both the DP and UP. However, there happens to be a
race and one of the vLSMs requests Active before EIOS is received by the DP Physical
Layer. This causes the ARB/MUX to remove the request for L1 entry (L1 abort), while
sending an Active request ALMP to the UP. When EIOS is eventually received by the
physical layer, since the ARB/MUX on the DP side is not requesting L1 (and there is no
support for L0s in CXL), the Physical Layer must take the LTSSM to Recovery to resolve
this condition. On Recovery exit, both the DP and UP ARB/MUX send their
corresponding vLSM state status as part of the synchronization protocol. For vLSM[1],
since the resolved state status (Retrain) is not the same as desired state status
(Active), another Active request ALMP must be sent by the DP to the UP. Similarly, on
the UP side, the received state status (L1) is not the same as the desired state status
(Active - since the vLSM moving to Retrain will trigger the UP link layer to request
Active), the UP ARB/MUX will initiate an Active request ALMP to the DP. Once Active
state status ALMP has been sent and received, the corresponding ARB/MUX will move
the vLSM to Active, and the protocol level flit transfer can begin.

Figure 95. Snapshot Example During Status Synchronization

Normal Operation

DP
LTSSM

vLSM[1]vLSM[1] UP
LTSSM

CHANNELvLSM[0] vLSM[0]

<LTSSM in L0>

Recovery State

<LTSSM in L0>

Recovery State

vLSM[0] = RetrainvLSM[1] = Retrain

vLSM[0] = ActivevLSM[1] = Active vLSM[0] = Active vLSM[1] = Active

vLSM[0] = RetrainvLSM[1] = Retrain vLSM[0] = Retrain vLSM[1] = Retrain

vLSM[0] = Active

vLSM[1] = Active

vLSM[0] = Active

vLSM[1] = Active

ALMP corrupted
Sync exchange pending,
Snapshot remains Active

vLSM[0] = Active vLSM[0] = Active

vLSM[0] = Active

vLSM[0] = Retrain

vLSM[1] = Retrain

STATUS_EXCHANGE_PENDING=0 STATUS_EXCHANGE_PENDING=0 STATUS_EXCHANGE_PENDING=0 STATUS_EXCHANGE_PENDING=0

vLSM[1] Snapshot = Active
STATUS_EXCHANGE_PENDING=1

vLSM[0] Snapshot = Active
STATUS_EXCHANGE_PENDING=1

vLSM[1] Snapshot = Active
STATUS_EXCHANGE_PENDING=1

vLSM[0] Snapshot = Active
STATUS_EXCHANGE_PENDING=1

vLSM[1] STATUS_EXCHANGE_PENDING=0

vLSM[0] STATUS_EXCHANGE_PENDING=0

vLSM[1] STATUS_EXCHANGE_PENDING=1

vLSM[0] STATUS_EXCHANGE_PENDING=0

vLSM[1] Snapshot = Active
STATUS_EXCHANGE_PENDING=1

vLSM[0] Snapshot = Active
STATUS_EXCHANGE_PENDING=1

vLSM[1] Snapshot = Active
STATUS_EXCHANGE_PENDING=1

vLSM[0] Snapshot = Active
STATUS_EXCHANGE_PENDING=1

vLSM[1] = Retrain

vLSM[1] STATUS_EXCHANGE_PENDING=0

vLSM[0] STATUS_EXCHANGE_PENDING=0 vLSM[1] STATUS_EXCHANGE_PENDING=0

vLSM[0] STATUS_EXCHANGE_PENDING=0

<LTSSM in Active>

Ev
al

ua
tio

n
C

op
y

Compute Express Link ARB/MUX

 Compute Express Link Specification
October 26, 2020 177
Revision 2.0, Version 1.0

5.2 ARB/MUX Link Management Packets
The ARB/MUX uses ALMPs to communicate virtual link state transition requests and
responses associated with each link layer to the remote ARB/MUX.

An ALMP is a 1DW packet with format shown in Figure 97 below. This 1DW packet is
replicated four times on the lower 16-bytes of a 528-bit flit to provide data integrity
protection; the flit is zero padded on the upper bits. If the ARB/MUX detects an error in
the ALMP, it initiates a retrain of the link.

Bytes 1, 2 and 3 of the ALMP packet are as shown in Table 62 below. The message code
used in Byte 1 of the ALMP is 0000_1000b. ALMPs can be request or status type. The
local ARB/MUX initiates transition of a remote vLSM using a request ALMP. After
receiving a request ALMP, the local ARB/MUX processes the transition request and

Figure 96. L1 Abort Example

DP
LTSSM

vLSM[1]vLSM[1] UP
LTSSM

CHANNELvLSM[0] vLSM[0]

Go to L1

only vLSM[0] was requesting L1
when EIOS received. vLSM[1]

initiated ACTIVE transition.

Go to L1

Recovery State

Notification of
Recovery Exit

vLSM[0] = L1
vLSM[0] = L1

vLSM[1] = L1

vLSM[1] = L1

L0

STATE_STS ALMPs
communicate vLSM

states for syncronization

Notification of
Recovery Exit

vLSM[1] = Active

vLSM[1] = Retrain

vLSM[1] = Active

vLSM[1] = Retrain

Another STATE_REQ=ACTIVE
ALMP required since remote

status after sync is not ACTIVE

vLSM[1] Requested
to enter Active

STATE_REQ=ACTIVE ALMP
required since remote status

after sync is not ACTIVE

Notification of
Recovery Entry

Notification of
Recovery Entry

vLSM[1] = RetrainvLSM[1] = L1

Figure 97. ARB/MUX Link Management Packet Format

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Reserved Message Message Specific

Byte 0 Byte 1 Byte 2 Byte 3

Ev
al

ua
tio

n
C

op
y

Compute Express Link ARB/MUX

 Compute Express Link Specification
October 26, 2020 178
Revision 2.0, Version 1.0

returns a status ALMP to indicate that the transition has occurred. If the transition
request is not accepted, no status ALMP is sent and both local and remote vLSMs
remain in their current state.

5.2.1 ARB/MUX Bypass Feature

The ARB/MUX must disable generation of ALMPs when the Flex Bus link is operating in
PCIe mode. Determination of the bypass condition can be via hwinit or during link
training.

Table 62. ALMP Byte 2 and Byte 3 Encoding

Byte1 Bit Description

7:0
Message Encoding:
0000_1000b: Virtual LSM ALMP is encoded in bytes 2 and 3
All others: Reserved

Byte2 Bit Description

3:0

Virtual LSM State Encoding:
0000: Reset (for Status ALMP)
0000: Reserved (for Request ALMP)
0001: ACTIVE
0010: Reserved
0011: DEEPEST ALLOWABLE PM STATE (for Request ALMP)
0011: Reserved (for Status ALMP)
0100: IDLE_L1.0 (maps to PCIe L1)
0101: IDLE_L1.1 (reserved for future use)
0110: IDLE_L1.2 (reserved for future use)
0111: IDLE_L1.3 (reserved for future use)
1000: L2

1001: Reserved
1010: Reserved
1011: Retrain (for Status ALMP only)
1011: Reserved (for Request ALMP)
1100: Reserved
1101: Reserved
1110: Reserved
1111: Reserved

6:4 Reserved

7
Request/Status Type
1: Virtual LSM Request ALMP
0: Virtual LSM Status ALMP

Byte3 Bit Description

3:0

Virtual LSM Instance Number: Indicates the targeted Virtual LSM interface
when there are multiple Virtual LSMs present.

0001: ALMP for CXL.io
0010: ALMP for CXL.cache and CXL.mem
All other encodings are Reserved.

7:4 Reserved

Ev
al

ua
tio

n
C

op
y

Compute Express Link ARB/MUX

 Compute Express Link Specification
October 26, 2020 179
Revision 2.0, Version 1.0

5.3 Arbitration and Data Multiplexing/Demultiplexing
The ARB/MUX is responsible for arbitrating between requests from the CXL link layers
and multiplexing the data based on the arbitration results. The arbitration policy is
implementation specific as long as it satisfies the timing requirements of the higher
level protocols being transferred over the Flex Bus link. Additionally, there must be a
way to program the relative arbitration weightages associated with the CXL.io and
CXL.cache+CXL.mem link layers as they arbitrate to transmit traffic over the Flex Bus
link. See Section 8.2.6.1 for more details. Interleaving of traffic between different CXL
protocols is done at the 528-bit flit boundary.

§ §

Ev
al

ua
tio

n
C

op
y

Flex Bus Physical Layer

 Compute Express Link Specification
October 26, 2020 180
Revision 2.0, Version 1.0

6.0 Flex Bus Physical Layer

6.1 Overview

The figure above shows where the Flex Bus physical layer exists in the Flex Bus layered
hierarchy. On the transmit side, the Flex Bus physical layer prepares data received from
either the PCIe link layer or the CXL ARB/MUX for transmission across the Flex Bus link.

Figure 98. Flex Bus Layers -- Physical Layer Highlighted

Ev
al

ua
tio

n
C

op
y

Flex Bus Physical Layer

 Compute Express Link Specification
October 26, 2020 181
Revision 2.0, Version 1.0

On the receive side, the Flex Bus physical layer deserializes the data received on the
Flex Bus link and converts it to the appropriate format to forward to the PCIe link layer
or the ARB/MUX. The Flex Bus physical layer consists of a logical sub-block, aka the
logical PHY, and an electrical sub-block. The logical PHY operates in PCIe mode during
initial link training and switches over to CXL mode, if appropriate, depending on the
results of alternate mode negotiation, during recovery after training to 2.5 GT/s. The
electrical sub-block follows the PCIe specification.

In CXL mode, normal operation occurs at native link width and 32 GT/s link speed.
Bifurcation (aka link subdivision) into x8 and x4 widths is supported in CXL mode.
Degraded modes of operation include 8 GT/s or 16 GT/s link speed and smaller link
widths of x2 and x1. Table 63 summarizes the supported CXL combinations. In PCIe
mode, the link supports all widths and speeds defined in the PCIe specification, as well
as the ability to bifurcate.

This chapter focuses on the details of the logical PHY. The Flex Bus logical PHY is based
on the PCIe logical PHY; PCIe mode of operation follows the PCIe specification exactly
while Flex Bus.CXL mode has deltas from PCIe that affect link training and framing.
Please refer to the “Physical Layer Logical Block” chapter of the PCI Express Base
Specification for details on PCIe mode of operation. The Flex Bus.CXL deltas are
described in this chapter.

6.2 Flex Bus.CXL Framing and Packet Layout
The Flex Bus.CXL framing and packet layout is described in this section for x16,x8,x4,
x2, and x1 widths.

6.2.1 Ordered Set Blocks and Data Blocks

Flex Bus.CXL uses the PCIe concept of Ordered Set blocks and data blocks. Each block
spans 128 bits per lane and potentially two bits of Sync Header per lane.

Ordered Set blocks are used for training, entering and exiting Electrical Idle, transitions
to data blocks, and clock tolerance compensation; they are the same as defined in the
PCIe base specification. A 2-bit Sync Header with value 01b is inserted before each 128
bits transmitted per lane in an Ordered Set block when 128/130b encoding is used; in
the latency optimized mode, there is no Sync Header.

Data blocks are used for transmission of the flits received from the CXL link layer. A 16-
bit Protocol ID field is associated with each 528-bit flit payload (512 bits of payload +
16 bits of CRC) received from the link layer, which is striped across the lanes on an 8-
bit granularity; the placement of the protocol ID depends on the width. A 2-bit Sync
Header with value 10b is inserted before every 128 bits transmitted per lane in a data
block when 128/130b encoding is used; in the latency optimized mode, there is no
Sync Header. A 528-bit flit may traverse the boundary between data blocks.

Table 63. Flex Bus.CXL Link Speeds and Widths for Normal and Degraded Mode

Link Speed Native Width Degraded Modes Supported

32 GT/s x16
x16 @16 GT/s or 8 GT/s;
x8, x4, x2, or x1 @32 GT/s or 16
GT/s or 8 GT/s

32 GT/s x8
x8 @16 GT/s or 8 GT/s;
x4, x2, or x1 @32 GT/s or 16 GT/s
or 8 GT/s

32 GT/s x4
x4 @16 GT/s or 8 GT/s;
x2 or x1 @32 GT/s or 16 GT/s or 8
GT/s

Ev
al

ua
tio

n
C

op
y

Flex Bus Physical Layer

 Compute Express Link Specification
October 26, 2020 182
Revision 2.0, Version 1.0

Transitions between Ordered Set blocks and data blocks are indicated in a couple of
ways. One way is via the 2-bit Sync Header of 01b for Ordered Set blocks and 10b for
data blocks. The second way is via the use of Start of Data Stream (SDS) Ordered Sets
and End of Data Stream (EDS) tokens. Unlike PCIe where the EDS token is explicit, Flex
Bus.CXL encodes the EDS indication in the protocol ID value; the latter is referred to as
an “implied EDS token”.

6.2.2 Protocol ID[15:0]

The 16-bit protocol ID field specifies whether the transmitted flit is CXL.io, CXL.cache/
CXL.mem, or some other payload. The table below provides a list of valid 16-bit
protocol ID encodings. Encodings that include an implied EDS token signify that the
next block after the block in which the current flit ends is an Ordered Set block. Implied
EDS tokens can only occur with the last flit transmitted in a data block.

NULL flits are inserted into the data stream by the physical layer when there are no
valid flits available from the link layer. A NULL flit transferred with an implied EDS token
ends precisely at the data block boundary preceding the Ordered Set block; these are
variable length flits, up to 528 bits, intended to facilitate transition to Ordered Set
blocks as quickly as possible. When 128/130b encoding is used, the variable length
NULL flit ends on the first block boundary encountered after the 16-bit protocol ID has
been transmitted, and the Ordered Set is transmitted in the next block. Because
Ordered Set blocks are inserted at fixed block intervals that align to the flit boundary
when Sync Headers are disabled (as described in Section 6.7.1), variable length NULL
flits will always contain a fixed 528-bit payload when Sync Headers are disabled. Please
see Section 6.7.1 for examples of NULL flit with implied EDS usage scenarios. A NULL
flit is comprised of all zeros payload.

An 8-bit encoding with a hamming distance of four is replicated to create the 16-bit
encoding for error protection against bit flips. A correctable protocol ID framing error is
logged but no further error handling action is required if only one 8-bit encoding group
looks incorrect; the correct 8-bit encoding group is used for normal processing. If both
8-bit encoding groups are incorrect, an uncorrectable protocol ID framing error is
logged, the flit is dropped, and the physical layer enters into recovery to retrain the
link.

The physical layer is responsible for dropping any flits it receives with invalid protocol
IDs. This includes dropping any flits with unexpected protocol IDs that correspond to
Flex Bus defined protocols that have not been enabled during negotiation; protocol IDs
associated with flits generated by physical layer or by the ARB/MUX must not be
treated as unexpected. When a flit is dropped due to an unexpected protocol ID, the
physical layer logs an unexpected protocol ID error in the Flex Bus DVSEC Port Status
register.

Please refer to Section 6.2.9 for additional details about protocol ID error detection and
handling.

Table 64. Flex Bus.CXL Protocol IDs (Sheet 1 of 2)

Protocol ID[15:0] Description

1111_1111_1111_1111 CXL.io

1101_0010_1101_0010 CXL.io with implied EDS token

0101_0101_0101_0101 CXL.cache/CXL.mem

1000_0111_1000_0111 CXL.cache/CXL.mem with implied EDS token

1001_1001_1001_1001 NULL flit (generated by the Physical Layer)

0100_1011_0100_1011
NULL flit with implied EDS token: Variable length flit containing
NULLs that ends precisely at the data block boundary preceding
the Ordered Set block (generated by the Physical Layer)

Ev
al

ua
tio

n
C

op
y

Flex Bus Physical Layer

 Compute Express Link Specification
October 26, 2020 183
Revision 2.0, Version 1.0

6.2.3 x16 Packet Layout

Figure 99 below shows the x16 packet layout. First, the 16-bits of protocol ID are
transferred, split on an 8-bit granularity across consecutive lanes; this is followed by
transfer of the 528-bit flit, striped across the lanes on an 8-bit granularity. Depending
on the symbol time, as labeled on the leftmost column in the figure, the Protocol ID
plus flit transfer may start on lane 0, lane 4, lane 8, or lane 12. The pattern of transfer
repeats after every 17 symbol times. The two-bit Sync Header shown in the figure,
inserted after every 128 bits transferred per lane, is not present for the latency
optimized mode where Sync Header bypass is negotiated.

Figure 100 provides an example where CXL.io and CXL.cache/CXL.mem traffic is
interleaved with an interleave granularity of two flits on a x16 link. The top figure
shows what the CXL.io stream looks like before mapping to the Flex Bus lanes and
before interleaving with CXL.cache/CXL.mem traffic; the framing rules follow the x16
framing rules specified in the PCI Express specification, as stated in Section 4.1. The
bottom figure shows the final result when the two streams are interleaved on the Flex
Bus lanes. For CXL.io flits, after transferring the 16-bit protocol ID, 512 bits are used to
transfer CXL.io traffic and 16 bits are unused. For CXL.cachemem flits, after
transferring the 16-bit protocol ID, 528 bits are used to transfer a CXL.cachemem flit.
Please refer to Chapter 4.0, “Compute Express Link Link Layers” for more details on the

1100_1100_1100_1100 CXL ARB/MUX Link Management Packets (ALMPs)

0001_1110_0001_1110 CXL ARB/MUX Link Management Packets (ALMPs) with implied
EDS token

All Others Reserved

Table 64. Flex Bus.CXL Protocol IDs (Sheet 2 of 2)

Protocol ID[15:0] Description

Figure 99. Flex Bus x16 Packet Layout

Ev
al

ua
tio

n
C

op
y

Flex Bus Physical Layer

 Compute Express Link Specification
October 26, 2020 184
Revision 2.0, Version 1.0

flit format. As this example illustrates, the PCIe TLPs and DLLPs encapsulated within
the CXL.io stream may be interrupted by non-related CXL traffic if they cross a flit
boundary.

6.2.4 x8 Packet Layout

Figure 101 below shows the x8 packet layout. 16-bits of Protocol ID followed by a 528-
bit flit are striped across the lanes on an 8-bit granularity. Depending on the symbol
time, the Protocol ID plus flit transfer may start on lane 0 or lane 4. The pattern of
transfer repeats after every 17 symbol times. The two-bit Sync Header shown in the
figure is not present for the latency optimized mode.

Figure 100. Flex Bus x16 Protocol Interleaving Example

Ev
al

ua
tio

n
C

op
y

Flex Bus Physical Layer

 Compute Express Link Specification
October 26, 2020 185
Revision 2.0, Version 1.0

Figure 102 illustrates how CXL.io and CXL.cache/CXL.mem traffic is interleaved on a x8
Flex Bus link. The same traffic from the x16 example in Figure 100 is mapped to a x8
link.

Figure 101. Flex Bus x8 Packet Layout

Ev
al

ua
tio

n
C

op
y

Flex Bus Physical Layer

 Compute Express Link Specification
October 26, 2020 186
Revision 2.0, Version 1.0

Figure 102. Flex Bus x8 Protocol Interleaving Example

Ev
al

ua
tio

n
C

op
y

Flex Bus Physical Layer

 Compute Express Link Specification
October 26, 2020 187
Revision 2.0, Version 1.0

6.2.5 x4 Packet Layout

Figure 103 below shows the x4 packet layout. 16-bits of Protocol ID followed by a 528-
bit flit are striped across the lanes on an 8-bit granularity. The Protocol ID plus flit
transfer always starts on lane 0; the entire transfer takes 17 symbol times. The two-bit
Sync Header shown in the figure is not present for the latency optimized mode.

6.2.6 x2 Packet Layout

The x2 packet layout looks very similar to the x4 packet layout in that the Protocol ID
aligns to lane 0. 16-bits of Protocol ID followed by a 528-bit flit are striped across two
lanes on an 8-bit granularity, taking 34 symbol times to complete the transfer.

6.2.7 x1 Packet Layout

The x1 packet layout is used only in degraded mode. The 16-bits of Protocol ID
followed by 528-bit flit are transferred on a single lane, taking 68 symbol times to
complete the transfer.

6.2.8 Special Case: CXL.io -- When a TLP Ends on a Flit Boundary

For CXL.io traffic, if a TLP ends on a flit boundary and there is no additional CXL.io
traffic to send, the receiver still requires a subsequent EDB indication if it is a nullified
TLP or all IDLE flit or a DLLP to confirm it is a good TLP before processing the TLP.
Figure 104 illustrates a scenario where the first CXL.io flit encapsulates a TLP that ends
at the flit boundary, and the transmitter has no more TLPs or DLLPs to send. To ensure

Figure 103. Flex Bus x4 Packet Layout

Ev
al

ua
tio

n
C

op
y

Flex Bus Physical Layer

 Compute Express Link Specification
October 26, 2020 188
Revision 2.0, Version 1.0

that the transmitted TLP that ended on the flit boundary is processed by the receiver, a
subsequent CXL.io flit containing PCIe IDLE tokens is transmitted; this flit is generated
by the link layer.

6.2.9 Framing Errors

The physical layer is responsible for detecting framing errors and, subsequently,
initiating entry into recovery to retrain the link.

The following are framing errors detected by the physical layer:
• Sync Header errors
• Protocol ID framing errors
• EDS insertion errors
• PCIe framing errors located within the 528-bit CXL.io flit

Protocol ID framing errors are described in Section 6.2.2 and summarized below in
Table 65. A protocol ID with a value that is defined in the CXL specification is
considered a valid protocol ID. A valid protocol ID is either expected or unexpected. An
expected protocol ID is one that corresponds to a protocol that was enabled during
negotiation. An unexpected protocol ID is one that corresponds to a protocol that was
not enabled during negotiation. A protocol ID with a value that is not defined in the CXL
specification is considered an invalid protocol ID. Whenever a flit is dropped by the
physical layer due to either an Unexpected Protocol ID Framing Error or an
Uncorrectable Protocol ID Framing Error, the physical layer enters LTSSM recovery to
retrain the link and notifies the link layers to enter recovery and, if applicable, to
initiate link level retry.

Figure 104. CXL.io TLP Ending on Flit Boundary Example

Ev
al

ua
tio

n
C

op
y

Flex Bus Physical Layer

 Compute Express Link Specification
October 26, 2020 189
Revision 2.0, Version 1.0

Table 65. Protocol ID Framing Errors

Protocol ID[7:0] Protocol ID[15:8] Expected Action

Invalid Valid & Expected

Process normally using Protocol
ID[15:8];
Log as
CXL_Correctable_Protocol_ID_Fra
ming_Error in DVSEC Flex Bus Port
Status register.

Valid & Expected Invalid

Process normally using Protocol
ID[7:0];
Log as
CXL_Correctable_Protocol_ID_Fra
ming_Error in DVSEC Flex Bus Port
Status register.

Valid & Unexpected Valid & Unexpected & Equal to
Protocol ID[7:0]

Drop flit and log as
CXL_Unexpected_Protocol_ID_Dro
pped in DVSEC Flex Bus Port
Status register; enter LTSSM
recovery to retrain the link; notify
link layers to enter recovery and, if
applicable, initiate link level retry

Invalid Valid & Unexpected

Drop flit and log as
CXL_Unexpected_Protocol_ID_Dro
pped in DVSEC Flex Bus Port
Status register; enter LTSSM
recovery to retrain the link; notify
link layers to enter recovery and, if
applicable, initiate link level retry

Valid & Unexpected Invalid

Drop flit and log as
CXL_Unexpected_Protocol_ID_Dro
pped in DVSEC Flex Bus Port
Status register; enter LTSSM
recovery to retrain the link; notify
link layers to enter recovery and, if
applicable, initiate link level retry

Valid Valid & Not Equal to Protocol
ID[7:0]

Drop flit and log as
CXL_Uncorrectable_Protocol_ID_Fr
aming_Error in DVSEC Flex Bus
Port Status register; enter LTSSM
recovery to retrain the link; notify
link layers to enter recovery and, if
applicable, initiate link level retry

Invalid Invalid

Drop flit and log as
CXL_Uncorrectable_Protocol_ID_Fr
aming_Error in DVSEC Flex Bus
Port Status register; enter LTSSM
recovery to retrain the link; notify
link layers to enter recovery and, if
applicable, initiate link level retry

Ev
al

ua
tio

n
C

op
y

Flex Bus Physical Layer

 Compute Express Link Specification
October 26, 2020 190
Revision 2.0, Version 1.0

6.3 Link Training

6.3.1 PCIe vs Flex Bus.CXL Mode Selection

Upon exit from LTSSM Detect, an Flex Bus link begins training and completes link width
negotiation and speed negotiation according to the PCIe LTSSM rules. During link
training, the Downstream Port initiates Flex Bus mode negotiation via the PCIe
alternate mode negotiation mechanism. Flex Bus mode negotiation is completed before
entering L0 at 2.5 GT/s. If Sync Header bypass is negotiated, Sync Headers are
bypassed as soon as the link has transitioned to a speed of 8GT/s or higher. The Flex
Bus logical PHY transmits NULL flits after it sends the SDS Ordered Set as soon as it
transitions to 8GT/s or higher link speeds if CXL mode was negotiated earlier in the
training process. These NULL flits are used in place of PCIe Idle Symbols to facilitate
certain LTSSM transitions to L0 as described in Section 6.4. After the link has
transitioned to its final speed, it can start sending CXL traffic on behalf of the upper
layers after the SDS Ordered Set is transmitted if that was what was negotiated earlier
in the training process. For upstream facing ports, the physical layer notifies the upper
layers that the link is up and available for transmission only after it has received a flit
that was not generated by the physical layer of the partner Downstream Port (refer to
Table 64). To operate in CXL mode, the link speed must be at least 8 GT/s. If the link is
unable to transition to a speed of 8 GT/s or greater after committing to CXL mode
during link training at 2.5 GT/s, the link may ultimately fail to link up even if the device
is PCIe capable.

6.3.1.1 Hardware Autonomous Mode Negotiation

Dynamic hardware negotiation of Flex Bus mode occurs during link training in the
LTSSM Configuration state before entering L0 at Gen1 speeds using the alternate
protocol negotiation mechanism, facilitated by exchanging modified TS1 and TS2
Ordered Sets as defined by the PCIe 5.0 base specification. The Downstream Port
initiates the negotiation process by sending TS1 Ordered Sets advertising its Flex Bus
capabilities. The Upstream Port responds with a proposal based on its own capabilities
and those advertised by the host. The host communicates the final decision of which
capabilities to enable by sending modified TS2 Ordered Sets before or during
Configuration.Complete.

Please refer to the PCIe 5.0 base specification for details on how the various fields of
the modified TS1/TS2 OS are set. Table 66 shows how the modified TS1/TS2 OS is used
for Flex Bus mode negotiation. The “Flex Bus Mode Negotiation Usage” column
describes the deltas from the PCIe base specification definition that are applicable for
Flex Bus mode negotiation. Additional explanation is provided in Table 68. The
presence of retimer1 and retimer2 must be programmed into the Flex Bus Port DVSEC
by software before the negotiation begins; if retimers are present the relevant retimer
bits in the modified TS1/TS2 OS are used.

Ev
al

ua
tio

n
C

op
y

Flex Bus Physical Layer

 Compute Express Link Specification
October 26, 2020 191
Revision 2.0, Version 1.0

Table 66. Modified TS1/TS2 Ordered Set for Flex Bus Mode Negotiation

Symbol Number PCIe Description Flex Bus Mode Negotiation Usage

0 through 4 See PCIe 5.0 Base Spec Symbol

5

Training Control
Bits 0:5: See PCIe 5.0 Base
Bits 7:6: Modified TS1/TS2 supported (see
PCIe 5.0 Base Spec for details

Bit 7:6 = 11b

6

For Modified TS1: TS1 Identifier, encoded as
D10.2 (4Ah)
For Modified TS2: TS2 Identifier, encoded as
D5.2 (45h)

TS1 Identifier during Phase 1 of Flex Bus mode
negotiation
TS2 Identifier during Phase 2 of Flex Bus mode
negotiation

7

For Modified TS1: TS1 Identifier, encoded as
D10.2 (4Ah)
For Modified TS2: TS2 Identifier, encoded as
D5.2 (45h)

TS1 Identifier during Phase 1 of Flex Bus mode
negotiation
TS2 Identifier during Phase 2 of Flex Bus mode
negotiation

8-9

Bits 0:2: Usage (see PCIe 5.0 Base Spec)
Bits 3:4: Alternate Protocol Negotiation
Status if Usage is 010b, Reserved Otherwise
(see PCIe 5.0 Base Spec for details)
Bits 5:15: Alternate Protocol Details

Bits 2:0 = 010b (indicating alternate protocols)
Bits 4:3 = Alternate Protocol Negotiation Status per
PCIe spec

Bit 7:5 = Alternate Protocol ID (3’d0 = ‘Flex Bus’)
Bit 8: Common Clock
Bits 15:9: Reserved

10-11

Alternate Protocol ID/Vendor ID if Usage =
010b
See PCIe 5.0 Base Spec for other
descriptions applicable to other Usage
values

1E98h

12-14
See PCIe 5.0 Base Spec
If Usage = 010b, Specific proprietary usage

Bits 7:0 = Flex Bus Mode Selection, where
Bit 0: PCIe capable/enable
Bit 1: CXL.io capable/enable
Bit 2: CXL.mem capable/enable
Bit 3: CXL.cache capable/enable
Bit 4: CXL 2.0 capable/enable
Bit 7:5: Reserved
Bits 23:8 = Flex Bus Additional Info, where
Bit 8: Multi-Logical Device capable/enable
Bit 9: Reserved
Bit 10: Sync Header Bypass capable/enable
Bit 11: Reserved
Bit 12: Retimer1 CXL aware1

Bit 13: Reserved
Bit 14: Retimer2 CXL aware2

Bits 23:15: Reserved

Please refer to Table 68 for more information.

15 See PCIe 5.0 Base Spec

Notes:

1. Retimer1 is equivalent to Retimer X or Retimer Z in the PCI Express Specification
2. Retimer2 is equivalent to Retimer Y in the PCI Express Specification

Ev
al

ua
tio

n
C

op
y

Flex Bus Physical Layer

 Compute Express Link Specification
October 26, 2020 192
Revision 2.0, Version 1.0

Table 67. Additional Information on Symbols 8-9 of Modified TS1/TS2 Ordered Set

Bit Field in Symbols 8-9 Description

Alternate Protocol ID[2:0] This is set to 3’d0 to indicate Flex Bus

Common Clock
The Downstream Port uses this bit to communicate to retimers that
there is a common reference clock. Depending on implementation,
retimers may use this information to determine what features to enable.

Table 68. Additional Information on Symbols 12-14 of Modified TS1/TS2 Ordered Sets

Bit Field in Symbols 12-14 Description

PCIe capable/enable

The Downstream Port and Upstream Port advertise their capability in
Phase 1 as set in the Flex Bus Port Control register in Section 8.2.1.3.2.
The Downstream Port communicates the results of the negotiation in
Phase 2.1

CXL.io capable/enable

The Downstream Port and Upstream Port advertise their capability in
Phase 1 as set in the Flex Bus Port Control register in Section 8.2.1.3.2.
The Downstream Port communicates the results of the negotiation in
Phase 2. This bit must be set to 1’d1 if CXL 2.0 capable/enable bit is set.

CXL.mem capable/enable

The Downstream Port and Upstream Port advertise their capability in
Phase 1 as set in the Flex Bus Port Control register in Section 8.2.1.3.2.
The Downstream Port communicates the results of the negotiation in
Phase 2.

CXL.cache capable/enable

The Downstream Port and Upstream Port advertise their capability in
Phase 1 as set in the Flex Bus Port Control register in Section 8.2.1.3.2.
The Downstream Port communicates the results of the negotiation in
Phase 2.

CXL 2.0 capable/enable

The Downstream Port and Upstream Port advertise their capability in
Phase 1 as set in the Flex Bus Port Control register in Section 8.2.1.3.2.
The Downstream Port communicates the results of the negotiation in
Phase2. Note: This bit is reserved on CXL 1.1 components.

Multi-Logical Device capable/
enable

The Downstream Port and Upstream Port advertise their capability in
Phase 1 as set in the Flex Bus Port Control register in Section 8.2.1.3.2.
A switch Upstream Port must always advertise 1’b0 in this bit. The
Downstream Port communicates the results of the negotiation in Phase
2. Note: This bit is reserved on CXL1.1 components.

Sync Header Bypass capable/
enable

The Downstream Port, Upstream Port, and any retimers advertise their
capability in Phase 1; the Downstream Port and Upstream Port advertise
the value as set in the Flex Bus Port Control register in Section 8.2.1.3.2.
The Downstream Port communicates the results of the negotiation in
Phase 2. Note: The Retimer must pass this bit unmodified from its
Upstream Pseudo Port to its Downstream Pseudo Port. The retimer clears
this bit if it does not support this feature when passing from its
Downstream Pseudo Port to its Upstream Pseudo Port but it must never
set it (only an Upstream Port can set this bit in that direction). If the
Retimer(s) do not advertise that they are CXL aware, the Downstream
Port assumes this feature is not supported by the Retimer(s) regardless
of how this bit is set.

Retimer1 CXL aware Retimer1 advertises whether it is CXL aware in Phase 1. If it is CXL
aware, it must use the “Sync Header Bypass capable/enable” bit.2

Retimer2 CXL aware Retimer2 advertises whether it is CXL aware in Phase 1. If it is CXL
aware, it must use the “Sync Header Bypass capable/enable” bit.3

Notes:
1. PCIe mode and CXL mode are mutually exclusive when the Downstream Port communicates the

results of the negotiation in Phase 2.
2. Retimer1 is equivalent to Retimer X or Retimer Z in the PCI Express Specification
3. Retimer2 is equivalent to Retimer Y in the PCI Express Specification

Ev
al

ua
tio

n
C

op
y

Flex Bus Physical Layer

 Compute Express Link Specification
October 26, 2020 193
Revision 2.0, Version 1.0

Hardware autonomous mode negotiation is a two phase process that occurs while in
Configuration.Lanenum.Wait, Configuration.Lanenum.Accept, and
Configuration.Complete before entering L0 at Gen1 speed:

• Phase 1: The Downstream Port sends a stream of modified TS1 Ordered Sets
advertising its Flex Bus capabilities; the Upstream Port responds by sending a
stream of modified TS1 Ordered Sets indicating which Flex Bus capabilities it
wishes to enable. This exchange occurs during Configuration.Lanenum.Wait and/or
Configuration.Lanenum.Accept. At the end of this phase, the Downstream Port has
enough information to make a final selection of which capabilities to enable. The
Downstream Port uses the Flex Bus capabilities information received in the first two
consecutively received modified TS1 Ordered Sets in which the Alternate Protocol
Negotiation status indicates that the Upstream Port supports the requested
protocol.

• Phase 2: The Downstream Port sends a stream of modified TS2 Ordered Sets to the
Upstream Port to indicate whether the link should operate in PCIe mode or in CXL
mode; for CXL mode, it also specifies which CXL protocols and features to enable
and whether to operate in 1.1 or 2.0 mode. The Downstream Port must set the Flex
Bus enable bits identically in the 16 consecutive modified TS2 Ordered Sets sent
before transitioning to Configuration.Idle. The Upstream Port acknowledges the
enable request by sending modified TS2 Ordered Sets with the same Flex Bus
enable bits set. This exchange occurs during Configuration.Complete. CXL alternate
protocol negotiation successfully completes only after the Downstream Port has
confirmed that the Flex Bus enable bits reflected in the eight consecutive modified
TS2 Ordered Sets it receives that causes the transition to Configuration.Idle match
what it transmitted; otherwise, the Downstream Port logs an error in the Flex Bus
Port Status register and the physical layer LTSSM returns to Detect. If the
Upstream Port receives an enable request in which the Flex Bus enable bits are not
a subset of what it advertised in Phase 1, the behavior is undefined.

The Flex Bus negotiation process is complete before entering L0 at 2.5GT/s. At this
point the upper layers may be notified of the decision. If CXL mode is negotiated, the
physical layer enables all the negotiated modes and features only after reaching L0 at
8GT/s or higher speed.

Note: If CXL is negotiated but the link does not achieve a speed of at least 8GT/s, the link will
fail to link up and go back to LTSSM Detect.

A flow chart describing the mode negotiation process during link training is provided in
Figure 105 below. Note, while this flow chart represents the flow for several scenarios,
it is not intended to cover all possible scenarios.

Ev
al

ua
tio

n
C

op
y

Flex Bus Physical Layer

 Compute Express Link Specification
October 26, 2020 194
Revision 2.0, Version 1.0

6.3.1.2 CXL 2.0 Versus CXL 1.1 Negotiation

CXL 2.0 supports switching and hot add, features that are not supported in CXL 1.1.
This difference in supported features impacts the link training behavior. Table 69
specifies the Flex Bus physical layer link training result for all possible combinations of
upstream and downstream components. The table was constructed based upon the
following assumptions:

Figure 105. Flex Bus Mode Negotiation During Link Training (Sample Flow)

Ev
al

ua
tio

n
C

op
y

Flex Bus Physical Layer

 Compute Express Link Specification
October 26, 2020 195
Revision 2.0, Version 1.0

• CXL 2.0 capable Endpoints and Switches are required to support hot add as a
downstream component.

• CXL 2.0 capable Downstream Ports are not required to support hot add; however,
this capability is enforced at the software level. The Flex Bus physical layer will
allow the link to train successfully for hot add scenarios if both the upstream
component and downstream component are CXL 2.0 capable.

• For CXL 1.1 capable hosts, BIOS prevents CXL hot add scenarios by disabling CXL
alternate protocol negotiation before handing control over to the OS. The Flex Bus
physical layer does not have to handle these scenarios.

• For CXL 2.0 capable Downstream Ports, BIOS sets the Disable_CXL1p1_Training bit
in the Flex Bus port DVSEC before handing control to the OS. For a host, the Flex
Bus physical layer uses the Disable_CXL1p1_Training bit to distinguish between
initial power-on scenarios and hot add scenarios to determine appropriate link
training behavior with CXL1.1 Endpoints.

The motivation for forcing the Flex Bus physical layer to fail CXL training for certain
combinations of upstream component and downstream component is to avoid
unpredictable software behavior if the link were allowed to train. For the specific
combination of a CXL 1.1 capable Host and a CXL 2.0 capable Switch, the Switch
Upstream Port is responsible for ensuring CXL alternate protocol negotiation fails by
returning a value of 01b in the Alternate Protocol Negotiation Status field of the
modified TS1 to indicate that it does not support the requested protocol; this must
occur during Phase 1 of the alternate protocol negotiation process after the Switch
Upstream Port observes that the Host is not CXL 2.0 capable.

6.3.1.2.1 Retimer Presence Detection

During CXL alternate protocol negotiation, the presence of a retimer impacts whether
the Sync Header bypass optimization can be enabled as described in Table 68. While
CXL 1.1 capable Downstream Ports rely on BIOS to program the Retimer1_Present and
Retimer2_Present bits in the Flex Bus Port Control register prior to the start of link
training, CXL 2.0 capable Downstream Ports must ignore those register bits as BIOS is
not involved with hot plug scenarios.

Table 69. CXL 2.0 Versus CXL1.1 Link Training Resolution

Upstream Component Downstream Component Link Training Result

Host - CXL 2.0 capable Switch - CXL 2.0 capable CXL 2.0 mode

Host - CXL 1.1 capable Switch - CXL 2.0 capable Fail CXL alternate protocol
negotiation

Host - CXL 2.0 capable Endpoint - CXL 2.0 capable CXL 2.0 mode

Host - CXL 2.0 capable Endpoint - CXL 1.1 capable

CXL 1.1 mode (RCiEP) for initial
power-on scenario; fail CXL
alternate protocol negotiation for
hot add scenario

Host - CXL 1.1 capable Endpoint - CXL 2.0 capable CXL 1.1 mode (RCiEP) - assumes
no hot add

Host - CXL 1.1 capable Endpoint - CXL 1.1 capable CXL 1.1 mode (RCiEP) - assumes
no hot add

Switch - CXL 2.0 capable Endpoint - CXL 2.0 capable CXL 2.0 mode

Switch - CXL 2.0 capable Endpoint - CXL 1.1 capable

CXL 1.1 mode (RCiEP for initial
power-on scenario; fail CXL
alternate protocol negotiation for
hot add scenario

Ev
al

ua
tio

n
C

op
y

Flex Bus Physical Layer

 Compute Express Link Specification
October 26, 2020 196
Revision 2.0, Version 1.0

CXL 2.0 capable Downstream Ports must determine retimer presence for CXL alternate
protocol negotiation by sampling the “Retimers Present” and “Two Retimers Present”
bits in the received TS2 Ordered Sets. CXL 2.0 capable Downstream Ports adhere to the
following steps for determining and using retimer presence information:
1. During Polling.Configuration LTSSM state, the Downstream Port samples the

“Retimer Present” bit and the “Two Retimers Present” bit for use during CXL
alternate protocol negotiation. If the “Retimer Present” bit is set to 1b in the 8
consecutively received TS2 Ordered Sets that causes the transition to
Configuration, then the Downstream Port must assume a retimer is present for the
purposes of CXL alternate protocol negotiation. If the “Two Retimers Present” bit is
set to 1b in the 8 consecutively received TS2 Ordered Sets that causes the
transition to Configuration, then the Downstream Port must assume two retimers
are present for the purposes of CXL alternate protocol negotiation.

2. During CXL alternate protocol negotiation, the Downstream Port uses the
information sampled in step #1 along with the CXL alternate protocol negotiation
bits in the modified TS1 Ordered Set to determine whether to enable the Sync
Header bypass optimization. If a retimer was detected in step #1 on any lane
associated with the configured link, then the Downstream Port assumes a retimer is
present. If two retimers were detected in step #1 on any lane associated with the
configured link, then the Downstream Port assumes two retimers are present.

3. During Configuration.Complete, per the PCIe base specification, the Downstream
Port captures “Retimer Present” and “Two Retimers Present” information from the
received modified TS2 Ordered Sets into the “Link Status 2” register. If the values
sampled in this step are not consistent with the values sampled during
Polling.Configuration, the Downstream Port logs an error in the Flex Bus Port Status
register, brings the LTSSM to Detect, and retrains the link with the Sync Header
bypass optimization disabled.

6.3.1.3 Flex Bus.CXL Negotiation with Maximum Supported Link
Speed of 8GT/s or 16GT/s

If a CXL1.1 physical layer implementation supports Flex Bus.CXL operation only at a
maximum speed of 8GT/s or 16GT/s, it must still advertise support of 32GT/s speed
during link training at 2.5GT/s to perform alternate protocol negotiation using modified
TS1 and TS2 Ordered Sets. Once the alternate protocol negotiation is complete, the
Flex Bus logical PHY can then advertise the true maximum link speed that it supports
as per the PCIe Specification. It is strongly recommended that CXL2.0 devices support
32 GT/s link rate; however, a CXL2.0 device is permitted to use the algorithm described
in this section to enable CXL alternate protocol negotiation if it does not support 32 GT/
s link rate.

IMPLEMENTATION NOTE

A CXL device that advertises support of 32GT/s in early training when it does not truly
support 32 GT/s link rate may have compatibility issues for Polling.Compliance and
Loopback entry from Config.LinkWidthStart. Please see the PCIe specification for
more details. Devices that do this must ensure that they provide a mechanism to
disable this behavior for the purposes of Polling.Compliance and Loopback testing
scenarios.

Ev
al

ua
tio

n
C

op
y

Flex Bus Physical Layer

 Compute Express Link Specification
October 26, 2020 197
Revision 2.0, Version 1.0

6.3.1.4 Link Width Degradation and Speed Downgrade

If the link is operating in Flex Bus.CXL and degrades to a lower speed or lower link
width that is still compatible with Flex Bus.CXL mode, the link should remain in Flex
Bus.CXL mode after exiting recovery without having to go through the process of mode
negotiation again. If the link drops to a speed or width not compatible with Flex
Bus.CXL and cannot recover, the link must go down to the LTSSM Detect state; any
subsequent action is implementation specific.

6.4 Recovery.Idle and Config.Idle Transitions to L0
The PCI Express Specification requires transmission and receipt of a specific number of
consecutive Idle data Symbols on configured lanes to transition from Recovery.Idle to
L0 or Config.Idle to L0 (see the PCI Express Specification). When the Flex Bus logical
PHY is in CXL mode, it looks for NULL flits instead of Idle Symbols to initiate the
transition to L0. When in CXL mode and either Recovery.Idle or Config.Idle, the next
state is L0 if four consecutive NULL flits are received and eight NULL flits are sent after
receiving one NULL flit; all other rules called out in the PCI Express Specification
regarding these transitions apply.

6.5 L1 Abort Scenario
Since the CXL ARB/MUX virtualizes the link state seen by the link layers and only
requests the physical layer to transition to L1 when the link layers are in agreement,
there may be a race condition that results in an L1 abort scenario. In this case, the
physical layer may receive an EIOS or detect Electrical Idle when the ARB/MUX is no
longer requesting entry to L1. In this scenario, the physical layer is required to initiate
recovery on the link to bring it back to L0.

6.6 Exit from Recovery
Upon exit from recovery, the receiver assumes that any partial TLPs that were
transmitted prior to recovery entry are terminated and must be retransmitted in full via
a link level retry. Partial TLPs include TLPs for which a subsequent EDB, Idle, or valid
framing token were not received before entering recovery. The transmitter must satisfy
any requirements to enable the receiver to make this assumption.

6.7 Retimers and Low Latency Mode
The CXL specification supports the following features that can be enabled to optimize
latency: bypass of sync hdr insertion and use of a drift buffer instead of an elastic
buffer. Enablement of sync hdr bypass is negotiated during the Flex Bus mode
negotiation process described in Section 6.3.1.1. The Downstream Port, Upstream Port,
and any retimers advertise their sync hdr bypass capability during Phase 1; and the
Downstream Port communicates the final decision on whether to enable Sync Header
bypass during Phase 2. Drift buffer mode is decided locally by each component. The
rules for enabling each feature are summarized in Table 70; these rules are expected to
be enforced by hardware.

Ev
al

ua
tio

n
C

op
y

Flex Bus Physical Layer

 Compute Express Link Specification
October 26, 2020 198
Revision 2.0, Version 1.0

6.7.1 SKP Ordered Set Frequency and L1/Recovery Entry

In Flex Bus.CXL mode, if Sync Header bypass is enabled, the following rules apply:
• After the SDS, the physical layer must schedule a control SKP Ordered Set or SKP

Ordered Set after every 340 data blocks, unless it is exiting the data stream. Note:
The control SKP OSs are alternated with regular SKP OSs at 16 GT/s or higher
speeds; at 8 GT/s, only regular SKP OSs are scheduled.

• When exiting the data stream, the physical layer must replace the scheduled
control SKP OS (or SKP OS) with either an EIOS (for L1 entry) or EIEOS (for all
other cases including recovery).

When the sync hdr bypass optimization is enabled, retimers rely on the above
mechanism to know when L1/recovery entry is occurring. When sync hdr bypass is not
enabled, retimers must not rely on the above mechanism.

While the above algorithm dictates the control SKP OS and SKP OS frequency within
the data stream, it should be noted that CXL devices must still satisfy the PCIe base
specification requirement of control SKP OS and SKP OS insertion, which is at least
once every 370 to 375 blocks when not operating in SRIS.

Figure 106 illustrates a scenario where a NULL flit with implied EDS token is sent as the
last flit before exiting the data stream in the case where sync hdr bypass is enabled. In
this example, near the end of the 339th block, the link layer has no flits to send, so the
physical layer inserts a NULL flit. Since there is exactly one flit’s worth of time before
the next Ordered Set must be sent, a NULL flit with implied EDS token is used. In this
case, the variable length NULL flit with EDS token crosses a block boundary and
contains a 528-bit payload of zeros.

Figure 107 illustrates a scenario where a NULL flit with implied EDS token is sent as the
last flit before exiting the data stream in the case where 128/130b encoding is used. In
this example, the NULL flit contains only a 16-bit payload of zeros.

Table 70. Rules of Enable Low Latency Mode Features

Feature Conditions For Enabling Notes

Sync Hdr Bypass

1) All components support
2) Common reference clock
3) No retimer present or retimer
cannot add or delete SKPS (e.g., in
low latency bypass mode)
4) Not in loopback mode

Drift Buffer (instead of elastic
buffer) 1) Common reference clock

Each component can enable this
independently (i.e., does not have
to be coordinated). The physical
layer logs in the Flex Bus Port
DVSEC when this is enabled.

Ev
al

ua
tio

n
C

op
y

Flex Bus Physical Layer

 Compute Express Link Specification
October 26, 2020 199
Revision 2.0, Version 1.0

Figure 106. NULL Flit w/EDS and Sync Header Bypass Optimization

Lane 0 Lane 1 Lane 2 Lane 3
ProtID=NULL w/EDS 00h 00h Symbol 15

00h 00h 00h 00h Symbol 0
00h 00h 00h 00h Symbol 1
00h 00h 00h 00h Symbol 2
00h 00h 00h 00h Symbol 3
00h 00h 00h 00h Symbol 4
00h 00h 00h 00h Symbol 5
00h 00h 00h 00h Symbol 6
00h 00h 00h 00h Symbol 7
00h 00h 00h 00h Symbol 8
00h 00h 00h 00h Symbol 9
00h 00h 00h 00h Symbol 10
00h 00h 00h 00h Symbol 11
00h 00h 00h 00h Symbol 12
00h 00h 00h 00h Symbol 13
00h 00h 00h 00h Symbol 14
00h 00h 00h 00h Symbol 15

OS OS OS OS Symbol 0
OS OS OS OS Symbol 1
OS OS OS OS Symbol 2
OS OS OS OS Symbol 3
OS OS OS OS Symbol 4
OS OS OS OS Symbol 5
OS OS OS OS Symbol 6
OS OS OS OS Symbol 7
OS OS OS OS Symbol 8
OS OS OS OS Symbol 9
OS OS OS OS Symbol 10
OS OS OS OS Symbol 11
OS OS OS OS Symbol 12
OS OS OS OS Symbol 13
OS OS OS OS Symbol 14
OS OS OS OS Symbol 15

340th
Data
Block

Ordered
Set

Block

Ev
al

ua
tio

n
C

op
y

Flex Bus Physical Layer

 Compute Express Link Specification
October 26, 2020 200
Revision 2.0, Version 1.0

§ §

Figure 107. NULL Flit w/EDS and 128/130b Encoding

Lane 0 Lane 1 Lane 2 Lane 3
00h 00h Symbol 15

01b 01b 01b 01b Sync Header
OS OS OS OS Symbol 0
OS OS OS OS Symbol 1
OS OS OS OS Symbol 2
OS OS OS OS Symbol 3
OS OS OS OS Symbol 4
OS OS OS OS Symbol 5
OS OS OS OS Symbol 6
OS OS OS OS Symbol 7
OS OS OS OS Symbol 8
OS OS OS OS Symbol 9
OS OS OS OS Symbol 10
OS OS OS OS Symbol 11
OS OS OS OS Symbol 12
OS OS OS OS Symbol 13
OS OS OS OS Symbol 14
OS OS OS OS Symbol 15

ProtID=NULL w/EDS

Ordered
Set

Block

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 201
Revision 2.0, Version 1.0

7.0 Switching

7.1 Overview
This section provides an architecture overview of different CXL switch configurations.

7.1.1 Single VCS Switch

A single VCS switch consists of a single CXL Upstream port and one or more
Downstream Ports as illustrated in Figure 108.

A Single VCS switch is governed by the following rules:
• Must have a single USP
• Must have one or more DSPs
• DSPs must support operating in CXL or PCIe mode of operation
• All non-MLD (includes PCIe and SLD) ports support a single Virtual Hierarchy below

the vPPB
• Downstream Switch Port must be capable of supporting CXL 1.1 link
• Must support the CXL 2.0 Extensions DVSEC for Ports

Figure 108. Example of a Single VCS Switch

vPPB

vPPB vPPB vPPB vPPB

CXL/PCIe CXL/PCIe CXL/PCIe CXL/PCIe

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 202
Revision 2.0, Version 1.0

• The DVSEC defines registers to support CXL.io decode to support CXL 1.1 and
registers for CXL Memory Decode. The address decode for CXL.io is in addition to
the address decode mechanism supported by vPPB.

• Fabric Manager is optional for Single VCS Switch

7.1.2 Multiple VCS Switch

A Multiple VCS Switch consists of multiple Upstream Ports and one or more
Downstream Ports per VCS as illustrated in Figure 109.

A Multiple VCS Switch is governed by the following rules:
• Must have more than one USP
• Must have one or more Downstream Switch Ports per VCS
• The binding of upstream vPPB to physical port and the structure of the VCS

(including number of vPPBs, the default vPPB capability structures, and any initial
bindings of downstream vPPBs to physical ports) is defined using switch vendor
specific methods.

• Each Downstream Switch Port must be bound to a PPB or vPPB.
• Fabric Manager is optional for Multiple VCS switches. An FM is required for Multiple

VCS switches that require bind/unbind, or that support MLD ports. Each DSP can be
reassigned to a different VCS through the managed hot-plug flow orchestrated by
Fabric Manager.

• When configured, each USP and its associated DSPs form a Single VCS Switch and
operate as per the Single VCS Switch rules.

• DSPs must support operating in CXL or PCIe mode of operation.
• All non-MLD ports support a single Virtual Hierarchy below the Downstream Switch

Port.
• DSPs must be capable of supporting CXL 1.1 link

Figure 109. Example of a Multiple VCS Switch with SLD Ports

vPPB vPPB vPPB vPPB

CXL/PCIe CXL/PCIe CXL/PCIe CXL/PCIe

vPPB vPPB vPPB vPPB

F
M

VCS-0 VCS-1 VCS-NVCS-x

Unbound

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 203
Revision 2.0, Version 1.0

7.1.3 Multiple VCS Switch with MLD Ports

A Multiple VCS Switch with MLD Ports consists of multiple Upstream Port Switches and
a combination of one or more Downstream MLD Ports. as illustrated in Figure 110.

A Multiple Root Port Switch supporting MLD is governed by the following rules:
• More than one USP
• One or more Downstream vPPBs per VCS.
• Each SLD Downstream Switch Port is configured to connect to a Single VCS.
• An MLD Capable Downstream Switch Port can be connected to up to 16 USPs.
• Each of the DSPs can be reassigned to a different VCS through the managed hot-

plug flow orchestrated by Fabric Manager
• Each of the LD instances in an MLD component can be reassigned to a different VCS

through the managed hot-plug flow orchestrated by Fabric Manager.
• When configured, each USP and its associated DSPs and DSP VH instances are

virtualized to form a Single VCS Switch, and operate as per the Single VCS Switch
rules.

• Downstream Switch Ports must support operating in CXL or PCIe mode of operation
• All non-MLD ports support a single Virtual Hierarchy below the Downstream Switch

Port
• Downstream Switch Port must be capable of supporting CXL 1.1 link
• Each CXL Switch Hierarchy must enable at most a single a single CXL 1.1 device.

Figure 110. Example of a Multiple Root Switch Port with Pooled Memory Devices

Root Port Root Port

VCS 1VCS 0

Virtual to
Physical
Binding

Fabric
Manager

unbound unbound

MLD MLD MLD

PPBPPB PPB

vPPB

vPPB vPPB

vPPB

vPPB vPPB

FM Endpoint

unbound unbound

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 204
Revision 2.0, Version 1.0

7.2 Switch Configuration and Composition
This section describes the CXL Switch initialization options and related configuration
and composition procedures.

7.2.1 CXL Switch Initialization Options

The CXL Switch can be initialized using three different methods:
1. Static
2. FM boots before the host(s)
3. Fabric Manager and Host Boot Simultaneously

7.2.1.1 Static Initialization

Figure 111 shows a statically initialized CXL switch with 2 VCSs. In this example the
downstream vPPBs are statically bound to ports and are available to the host at boot.
Managed hot add of Devices is supported using standard PCIe mechanisms.

Static Switch Characteristics:
• No support for MLD Ports
• No support for rebinding of ports to a different VCS
• No FM is required
• At switch boot, all VCSs and Downstream Port bindings are statically configured

using switch vendor defined mechanisms (e.g. configuration file in SPI Flash)
• Supports CXL 1.1, CXL 2.0, or PCIe Downstream Ports

Figure 111. Static CXL Switch With Two VCSs

vPPB

vPPB vPPB

vPPB

vPPB vPPB

Root Port Root Port

PCIe or
CXL Device

PCIe or
CXL Device

PCIe or
CXL Device

PCIe or
CXL Device

VCS 1VCS 0

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 205
Revision 2.0, Version 1.0

• VCSs, including vPPBs, behave identically to a PCIe switch, along with the addition
of supporting CXL protocols

• Each VCS is ready for enumeration when the host boots
• Hot add and managed hot remove are supported
• Async removal of CXL 2.0 devices is not supported

A switch providing internal Endpoint functions is outside the scope of the CXL
specification. Any internal Endpoints must be compliant with the PCIe Base
Specification.

7.2.1.2 Fabric Manager Boots First

In cases where the FM boots first (prior to host(s)), the switch is permitted to be
initialized as described in the following example Figure 112.

1. Switch and FM boot
2. In this example the downstream vPPBs are statically bound to ports and are

available to the host at boot. Managed hot add of Devices is supported using
standard PCIe mechanisms.

3. All Downstream Ports are not bound to VCSs, so they are owned by the FM
4. DSPs link up and the switch notifies the FM using managed hot add notification

Figure 112. Example of CXL Switch Initialization When FM Boots First

Root Port 0 Root Port 1

VCS 1VCS 0

Virtual to
Physical
Binding

Fabric
Manager

FM Endpoint

unboundunbound unbound

PCIe or CXL
Device

PCIe or CXL
Device

PCIe or CXL
Device

PPBPPB PPB1 2 3

vPPB

vPPB vPPB

vPPB

vPPB

0

1 2

0

PHY_PORT 0 PHY_PORT 4

vPPB

unbound

21

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 206
Revision 2.0, Version 1.0

As shown in the example above in Figure 115, the following steps are taken to
configure the switch after initialization completes:
5. FM sends bind command BIND (VCS0, VPPB1, PHY_PORT_ID1) to the switch. The

switch then configures virtual to physical binding as described in items.
6. Switch remaps vPPB virtual port numbers to physical port numbers.
7. Switch remaps vPPB connector definition (PERST#, PRSNT#) to physical connector.
8. Switch disables the link using PPB Link Disable.
9. At this point all Physical downstream PPB functionality (Capabilities, etc.) maps

directly to the vPPB including Link Disable, which releases the port for linkup.
10. The FM-owned PPB no longer exists for this port.
11. When the hosts boot, the switch is ready for enumeration.

Figure 113. Example of CXL Switch after Initialization Completes

Root Port 0 Root Port 1

PCIe or CXL
Device

PCIe or CXL
Device

PCIe or CXL
Device

VCS 0

Virtual to
Physical
Binding

Fabric
Manager

FM Endpoint

PHY PORT
1

PHY PORT
2

PHY PORT
3

vPPB

vPPB vPPB

0

1 2

PHY PORT 0

VCS 1
vPPB

vPPB

0

2

PHY PORT 4

vPPB

unbound

1

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 207
Revision 2.0, Version 1.0

7.2.1.3 Fabric Manager and Host Boot Simultaneously

In the case where Switch, FM, and Host boot at the same time:
1. VCSs are statically defined.
2. vPPBs within each VCS are unbound and presented to the host as link down.
3. Switch discovers downstream devices and presents them to the FM.
4. Host enumerates the VH and configures DVSEC in the US PPB.
5. FM performs port binding to vPPBs.
6. The switch performs virtual to physical binding.
7. Each bound port results in a hot add indication to the host.

Figure 114. Example of Switch with Fabric Manager and Host Boot Simultaneously

Root Port 0 Root Port 1

VCS 1VCS 0

Virtual to
Physical
Binding

Fabric
Manager

FM Endpoint

unbound unboundunbound unbound

PCIe or CXL
Device

PCIe or CXL
Device

PCIe or CXL
Device

PPBPPB PPB1 2 3

vPPB

vPPB vPPB

vPPB

vPPB

0

1 2

0

PHY_PORT 0 PHY_PORT 4

vPPB
21

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 208
Revision 2.0, Version 1.0

7.2.2 Sideband Signal Operation

The availability of slot sideband control signals is decided by the form factor
specifications. Any form factor can be supported, but if the form factor supports the
following signals, they must be driven by the switch or connected to the switch for
proper operation.

All other sideband signals have no constraints and are supported exactly as in PCIe.

Figure 115. Example of Switch with Single Power-on/Reset Domain Post Configuration

vPPB

vPPB vPPB

vPPB

vPPB vPPB

Root Port 0 Root Port 1

PCIe or
CXL Device

PCIe or
CXL Device

PCIe or
CXL Device

VCS 1VCS 0

Virtual to
Physical
Binding

Fabric
Manager

FM
Endpoint

unbound

0

1 2

0

1 2

PHY PORT
1

PHY PORT
2

PHY PORT
3

PHY PORT 0 PHY PORT 4

Table 71. CXL Switch Sideband Signal Requirements

Signal Name Signal Description Requirement

USP PERST# PCIe Reset provides a fundamental
reset to the VCS

If it exists this signal must be
connected to the switch

USP ATTN#
Attention button indicates a request to
the host for a managed hot remove of
the switch

If hot remove of the switch is supported
this signal must be generated by the
switch

DSP PERST# PCIe Reset provides a power on reset to
the downstream link partner

If it exists this signal must be
generated by the switch

DSP PRSNT#
Out-of-band Presence Detect indicates
that a device has been connected to the
slot

If it exists this signal must be
connected to the switch

DSP ATTN#
Attention button indicates a request to
the host for a managed hot remove of
the downstream slot

If managed hot removal is supported,
this signal must be connected to the
switch

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 209
Revision 2.0, Version 1.0

This list provides the minimum sideband signal set to support managed hot plug. Other
optional sidebands signals such as Attention LED, Power LED, Manual Retention Latch,
Electromechanical Lock, etc. may also be used to for managed hot plug. The behavior
of these sideband signals is identical to PCIe.

7.2.3 Binding and Unbinding

This section describes the details of Binding and Unbinding of CXL Devices to a vPPB.

7.2.3.1 Binding and Unbinding of a Single Logical Device Port

A Single Logical Device (SLD) port refers to a port that is bound to only one VCS. That
port can be linked up with a PCIe device or CXL Type 1, Type 2, or Type 3 SLD
components. In general, the vPPB bound to the SLD port behaves the same as a PPB in
a PCIe switch. An exception is that a vPPB can be unbound from any physical port. In
this case the vPPB appears to the host as if it is in a linkdown state with no Presence
Detect indication. Since re-binding of ports is a required feature, this switch must have
a Fabric Manager API support and Fabric Manager connection. The Fabric Manager can
bind any unused physical port to the unbound vPPB. After binding all of the vPPB port
settings are applied to that physical port.

Figure 116 shows the state of the switch after the Fabric Manager has executed an
unbind command to vPPB2 in VCS0. The act of unbinding the vPPB also leaves the port
unbound. It becomes FM owned and is then controlled by the PPB settings for that
physical port. Through the FM API, the FM has CXL.io access to each FM-owned SLD port
or FM-owned LD within an MLD component. It can choose to prepare the logical device
for rebinding by triggering FLR or CXL Reset. The switch prohibits any CXL.io access from
the FM to a bound SLD port and any CXL.io access from the FM to a bound LD within an
MLD component. The FM API does not support FM generation of CXL.mem or CXL.cache
transactions to any port.

Figure 116. Example of Binding and Unbinding of an SLD Port

Root Port 0 Root Port 1

PCIe or CXL
Device

PCIe or CXL
Device

PCIe or CXL
Device

VCS 1VCS 0

Virtual to
Physical
Binding

Fabric
Manager

FM Endpoint

unbound

PHY PORT
1

PHY PORT
2

PHY PORT
3

SLD SLD SLD

vPPB

vPPB vPPB

vPPB

vPPB

0

1 2

0

1

PHY PORT 0 PHY PORT 4

vPPB
2

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 210
Revision 2.0, Version 1.0

Figure 117 shows the state of the switch after the Fabric Manager has executed an
unbind command to vPPB2 in VCS0. Unbind of the vPPB causes the switch to assert
Link Disable to the port. The port then becomes FM owned and is controlled by the PPB
settings for that physical port. Through the FM API, the FM has CXL.io access to each
FM-owned SLD port or FM-owned LD within a an MLD component. It can choose to
prepare the logical device for rebinding by triggering FLR or CXL Reset. The switch
prohibits any CXL.io access from the FM to a bound SLD port and any CXL.io access
from the FM to a bound LD within an MLD component. The FM API does not support FM
generation of CXL.mem or CXL.cache transactions to any port.

Figure 117. Example of CXL Switch Configuration After an Unbind Command

Root Port 0 Root Port 1

PCIe or CXL
Device

PCIe or CXL
Device

PCIe or CXL
Device

VCS 1VCS 0

Virtual to
Physical
Binding

Fabric
Manager

FM Endpoint

PHY PORT
1

PHY PORT
3

SLD SLD SLD

PPB

vPPB

vPPB vPPB

vPPB

vPPB vPPB

unbound

0

1 2

0

1 2

PHY PORT 0 PHY PORT 4

unbound

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 211
Revision 2.0, Version 1.0

Figure 118 shows the state of the switch after the FM executes the bind command to
connect VCS1.vPPB1 to the unbound physical port. The successful command execution
results in the switch sending a hot add indication to host 1. Enumeration, configuration,
and operation of the host and Type 3 device is identical to a hot add of a device.

7.2.3.2 Binding and Unbinding of a Pooled Device

A pooled device contains multiple Logical Devices so traffic over the physical port can
be associated with multiple DS vPPBs. The switch behavior for binding and unbinding of
an MLD component is similar to that of an SLD component with some notable
differences:
1. The physical link cannot be impacted by binding and unbinding of a Logical Device

within an MLD component, so PERST#, Hot Reset, and Link Disable cannot be
asserted, and there must be no impact to the traffic of other VCSs during the bind
or unbind commands.

2. The physical PPB for an MLD port is always owned by the FM. The FM is responsible
for port link control, AER, DPC, etc., and manages it using the FM API.

3. The FM may need to manage the pooled device in order to change memory
allocations, enable the LD, etc.

Figure 118. Example of CXL Switch Configuration after a Bind Command

Root Port Root Port

PCIe or CXL
Device

PCIe or CXL
Device

PCIe or CXL
Device

VCS 1VCS 0

Virtual to
Physical
Binding

Fabric
Manager

FM Endpoint

PHY PORT
1

PHY PORT
3

SLD SLD SLD

vPPB

vPPB vPPB

vPPB

vPPB vPPB

0

1 2

0

1 2

PHY PORT 0 PHY PORT 4

unbound

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 212
Revision 2.0, Version 1.0

Figure 119 shows a CXL switch after boot and before binding of any LDs within the
pooled device. Note that the FM is not a PCIe Root Port and the switch is responsible for
enumerating the FMLD after any physical reset since the switch is responsible for
proxying commands from FM to the device. The PPB of an MLD port is always owned by
the FM since the FM is responsible for configuration and error handling of the physical
port. After linkup the FM is notified that it is a Type 3 pooled device.

The FM configures the pooled device for Logical Device 1 and sets its memory
allocation, etc. The FM performs a bind command for the unbound vPPB 2 in VCS 0 to
LD 1 in the Type 3 pooled device. The switch performs the virtual to physical
translations such that all CXL.io and CXL.mem transactions targeting vPPB 2 in VCS0
are routed to the MLD port with LD-ID set to 1. Additionally, all CXL.io and CXL.mem
transactions from LD 1 in the pooled device are routed according to the host
configuration of VCS 0. After binding, the vPPB notifies the host of a hot add the same
as if it were binding a vPPB to an SLD port.

Figure 119. Example of a CXL Switch Before Binding of LDs Within Pooled Device

Root Port 0 Root Port 1

VCS 1VCS 0

Virtual to
Physical
Binding

Fabric
Manager

FM Endpoint

PCIe or CXL
Device

Type 3 Pooled PCIe or CXL
Device

PPB

LD FFFF
LD 0
LD 1

SLD MLD SLD

PHY PORT
1

PHY PORT
3

2

vPPB

vPPB vPPB

vPPB

vPPB vPPB

unboundunbound

0

1 2

0

1 2

PHY PORT 0 PHY PORT 4

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 213
Revision 2.0, Version 1.0

Figure 120 shows the state of the switch after binding LD 1 to VCS 0.

The FM configures the pooled device for Logical Device 0 and sets its memory
allocation, etc. The FM performs a bind command for the unbound vPPB 1 in VCS 1 to
Logical Device 0 in the Type 3 pooled device. The switch performs the virtual to physical
translations such that all CXL.io and CXL.mem transactions targeting the vPPB in VCS1
are routed to the MLD port with LD-ID set to 0. Additionally, all CXL.io and CXL.mem
transactions from LD-ID = 0 in the pooled device are routed to the USP of VCS 1. After
binding, the vPPB notifies the host of a hot add the same as if it were binding a vPPB to
an SLD port.

Figure 120. Example of a CXL Switch After Binding of LD-ID 1 Within Pooled Device

Root Port 0 Root Port 1

VCS 1VCS 0

Virtual to
Physical
Binding

Fabric
Manager

FM Endpoint

PCIe or CXL
Device

Type 3 Pooled PCIe or CXL
Device

PPB

LD FFFF
LD 0
LD 1

SLD MLD SLD

PHY PORT
1

PHY PORT
32

vPPB

vPPB vPPB

vPPB

vPPB

unbound

0

1 2

0

1

PHY PORT 0 PHY PORT 4

vPPB
2

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 214
Revision 2.0, Version 1.0

Figure 121 shows the state of the switch after binding LD 0 to VCS 1.

After binding LDs to vPPBs the switch behavior is different from a bound SLD Port with
respect to control, status, error notification and error handling. Section 7.3.4 describes
the differences in behavior for every bit in every register.

7.2.4 PPB and vPPB Behavior for MLD Ports

An MLD port provides a virtualized interface such that multiple vPPBs can access LDs
over a shared physical interface. As a result, the characteristics and behavior of a vPPB
bound to an MLD port is different than the behavior of a vPPB bound to an SLD port.
This section defines the differences between them. If not mentioned in this section, the
features and behavior of a vPPB bound to an MLD port are the same as one bound to an
SLD port.
This section uses the following terminology:

• Hardwire to 0 refers to status and optional control register bits that are initialized to
0. Writes to these bits have no effect.

• The term ‘Read/Write with no Effect’ refers to control register bits where writes are
recorded but have no effect on operation. Reads to those bits reflect the previously
written value or the initialization value if it has not been changed since
initialization.

Figure 121. Example of a CXL Switch After Binding of LD-IDs 0 and 1 Within Pooled Device

vPPB

vPPB vPPB

vPPB

vPPB vPPB

Root Port Root Port

VCS 1VCS 0

Virtual to
Physical
Binding

Fabric
Manager

FM
Endpoint

PCIe or
CXL Device

Type 3 Pooled PCIe or
CXL Device

PPB

LD FFFF
LD 0
LD 1

SLD MLD SLD

0

1 2

0

1 2

PHY PORT
1

PHY PORT
3

PHY PORT 0 PHY PORT 4

2

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 215
Revision 2.0, Version 1.0

7.2.4.1 MLD Type 1 Configuration Space Header

7.2.4.2 MLD PCI-Compatible Configuration Registers

7.2.4.3 MLD PCI Express Capability Structure

Table 72. MLD Type 1 Configuration Space Header

Register Register Fields FM Owned PPB All Other vPPBs

Bridge Control
Register

Parity Error Response Enable Supported Hardwired to all 0s

SERR# Enable Supported Read/Write with no effect

ISA Enable Not supported Not supported

Secondary Bus Reset
Refer to section 7.7 for SBR
details for MLD ports.

Supported Read/Write with no effect. Optional
FM Event.

Table 73. MLD PCI-Compatible Configuration Registers

Register/ Capability
Structure Capability Register Fields FM Owned PPB All vPPBs Bound to

the MLD Port

Command Register

I/O Space Enable Hardwire to 0s Hardwire to 0s

Memory Space Enable Supported Supported per vPPB

Bus Master Enable Supported Supported per vPPB

Parity Error Response Supported Read/Write with no
effect

SERR# Enable Supported Supported per vPPB

Interrupt Disable Supported Hardwire to 0s

Status Register

Interrupt status Hardwire to 0 (INTx is
not supported) Hardwire to 0s

Master Data Parity Error Supported Hardwire to 0s

Signaled System Error Supported Supported per vPPB

Detected Parity Error Supported Hardwire to 0s

Table 74. MLD PCI Express Capability Structure

Register/ Capability
Structure Capability Register Fields FM Owned PPB All vPPBs Bound to

the MLD Port

Device Capabilities
Register

Max_Payload_Size Supported

Configured by the FM to
the max value supported
by switch hardware and
min value configured in
all vPPBs

Mirrors PPB

Phantom Functions Supported Hardwire to 0s Hardwire to 0s

Extended Tag Field Supported Supported Mirrors PPB

Device Control Register Max_Payload_Size
Configured by the FM to
Max_Payload Size
Supported

Read/Write with no
effect

Link Capabilities
Register

Link Bandwidth Notification
Capability Hardwire to 0s Hardwire to 0s

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 216
Revision 2.0, Version 1.0

Link Capabilities
ASPM Support No L0s support No L0s support

Clock Power Management No PM L1 Substates
support

No PM L1 Substates
support

Link Control

ASPM Control Supported

Switch only enables
ASPM if all vPPBs
bound to this MLD
have enabled ASPM

Link Disable Supported

The switch handles it
as an unbind by
discarding all traffic to/
from this LD-ID.

Retrain Link Supported Read/Write with no
effect

Common Clock Configuration Supported Read/Write with no
effect

Extended Synch Supported Read/Write with no
effect

Hardware Autonomous Width
Disable Supported Read/Write with no

effect

Link Bandwidth Management
Interrupt Enable Supported Read/Write with no

effect

Link Autonomous Bandwidth
Interrupt Enable Supported

Supported per vPPB.
Each host can be
notified of autonomous
speed change

DRS Signaling Control Supported

Switch sends DRS
after receiving DRS on
the link and after
binding of the vPPB to
an LD

Link Status register

Current Link Speed Supported Mirrors PPB

Negotiated Link Width Supported Mirrors PPB

Link Training Supported Hardwire to 0s

Slot Clock Configuration Supported Mirrors PPB

Data Link Layer Active Supported Mirrors PPB

Link Autonomous Bandwidth
Status Supported Supported per vPPB

Slot Capabilities
Register

Hot Plug Surprise Hardwire to 0s Hardwire to 0s

Physical Slot Number Supported Mirrors PPB

Table 74. MLD PCI Express Capability Structure

Register/ Capability
Structure Capability Register Fields FM Owned PPB All vPPBs Bound to

the MLD Port

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 217
Revision 2.0, Version 1.0

Slot Status Register

Attention Button Pressed Supported Mirrors PPB or is set by
the switch on unbind

Power Fault Detected Supported Mirrors PPB

MRL Sensor Changed Supported Mirrors PPB

Presence Detect Changed Supported Mirrors PPB or is set by
the switch on unbind

MRL Sensor State Supported Mirrors PPB

Presence Detect State Supported
Mirrors PPB or set by
the switch on bind or
unbind

Electromechanical Interlock
Status Supported Mirrors PPB

Data Link Layer State Changed Supported
Mirrors PPB or set by
the switch on bind or
unbind

Device Capabilities 2
Register OBFF Supported Hardwire to 0s Hardwire to 0s

Device Control 2
Register

ARI Forwarding Enable Supported Supported per vPPB

Atomic Op Egress Blocking Supported Mirrors PPB. Read/
Write with no effect

LTR Mechanism Enabled Supported Supported per vPPB

Emergency Power Reduction
Request Supported

Read/Write with no
effect. Optional FM
notification.

End-End TLP Prefix Blocking Supported Mirrors PPB. Read/
Write with no effect

Link Control 2 Register

Target Link Speed Supported
Read/Write with no
effect. Optional FM
notification.

Enter Compliance Supported Read/Write with no
effect

Hardware Autonomous Speed
Disable Supported

Read/Write with no
effect. Optional FM
notification.

Selectable De-emphasis Supported Read/Write with no
effect

Transmit Margin Supported Read/Write with no
effect

Enter Modified Compliance Supported Read/Write with no
effect

Compliance SOS Supported Read/Write with no
effect

Compliance Preset/De-
emphasis Supported Read/Write with no

effect

Table 74. MLD PCI Express Capability Structure

Register/ Capability
Structure Capability Register Fields FM Owned PPB All vPPBs Bound to

the MLD Port

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 218
Revision 2.0, Version 1.0

7.2.4.4 MLD PPB Secondary PCI Express Capability Structure

All fields in the Secondary PCI Express Capability Structure for a Virtual PPB shall
behave identical to PCIe except the following:

Link Status 2 Register

Current De-emphasis Level Supported Mirrors PPB

Equalization 8.0 GT/s Complete Supported Mirrors PPB

Equalization 8.0 GT/s Phase 1
Successful Supported Mirrors PPB

Equalization 8.0 GT/s Phase 2
Successful Supported Mirrors PPB

Equalization 8.0 GT/s Phase 3
Successful Supported Mirrors PPB

Link Equalization Request 8.0
GT/s Supported Read/Write with no

effect

Retimer Presence Detected Supported Mirrors PPB

Two Retimers Presence
Detected Supported Mirrors PPB

Crosslink Resolution Hardwire to 0s Hardwire to 0s

Downstream Component
Presence Supported Reflects the binding

state of the vPPB

DRS Message Received Supported

Switch sends DRS
after receiving DRS on
the link and after
binding of the vPPB to
an LD

Supported

Table 74. MLD PCI Express Capability Structure

Register/ Capability
Structure Capability Register Fields FM Owned PPB All vPPBs Bound to

the MLD Port

Table 75. MLD Secondary PCI Express Capability Structure

Register/ Capability
Structure Capability Register Fields FM Owned PPB All vPPBs Bound to

the MLD Port

Link Control 3 Register

Perform Equalization Supported Read/Write with no
effect

Link Equalization Request
Interrupt Enable Supported Read/Write with no

effect

Enable Lower SKP OS
Generation Vector Supported Read/Write with no

effect

Lane Error Status
Register All fields Supported Mirrors PPB

Lane Equalization
Control Register All fields Supported Read/Write with no

effect

Data Link Feature
Capabilities Register All fields Supported Hardwire to 0s

Data Link Feature
Status Register All fields Supported Hardwire to 0s

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 219
Revision 2.0, Version 1.0

7.2.4.5 MLD Physical Layer 16.0 GT/s Extended Capability

All fields in the Secondary PCI Express Capability Structure for a Virtual PPB shall
behave identical to PCIe except the following:

7.2.4.6 MLD Physical Layer 32.0 GT/s Extended Capability

Table 76. MLD Physical Layer 16.0 GT/s Extended Capability

Register/ Capability
Structure Capability Register Fields FM Owned PPB All vPPBs Bound to

the MLD Port

16.0 GT/s Status
Register All fields Supported Mirrors PPB

16.0 GT/s Local Data
Parity Mismatch Status
Register

Local Data Parity Mismatch
Status Register Supported Mirrors PPB

16.0 GT/s First Retimer
Data Parity Mismatch
Status Register

First Retimer Data Parity
Mismatch Status Supported Mirrors PPB

16.0 GT/s Second
Retimer Data Parity
Mismatch Status
Register

Second Retimer Data Parity
Mismatch Status Supported Mirrors PPB

16.0 GT/s Lane
Equalization Control
Register

Downstream Port 16.0 GT/s
Transmitter Preset Supported Mirrors PPB

Table 77. MLD Physical Layer 32.0 GT/s Extended Capability

Register/ Capability
Structure Capability Register Fields FM Owned PPB All vPPBs Bound to

the MLD Port

32.0 GT/s Capabilities
Register All fields Supported Mirrors PPB

32.0 GT/s Control
Register All fields Supported Read/Write with no

effect

32.0 GT/s Status
Register

Link Equalization Request 32.0
GT/s Supported Read/Write with no

effect

All fields except Link
Equalization Request 32.0 GT/s Supported Mirrors PPB

Received Modified TS
Data 1 Register All fields Supported Mirrors PPB

Received Modified TS
Data 2 Register All fields Supported Mirrors PPB

Transmitted Modified
TS Data 1 Register All fields Supported Mirrors PPB

32.0 GT/s Lane
Equalization Control
Register

Downstream Port 32.0 GT/s
Transmitter Preset Supported Mirrors PPB

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 220
Revision 2.0, Version 1.0

7.2.4.7 MLD Lane Margining at the Receiver Extended Capability

7.2.5 MLD ACS Extended Capability

CXL.io Requests and Completions are routed to the USP

7.2.6 MLD PCIe Extended Capabilities

All fields in the PCI Express Extended Capability structures for a vPPB shall behave
identical to PCIe except the following:

7.2.7 MLD Advanced Error Reporting Extended Capability

AER in an MLD port is separated into Triggering, Notifications, and Reporting. Triggering
and AER Header Logging is handled at switch ingress and egress using switch vendor
specific means. Notification is also switch vendor specific, but it results in the vPPB logic
for all vPPBs bound to the MLD port being informed of the AER errors that have been

Table 78. MLD Lane Margining at the Receiver Extended Capability

Register/ Capability
Structure Capability Register Fields FM Owned PPB All vPPBs Bound to

the MLD Port

Margining Port Status
Register All fields Supported

Always indicates
Margining Ready and
Margining Software
Ready

Margining Lane Control
Register All fields Supported Read/Write with no

effect

Table 79. MLD ACS Extended Capability

Register/ Capability
Structure Capability Register Fields FM Owned PPB All vPPBs Bound to

the MLD Port

ACS Capability Register All fields Supported
Supported since a
vPPB can be bound to
any port type

ACS Control Register

ACS Source Validation Enable Hardwire to 0 Read/Write with no
effect

ACS Translation Blocking
Enable Hardwire to 0 Read/Write with no

effect

ACS P2P Request Redirect
Enable Hardwire to 1 Read/Write with no

effect

ACS P2P Completion Redirect
Enable Hardwire to 1 Read/Write with no

effect

ACS Upstream Forwarding
Enable Hardwire to 0 Read/Write with no

effect

ACS P2P Egress Control Enable Hardwire to 0 Read/Write with no
effect

ACS Direct Translated P2P
Enable Hardwire to 0 Read/Write with no

effect

ACS I/O Request Blocking
Enable Hardwire to 0 Read/Write with no

effect

ACS DSP Memory Target
Access Control Hardwire to 0s Read/Write with no

effect

ACS Unclaimed Request
Redirect Control Hardwire to 0 Read/Write with no

effect

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 221
Revision 2.0, Version 1.0

triggered. The vPPB logic is responsible for generating the Advanced Error Reporting
status and error messages for each vPPB based on the AER Mask and Severity
registers.

vPPBs bound to an MLD port support all of the AER Mask and Severity configurability
but some of the Notifications are suppressed to avoid confusion.

The PPB has its own AER Mask and Severity registers and the FM is notified of error
conditions based on the Event Notification settings.

Errors that are not vPPB specific are provided to the host with a header log containing
all 1’s data. The hardware header log is provided only to the FM through the PPB.

Table 80 lists the AER Notifications and their routing indications the PPB and vPPBs.

Table 80. MLD Advanced Error Reporting Extended Capability

Hardware Triggers AER Error FM Owned PPB All vPPBs Bound to
the MLD Port

AER Notifications

Data Link Protocol Error Supported Supported per vPPB

Surprise Down Error Supported Supported per vPPB

Poisoned TLP Received Supported Hardwire to 0

Flow Control Protocol Error Supported Supported per vPPB

Completer abort Supported Supported to the vPPB
that generated it

Unexpected completion Supported Supported to the vPPB
that received it

Receiver Overflow Supported Supported per vPPB

Malformed TLP Supported Supported per vPPB

ECRC Error Supported Hardwire to 0

Unsupported Request Supported Supported per vPPB

ACS violation Supported Hardwire to 0

Uncorrectable Internal Error Supported Supported per vPPB

MC1 Blocked Supported Hardwire to 0

Atomic Op Egress Block Supported Hardwire to 0

E2E TLP Prefix Block Supported Hardwire to 0

Poisoned TLP Egress block Supported Hardwire to 0

Bad TLP (correctable) Supported Supported per vPPB

Bad DLLP (correctable) Supported Supported per vPPB

Replay Timer Timeout
(correctable) Supported Supported per vPPB

Replay Number Rollover
(correctable) Supported Supported per vPPB

Other Advisory Non-Fatal
(correctable) Supported Supported per vPPB

Corrected Internal Error Status
(correctable) Supported Supported per vPPB

Header Log Overflow Status
(correctable) Supported Supported per vPPB

NOTE:
1. Refers to Multicast.

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 222
Revision 2.0, Version 1.0

7.2.8 MLD DPC Extended Capability

Downstream Port Containment has special behavior for an MLD Port. The FM configures
the AER Mask and Severity registers in the PPB and also configures the AER Mask and
Severity registers in the FMLD in the pooled device. As in an SLD port an unmasked
uncorrectable error detected in the PPB and a received ERR_NONFATAL and/or
ERR_FATAL received from the FMLD can trigger DPC.

Continuing the model of the ultimate receiver being the entity that detects and reports
errors, the ERR_FATAL and ERR_NONFATAL.messages sent by a Logical Device can
trigger a virtual DPC in the PPB. When virtual DPC is triggered, the switch discards all
traffic received from and transmitted to that specific LD. The LD remains bound to the
vPPB and the FM is also notified. Software triggered DPC also triggers virtual DPC on a
vPPB.

 When the DPC trigger is cleared the switch autonomously allows passing of traffic to/
from the LD. Reporting of the DPC trigger to the host is identical to PCIe.

7.3 CXL.io, CXL.cache/CXL.mem Decode and Forwarding

7.3.1 CXL.io

Within a VCS the CXL.io traffic must obey the same request, completion, address
decode and forwarding rules for a Switch as defined in PCI Express Specification. There
are additional decode rules defined to support a CXL 1.1 device connected to a switch.

7.3.1.1 CXL.io Decode

When a TLP is decoded by PPB, it determines the destination PPB to route the TLP
based on the rules defined in PCIe Base Specification. Unless otherwise specified all
rules defined in PCIe Base specification apply for routing of CXL.io TLPs. TLPs must be
routed to PPBs within the same VCS. Routing of TLPs to and from a FM owned PPB need
to follow additional rules as defined in Section 7.2.3. P2P inside a Switch complex is
limited to PPBs within a VCS.

Table 81. MLD PPB DPC Extended Capability

Register/ Capability
Structure Capability Register Fields FM Owned PPB All vPPBs Bound to

the MLD Port

DPC Control Register

DPC Trigger Enable Supported

Unmasked
uncorrectable errors
do not trigger virtual
DPC

DPC Trigger Reason Supported
Unmasked
uncorrectable error is
not a valid value

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 223
Revision 2.0, Version 1.0

7.3.1.2 CXL 1.1 Support

CXL 1.1 devices are not supported behind ports configured to operate as FM owned
PPB. CXL 1.1 devices when connected behind a switch must appear to software as
RCiEP devices. The mechanism defined in this section enables this functionality.

The CXL 2.0 Extensions DVSEC for Ports (see Section 8.1.5) defines the alternate MMIO
and Bus Range Decode windows for forwarding of requests to CXL 1.1 devices
connected behind a Downstream Port.

7.3.2 CXL.cache

Only one of the CXL SLD ports in VCS is allowed to be enabled to support Type 1 or
Type 2 devices. Requests and Responses received on USP are routed to the associated
DSP and vice-versa. Therefore, additional decode registers are not required for
CXL.cache. CXL Cache is not supported over FM owned PPBs.

7.3.3 CXL.mem

The HDM Decode DVSEC capability contains registers that define the Memory Address
Decode Ranges for Memory. CXL.mem requests originate from the Host/RP and flow
downstream to the Devices through the switch and responses originate from the Device
and flow upstream to the RP.

7.3.3.1 CXL.mem Request Decode

All CXl.mem Requests received by the USP target one of the Downstream PPB within
the VCS. The address decode registers in VCS determine the downstream VCS PPB to
route the request. The VCS PPB may be a VCS owned PPB or a FM owned PPB. See
Section 7.3.4 for additional routing rules.

Figure 122. CXL Switch with a Downstream Link Auto-Negotiated to Operate as CXL 1.1

vPPB

RCRB vPPB vPPB vPPB

CXL 1.1 CXL/PCIe CXL/PCIe CXL/PCIe

CXL RP

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 224
Revision 2.0, Version 1.0

7.3.3.2 CXL.mem Response Decode

CXL.mem Responses received by the DSP target one and only one Upstream Port. For
VCS owned PPB the responses are routed to the Upstream Port of that VCS. Responses
received on a FM owned PPB go through additional decode rules to determine the VCS-
ID to route the requests to. See Section 7.3.4 for additional routing rules.

7.3.3.3 QoS Message Aggregation

Please refer to Section 3.3.2.

7.3.4 FM Owned PPB CXL Handling

All PPBs are FM owned. A PPB can be connected to a port that is disconnected, linked
up as CXL 1.1, CXL 2.0 SLD, or CXL 2.0 MLD. SLD components can be bound to a host
or unbound. Unbound SLD components can be accessed by the FM using CXL.io
transactions via the FM API. LDs within an MLD component can be bound to a host or
unbound. Unbound LDs are FM owned and can be accessed through the switch using
CXL.io transactions via the FM API.

For all CXL.io transactions driven by the FM API, the switch acts as a virtual Root
Complex for PPBs and Endpoints. The switch is responsible for enumerating the
functions associated with that port and sending/receiving CXL.io traffic.

7.4 CXL Switch PM

7.4.1 CXL Switch ASPM L1

ASPM L1 for switch Ports is as defined in Chapter 10.

7.4.2 CXL Switch PCI-PM and L2

A vPPB in a VCS operates the same as a PCIe vPPB for handling of PME messages.

7.4.3 CXL Switch Message Management

CXL VDMs are of the type “Local - Terminate at Receiver” type. When a switch is
present in the hierarchy, the switch implements the message aggregation function and
therefore all Host generate messages terminate at the switch. The switch aggregation
function is responsible for re-generating these messages on the Downstream Port. All
messages and responses generated by CXL device are aggregated and consolidated by
the switch and consolidated messages or responses are generated by the Upstream
Port of the switch.

The PM message credit exchanges occur between the Host and Switch Aggregation
port, and separately between the Switch Aggregation Port and Device.

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 225
Revision 2.0, Version 1.0

Table 82. CXL Switch Message Management

Message Type Type Switch Message Aggregation and
Consolidation Responsibility

PM Reset Messages Host Initiated
Host generated requests terminate at
Upstream Port, broadcast messages to all
ports within VCS hierarchy

Sx Entry Host Initiated
Host generated requests terminate at
upstream port, broadcast messages to all
ports within VCS hierarchy

GPF Phase 1 Req Host Initiated
Host generated requests terminate at
upstream port, broadcast messages to all
ports within VCS hierarchy

GPF Phase 2 Req Host Initiated
Host generated requests terminate at
upstream port, broadcast messages to all
ports within VCS hierarchy

PM Reset Acknowledge Device Responses

Device generated responses terminate at
Downstream Port within VCS hierarchy.
Switch aggregates responses from all other
connected ports within VCS hierarchy.

Sx Entry Device Responses

Device generated responses terminate at
Downstream Port within VCS hierarchy.
Switch aggregates responses from all other
connected ports within VCS hierarchy.

GPF Phase 1 Response Device Responses

Device generated responses terminate at
Downstream Port within VCS hierarchy.
Switch aggregates responses from all other
connected ports within VCS hierarchy.

GPF Phase 2 Response Device Responses

Device generated responses terminate at
Downstream Port within VCS hierarchy.
Switch aggregates responses from all other
connected ports within VCS hierarchy.

PM Reset Acknowledge Device Responses

Device generated responses terminate at
Downstream Port within VCS hierarchy.
Switch aggregates responses from all other
connected ports within VCS hierarchy.

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 226
Revision 2.0, Version 1.0

7.5 CXL Switch RAS

Because the MLD DVSEC only exists in the FMLD, the switch must use the FM LD-ID in
the CXL.io configuration write transaction when triggering LD reset.

7.6 Fabric Manager Application Programming Interface
This section describes the Fabric Manager Application Programming Interface.

7.6.1 CXL Fabric Management

CXL devices can be configured statically or dynamically via a Fabric Manager (FM), an
external logical process that queries and configures the system’s operational state
using the FM commands defined in this specification. The FM is defined as the logical
process that decides when reconfiguration is necessary and initiates the commands to
perform configurations. It can take any form, including, but not limited to, software
running on a host machine, embedded software running on a BMC, embedded firmware
running on another CXL device or CXL switch, or a state machine running within the
CXL device itself.

Table 83. CXL Switch RAS

Host Action Description Switch Action for Non-
Pooled Devices

Switch Action for
Pooled Devices

Switch boot Power-on reset pin
Assert PERST#
Release PERST#

Assert PERST#
Release PERST#

Upstream PERST# assert VCS fundamental reset Send Hot Reset

Write to MLD DVSEC
to trigger LD Hot Reset
of the associated LD.
<Note> Only the
FMLD provides the
MLD DVSEC capability

FM port reset Reset of an FM owned DSP Send Hot Reset Send Hot Reset

USP received Hot Reset VCS fundamental reset Send Hot Reset
Write to MLD DVSEC
to trigger LD Hot Reset
of the associated LD

US vPPB Secondary Bus
Reset VCS US SBR Send Hot Reset

Write to MLD DVSEC
to trigger LD Hot Reset
of the associated LD

DS vPPB Secondary Bus
Reset VCS DS SBR Send Hot Reset

Write to MLD DVSEC
to trigger LD Hot Reset
of the associated LD

Host writes FLR Device FLR No switch involvement No switch involvement

Switch watchdog timeout Switch fatal error Equivalent to power-on
reset

Equivalent to power-
on reset

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 227
Revision 2.0, Version 1.0

7.6.2 Fabric Management Model

CXL devices are configured by FMs through the Fabric Manager Application
Programming Interface (FM API).

The FM API consists of request messages, response messages and event notification
messages. FMs issue request messages and CXL devices issue response and event
notification messages. MCTP may be used as the transport protocol.

MCTP messages may be sent over a variety of interfaces. The following list provides a
number of examples, but should not be considered a complete list:

• An FM directly connected to a CXL device through any media interface that
supports the MCTP transport protocol can issue FM commands directly to the
device. This includes delivery over sideband buses such as SMBus as well as VDM
delivery over a standard PCIe tree topology where the responder is mapped to a
CXL attached device.

• An FM directly connected to a CXL switch may use the switch to tunnel FM
commands to MLD components directly attached to the switch. In this case, the FM
issues the “Tunnel Management Command” command to the switch specifying the
switch port to which the device is connected. Responses are returned to the FM by
the switch. In addition to MCTP message delivery, the FM command set provides
the FM with the ability to have the switch proxy config cycles and memory accesses
to a Downstream Port on the FM’s behalf.

Figure 123. Example of Fabric Management Model

VCS 1VCS 0

Virtual to
Physical
Binding

BMC

MCTP EP

PCIe or CXL
Device

Type 3 Pooled PCIe or CXL
Device

PPB

LD FFFF
LD 0
LD 1

SLD MLD SLD

PHY PORT
1

PHY PORT
32

Fabric
Manager

FM API
Support

FM API
Support

Type 3 Pooled

PPB

LD FFFF
LD 0
LD 1

MLD

5

FM API
Support

Tunnel
Management
Command

vPPB

vPPB vPPB

vPPB

vPPB

Root Port 0 Root Port 1

0

1 2

0

1

PHY PORT 0 PHY PORT 4

vPPB
2

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 228
Revision 2.0, Version 1.0

• An FM may also be embedded within a CXL device. The communication interface
between such a FW module and the device hardware is considered a vendor
implementation detail and is not covered in this specification.

Support for multiple Management Ports and coordination of multiple active FMs falls
outside the scope of this specification.

7.6.3 FM Command Transport Protocol

FM API commands may be transported as MCTP Message as defined in CXL FM API over
MCTP Binding Specification1.

1. www.dmtf.org

Figure 124. FM API Message Format

Table 84. FM API Message Format

Bytes Description

0

Bits (3:0): Message Category: Type of FM API message:
• 0h = Request
• 1h = Response
• 2h = Event Notification
• All other encodings reserved

Bits (7:4): Reserved

1 Message Tag: Tag number assigned to request messages by the FM used to
track response messages when multiple request messages are outstanding.
Response messages shall use the tag number from the corresponding Request
message. Must be 0 for Event Notification messages.

2 Reserved

4-3 Opcode: As defined in Table 205.

7-5 Bits (20:0): Message Payload Length - As defined in Table 205.
Bit (22:21): Reserved
Bit(23): Background Operation: As defined in Section 8.2.8.4.6. Must be 0 for
Request messages and Event Notification Messages.

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 229
Revision 2.0, Version 1.0

7.6.4 CXL Switch Management

Dynamic configuration of a switch by an FM is not required for basic switch functionality
but is required to support MLDs or CXL fabric topologies.

7.6.4.1 Initial Configuration

The non-volatile memory of the switch stores in a vendor-specific format all necessary
configuration settings required to prepare the switch for initial operation. This includes:

• Port configuration, including direction (upstream or downstream), width, supported
rates, etc.

• Virtual CXL Switch configuration, including number of vPPBs for each VCS, Initial
port binding configuration, etc., and

• Management port access settings, including any vendor-defined permission
settings for management.

7.6.4.2 Dynamic Configuration

After initial configuration is complete and a Management Port on the switch is
operational, an FM can send Management Commands to the switch.

An FM may perform the following dynamic management actions on a CXL switch:
• Query switch information and configuration details
• Bind or Unbind ports
• Register for or receive and handle event notifications from the switch (e.g., hot

plug, surprise removal and failures)

When a switch port is connected to a nested PCIe switch and that port is bound to a
vPPB, the management of that PCIe switch and its downstream device will be handled
by the VCS’s host, not the FM. Management by the FM of individual ports and EPs on a
nested PCIe switch will be considered in future versions of the CXL specification.

7.6.4.3 MLD Port Management

A switch with MLD Ports requires an FM to perform the following management
activities:

• MLD discovery
• LD binding/unbinding
• Management Command Tunneling

9-8 Return Code: As defined in Table 150. Must be 0 for Request messages and
Event Notification Messages

11-10 Vendor Specific Extended Status: As defined in Section 8.2.8.4.6. Must be 0
for Request messages and Event Notification Messages

Varies-12 Message Payload: The length of this field is specified in the Message Payload
Length field above. The format depends on Opcode and Message Category, as
defined in Section 7.6.7

Table 84. FM API Message Format

Bytes Description

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 230
Revision 2.0, Version 1.0

7.6.5 MLD Component Management

The FM can connect to an MLD over a direct connection or by tunneling its management
commands through the management port of the CXL switch to which the device is
connected. The FM can perform the following operations:

• Memory allocation and QoS Telemetry management
• Security (e.g., LD erasure after unbinding)
• Error handling

7.6.6 Management Requirements for System Operations

This section presents examples of system use cases to highlight the role and
responsibilities of the FM in system management. These use case discussions also
serve to itemize the FM commands that CXL devices must support to facilitate each
specific system behavior.

7.6.6.1 Initial System Discovery

As the CXL system initializes, the FM can begin discovering all direct-attached CXL
devices across all supported media interfaces. Devices supporting the FM API may be
discovered using transport specific mechanisms such as the MCTP discovery process, as
defined in the MCTP Base Specification.

Figure 125. Example of MLD Management Requiring Tunneling

vPPB

VCS 1VCS 0

Virtual to
Physical
Binding

BMC

MCTP EP

PCIe or CXL
Device

Type 3 Pooled PCIe or CXL
Device

PPB

LD FFFF
LD 0
LD 1

SLD MLD SLD

2

PHY PORT
1

PHY PORT
32

Fabric
Manager

FM API
Support

FM API
Support

Type 3 Pooled

PPB

LD FFFF
LD 0
LD 1

MLD

5

FM API
Support

Tunnel
Management
Command

Pooled Device
Management
Command

vPPB

vPPB vPPB

vPPB

vPPB

Root Port 0 Root Port 1

0

1 2

0

1

PHY PORT 0 PHY PORT 4

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 231
Revision 2.0, Version 1.0

FM issues Get Supported Logs, as defined in Section 8.2.9.4.1, to determine which
command opcodes are supported.

7.6.6.2 CXL Switch Discovery

After a CXL switch is released from reset, it loads its initial configuration from non-
volatile memory. Ports configured as DS PPBs will be released from reset to link up.
Upon detection of a switch, the FM will query its capacity, capabilities, and connected
devices. The Physical Switch Command Set is required for all switches implementing
FM API support. The Virtual Switch Command Set is required for all switches that
support multiple host ports.

An example of an FM Switch discovery process is as follows:
1. FM issues Identify Switch Device to check switch port count, enabled port IDs,

number of supported LDs, and enabled VCS IDs.
2. FM issues Get Physical Port State for each enabled port to check port

configuration (US or DS), link state, and attached device type. This allows the FM
to check for any port link-up issues and create an inventory of devices for binding.
If any MLD components are discovered, the FM can begin MLD Port management
activities.

3. If the switch supports multiple host ports, FM issues Get Virtual CXL Switch Info
for each enabled VCS to check for all active vPPBs in the system and create a list of
binding targets.

7.6.6.3 MLD and Switch MLD Port Management

MLDs must be connected to a CXL switch to share their LDs among VCSs. If an MLD
Device is discovered in the system, the FM will need to prepare it for binding. A switch
must support the MLD Port Command Set in order to support the use of MLDs. All
MLD components require support for the MLD Component Command Set.
1. FM issues management commands to the device’s LD FFFFh using Tunnel

Management Command.
2. FM can execute advanced or vendor-specific management activities, such as

encryption or authentication, using the Send LD CXL.io Configuration Request
and Send LD CXL.io Memory Request commands.

7.6.6.4 Event Notifications

1. To facilitate some system operations, the FM requires event notifications so it can
execute its role in the process in a timely manner (e.g., notifying hosts of an
asserted Attention Button on an MLD during Managed Hot-Removal). If supported
by the device, the FM can check the current event notification settings with the Get
Event Interrupt Policy command and modify them with the Set Event
Interrupt Policy command.

2. If supported by the device, the event logs can be read with the Get Event
Records command to check for any error events experienced by the device that
might impact normal operation.

7.6.6.5 Binding Ports and LDs on a Switch

Once all devices, VCSs, and vPPBs have been discovered, the FM can begin binding
ports and LDs to hosts as follows:
1. FM issues the Bind vPPB command specifying a physical port, VCS ID and vPPB

index to bind the physical port to the vPPB. An LD-ID must also be specified if the
physical port is connected to an MLD. The switch is permitted to initiate a Managed
Hot Add if the host has already booted, as defined in Section 9.9.

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 232
Revision 2.0, Version 1.0

2. Upon completion of the binding process, the switch notifies the FM by generating a
Virtual CXL Switch Event Record.

7.6.6.6 Unbinding Ports and LDs on a Switch

The FM can unbind devices or LDs from a VCS with the following steps:
1. FM issues the Unbind vPPB command specifying a VCS ID and vPPB index to

unbind the physical port from the vPPB. The switch initiates a Managed Hot-
Remove or Surprise Hot-Remove depending on the command options, as defined in
the PCIe 5.0 Base Specification.

2. Upon completion of the unbinding process, the switch will generate a Virtual CXL
Switch Event Record.

7.6.6.7 Hot-Add and Managed Hot-Removal of Devices

When a device is Hot-Added to an unbound port on a switch, the FM receives a
notification and is responsible for binding as described in the steps below:
1. The switch notifies the FM by generating Physical Switch Event Records as the

Presence Detect sideband signal is asserted and the port links up.
2. FM issues the Get Physical Port State command for the physical port that has

linked up to discover the connected device type. The FM can now bind the physical
port to a vPPB. If it’s an MLD Device, then the FM can proceed with MLD Port
management activities, otherwise the device is ready for binding.

When a device is Hot-Removed from an unbound port on a switch, the FM receives a
notification. The switch notifies the FM by generating Physical Switch Event Records
as the Presence Detect sideband is deasserted and the associated port links down.
1. The switch notifies the FM by generating Physical Switch Event Records as the

Presence Detect sideband is deasserted and the associated port links down.

When an SLD or PCIe device is Hot-Added to a bound port, the FM can be notified but is
not involved. When a Surprise or Managed Hot-Removal of an SLD or PCIe device takes
place on a bound port, the FM can be notified but is not involved.

A bound port will not advertise support for MLDs during negotiation, so MLD
components will link up as an SLD. Refer to the specification for MLD components for
additional details on link up.

The FM manages managed hot-removal of MLDs as follows:
1. When the Attention Button sideband is asserted on an MLD port, the Attention state

bit is updated in the corresponding PPB and vPPB CSRs and the switch notifies the
FM and hosts with LDs bound from that MLD. The hosts are notified with the MSI/
MSI-X interrupts assigned to affected vPPB and a Virtual CXL Switch Event
Record is generated.

2. As defined in the PCIe specification, hosts will read the Attention State bit in their
vPPB’s CSR and prepare for removal of the LD. When a host is ready for the LD to
be removed, it will set the Attention LED bit in the associated vPPB’s CSR. The
switch records these CSR updates by generating Virtual CXL Switch Event
Records. The FM unbinds each assigned LD with the Unbind vPPB command as it
receives notifications for each host.

3. When all host handshakes are complete, the MLD is ready for removal. The FM uses
the Send PPB CXL.io Configuration Request command to set the Attention LED
bit in the MLD port PPB to indicate that the MLD can be physically removed. The
timeout value for the host handshakes to complete is implementation specific.
There is no requirement for the FM to force the unbind operation, but it can do so

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 233
Revision 2.0, Version 1.0

using the “Simulate Surprise Hot-Remove” unbinding option in the Unbind vPPB
command.

7.6.6.8 Surprise Removal of Devices

There are two kinds of surprise removals: physical removal of a device, and surprise
link down. The key difference between the two is the state of the presence pin, which
will be deasserted after a physical removal but will remain asserted after a surprise link
down. The switch notifies the FM of a surprise removal by generating Virtual CXL
Switch Event Records for the change in link status and Presence Detect, as
applicable.

Three cases of Surprise Removal are described below:
1. When a Surprise Removal of a device takes place on an unbound port, the FM must

be notified.
2. When a Surprise Removal of an SLD or PCIe device takes place on a bound port,

the FM is permitted to be notified but must not be involved in any error handling
operations.

3. When a Surprise Removal of an MLD component takes place, the FM must be
notified. The switch will automatically unbind any existing LD bindings. The FM must
perform error handling and port management activities, the details of which are
considered implementation specific.

7.6.7 Fabric Management Application Programming Interface

The FM manages all devices in a CXL system via the sets of commands defined in the
FM API. This specification defines the minimum command set requirements for each
device type.

Note: CXL switches and MLDs require FM API support to facilitate the advanced system
capabilities outlined in Section 7.6.6, “Management Requirements for System
Operations”. FM API is optional for all other CXL device types.

Command opcodes are found in Table 205. The following subsections define the
commands grouped in each command set. Within each set commands are marked as
mandatory (M) or optional (O). If a set is supported, the required commands within
that set must be implemented, but only if that set is supported by the device. For
example, the Get Virtual CXL Switch Information command is required in the Virtual

Table 85. Common FM API Message Header

Command Set Name Switch FM API
Requirement

MLD FM API
Requirement

Events O O

Timestamp O O

Switch Event Notifications O P

Physical Switch M P

Virtual Switch O P

MLD Port O P

MLD component P M

NOTE:
*M = Mandatory, O = Optional, P = Prohibited

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 234
Revision 2.0, Version 1.0

Switch Command Set, but that set is optional for switches. That means a switch does
not need to support the Get Virtual CXL Switch Information command if it does not
support the Virtual Switch Command Set.

All commands have been defined as stand-alone operations; there are no explicit
dependencies between commands, so optional commands can be implemented or not
on a per-command basis. Requirements for the implementation of commands are
driven instead by desired system functionality. Section 7.6.6, “Management
Requirements for System Operations” identifies the minimum command sets and
commands required to implement defined system capabilities.

7.6.7.1 Switch Event Notifications Command Set

This optional command set is used by devices to send notifications to the FM. The
following commands are defined:

*O = Optional

7.6.7.1.1 Event Notification (Opcode 5000h)

This command is used by a CXL device to send notifications to the FM. It is only sent by
CXL devices. Any commands of this type received by CXL devices should be silently
discarded. There is no response for this command, it is a notification to the FM that
there are either new events to be read from the Event Records or that the FM must
initiate other management activities. The FM acknowledges a notification by clearing it
with the Manage Events command. A single notification is sent every 10 ms after the
last notification was sent until the FM has cleared all event records.

Possible Command Return Codes:
• Success
• Invalid Parameter
• Internal Error
• Retry Required

Command Effects:
• None

Table 86. Switch Event Notifications Command Set Requirements

Command Name Requirement

Event Notification O

Table 87. Event Notification Payload

Bytes Description

0

Event Log: The specific device event log generating the notification

00h = Informational Event Log

01h = Warning Event Log

02h = Failure Event Log

03h = Fatal Event Log

Other values reserved.

7-1 Reserved

131-8 Event Record

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 235
Revision 2.0, Version 1.0

7.6.7.1.2 Physical Switch Command Set

This command set is only supported by and must be supported by CXL switches with
FM API support. The following commands are defined:

*M = Mandatory, O = Optional.

7.6.7.1.3 Identify Switch Device (Opcode 5100h)

This command retrieves information about the capabilities and capacity of a CXL
switch.

Possible Command Return Codes:
• Success
• Internal Error
• Retry Required

Command Effects:
• None

Table 88. Physical Switch Command Set Requirements

Command Set Name Requirement

Identify Switch Device M

Get Physical Port State M

Physical Port Control O

Send PPB CXL.io Configuration Request O

Table 89. Identify Switch Device Response Payload

Bytes Description

0 Device Management Version: Version of FM API command
set supported by device. Currently 1.

1 Reserved

3-2 PCIe Vendor ID: As defined in PCIe 5.0 Base Specification

5-4 PCIe System ID: As defined in PCIe 5.0 Base Specification

7-6 PCIe Subsystem Vendor ID: As defined in PCIe 5.0 Base
Specification

9-8 PCIe Subsystem ID: As defined in PCIe 5.0 Base
Specification

11-10 Reserved

19-12 Device Serial Number: Refer to definition of Device Serial
Number Extended Capability in PCIe 5.0 Base Specification

20

Ingress Port ID: Ingress management port index of the
received request message. For CXL/PCIe ports, this
corresponds to the physical port number. For non-CXL/PCIe,
this corresponds to a vendor-specific index of the buses
supported by the device, starting at 0. For example, a
request received on the second of 2 SMBuses supported by a
device would return a 1.

21 Reserved

22 Number of Physical Ports: Total number of physical ports
in the CXL switch, including inactive/disabled ports

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 236
Revision 2.0, Version 1.0

7.6.7.1.4 Get Physical Port State (Opcode 5101h)

This command retrieves the physical port information.

Possible Command Return Codes:
• Success
• Invalid Parameter
• Internal Error
• Retry Required

Command Effects:
• None

23 Number of VCSs: Maximum number of virtual CXL switches
supported by the CXL switch

55-24

Active Port Bitmask: Bitmask defining whether a physical
port is enabled (1) or disabled (0). Each bit corresponds 1:1
with a port, with the least significant bit corresponding to
port 0

87-56
Active VCS Bitmask: Bitmask defining whether a VCS is
enabled (1) or disabled (0). Each bit corresponds 1:1 with a
VCS ID, with the least significant bit corresponding to VCS 0

89-88 Total Number of VPPBs: Maximum number of virtual PPBs
supported by the CXL switch

91-90 Number of Active VPPBs: Total number of VPPBs in use
across all VCSs

92 Number of HDM Decoders: Number of HDM decoders
available per USP

Table 89. Identify Switch Device Response Payload

Bytes Description

Table 90. Get Physical Port State Request Payload

Bytes Description

0 Number of Ports: Number of ports requested.

Varies-1 Port ID List: 1 byte ID of requested port, repeated Number
of Ports times.

Table 91. Get Physical Port State Response Payload

Bytes Description

0 Number of Ports: Number of port information blocks returned.

3-1 Reserved

Varies-4 Port Information List: Port information block as defined in Table 92, repeated
Number of Ports times.

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 237
Revision 2.0, Version 1.0

Table 92. Get Physical Port State Port Information Block Format

Bytes Description

0 Port ID

1

Bits [3:0]: Current Port Configuration State:
0 – Disabled
1 – Bind in progress
2 – Unbind in progress
3 – DSP port
4 – USP port
5 – Reserved (Fabric Link)
6 – 0xE – Reserved for future CXL use
0xF – Invalid Port_ID; all subsequent field values are undefined

Bits[7:4]: Reserved

2

Bits[3:0] Connected device CXL version:
0 – Connection not CXL or disconnected
1 – CXL 1.1
2 – CXL 2.0
3 – 0xF – Reserved for future CXL use

Bits[7:4]: Reserved

3 Reserved

4

Connected device type:
0 – No device detected
1 – PCIe Device
2 – CXL type 1 device
3 – CXL type 2 device
4 – CXL type 3 device
5 – CXL type 3 pooled device
6 – Reserved (CXL switch)
7 – 0xF – Reserved for future CXL use

Undefined if Connected CXL Version is 0

5

Connected CXL Version: Bitmask defining which CXL versions are supported (1) or
not (0) by this port:
Bit 0 – CXL 1.1
Bit 1 – CXL 2.0
All other bits reserved for future CXL use

Undefined if Connected CXL Version is 0

6

Bits[5:0]: Maximum Link Width: Value encoding matches “Maximum Link Width”
field in PCIe Link Capabilities Register in the PCI Express Capability structure.
Bits[7:6]:
Reserved

7
Bits[5:0]: Negotiated Link Width: Value encoding matches “Negotiated Link Width”
field in PCIe Link Capabilities Register in the PCI Express Capability structure.
Bits[7:6]: Reserved

8

Bits[5:0]: Supported Link Speeds Vector: Value encoding matches “Supported Link
Speeds Vector” field in PCIe Link Capabilities 2 Register in the PCI Express Capability
structure.
Bits[7:6]: Reserved

9
Bits[5:0]: Max Link Speed: Value encoding matches “Max Link Speed” field in PCIe
Link Capabilities Register in the PCI Express Capability structure.
Bits[7:6]: Reserved

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 238
Revision 2.0, Version 1.0

7.6.7.1.5 Physical Port Control (Opcode 5102h)

This command is used by the FM to control unbound ports and MLD ports, including
issuing resets and controlling sidebands.

Possible Command Return Codes:
• Success
• Invalid Parameter
• Unsupported
• Internal Error
• Retry Required

Command Effects:
• None

10
Bits[5:0]: Current Link Speed: Value encoding matches “Current Link Speed” field in
PCIe Link Status Register in the PCI Express Capability structure.
Bits[7:6]: Reserved

11

LTSSM State: Current link LTSSM Major state:
0 – Detect
1 – Polling
2 – Configuration
3 – Recovery
4 – L0
5 – L0s
6 – L1
7 – L2
8 – Disabled
9 – Loopback
10 – Hot Reset

Link substates should be reported through vendor-defined diagnostics commands

12 First negotiated lane number

14-13

Link state flags:
Bit [0] – Lane reversal state: standard lane ordering (0) or reversed ordering (1)
Bit [1] – Port PCIe Reset state (PERST#)
Bit [2] – Port Presence pin state (PRSNT#)
Bit [3] – Power Control state (PWR_CTRL)
Bits [15:4] – Reserved

15
Supported LD Count: Number of additional LDs supported by this port. All ports must
support at least one LD. This field defines how many additional LDs can be supported
beyond that value.

Table 92. Get Physical Port State Port Information Block Format

Bytes Description

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 239
Revision 2.0, Version 1.0

7.6.7.1.6 Send PPB CXL.io Configuration Request (Opcode 5103h)

This command sends CXL.io Config requests to the specified physical port’s PPB. This
command is only processed for unbound ports and MLD ports.

Possible Command Return Codes:
• Success
• Invalid Parameter
• Internal Error
• Retry Required

Command Effects:
• None

Table 93. Get Physical Port State Request Payload

Bytes Description

0 PPB ID: Physical PPB ID, which corresponds 1:1 to associated physical port
number

1

Port Opcode: Code defining which operation to perform:
0x00 – Assert PERST
0x01 – Deassert PERST
0x02 – Reset PPB
0x03 – 0xFF – Reserved

Table 94. Send PPB CXL.io Configuration Request Payload

Bytes Description

0 PPB ID: Target PPB’s physical port.

3-1 Bits[7:0]: Register Number: as defined in PCIe 5.0 Base Specification
Bits[11:8]: Extended Register Number: as defined in PCIe 5.0 Base
Specification
Bits[15:12]: First Dword Byte Enable: as defined in PCIe 5.0 Base
Specification
Bits[22:16]: Reserved
Bits[23]: Transaction Type: Read (0) or Write (1)

7-4 Transaction Data: Write data. Only valid for write transactions

Table 95. Send PPB CXL.io Configuration Response Payload

Bytes Description

3-0 Return Data: Read data. Only valid for read transactions

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 240
Revision 2.0, Version 1.0

7.6.7.2 Virtual Switch Command Set

This command set is only supported by CXL switch. It is required for switches that
support more than one VCS. The following commands are defined:

*M = Mandatory, O = Optional

7.6.7.2.1 Get Virtual CXL Switch Info (opcode 5200h)

This command retrieves information on a specified number of VCSs in the switch. Due
to the possibility of variable numbers of vPPBs in each VCS, the returned array has
variably sized elements.

Possible Command Return Codes:
• Success
• Invalid Parameter
• Internal Error
• Retry Required

Command Effects:
• None

Table 96. Virtual Switch Command Set Requirements

Command Set Name Requirement

Get Virtual CXL Switch Info M

Bind VPPB O

Unbind vPPB O

Generate AER Event O

Table 97. Get Virtual CXL Switch Info Request Payload

Bytes Description

0 Number of VCSs: Number of VCSs requested.

Varies -1 VCS ID List: 1 byte ID of requested VCS, repeated Number of VCSs times.

Table 98. Get Virtual CXL Switch Info Response Payload

Bytes Description

0 Number of VCSs: Number of VCS information blocks returned.

3-1 Reserved

Varies -4 VCS Information List: VCS information block as defined in Table 99, repeated
Number of VCSs times.

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 241
Revision 2.0, Version 1.0

7.6.7.2.2 Bind vPPB (Opcode 5201h)

This command performs a binding operation on the specified vPPB. If the bind target is
a physical port connected to a Type 1, Type 2, Type 3, or PCIe device or a physical port
whose link is down, the specified physical port of the CXL switch is fully bound to the
vPPB. If the bind target is a physical port connected to an MLD, then a corresponding
LD-ID must also be specified.

All binding operations are executed as background commands. The switch notifies the
FM of binding completion through the generation of event records, as defined in Section
7.6.6, “Management Requirements for System Operations”.

Possible Command Return Codes:
• Background Command Started
• Invalid Parameter

Table 99. Get Virtual CXL Switch Info VCS Information Block Format

Bytes Description

0 Virtual CXL Switch ID

1 VCS State: Current state of the VCS:
0 – Disabled
1 – Enabled
2 to 0xFE – Reserved
0xFF – Invalid VCS_ID; all subsequent field values are invalid

2 USP ID: Physical port ID of the CXL switch for the Upstream Port

3 Number of vPPBs

4 PPB[0] Binding Status:
0 – Unbound
1 – Bind or unbind in progress
2 – Bound Physical Port
3 – Bound LD

5 PPB[0] Bound Port ID: Physical port number of bound port

6 PPB[0] Bound LD ID: ID of LD bound to port from MLD on associated physical
port. Only valid if VPPB[0]_Status is 3, 0xFF otherwise.

7 Reserved

… …

4 + (Number of
vPPBs - 1) * 3

PPB[Number of vPPBs - 1] Binding Status:
0 – Unbound
1 – Bind or unbind in progress
2 – Bound Physical Port
3 – Bound LD

5 + (Number of
vPPBs - 1) * 3

PPB[Number of vPPBs - 1] Bound Port ID: Physical port number of bound
port

6 + (Number of
vPPBs - 1) * 3

PPB[Number of vPPBs - 1] Bound LD ID: ID of LD bound to port from MLD
on associated physical port. Only valid if PPB[Number of vPPBs - 1] Binding
Status is “Bound LD”, 0xFF otherwise.

7 + (Number of
vPPBs - 1) * 3

Reserved

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 242
Revision 2.0, Version 1.0

• Unsupported
• Internal Error
• Retry Required
• Busy

Command Effects:
• Background Operation

7.6.7.3 Unbind vPPB (Opcode 5202h)

This command unbinds the physical port or LD from the virtual hierarchy PPB. All
unbinding operations are executed as background commands. The switch notifies the
FM of unbinding completion through the generation of event records, as defined in
Section 7.6.6, “Management Requirements for System Operations”.

Possible Command Return Codes:
• Background Command Started
• Invalid Parameter
• Unsupported
• Internal Error
• Retry Required
• Busy

Command Effects:
• Background Operation

Table 100. Bind vPPB Request Payload

Bytes Description

0 Virtual CXL Switch ID

1 vPPB ID: Index of the vPPB within the VCS specified in VCS_ID

2 Physical port ID

3 Reserved

5-4 LD ID: LD-ID if target port is an MLD port. Must be FFFFh for other EP types.

Table 101. Unbind vPPB Request Payload

Bytes Description

0 Virtual CXL Switch ID

1 vPPB ID: Index of the vPPB within the VCS specified in VCS_ID

2 Bits[3:0]: Unbind Option:
0 - Wait for port link down before unbinding
1 – Simulate Managed Hot-Remove
2 – Simulate Surprise Hot-Remove
Bits[7:4]: Reserved

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 243
Revision 2.0, Version 1.0

7.6.7.3.1 Generate AER Event (Opcode 5203h)

This command generates an AER event on a specified VCS’s PPB (US PPB or DS vPPB).
The switch must respect the Host’s AER mask settings.

Possible Command Return Codes:
• Success
• Invalid Parameter
• Unsupported
• Internal Error
• Retry Required

Command Effects:
• None

7.6.7.4 MLD Port Command Set

This command set is only supported by CXL switches. It is required to support MLDs in
a CXL system. The following commands are defined:

*M = Mandatory, O = Optional

7.6.7.4.1 Tunnel Management Command (Opcode 5300h)

This command tunnels the provided FM Command encapsulated as an MCTP request to
LD 0xFFFF of the MLD on the specified port. Response size varies based on the tunneled
FM command’s definition. Tunneled FM commands sent to any port other than an MLD
port will be discarded and this command’s response will indicate a failure.

Table 102. Generate AER Event Request Payload

Bytes Description

0 Virtual CXL Switch ID

1 vPPB ID: Index of the vPPB within the VCS specified in VCS_ID

3-2 Reserved

7-4 AER Error: AER error type, as defined in the PCIe Specification

39-8 AER Header: TLP Header to place in AER registers, as defined in the PCIe
specification

Table 103. MLD Port Command Set Requirements

Command Set Name Requirement

Tunnel Management Command M

Send LD CXL.io Configuration Request M

Send LD CXL.io Memory Request M

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 244
Revision 2.0, Version 1.0

Possible Command Return Codes:
• Success
• Invalid Parameter
• Unsupported
• Internal Error
• Retry Required

Command Effects:
• None

7.6.7.4.2 Send LD CXL.io Configuration Request (Opcode 5301h)

This command allows the FM to read or write the CXL.io Config Space of an unbound LD
or FMLD. The switch will convert the request into a CfgRd/CfgWr TLPs to the target
device.

Possible Command Return Codes:
• Success
• Invalid Parameter
• Unsupported
• Internal Error
• Retry Required

Command Effects:
• None

Table 104. Tunnel Management Command Request Payload

Bytes Description

0 Port ID: Egress port ID

1 Reserved

3-2 Command Size: Number of valid bytes in Management Command

Varies-4 Management Command: Raw MCTP Message Body to transmit

Table 105. Tunnel Management Command Response Payload

Bytes Description

1-0 Response Length: Number of valid bytes in Response Message.

3-2 Reserved

Varies-4 Response Message: Response message sent by MLD

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 245
Revision 2.0, Version 1.0

7.6.7.4.3 Send LD CXL.io Memory Request (Opcode 5302h)

This command allows the FM to batch read or write the CXL.io Mem Space of an
unbound LD or FMLD The switch will convert the request into MemRd/MemWr TLPs to
the target device.

Possible Command Return Codes:
• Success
• Invalid Parameter
• Unsupported
• Internal Error
• Retry Required

Command Effects:
• None

Table 106. Send LD CXL.io Configuration Request Payload

Bytes Description

0 PPB ID: Target PPB’s physical port.

3-1

Bits[7:0]: Register Number: as defined in PCIe 5.0 Base Specification
Bits[11:8]: Extended Register Number: as defined in PCIe 5.0 Base Specification
Bits[15:12]: First Dword Byte Enable: as defined in PCIe 5.0 Base Specification
Bits[22:16]: Reserved
Bits[23]: Transaction Type: Read (0) or Write (1)

5-4 LD ID: Target LD ID

7-6 Reserved

11-8 Transaction Data: Write data. Only valid for write transactions

Table 107. Send LD CXL.io Configuration Response Payload

Bytes Description

3-0 Return Data: Read data. Only valid for read transactions

Table 108. Send LD CXL.io Memory Request Payload

Bytes Description

0 Port ID: Target MLD port.

3-1

Bits[11:0]: Reserved
Bits[15:12]: First Dword Byte Enable: as defined in PCIe 5.0 Base Specification
Bits[19:16]: Last Dword Byte Enable: as defined in PCIe 5.0 Base Specification
Bits[22:20]: Reserved
Bits[23]: Transaction Type: Read (0) or Write (1)

5-4 LD ID: Target LD ID

7-6 Transaction Length: Transaction length in bytes, up to a maximum of 4 kB
(0x1000)

15-8 Transaction Offset: Offset into target device’s Mem Space

Varies-16 Transaction Data: Write data. Only valid for write transactions

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 246
Revision 2.0, Version 1.0

7.6.7.5 MLD Component Command Set

This command set is only supported by and must be supported by MLD components
implementing FM API support. These commands are processed by MLDs. When an FM is
connected to a CXL switch that supports the FM API and does not have a direct
connection to an MLD, these commands are passed to the MLD using the Tunnel
Management Command. The following commands are defined:

*M = Mandatory, O = Optional

7.6.7.5.1 Get LD Info (Opcode 5400h)

This command retrieves the configurations of the MLD.

Possible Command Return Codes:
• Success
• Invalid Parameter
• Unsupported
• Internal Error
• Retry Required

Command Effects:
• None

Table 109. Send LD CXL.io Memory Request Response Payload

Bytes Description

1-0 Return Size: Number of successfully transferred bytes.

3-2 Reserved

Varies-4 Return Data: Read data. Only valid for read transactions

Table 110. MLD Component Command Set Requirements

Command Set Name Requirement

Get LD Info M

Get LD Allocations M

Set LD Allocations O

Get QoS Control M

Set QoS Control M

Get QoS Status O

Get QoS Allocated BW M

Set QoS Allocated BW M

Get QoS BW Limit M

Set QoS BW Limit M

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 247
Revision 2.0, Version 1.0

7.6.7.5.2 Get LD Allocations (Opcode 5401h)

This command gets the memory allocations of the MLD.

Possible Command Return Codes:
• Success
• Invalid Parameter
• Unsupported
• Internal Error
• Retry Required

Command Effects:
• None

Table 111. Get LD Info Response Payload

Bytes Description

7-0 Memory Size: Total device memory capacity

9-8 LD Count: Number of logical devices supported

10 QoS Telemetry Capability: Optional QoS Telemetry for memory MLD
capabilities for management by a FM. See Section 3.3.2.
Bit(0) Egress Port Congestion Supported: When set, the associated feature is
supported and the Get QoS Status command must be implemented. See
Section 3.3.2.3.4
Bit(1) Temporary Throughput Reduction Supported: When set, the
associated feature is supported. See Section 3.3.2.3.5
All other bits are reserved.

Table 112. Get LD Allocations Response Payload

Bytes Description

0 Number of LDs: Number of LD information blocks returned.

1 Memory Granularity: - This field specifies the granularity of the memory sizes
configured for each LD:
0h - 256 MB
1h - 512 MB
2h - 1 GB
All others - Reserved

3-2 Reserved

Varies-4 LD Allocation List: LD Allocation blocks for each LD, as defined in Table 113,
repeated Number of LDs times.

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 248
Revision 2.0, Version 1.0

7.6.7.5.3 Set LD Allocations (Opcode 5402h)

This command sets the memory allocation for each LD. This command will fail if the
device fails to allocate any of the allocations defined in the request. The allocations
provided in the response reflect the state of the LD allocations after the command is
processed which allows the FM to check for partial success.

Possible Command Return Codes:
• Success
• Invalid Parameter
• Unsupported
• Internal Error
• Retry Required

Command Effects:
• Configuration Change after Cold Reset
• Immediate Configuration Change

• Immediate Data Change

Table 113. LD Allocations List Format

Bytes Description

7-0 Range 1 Allocation Multiplier: Memory allocation range 1 for LD. This value is
multiplied with Memory Granularity to calculate memory allocation range in
bytes.

15-8 Range 2 Allocation Multiplier: Memory allocation range 2 for LD. This value is
multiplied with Memory Granularity to calculate memory allocation range in
bytes.

Table 114. Set LD Allocations Request Payload

Bytes Description

0 Number of LDs: Number of LDs to configure.

3-1 Reserved

Varies-4 LD Allocation List: LD Allocation blocks for each LD, as defined in Table 113,
repeated Number of LDs times.

Table 115. Set LD Allocations Response Payload

Bytes Description

0 Number of LDs: Number of LDs configured.

3-1 Reserved

Varies-4 LD Allocation List: Updated LD Allocation blocks for each LD, as defined in
Table 113, repeated Number of LDs times.

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 249
Revision 2.0, Version 1.0

7.6.7.5.4 Get QoS Control (Opcode 5403h)

This command gets the MLD’s QoS control parameters.

Possible Command Return Codes:
• Success
• Internal Error
• Retry Required
• Invalid Payload Length

Command Effects:
• None

Table 116. Payload for Get QoS Control Response, Set QoS Control Request, and Set QoS
Control Response

7.6.7.5.5 Set QoS Control (Opcode 5404h)

This command sets the MLD’s QoS control parameters, as defined in Table 116. The
device must complete the set operation before returning the response. The command
response returns the resulting QoS control parameters, as defined in the same table.
This command will fail, returning Invalid Parameter, if any of the parameters are
outside their valid range.

Possible Command Codes:
• Success
• Invalid Parameter
• Internal Error

Bytes Description

0 QoS Telemetry Control: Default is 00h
Bit(0): Egress Port Congestion Enable: See Section 3.3.2.3.4
Bit(1): Temporary Throughput Reduction Enable: See Section 3.3.2.3.5
All other bits are reserved

1 Egress Moderate Percentage: Threshold in percent for Egress Port
Congestion mechanism to indicate moderate congestion. Valid range is 1-100.
Default is 10.

2 Egress Severe Percentage: Threshold in percent for Egress Port Congestion
mechanism to indicate severe congestion. Valid range is 1-100. Default is 25

3 Backpressure Sample Interval: Interval in ns for Egress Port Congestion
mechanism to take samples. Valid range is 0-15. Default is 8 (800 ns of history).
Value of 0 disables the mechanism. See Section 3.3.2.3.8

5-4 ReqCmpBasis: Estimated maximum sustained sum of requests and recent
responses across the entire device, serving as the basis for QoS Limit Fraction.
Valid range is 0-65,535. Value of 0 disables the mechanism. Default is 0. See
Section 3.3.2.3.7

6 Completion Collection Interval: Interval in ns for Completion Counting
mechanism to collect the number of transmitted responses in a single counter.
Valid range is 0-255. Default is 64 (1.024 µs of history, given 16 counters). See
Section 3.3.2.3.9

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 250
Revision 2.0, Version 1.0

• Retry Required
• Invalid Payload Length

Command Effects:
• Immediate Policy Change

Payload for Set QoS Control Request and Response is documented in Table 116.

7.6.7.5.6 Get QoS Status (Opcode 5405h)

This command gets the MLD’s QoS Status. This command is mandatory if the Egress
Port Congestion Supported bit is set. See Table 111.

Possible Command Return Codes:
• Success
• Unsupported
• Internal Error
• Retry Required
• Invalid Payload Length

Command Effects:
• None

Table 117. Get QoS Status Response Payload

7.6.7.5.7 Get QoS Allocated BW (Opcode 5406h)

This command gets the MLD’s QoS allocated bandwidth on a per-LD basis. See
Section 3.3.2.3.7.

Possible Command Return Codes:
• Success
• Internal Error
• Retry Required
• Invalid Payload Length

Command Effects:
• None

Bytes Description

0 Backpressure Average Percentage: Current snapshot of the measured
Egress Port average congestion. See Section 3.3.2.3.8

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 251
Revision 2.0, Version 1.0

Table 118. Payload for Get QoS Allocated BW Response, Set QoS Allocated BW Request,
and Set QoS Allocated BW Response

7.6.7.5.8 Set QoS Allocated BW (Opcode 5407h)

This command sets the MLD’s QoS allocated bandwidth on a per-LD basis, as defined in
Section 3.3.2.3.7.The device must complete the set operation before returning the
response. The command response returns the resulting QoS allocated bandwidth, as
defined in the same table. This command will fail, returning Invalid Parameter, if any of
the parameters are outside their valid range.
Possible Command Return Codes:

• Success
• Invalid Parameter
• Internal Error
• Retry Required
• Invalid Payload Length

Command Effects:
• Configuration Change after Cold Reset
• Immediate Configuration Change
• Immediate Data Change

Payload for Set QoS Allocated BW Request and Response is documented in Table 116.

7.6.7.5.9 Get QoS BW Limit (Opcode 5408h)

This command gets the MLD's QoS bandwidth limit on a per-LD basis. See
Section 3.3.2.3.7.

Possible Command Return Codes:
• Success
• Internal Error
• Retry Required
• Invalid Payload Length

Command Effects:
• None

Bytes Description

(n-1)-0 QoS Allocation Fraction: Byte array of allocated bandwidth fractions, where n
= LD Count, as returned by the Get LD Info command. The valid range of each
array element is 0-255. Default value is 0. Value in each byte is the fraction
multiplied by 256.

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 252
Revision 2.0, Version 1.0

Table 119. Payload for Get QoS BW Limit Response, Set QoS BW Limit Request, and Set
QoS BW Limit Response

7.6.7.5.10 Set QoS BW Limit (Opcode 5409h)

This command sets the MLD’s QoS bandwidth limit on a per-LD basis, as defined in
Section 3.3.2.3.7. The device must complete the set operation before returning the
response. The command response returns the resulting QoS bandwidth limit, as
defined in the same table. This command will fail, returning Invalid Parameter, if any of
the parameters are outside their valid range.

Possible Command Return Codes:
• Success
• Invalid Parameter
• Internal Error
• Retry Required
• Invalid Payload Length

Command Effects:
• Configuration Change after Cold Reset
• Immediate Configuration Change
• Immediate Data Change

Payload for Set QoS BW Limit Request and Response is documented in Table 116.

7.6.8 Fabric Management Event Records

The FM API uses the Event Records framework defined in Section 8.2.9.1.1. This
section defines the format of event records specific to Fabric Management activities.

7.6.8.1 Physical Switch Event Records

Physical Switch Event Records define events related to physical switch ports, as defined
in the following table.

Bytes Description

(n-1)-0 QoS Limit Fraction: Byte array of allocated bandwidth limit fractions, where n
= LD Count, as returned by the Get QoS BW command. The valid range of each
array element is 0-255. Default value is 0. Value in each byte is the fraction
multiplied by 256.

Table 120. Physical Switch Events Record Format

Bytes Description

15-0 Event Record Identifier: This field shall be set to 77cf9271-9c02-470b-9fe4-
bc7b75f2da97 which identifies a Physical Switch Event Record.

47-16 Common Event Record: See corresponding common event record fields defined
in Section 8.2.9.1.1.

48 Physical Port ID: Physical Port generating the event

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 253
Revision 2.0, Version 1.0

7.6.8.2 Virtual CXL Switch Event Records

Virtual CXL Switch Event Records define events related to VCSes and vPPBs, as defined in
the following table.

49 Event Type: Identifies the type of event that occurred.
00h = Link State Change
01h = Slot Status Register Updated

51-50 Slot Status Register: as defined in PCIe Specification

52 Reserved

53 Bits [3:0]: Current Port Configuration State: See Section 7.6.7.1.2
Bits [7:4]: Reserved

54 Bits [3:0] Connected device CXL version: See Section 7.6.7.1.2
Bits [7:4]: Reserved

55 Reserved

56 Connected device type: See Section 7.6.7.1.2

57 Connected CXL Version: See Section 7.6.7.1.2

58 Bits[5:0]: Maximum Link Width: Value encoding matches “Maximum Link
Width” field in PCIe Link Capabilities Register in the PCI Express Capability
structure.
Bits[7:6]: Reserved

59 Bits[5:0]: Negotiated Link Width: Value encoding matches “Negotiated Link
Width” field in PCIe Link Capabilities Register in the PCI Express Capability
structure.
Bits[7:6]: Reserved

60 Bits[5:0]: Supported Link Speeds Vector: Value encoding matches “Supported
Link Speeds Vector” field in PCIe Link Capabilities 2 Register in the PCI Express
Capability structure.
Bits[7:6]: Reserved

61 Bits[5:0]: Max Link Speed: Value encoding matches “Max Link Speed” field in
PCIe Link Capabilities Register in the PCI Express Capability structure.
Bits[7:6]: Reserved

62 Bits[5:0]: Current Link Speed: Value encoding matches “Current Link Speed”
field in PCIe Link Status Register in the PCI Express Capability structure.
Bits[7:6]: Reserved

63 LTSSM State: See Section 7.6.7.1.2

64 First negotiated lane number

66-65 Link state flags: See Section 7.6.7.1.2

127-67 Reserved

Table 120. Physical Switch Events Record Format

Bytes Description

Table 121. Virtual CXL Switch Event Record Format

Bytes Description

15-0 Event Record Identifier: This field shall be set to 40d26425-3396-4c4d-a5da-
3d47263af425 which identifies a Virtual Switch Event Record.

47-16 Common Event Record: See corresponding common event record fields defined
in Section 8.2.9.1.1.

48 VCS ID

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 254
Revision 2.0, Version 1.0

7.6.8.3 MLD Port Event Records

MLD Port Event Records define events related to switch ports connected to MLDs, as
defined in the following table.

49 vPPB ID

50 Event Type: Identifies the type of event that occurred.
00h = Binding Change
01h = Secondary Bus Reset
02h = Link Control Register Updated
03h = Slot Control Register Updated

51 PPB Binding Status: Current vPPB binding state, as defined in 7.9.6.3.1. If
Event Type is 00h, this field contains the updated binding state of a vPPB
following the binding change. Successful bind and unbind operations generate
events on the Informational Event Log. Failed bind and unbind operations
generate events on the Warning Event Log.

52 PPB Port ID: Current vPPB bound port ID, as defined in 7.9.6.3.1. If Event Type
is 00h, this field contains the updated binding state of a vPPB following the
binding change. Successful bind and unbind operations generate events on the
Informational Event Log. Failed bind and unbind operations generate events on
the Warning Event Log.

53 PPB LD ID: Current vPPB bound LD ID, as defined in 7.9.6.3.1. If Event Type is
00h, this field contains the updated binding state of a vPPB following the binding
change. Successful bind and unbind operations generate events on the
Informational Event Log. Failed bind and unbind operations generate events on
the Warning Event Log.

55-54 Link Control Register Value: Current Link Control register value, as defined in
PCIe 5.0 Base Specification

57-56 Slot Control Register Value: Current Slot Control register value, as defined in
PCIe 5.0 Base Specification

127-58 Reserved

Table 121. Virtual CXL Switch Event Record Format

Bytes Description

Table 122. MLD Port Event Records Payload

Bytes Description

15-0 Event Record Identifier: This field shall be set to 8dc44363-0c96-4710-b7bf-
04bb99534c3f which identifies a MLD Port Event Record.

47-16 Common Event Record: See corresponding common event record fields
defined in Section 8.2.9.1.1.

48 Event Type: Identifies the type of event that occurred.
00h = Error Correctable Message Received. Events of this type shall be added to
the Warning Event Log
01h = Error Non-Fatal Message Received. Events of this type shall be added to the
Failure Event Log
02h = Error Fatal Message Received. Events of this type shall be added to the
Failure Event Log

49 Port ID: ID of the MLD port generating the event

51-50 Reserved

59-52 Error Message: Full error message received by the switch

127-60 Reserved

Ev
al

ua
tio

n
C

op
y

Switching

 Compute Express Link Specification
October 26, 2020 255
Revision 2.0, Version 1.0

§ §

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 256
Revision 2.0, Version 1.0

8.0 Control and Status Registers

The Compute Express Link device control and status registers are mapped into
separate spaces: configuration space and memory mapped space. Configuration space
registers are accessed using configuration reads and configuration writes. Memory
mapped registers are accessed using memory reads and memory writes. Table 123
summarizes the attributes for the register bits defined in this chapter. Unless otherwise
specified, the definition of these attributes is consistent with the PCI Express Base
Specification.

All numeric values in various registers and data structures are always encoded in little
endian format.

CXL components have the same requirements as PCIe with respect to hardware
initializing the register fields to their default values, with notable exceptions for system-
integrated devices. See the PCI Express Base specification for details.

Table 123. Register Attributes

Attribute Description

RO Read Only.

ROS
Read Only Sticky.
Not affected by CXL Reset. Otherwise, the
behavior follows PCIe Base Specification.

RW Read-Write

RWS
Read-Write-Sticky.
Not affected by CXL Reset. Otherwise, the
behavior follows PCIe Base Specification.

RWO

Read-Write-One-To-Lock.
This attribute is not defined in PCI Express
Base Specification and is unique to CXL.
Field becomes RO after writing one to it.
Cleared by hot reset, warm reset or cold
reset.Not affected by CXL Reset.

RWL

Read-Write-Lockable.
This attribute is not defined in PCI Express
Base Specification and is unique to CXL.
These bits follow RW behavior until they are
locked. Once locked, the value cannot be
altered by software until the next hot reset,
warm reset or cold reset. Upon hot reset,
warm reset or cold reset, the behavior reverts
back to RW. Not affected by CXL Reset.
The locking condition associated with each
RWL field is specified as part of the field
definition.

RW1CS
Read-Write-One-To-Clear-Sticky.
Not affected by CXL Reset. Otherwise, the
behavior follows PCIe Base Specification.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 257
Revision 2.0, Version 1.0

8.1 Configuration Space Registers
CXL configuration space registers are implemented by CXL 1.1 devices, CXL 2.0
devices, CXL Switches and CXL 2.0 Root Ports. CXL 1.1 Upstream and Downstream
Ports do not map any registers into configuration space.

8.1.1 PCI Express Designated Vendor-Specific Extended Capability
(DVSEC) ID Assignment

CXL specification defined configuration space registers are grouped into blocks and
each block is enumerated as a PCI Express Designated Vendor-Specific Extended
Capability (DVSEC) structure. DVSEC Vendor ID field is set to 1E98h to indicate these
Capability structures are defined by the CXL specification.

DVSEC Revision ID field represents the version of the DVSEC structure. The DVSEC
Revision ID is incremented whenever the structure is extended to add more
functionality. Backward compatibility shall be maintained during this process. For all
values of n, DVSEC Revision ID n+1 structure may extend Revision ID n by replacing
fields that are marked as reserved in Revision ID n, but must not redefine the meaning
of existing fields. Software that was written for a lower Revision ID may continue to
operate on CXL DVSEC structures with a higher Revision ID, but will not be able to take
advantage of new functionality.

The following values of DVSEC ID are defined by CXL specification

HwInit Hardware Initialized

RsvdP Reserved and Preserved

RsvdZ Reserved and Zero

Table 123. Register Attributes

Attribute Description

Table 124. CXL DVSEC ID Assignment (Sheet 1 of 2)

CXL Capability DVSEC
ID

Highest
DVSEC

Revision
ID

Mandatory1 Not
Permitted Optional

PCIe DVSEC for CXL Device
(Section 8.1.3) 0 1 D1, D2, LD,

FMLD

P, UP1,
DP1, R,
USP, DSP

Non-CXL Function Map DVSEC
(Section 8.1.4) 2 0

P, UP1,
DP1, R,
DSP

D1. D2, LD,
FMLD, USP

CXL 2.0 Extensions DVSEC for Ports
(Section 8.1.5) 3 0 R, USP, DSP

P, D1, D2,
LD, FMLD,
UP1, DP1

GPF DVSEC for CXL Ports
(Section 8.1.6) 4 0 R, DSP

P, D1, D2,
LD, FMLD,
UP1, DP1,
USP

GPF DVSEC for CXL Devices
(Section 8.1.7) 5 0 D2, LD

P, UP1,
DP1, R,
USP, DSP,
FMLD

D1

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 258
Revision 2.0, Version 1.0

8.1.2 CXL Data Object Exchange (DOE) Type Assignment

Data Object Exchange (DOE) is a PCI SIG defined mechanism for the host to perform
data object exchanges with a PCIe Function.

The following values of DOE Type are defined by CXL specification. CXL Specification
defined Data Object Exchange Messages use Vendor ID of 1E98h.

8.1.3 PCIe DVSEC for CXL Device

Note: CXL 1.1 specification referred to this DVSEC as “PCIe DVSEC for Flex Bus Device” and
used the term “Flex Bus” while referring to various register names and fields. CXL 2.0
specification renamed the DVSEC and the register/field names by replacing the term
“Flex Bus” with the term “CXL” while retaining the functionality.

A CXL 1.1 device creates a new PCIe enumeration hierarchy. As such, it spawns a new
Root Bus and can expose one or more PCIe device numbers and function numbers at
this bus number. These are exposed as Root Complex Integrated Endpoints (RCiEP).

PCIe DVSEC for Flex Bus Port
(Section 8.1.8) 7 1

D1, D2, LD,
FMLD, UP1,
DP1, R, USP,
DSP

P

Register Locator DVSEC
(Section 8.1.9) 8 0

D2, LD,
FMLD, R,
USP, DSP

P D1, UP1,
DP1

MLD DVSEC (Section 8.1.10) 9 0 FMLD

P, D1, D2,
LD,UP1,
DP1, R,
USP, DSP

PCIe DVSEC for Test Capability
(Section 14.16.1) 0Ah 0 D1

P, LD,
FMLD, DP1,
UP1, R,
USP, DSP

D2

1. P- PCI Express device, D1 - CXL 1.1 Device, D2 - CXL 2.0 Device, LD - Logical Device, FMLD - Fabric
Manager owned LD 0xFFFF, UP1 - CXL 1.1 Upstream Port RCRB, DP1 - CXL 1.1 Downstream Port RCRB,
R - CXL 2.0 Root Port, USP - CXL Switch Upstream Port, DSP - CXL Switch Downstream Port

Table 124. CXL DVSEC ID Assignment (Sheet 2 of 2)

CXL Capability DVSEC
ID

Highest
DVSEC

Revision
ID

Mandatory1 Not
Permitted Optional

Table 125. CXL DOE Type Assignment

CXL Capability DOE Type Mandatory Not
Permitted Optional

Compliance (See Compliance
Chapter)1

1. Support for the Compliance DOE Type is highly recommended for CXL 2.0 devices. If Compliance DOE
Type is not implemented by a device, it shall implement PCIe DVSEC for Test Capability
(Section 14.16.1).

0
LD, FMLD P, UP1, DP1,

R, USP, DSP D1, D2

Reserved 1

Table Access (Coherent Device
Attributes), see Section 8.1.11 2 D2, LD, USP

FMLD, P,
UP1, DP1, R,
DSP

D1

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 259
Revision 2.0, Version 1.0

The PCIe configuration space of Device 0, Function 0 shall include the CXL PCI Express
Designated Vendor-Specific Extended Capability (DVSEC) as shown in Figure 126. The
capability, status and control fields in Device 0, Function 0 DVSEC control the CXL
functionality of the entire CXL device.

A CXL 2.0 device is enumerated like a standard PCIe Endpoint and appears below a CXL
2.0 Root Port or a CXL Switch. It shall expose one PCIe device number and one or more
function numbers at the secondary bus number of the parent Port. These are exposed
as standard PCIe Endpoints (EP). The PCIe configuration space of Device 0, Function 0
shall include the CXL PCI Express Designated Vendor-Specific Extended Capability
(DVSEC) as shown in Figure 126. The capability, status and control fields in Device 0,
Function 0 DVSEC control the CXL functionality of the entire CXL device.

Software may use the presence of this DVSEC to differentiate between a CXL device
and a PCIe device. As such, a standard PCIe device must not expose this DVSEC. See
Table 124 for the complete listing.

Please refer to the PCIe Specification for a description of the standard DVSEC register
fields.

To advertise CXL capability, the standard DVSEC register fields shall be set to the
values shown in the table below. The DVSEC Length field is set to 38h bytes to
accommodate the registers included in the DVSEC. The DVSEC ID is set to 0h to
advertise that this is a PCIe DVSEC for CXL Device structure. DVSEC Revision ID of 0h
represents the structure as defined in CXL 1.1 specification. DVSEC Revision ID of 01h
represents the structure as defined in this specification. DVSEC Revision ID 01h
structure extends Revision ID 0h by replacing fields that are marked as reserved in CXL
1.1 specification, but does not redefine the meaning of existing fields. CXL 1.1 device
may implement Revision ID 0 or 1. CXL 2.0 device is not permitted to implement
Revision ID 0 and must implement Revision ID 1.

Figure 126. PCIe DVSEC for CXL Device

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 260
Revision 2.0, Version 1.0

The CXL device specific registers are described in the following subsections.

8.1.3.1 DVSEC CXL Capability (Offset 0Ah)

Table 126. PCI Express DVSEC Register Settings for CXL Device

Register Bit Location Field Value

Designated Vendor-Specific Header 1 (offset 04h) 15:0 DVSEC Vendor ID 1E98h

Designated Vendor-Specific Header 1 (offset 04h) 19:16 DVSEC Revision 1h

Designated Vendor-Specific Header 1 (offset 04h) 31:20 DVSEC Length 38h

Designated Vendor-Specific Header 2 (offset 08h) 15:0 DVSEC ID 0h

Bit Attributes Description

0 RO Cache_Capable: If set, indicates CXL.cache protocol support when operating in Flex
Bus.CXL mode. This must be 0 for all functions of an MLD.

1 RO IO_Capable: If set, indicates CXL.io protocol support when operating in Flex
Bus.CXL mode. Must be 1.

2 RO Mem_Capable: If set, indicates CXL.mem protocol support when operating in Flex
Bus.CXL mode. This must be 1 for all functions of an MLD.

3 RO

Mem_HwInit_Mode: If set, indicates this CXL.mem capable device initializes
memory with assistance from hardware and firmware located on the device. If clear,
indicates memory is initialized by host software such as device driver.
This bit must be ignored if CXL.mem_Capable=0.

5:4 RO

HDM_Count: Number of HDM ranges implemented by the CXL device and reported
through this function.
00 - Zero ranges. This setting is illegal if CXL.mem Capable=1.
01 - One HDM range.
10 - Two HDM ranges
11 - Reserved
This field must return 00 if CXL.mem_Capable=0.

6 RO

Cache Writeback and Invalidate Capable: If set, indicates the device implements
Disable Caching and Initiate Cache Write Back and Invalidation control bits in CXL
Control2 register and Cache Invalid status bit in CXL Status2 register. All CXL 2.0
devices shall set this capability bit if CXL.Cache_Capable=1.

7 RO

CXL Reset Capable: If set, indicates the device supports CXL Reset and implements
the CXL Reset Timeout field in this register, Initiate CXL Reset bit in CXL Control2
register and CXL Reset Completion Status in CXL Status2 register. This field must
report the same value for all functions of an MLD.

10:8 RO

CXL Reset Timeout: If CXL Reset Capable bit is set, this field indicates the maximum
time that the device may take to complete the CXL Reset. If CXL Reset Mem Clr
Capable bit is 1, this time also accounts for the time needed for clearing or
randomizing of volatile HDM Ranges. If CXL Reset completion status bit in CXL
Status2 register is not set after the passage of this time duration, software may
assume CXL Reset has failed. This value must be the same for all functions of an
MLD.
Encoding:
000b - 10 ms
001b - 100 ms
010b - 1 s
011b - 10 s
100b - 100 s
All other - Reserved

11 HwInit CXL Reset Mem Clr Capable: When set, Device is capable of clearing or randomizing
of volatile HDM Ranges during CLX Reset.

12 RsvdP Reserved.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 261
Revision 2.0, Version 1.0

8.1.3.2 DVSEC CXL Control (Offset 0Ch)

13 HwInit Multiple Logical Device: If set, indicates this is a Logical Device in an MLD, including
the FM owned LD. If clear, it indicates this is an SLD.

14 RO Viral_Capable: If set, indicates CXL device supports Viral handling. This value must
be the 1 for all devices.

15 HwInit

PM Init Completion Reporting Capable: If set, indicates that the CXL device is
capable of supporting Power Management Initialization Complete flag. All CXL 2.0
devices shall set this capability bit. CXL 1.1 devices may implement this capability.
This capability is not applicable to switches and Root Ports. Switches and Root Ports
shall hardwire this bit to 0.

Bit Attributes Description

0 RWL
Cache_Enable: When set, enables CXL.cache protocol operation when in Flex
Bus.CXL mode. Locked by CONFIG_LOCK.
Default value of this bit is 0.

1 RO
IO_Enable: When set, enables CXL.io protocol operation when in Flex Bus.CXL
mode.
This bit always returns 1.

2 RWL
Mem_Enable: When set, enables CXL.mem protocol operation when in Flex Bus.CXL
mode. Locked by CONFIG_LOCK.
Default value of this bit is 0.

7:3 RWL

Cache_SF_Coverage: Performance hint to the device. Locked by CONFIG_LOCK.
0x00: Indicates no Snoop Filter coverage on the Host
For all other values of N: Indicates Snoop Filter coverage on the Host of 2^(N+15d)
Bytes.
For example, if this field contains the value 5, it indicates snoop filter coverage of 1
MB.
Default value of this field is 0.

10:8 RWL

Cache_SF_Granularity: Performance hint to the device. Locked by CONFIG_LOCK.
000: Indicates 64B granular tracking on the Host
001: Indicates 128B granular tracking on the Host
010: Indicates 256B granular tracking on the Host
011: Indicates 512B granular tracking on the Host
100: Indicates 1KB granular tracking on the Host
101: Indicates 2KB granular tracking on the Host
110: Indicates 4KB granular tracking on the Host
111: Reserved
Default value of this field is 0.

11 RWL

Cache_Clean_Eviction: Performance hint to the device. Locked by CONFIG_LOCK.
0: Indicates clean evictions from device caches are needed for best performance
1: Indicates clean evictions from device caches are NOT needed for best
performance
Default value of this bit is 0.

13:12 RsvdP Reserved.

14 RWL

Viral_Enable: When set, enables Viral handling in the CXL device.
Locked by CONFIG_LOCK.
If 0, the CXL device may ignore the viral that it receives.
Default value of this bit is 0.

15 RsvdP Reserved.

Bit Attributes Description

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 262
Revision 2.0, Version 1.0

8.1.3.3 DVSEC CXL Status (Offset 0Eh)

8.1.3.4 DVSEC CXL Control2 (Offset 10h)

8.1.3.5 DVSEC CXL Status2 (Offset 12h)

Bit Attributes Description

13:0 RsvdZ Reserved.

14 RW1CS
Viral_Status: When set, indicates that the CXL device has entered Viral. Viral. This
bit does not indicate that the device is currently in Viral condition. See Section 12.4,
“CXL Viral Handling” for more details.

15 RsvdZ Reserved.

Bit Attributes Description

0 RW
Disable Caching: When set to 1, device shall no longer cache new modified lines in
its local cache. Device shall continue to correctly respond to CXL.cache transactions.
Default value of this bit is 0.

1 RW

Initiate Cache Write Back and Invalidation: When set to 1, device shall write back all
modified lines in the local cache and invalidate all lines. The device shall send
CacheFlushed message to host as required by CXL.Cache protocol to indicate it does
not hold any modified lines.
If this bit is set when Disable Caching=0, the device behavior is undefined.
This bit always returns the value of 0 when read by the software. A write of 0 is
ignored.

2 RW

Initiate CXL Reset: When set to 1, device shall initiate CXL Reset as defined in
Section 9.7. This bit always returns the value of 0 when read by the software. A
write of 0 is ignored.
If Software sets this bit while the previous CXL Reset is in progress, the results are
undefined.

3 RW

CXL Reset Mem Clr Enable: When set, and CXL Reset Mem Clr Capable returns 1,
Device shall clear or randomize volatile HDM ranges as part of the CXL Reset
operation. When CXL Reset Mem Clr Capable is clear, this bit is ignored and volatile
HDM ranges may or may not be cleared or randomized during CXL Reset.

15:4 RsvdP Reserved.

Bit Attributes Description

0 RO Cache Invalid: When set, device guarantees that it does not hold any valid lines and
Disable Caching=1. This bit shall read as 0 when Disable Caching=0.

1 RO

CXL Reset complete: When set, device has successfully completed CXL Reset as
defined in Section 9.7.
Device shall clear this bit upon transition of Initiate CXL Reset bit from 0 to 1, prior
to initiating CXL Reset flow.

2 RO

CXL Reset Error: When set, device has completed CXL Reset with errors. Additional
information may be available in device error records(Figure 8.2.9.1.1). Host
software or Fabric Manager may optionally re-issue CXL Reset.
Device shall clear this bit upon transition of Initiate CXL Reset bit from 0 to 1, prior
to initiating CXL Reset flow.

14:2 RsvdZ Reserved.

15 RO

Power Management Initialization Complete: When set, it indicates that the device
has successfully completed Power Management Initialization Flow described in
Figure 16 and is ready to process various Power Management messages.
If this bit is not set within 100 ms of link-up, software may conclude that the Power
Management initialization has failed and may issue Secondary Bus Reset to force
link re-initialization and Power Management re-initialization.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 263
Revision 2.0, Version 1.0

8.1.3.6 DVSEC CXL Lock (Offset 14h)

8.1.3.7 DVSEC CXL Capability2 (Offset 16h)

8.1.3.8 DVSEC CXL Range registers

These registers are not applicable to an FM owned LD.

DVSEC CXL Range 1 register set must be implemented if CXL.mem Capable=1. DVSEC
CXL Range 2 register set must be implemented if (CXL.mem Capable=1 and
HDM_Count=10b). Each set contains 4 registers - Size High, Size Low, Base High, Base
Low.

A CXL.mem capable device is permitted to report zero memory size.

8.1.3.8.1 DVSEC CXL Range 1 Size High (Offset 18h)

Bit Attributes Description

0 RWO

CONFIG_LOCK: When set, all register fields in the PCIe DVSEC for CXL Devices
Capability with RWL attribute become read only. Consult individual register fields for
details.
This bit is cleared upon device Conventional Reset. This bit and all the fields that are
locked by this bit are not affected by CXL Reset.
Default value of this bit is 0.

15:1 RsvdP Reserved.

Bit Attributes Description

3:0 RO

Cache Size Unit:
0000b – Cache size is not reported.
0001b – 64K
0010b – 1 MB
Other – Reserved
A CXL device that is not capable of CXL.cache shall return the value of 0.

7:4 RsvdP Reserved.

15:8 RO
Cache Size: Expressed in multiples of Cache Size Unit. If Cache Size=4 and Cache
Size Unit=0001b, the device has 256K sized cache.
A CXL device that is not capable of CXL.cache shall return the value of 0.

Bit Attributes Description

31:0 RO Memory_Size_High: Corresponds to bits 63:32 of CXL Range 1 memory size.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 264
Revision 2.0, Version 1.0

8.1.3.8.2 DVSEC CXL Range1 Size Low (Offset 1Ch)

Bit Attributes Description

0 RO
Memory_Info_Valid: When set, indicates that the CXL Range 1 Size high and Size
Low registers are valid. Must be set within 1 second of deassertion of reset to CXL
device.

1 RO
Memory_Active: When set, indicates that the CXL Range 1 memory is fully initialized
and available for software use. Must be set within Range 1.Memory_Active_Timeout
of deassertion of reset to CXL device if CXL.mem HwInit Mode=1.

4:2 RO

Media_Type: Indicates the memory media characteristics
000 - Volatile memory, this setting is deprecated starting with CXL 2.0
001 - Non-volatile memory, this setting is deprecated starting with CXL 2.0
010 - The memory characteristics are communicated via CDAT (Section 8.1.11) and
not via this field.
Other encodings are reserved.
CXL 2.0 and future CXL.mem devices shall set this field to 010.

7:5 RO

Memory_Class: Indicates the class of memory
000 - Memory Class (e.g., normal DRAM), this setting is deprecated starting with
CXL 2.0
001 - Storage Class, this setting is deprecated starting with CXL 2.0
010 - The memory characteristics are communicated via CDAT (Section 8.1.11) and
not via this field.
All other encodings are reserved.
CXL 2.0 and future CXL.mem devices shall set this field to 010.

12:8 RO

Desired_Interleave: If a CXL.mem capable CXL 1.1 device is connected to a single
CPU via multiple CXL links, this field represents the memory interleaving desired by
the device. BIOS will configure the CPU to interleave accesses to this HDM range
across links at this granularity. or the closest possible value supported by the host.
In the case of CXL 2.0 device, this field represents the minimum desired interleave
granularity for optimal device performance. Software should program the Interleave
Granularity (IG) field in the HDM Decoder 0/n Control Registers (Section 8.2.5.12.7
and Section 8.2.5.12.15) to be an exact match or any larger granularity advertised
by the device via CXL HDM Decoder Capability Register (Section 8.2.5.12.1). This
field is treated as a hint. The device shall function correctly if the actual
programmed value programmed in Interleave Granularity (IG) field in the HDM
Decoder 0/n Control Registers is less than what is reported via this field.

00000 - No Interleave
00001 - 256 Byte Granularity
00010 - 4K Interleave

The above encodings are backwards compatible with CXL 1.1. The following
encodings are new for CXL 2.0

00011– 512 Bytes
00100 – 1024 Bytes
00101 – 2048 Bytes
00110 – 8192 Bytes
00111 – 16384 Bytes

all other settings are reserved.

Notes:
• If a CXL 2.0 Device has different desired interleave values for DPA ranges

covered by this CXL Range 1, it should report a value that best fits the
requirements for all such ranges (e.g. max of the values)

• If CXL 2.0 devices in an Interleave Set advertise different values for this field,
Software may choose the smallest value that best fits the set.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 265
Revision 2.0, Version 1.0

8.1.3.8.3 DVSEC CXL Range 1 Base High (Offset 20h)

8.1.3.8.4 DVSEC CXL Range 1 Base Low (Offset 24h)

A CXL.mem capable device that does not implement CXL HDM Decoder Capability
registers directs host accesses to an address A within its local HDM memory if the
following two equations are satisfied -

Memory_Base[63:28] <= (A >>28) < Memory_ Base[63:28]+Memory_Size[63:28]

Memory_Active AND Mem_Enable=1

, where >> represents a bitwise right shift operation.

A CXL.mem capable device that implements CXL HDM Decoder Capability registers
follows the above behavior as long as HDM Decoder Enable bit in CXL HDM Decoder
Global Control register is zero.

15:13 HwInit

Memory_Active_Timeout: For devices that advertises Mem_HwInit_Mode=1, this
field indicates the maximum time that the device is permitted to take to set
Memory_Active bit in this register after a hot reset, warm reset or a cold reset. If
Memory_Active bit is not set after the passage of this time duration, software may
assume that the HDM reported by this range has failed. This value must be the
same for all functions of an MLD.
Encoding:
000b - 1 s
001b - 4 s
010b - 16 s
011b - 64 s
100b - 256 s
All other - Reserved

27:16 RsvdP Reserved.

31:28 RO Memory_Size_Low: Corresponds to bits 31:28 of CXL Range 1 memory size.

Bit Attributes Description

31:0 RWL

Memory_Base_High: Corresponds to bits 63:32 of CXL Range 1 base in the host
address space. Locked by CONFIG_LOCK.
If a device implements CXL HDM Decoder Capability registers and software has
enabled HDM Decoder by setting HDM Decoder Enable bit in CXL HDM Decoder
Global Control register, the value of this field is not used during address decode. It is
recommended that software program this to match CXL HDM Decoder 0 Base High
Register for backward compatibility reasons.
Default value of this field is 0.

Bit Attributes Description

27:0 RsvdP Reserved.

31:28 RWL

Memory_Base_Low: Corresponds to bits 31:28 of CXL Range 1 base in the host
address space. Locked by CONFIG_LOCK.
If a device implements CXL HDM Decoder Capability registers and software has
enabled HDM Decoder by setting HDM Decoder Enable bit in CXL HDM Decoder
Global Control register, the value of this field is not used during address decode. It is
recommended that software program this to match CXL HDM Decoder 0 Base Low
Register for backward compatibility reasons.
Default value of this field is 0.

Bit Attributes Description

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 266
Revision 2.0, Version 1.0

If the address A is not backed by real memory (e.g. a device with less than 256 MB of
memory), a device that does not implement CXL HDM Decoder Capability registers
must handle those accesses gracefully i.e. return all 1’s on reads and drop writes.

Aliasing (mapping more than one Host Physical Address (HPA) to a single Device
Physical Address) is forbidden.

8.1.3.8.5 DVSEC CXL Range 2 Size High (Offset 28h)

8.1.3.8.6 DVSEC CXL Range 2 Size Low (Offset 2Ch)

Bit Attributes Description

31:0 RO Memory_Size_High: Corresponds to bits 63:32 of CXL Range 2 memory size.

Bit Attributes Description

0 RO
Memory_Info_Valid: When set, indicates that the CXL Range 2 Size high and Size
Low registers are valid. Must be set within 1 second of deassertion of reset to CXL
device.

1 RO
Memory_Active: When set, indicates that the CXL Range 2 memory is fully initialized
and available for software use. Must be set within Range 2.Memory_Active_Timeout
of deassertion of reset to CXL device if CXL.mem HwInit Mode=1.

4:2 RO

Media_Type: Indicates the memory media characteristics
000 - Volatile memory, this setting is deprecated starting with CXL 2.0
001 - Non-volatile memory, this setting is deprecated starting with CXL 2.0
010 - The memory characteristics are communicated via CDAT (Section 8.1.11) and
not via this field.
111 - Not Memory. This setting is deprecated starting with CXL 2.0
Other encodings are reserved.
CXL 2.0 and future CXL.mem devices shall set this field to 010.

7:5 RO

Memory_Class: Indicates the class of memory
000 - Memory Class (e.g., normal DRAM), this setting is deprecated starting with
CXL 2.0
001 - Storage Class, this setting is deprecated starting with CXL 2.0
010 - The memory characteristics are communicated via CDAT (Section 8.1.11) and
not via this field.
All other encodings are reserved.
CXL 2.0 and future CXL.mem devices shall set this field to 010.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 267
Revision 2.0, Version 1.0

12:8 RO

Desired_Interleave: If a CXL.mem capable CXL 1.1 device is connected to a single
CPU via multiple Flex Bus links, this field represents the memory interleaving
desired by the device. BIOS will configure the CPU to interleave accesses to this
HDM range across links at this granularity or the closest possible value supported by
the host.
In the case of CXL 2.0 device, this field represents the minimum desired interleave
granularity for optimal device performance. Software should program the Interleave
Granularity (IG) field in the HDM Decoder 0/n Control Registers (Section 8.2.5.12.7
and Section 8.2.5.12.15) to be an exact match or any larger granularity advertised
by the device via CXL HDM Decoder Capability Register (Section 8.2.5.12.1). This
field is treated as a hint. The device shall function correctly if the actual
programmed value programmed in Interleave Granularity (IG) field in the HDM
Decoder 0/n Control Registers is less than what is reported via this field.

00000 - No Interleave
00001 - 256 Byte
00010 - 4096 Bytes

The above encodings are backwards compatible with CXL 1.1. The following
encodings are new for CXL 2.0

00011– 512 Bytes
00100 – 1024 Bytes
00101 – 2048 Bytes
00110 – 8192 Bytes
00111 – 16384 Bytes

all other settings are reserved
Notes:
• If a CXL 2.0 Device has different desired interleave values for DPA ranges

covered by this CXL Range 2, it should report a value that best fits the
requirements for all such ranges (e.g. max of the values)

• If CXL 2.0 devices in an Interleave Set advertise different values for this field,
Software may choose the smallest value that best fits the set.

15:13 HwInit

Memory_Active_Timeout: For devices that advertises Mem_HwInit_Mode=1, this
field indicates the maximum time that the device is permitted to take to set
Memory_Active bit in this register after a Conventional Reset. If Memory_Active bit
is not set after the passage of this time duration, software may assume that the
HDM reported by this range has failed. This value must be the same for all functions
of an MLD.
Encoding:
000b - 1 s
001b - 4 s
010b - 16 s
011b - 64 s
100b - 256 s
All other - Reserved

27:16 RsvdP Reserved.

31:28 RO Memory_Size_Low: Corresponds to bits 31:28 of CXL Range 2 memory size.

Bit Attributes Description

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 268
Revision 2.0, Version 1.0

8.1.3.8.7 DVSEC CXL Range 2 Base High (Offset 30h)

8.1.3.8.8 DVSEC CXL Range 2 Base Low (Offset 34h)

8.1.4 Non-CXL Function Map DVSEC

This DVSEC capability identifies the list of device and function numbers associated with
non-virtual functions (i.e. functions that are not a Virtual Function) implemented by
CXL device that are incapable of participating in CXL.Cache or CXL.Mem protocol. The
PCIe configuration space of Device 0, Function 0 of a CXL 2.0 Endpoint or CXL 1.1
RCiEP may include Non-CXL Function Map DVSEC as shown in Figure 127. See
Table 124 for the complete listing.To advertise this capability, the standard DVSEC
register fields must be set to the values shown in the table below. The DVSEC Length

Bit Attributes Description

31:0 RWL

Memory_Base_High: Corresponds to bits 63:32 of CXL Range 2 base in the host
address space. Locked by CONFIG_LOCK. If a device implements CXL HDM Decoder
Capability registers and software has enabled HDM Decoder by setting HDM Decoder
Enable bit in CXL HDM Decoder Global Control register, the value of this field is not
used during address decode. It is recommended that software program this to
match the corresponding CXL HDM Decoder Base High Register for backward
compatibility reasons.
Default value of this field is 0.

Bit Attributes Description

27:0 RsvdP Reserved

31:28 RWL

Memory_Base_Low: Corresponds to bits 31:28 of CXL Range 2 base in the host
address space. Locked by CONFIG_LOCK.
If a device implements CXL HDM Decoder Capability registers and software has
enabled HDM Decoder by setting HDM Decoder Enable bit in CXL HDM Decoder
Global Control register, the value of this field is not used during address decode. It is
recommended that software program this to match the corresponding CXL HDM
Decoder Base Low Register for backward compatibility reasons.
Default value of this field is 0.

Figure 127. Non-CXL Function Map DVSEC

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 269
Revision 2.0, Version 1.0

field must be set to 2Ch bytes to accommodate the registers included in the DVSEC.
The DVSEC ID must be set to 02 to advertise that this is a Non-CXL Function Map
DVSEC capability structure for CXL ports.

If this DVSEC capability is present, it must be included in Device 0, Function 0 of a CXL
Device.

Absence of Non-CXL Function Map DVSEC indicates that PCIe DVSEC for CXL Device
(Section 8.1.3) located on Device 0, Function 0 governs whether all Functions
participate in CXL.Cache and CXL.Mem protocol.

8.1.4.1 Non-CXL Function Map Register 0 (Offset 0Ch)

8.1.4.2 Non-CXL Function Map Register 1 (Offset 10h)

Table 127. Non-CXL Function Map DVSEC

Register Bit Location Field Value

Designated Vendor-Specific Header 1 (offset 04h) 15:0 DVSEC Vendor ID 1E98h

Designated Vendor-Specific Header 1 (offset 04h) 19:16 DVSEC Revision 0h

Designated Vendor-Specific Header 1 (offset 04h) 31:20 DVSEC Length 2Ch

Designated Vendor-Specific Header 2 (offset 08h) 15:0 DVSEC ID 02h

Bit Attributes Description

31:0 HwInit

Non CXL Function: Each bit represents a non-virtual function number implemented
by the device on the same bus as the function that carries PCIe DVSEC for CXL
Device.
When a bit is set, the corresponding Device/Function number or Function number
(ARI device) is not capable of participating in CXL.Cache or CXL.Mem protocol. Bits
corresponding to Non-existent Device/Function or Function numbers shall always
return 0.
If the device does not support ARI, bit x in this register maps to Device x, Function
0.
If the device supports ARI, bit x in this register maps to Function x.
Bit 0 of this register shall always be set to 1 since PCIe DVSEC for CXL Device
declares whether Device 0, Function 0 participates in CXL.Cache and CXL.Mem
protocol.

Bit Attributes Description

31:0 HwInit

Non CXL Function: Each bit represents a non-virtual function number implemented
by the device on the same bus as the function that carries PCIe DVSEC for CXL
Device.
When a bit is set, the corresponding Device/Function number or Function number
(ARI device) is not capable of participating in CXL.Cache or CXL.Mem protocol. Bits
corresponding to Non-existent Device/Function or Function numbers shall always
return 0.
If the device does not support ARI, bit x in this register maps to Device x, Function
1.
If the device supports ARI, bit x in this register maps to Function x+32.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 270
Revision 2.0, Version 1.0

8.1.4.3 Non-CXL Function Map Register 2 (Offset 14h)

8.1.4.4 Non-CXL Function Map Register 3(Offset 18h)

8.1.4.5 Non-CXL Function Map Register 4 (Offset 1Ch)

8.1.4.6 Non-CXL Function Map Register 5 (Offset 20h)

Bit Attributes Description

31:0 HwInit

Non CXL Function: Each bit represents a non-virtual function number implemented
by the device on the same bus as the function that carries PCIe DVSEC for CXL
Device.
When a bit is set, the corresponding Device/Function number or Function number
(ARI device) is not capable of participating in CXL.Cache or CXL.Mem protocol. Bits
corresponding to Non-existent Device/Function or Function numbers shall always
return 0.
If the device does not support ARI, bit x in this register maps to Device x, Function
2.
If the device supports ARI, bit x in this register maps to Function (x+64).

Bit Attributes Description

31:0 HwInit

Non CXL Function: Each bit represents a non-virtual function number implemented
by the device on the same bus as the function that carries PCIe DVSEC for CXL
Device.
When a bit is set, the corresponding Device/Function number or Function number
(ARI device) is not capable of participating in CXL.Cache or CXL.Mem protocol. Bits
corresponding to Non-existent Device/Function or Function numbers shall always
return 0.
If the device does not support ARI, bit x in this register maps to Device x, Function
3.
If the device supports ARI, bit x in this register maps to Function (x+96).

Bit Attributes Description

31:0 HwInit

Non CXL Function: Each bit represents a non-virtual function number implemented
by the device on the same bus as the function that carries PCIe DVSEC for CXL
Device.
When a bit is set, the corresponding Device/Function number or Function number
(ARI device) is not capable of participating in CXL.Cache or CXL.Mem protocol. Bits
corresponding to Non-existent Device/Function or Function numbers shall always
return 0.
If the device does not support ARI, bit x in this register maps to Device x, Function
4.
If the device supports ARI, bit x in this register maps to Function (x+128).

Bit Attributes Description

31:0 HwInit

Non CXL Function: Each bit represents a non-virtual function number implemented
by the device on the same bus as the function that carries PCIe DVSEC for CXL
Device.
When a bit is set, the corresponding Device/Function number or Function number
(ARI device) is not capable of participating in CXL.Cache or CXL.Mem protocol. Bits
corresponding to Non-existent Device/Function or Function numbers shall always
return 0.
If the device does not support ARI, bit x in this register maps to Device x, Function
5.
If the device supports ARI, bit x in this register maps to Function (x+160).

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 271
Revision 2.0, Version 1.0

8.1.4.7 Non-CXL Function Map Register 6 (Offset 24h)

8.1.4.8 Non-CXL Function Map Register 7(Offset 28h)

8.1.5 CXL 2.0 Extensions DVSEC for Ports

The PCIe configuration space of a CXL 2.0 Root Port, CXL Downstream Switch Port and
CXL Upstream Switch Port must implement this DVSEC capability as shown in
Figure 128. See Table 124 for the complete listing. To advertise this capability, the

Bit Attributes Description

31:0 HwInit

Non CXL Function: Each bit represents a non-virtual function number implemented
by the device on the same bus as the function that carries PCIe DVSEC for CXL
Device.
When a bit is set, the corresponding Device/Function number or Function number
(ARI device) is not capable of participating in CXL.Cache or CXL.Mem protocol. Bits
corresponding to Non-existent Device/Function or Function numbers shall always
return 0.
If the device does not support ARI, bit x in this register maps to Device x, Function
6.
If the device supports ARI, bit x in this register maps to Function (x+192).

Bit Attributes Description

31:0 HwInit

Non CXL Function: Each bit represents a non-virtual function number implemented
by the device on the same bus as the physical function that carries PCIe DVSEC for
CXL Device.
When a bit is set, the corresponding Device/Function number or Function number
(ARI device) is not capable of participating in CXL.Cache or CXL.Mem protocol. Bits
corresponding to Non-existent Device/Function or Function numbers shall always
return 0.
If the device does not support ARI, bit x in this register maps to Device x, Function
7.
If the device supports ARI, bit x in this register maps to Function (x+224).

Figure 128. CXL 2.0 Extensions DVSEC for Ports

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 272
Revision 2.0, Version 1.0

standard DVSEC register fields must be set to the values shown in the table below. The
DVSEC Length field must be set to 28h bytes to accommodate the registers included in
the DVSEC. The DVSEC ID must be set to 0x3 to advertise that this is a CXL 2.0
Extension DVSEC capability structure for CXL ports.

8.1.5.1 CXL Port Extension Status (Offset 0Ah)

Table 128. CXL 2.0 Extensions DVSEC for Ports - Header

Register Bit Location Field Value

Designated Vendor-Specific Header 1 (offset 04h) 15:0 DVSEC Vendor ID 1E98h

Designated Vendor-Specific Header 1 (offset 04h) 19:16 DVSEC Revision 0h

Designated Vendor-Specific Header 1 (offset 04h) 31:20 DVSEC Length 28h

Designated Vendor-Specific Header 2 (offset 08h) 15:0 DVSEC ID 03h

Bit Attributes Description

0 RO

Port Power Management Initialization Complete: When set, it indicates that the Root
Port, the Upstream Switch Port or the Downstream Switch Port has successfully
completed the Power Management Initialization Flow as described in Figure 16 and
is ready to process various Power Management events.
If this bit is not set within 100 ms of link-up, software may conclude that the Power
Management initialization has failed and may issue Secondary Bus Reset to force
link re-initialization and Power Management re-initialization.

13:1 RsvdP Reserved

14 RW1CS
Viral Status: When set, indicates that the Upstream Switch Port or the Downstream
Switch Port has entered Viral. See Section 12.4 for more details.
This bit is not applicable to Root ports and reads shall return the value of 0.

15 RsvdP Reserved

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 273
Revision 2.0, Version 1.0

8.1.5.2 Port Control Extensions (Offset 0Ch)

Bit Attributes Description

0 RW

Unmask SBR– When 0, SBR bit in Bridge Control register of this Port has no effect.
When 1, the Port shall generate hot reset when SBR bit in Bridge Control gets set to
1.
Default value of this field is 0.
When the Port is operating in PCIe mode or CXL 1.1 mode, this field has no effect on
SBR functionality and Port shall follow PCI Express Specification.

1 RW

Unmask Link Disable - When 0, Link Disable bit in Link Control register of this Port
has no effect.
When 1, the Port shall disable the CXL Link when Link Disable bit in Link Control
gets set to 1 and Link is re-enabled when Link Disable bit in Link control is set to 0,
Default value of this field is 0.
When the Port is operating in PCIe mode or CXL 1.1 mode, this field has no effect on
Link Disable functionality and the Port shall follow PCI Express Specification.

2 RW

Alt Memory and ID Space Enable - When set to 1, Port positively decodes
downstream transactions to ranges specified in Alternate Memory Base/Limit
registers, Alternate Prefetchable Memory Base/Limit, Alternate Prefetchable Base/
Limit Upper 32 Bits and Alternate Bus Base/Limit registers irrespective of Memory
Space Enable bit in PCI Command Register.
When set to 0, the Port does not decode downstream transactions to ranges
specified in Alternate Memory Base/Limit registers, Alternate Prefetchable Memory
Base/Limit, Alternate Prefetchable Base/Limit Upper 32 Bits and Alternate Bus Base/
Limit registers irrespective of Memory Space Enable bit in PCI Command Register.
Default value of this field is 0.
Firmware/Software must ensure this bit is 0 when the Port is operating in PCIe
mode.

3 RW

Alt BME - This bit overrides the state of BME bit in Command Register if the
requestor's bus number is in the range specified by Alternate Bus Base and
Alternate Bus Limit range.
This bit alone controls forwarding of Memory or I/O Requests by a Port in the
Upstream direction if the requestor's bus number is in the range specified by
Alternate Bus Base and Alternate Bus Limit range.
if the requestor's bus number is in the range specified by Alternate Bus Base and
Alternate Bus Limit range and this bit is 0b, Memory and I/O Requests received at a
Root Port or the Downstream side of a Switch Port must be handled as Unsupported
Requests (UR), and for Non-Posted Requests a Completion with UR Completion
Status must be returned. This bit does not affect forwarding of Completions in either
the Upstream or Downstream direction.
Default value of this field is 0.
Firmware/Software must ensure this bit is 0 when the Port is operating in PCIe
mode.

13:4 RsvdP Reserved

14 RW

Viral Enable: When set, enables Viral generation functionality of the Upstream
Switch Port or the Downstream Switch Port. See Section 12.4 for more details.
If 0, the port shall not generate viral.
Default value of this bit is 0.
Regardless of the state of this bit, a switch shall always forward viral as described in
Section 12.4.
This bit is not applicable to Root ports and reads shall return the value of 0. Viral
behavior of a Root Port may be controlled by a host specific configuration
mechanism.

15 RsvdP Reserved.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 274
Revision 2.0, Version 1.0

8.1.5.3 Alternate Bus Base (Offset 0Eh)

Alternate Bus Base Number and Alternate Bus Limit Number registers define a bus
range that is decoded by the Port in addition to the standard Secondary Bus Number to
Subordinate Bus Number range. An ID-Routed TLP transactions received from primary
interface is forwarded to the secondary interface if the bus number is not less than the
Alternate Bus Base and not greater than Alternate Bus Limit. See Figure 148.

8.1.5.4 Alternate Bus Limit (Offset 0Fh)

See Alternate Bus Base.

8.1.5.5 Alternate Memory Base (Offset 10h)

Alternate Memory Base and Alternate Memory Limit registers define a memory mapped
address range that is in addition to the standard Memory Base and Memory Limit
registers. Alternate Memory Base and Alternate Memory Limit registers are functionally
equivalent to PCI Express defined Memory Base and Memory Limit registers. These are
used by the Port to determine when to forward memory transactions from one interface
to the other. See Figure 147.

8.1.5.6 Alternate Memory Limit (Offset 12h)

See Alternate Memory Base.

Bit Attributes Description

7:0 RW
Alt Bus Base - The lowest bus number that is positively decoded by this Port as part
of alternate decode path.
Default value of this field is 0.

Bit Attributes Description

7:0 RW

Alt Bus Limit - The highest bus number that is positively decoded by this Port as part
of alternate decode path.
Default value of this field is 0.
Alternate bus decoder is disabled if Alt Memory and ID Space Enable=0.

Bit Attributes Description

3:0 RsvdP Reserved.

15:4 RW
Alt Mem Base: Corresponds to A[31:20] of the CXL.io Alternate memory base
address. See definition of Memory Base register in PCI Express Specification.
Default value of this field is 0.

Bit Attributes Description

3:0 RsvdP Reserved.

15:4 RW
Alt Mem Limit: Corresponds to A[31:20] of the CXL.io Alternate memory limit
address. See definition of Memory Limit register in PCI Express Specification.
Default value of this field is 0.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 275
Revision 2.0, Version 1.0

8.1.5.7 Alternate Prefetchable Memory Base (Offset 14h)

Alternate Prefetchable Memory Base, Alternate Prefetchable Memory Base High,
Alternate Prefetchable Memory Limit and Alternate Prefetchable Memory Limit High
registers define a 64 bit memory mapped address range that is in addition to the one
defined by the PCIe standard Prefetchable Memory Base, Prefetchable Base Upper 32
bits, Prefetchable Memory Limit and Prefetchable Limit Upper 32 bits registers.

Alternate Prefetchable Memory registers are functionally equivalent to PCI Express
defined Prefetchable Memory registers. These are used by the Port to determine when
to forward Prefetchable memory transactions from one interface to the other.

8.1.5.8 Alternate Prefetchable Memory Limit (Offset 16h)

See Alternate Prefetchable Memory Base.

8.1.5.9 Alternate Memory Prefetchable Base High (Offset 18h)

See Alternate Prefetchable Memory Base.

8.1.5.10 Alternate Prefetchable Memory Limit High (Offset 1Ch)

See Alternate Prefetchable Memory Base.

Bit Attributes Description

3:0 RsvdP Reserved.

15:4 RW

Alt Prefetch Mem Base: Corresponds to A[31:20] of the CXL.io Alternate
Prefetchable memory base address. See definition of Prefetchable Memory Base
register in PCI Express Specification.
Default value of this field is 0.

Bit Attributes Description

3:0 RsvdP Reserved.

15:4 RW

Alt Prefetch Mem Limit: Corresponds to A[31:20] of the CXL.io Alternate
Prefetchable memory limit address. See definition of Prefetchable memory limit
register in PCI Express Specification.
Default value of this field is 0.

Bit Attributes Description

31:0 RW

Alt Prefetch Base High: Corresponds to A[63:32] of the CXL.io Alternate
Prefetchable memory base address. See definition of Prefetchable Base Upper 32
Bits register in PCI Express Specification.
Default value of this field is 0.

Bit Attributes Description

31:0 RW

Alt Prefetch Limit High: Corresponds to A[63:32] of the CXL.io Alternate
Prefetchable memory limit address. See definition of Prefetchable Limit Upper 32
Bits register in PCI Express Specification.
Default value of this field is 0.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 276
Revision 2.0, Version 1.0

8.1.5.11 CXL RCRB Base (Offset 20h)

This register is only relevant to CXL 2.0 Downstream Ports. Software programs this
register to transition a Port to operate in CXL 1.1 addressing mode. Software may take
this step upon determining that the Port is connected to a CXL 1.1 device.

System Firmware must ensure CXL RCRB Enable is 0, whenever the Port is operating in
PCIe mode.

8.1.5.12 CXL RCRB Base High (Offset 24h)

8.1.6 GPF DVSEC for CXL Port

The PCIe configuration space of CXL Downstream Switch Ports and CXL 2.0 capable
Root Ports must implement this DVSEC capability as shown in Figure 129. See
Table 124 for the complete listing.

To advertise this capability, the standard DVSEC register fields must be set to the
values shown in the table below. The DVSEC Length field must be set to 10h bytes to
accommodate the registers included in the DVSEC. The DVSEC ID must be set to 04h
to advertise that this is an GPF DVSEC capability structure for CXL ports.

Bit Attributes Description

0 RW

CXL RCRB Enable: When set, the RCRB region is enabled and the registers
belonging to this Port can be accessed via CXL 1.1 compatible mechanism. After this
write is completed, the Port registers shall no longer appear in configuration space,
but rather in MMIO space starting at RCRB Base. Once a Port is transitioned to CXL
1.1 addressing mode, the software is responsible for ensuring it remains in that
mode until the next Conventional reset and RCRB Base Address is not modified,
otherwise the hardware behavior is undefined.
Default value of this field is 0.

12:1 RsvdP Reserved

31:13 RW

CXL RCRB Base Address Low: This points to the address bits[31:13] of an 8K
memory region where the lower 4K hosts the Downstream CXL 1.1 Port RCRB and
the upper 4K hosts the Upstream Port RCRB.
Default value of this field is 0.

Bit Attributes Description

31:0 RW

CXL RCRB Base Address High: This points to the address bits [63:32] of an 8K
memory region where the lower 4K hosts the Downstream CXL 1.1 Port RCRB and
the upper 4K hosts the Upstream Port RCRB.
Default value of this field is 0.

Figure 129. GPF DVSEC for CXL Port

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 277
Revision 2.0, Version 1.0

8.1.6.1 GPF Phase 1 Control (Offset 0Ch)

8.1.6.2 GPF Phase 2 Control (Offset 0Eh)

Table 129. GPF DVSEC for CXL Port - Header

Register Bit Location Field Value

Designated Vendor-Specific Header 1 (offset 04h) 15:0 DVSEC Vendor ID 1E98h

Designated Vendor-Specific Header 1 (offset 04h) 19:16 DVSEC Revision 0h

Designated Vendor-Specific Header 1 (offset 04h) 31:20 DVSEC Length 10h

Designated Vendor-Specific Header 2 (offset 08h) 15:0 DVSEC ID 04h

Bit Attributes Description

3:0 RW
Port GPF Phase 1 Timeout Base: This field determines the GPF Phase 1 timeout. The
timeout duration is calculated by multiplying the Timeout Base with the Timeout
Scale.

7:4 RsvdP Reserved

11:8 RW

Port GPF Phase 1 Timeout Scale: This field specifies the time scale associated with
GPF Phase 1 Timeout.
000b 1 us
001b 10 us
010b 100 us
011b 1 ms
100b 10 ms
101b 100 ms
110b 1 s
111b 10 s
Other - reserved

15:12 RsvdP Reserved

Bit Attributes Description

3:0 RW
Port GPF Phase 2 Timeout Base: This field determines the GPF Phase 2 timeout. The
timeout duration is calculated by multiplying the Timeout Base with the Timeout
Scale.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 278
Revision 2.0, Version 1.0

8.1.7 GPF DVSEC for CXL Device

Device 0, Function 0 of a CXL.mem capable devices must implement this DVSEC
capability (see Figure 130) if the device supports GPF. See Table 124 for the complete
listing. A device that does not support CXL.mem must not implement DVSEC Revision 0
this capability. To advertise this capability, the standard DVSEC register fields must be
set to the values shown in Table 130. The DVSEC Length field must be set to 10h bytes
to accommodate the registers included in the DVSEC. The DVSEC ID must be set to
05h to advertise that this is an GPF DVSEC structure for CXL Devices.

7:4 RsvdP Reserved

11:8 RW

Port GPF Phase 2 Timeout Scale: This field specifies the time scale associated with
GPF Phase 2 Timeout.
000b 1 us
001b 10 us
010b 100 us
011b 1 ms
100b 10 ms
101b 100 ms
110b 1 s
111b 10 s
Other - reserved

15:12 RsvdP Reserved.

Figure 130. GPF DVSEC for CXL Device

Bit Attributes Description

Table 130. GPF DVSEC for CXL Device - Header

Register Bit Location Field Value

Designated Vendor-Specific Header 1 (offset 04h) 15:0 DVSEC Vendor ID 1E98h

Designated Vendor-Specific Header 1 (offset 04h) 19:16 DVSEC Revision 0h

Designated Vendor-Specific Header 1 (offset 04h) 31:20 DVSEC Length 10h

Designated Vendor-Specific Header 2 (offset 08h) 15:0 DVSEC ID 05h

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 279
Revision 2.0, Version 1.0

8.1.7.1 GPF Phase 2 Duration (Offset 0Ah)

8.1.7.2 GPF Phase 2 Power (Offset 0Ch)

8.1.8 PCIe DVSEC for Flex Bus Port

See Section 8.2.1.3 for the register layout.

In CXL 1.1 hosts and devices, this DVSEC is accessed via CXL 1.1 RCRB.

The DVSEC associated with a CXL 2.0 device shall be accessible via Device 0, Function
0 of the device. Upstream Switch Ports, Downstream Switch Ports and CXL 2.0 Root
Ports shall implement this DVSEC in the Configuration Space associated with the Port.
See Table 124 for the complete listing.

8.1.9 Register Locator DVSEC

The PCIe configuration space of a CXL 2.0 Root Port, CXL Downstream Switch Port, CXL
Upstream Switch Port and CXL 2.0 Device must implement this DVSEC capability. This
DVSEC capability contains one or more Register Block entries. Figure 131 illustrates a
DVSEC Capability with 3 Register Block Entries. See Table 124 for the complete listing.

Bit Attributes Description

3:0 RO
Device GPF Phase 2 Time Base: This field reports the maximum amount of time this
device would take to complete GPF Phase 2. The time duration is calculated by
multiplying the Time Base with the Time Scale.

7:4 RsvdP Reserved

11:8 RO

Device GPF Phase 2 Time Scale: This field specifies the time scale associated with
Device GPF Phase 2 Time.
000b 1 us
001b 10 us
010b 100 us
011b 1 ms
100b 10 ms
101b 100 ms
110b 1 s
111b 10 s
Other - reserved

15:12 RsvdP Reserved

Bit Attributes Description

31:0 RO GPF Phase 2 active power: Active power consumed by the device during GPF Phase
2. Expressed in multiples of mW.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 280
Revision 2.0, Version 1.0

Each register block included in the Register Locator DVSEC has an Offset Low and an
Offset High register to specify the location of the registers within the Memory Space.
The Offset Low register includes an identifier which specifies the type of CXL registers.
Each register block identifier shall only occur once in the Register Locator DVSEC
structure. Each register block must be wholly contained in the address range covered
by the associated BAR.

To advertise this capability, the standard DVSEC register fields must be set to the
values shown in the table below. The DVSEC Length field must be set to h (0Ch+ n * 8)
bytes to accommodate the registers included in the DVSEC, where n is the number of
Register Blocks described by this Capability. The DVSEC ID must be set to 08h to
advertise that this is a CXL 2.0 Register Locator DVSEC capability structure.

Figure 131. Register Locator DVSEC with 3 Register Block Entries

00h

Designated Vendor-specific Header 1 04h

Register Block 1 - Register Offset Low 0Ch

PCI Express Extended Capability Header

Designated Vendor-specific Header 2Reserved 08h

Register Block 1 - Register Offset High 10h

0151631

Register Block 2 - Register offset Low 14h

Register Block 2 - Register offset High 18h

Register Block 3 - Register Offset Low 1Ch

Register Block 3 - Register offset High 20h

Table 131. Register Locator DVSEC - Header

Register Bit Location Field Value

Designated Vendor-Specific Header 1 (offset 04h) 15:0 DVSEC Vendor ID 1E98h

Designated Vendor-Specific Header 1 (offset 04h) 19:16 DVSEC Revision 0h

Designated Vendor-Specific Header 1 (offset 04h) 31:20 DVSEC Length varies

Designated Vendor-Specific Header 2 (offset 08h) 15:0 DVSEC ID 08h

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 281
Revision 2.0, Version 1.0

8.1.9.1 Register Offset Low (Offset Varies)

This register reports the BAR Indicator Register (BIR), Register Block Identifier and the
lower address bits of the BAR offset associated with Register Block.

8.1.9.2 Register Offset High (Offset Varies)

This register reports the higher address bits of the BAR offset associated with the
Register Block. Zeroed if the register block entry in the Register Locator DVSEC is
empty.

8.1.10 MLD DVSEC

The MLD DVSEC (see Figure 132) applies to FM owned LD only and must not be
implemented by any other functions. See Table 124 for the complete listing.

To advertise this capability, the standard DVSEC register fields must be set to the
values shown in the table below. The DVSEC Length field must be set to 10h bytes to
accommodate the registers included in the DVSEC. The DVSEC ID must be set to 09h
to advertise that this is an MLD DVSEC capability structure.

Bit Attributes Description

2:0 HwInit

Register BIR - Indicates which one of a Function's Base Address Registers, located
beginning at 10h in Configuration Space, or entry in the Enhanced Allocation
capability with a matching BAR Equivalent Indicator (BEI), is used to map the CXL
Registers into Memory Space.
Defined encodings are:
• 0 Base Address Register 10h
• 1 Base Address Register 14h
• 2 Base Address Register 18h
• 3 Base Address Register 1Ch
• 4 Base Address Register 20h
• 5 Base Address Register 24h

All other Reserved.
The Registers block must be wholly contained within the specified BAR.

7:3 RsvdP Reserved.

15:8 HwInit

Register Block Identifier - Identifies the type of CXL registers.
Defined encodings are:
• 00h Indicates the register block entry is empty and the Register BIR, Register

Block Offset Low and Register Block Offset High fields are invalid.
• 01h Component Registers. The format of the Component Register block is

defined in Section 8.2.4.
• 02h BAR Virtualization ACL Registers. The format of the Component Register

block is defined in Section 8.2.7.
• 03h CXL Memory Device Registers. The format of the CXL Memory Device

Register block is defined in Section 8.2.8.
All other Reserved.

31:16 HwInit
Register Block Offset Low - A[31:16] of offset from the address contained by one of
the Function's Base Address Registers to point to the base of the Register Block.
Register Block Offset is 64K aligned. Hence A[15:0] is zero.

Bit Attributes Description

31:0 HwInit Register Block Offset High - A[63:32] of offset from the address contained by one of
the Function's Base Address Registers to point to the base of the Register Block.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 282
Revision 2.0, Version 1.0

8.1.10.1 Number of LD Supported (Offset 0Ah)

This register is used by an MLD to advertise the number of LDs supported.

8.1.10.2 LD-ID Hot Reset Vector (Offset 0Ch)

This register is used by the switch to trigger hot reset of the logical device or devices
associated with LD-ID Hot Reset Vector bit positions that are set to a value of 1b.

8.1.11 Table Access DOE

Coherent Device Attributes Table1 (CDAT) allows a device or switch to expose its
performance attributes such as latency and bandwidth characteristics and other
attributes of the device or switch. A CXL Upstream Switch Port or Device 0, Function 0
of a CXL device may implement Table Access DOE capability, which can be used to read
out CDAT, one entry at a time. See Table 125 for the complete listing.

Figure 132. MLD DVSEC

Table 132. MLD DVSEC - Header

Register Bit Location Field Value

Designated Vendor-Specific Header 1 (offset 04h) 15:0 DVSEC Vendor ID 1E98h

Designated Vendor-Specific Header 1 (offset 04h) 19:16 DVSEC Revision 0h

Designated Vendor-Specific Header 1 (offset 04h) 31:20 DVSEC Length 10h

Designated Vendor-Specific Header 2 (offset 08h) 15:0 DVSEC ID 09h

Bit Attributes Description

15:0 HwInit

Number of LDs Supported - This field indicates the number of LDs (not counting FM
owned LD) that are supported. An MLD must be associated with at least one LD. As
such, 0 is an illegal value for this field. Up to 16 LDs are supported; encodings
greater than 16 are reserved.

Bit Attributes Description

15:0 RW

LD-ID Hot Reset Vector - Each bit position in this vector represents an LD-ID. Up to
16 LD-IDs are supported. Setting any bit position to 1b triggers a hot reset of the
associated logical device. Multiple bits can be set simultaneously to trigger hot reset
of multiple logical devices. Read of this register returns a value of 0h.

1. See https://www.uefi.org/uefi and ACPI Specification

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 283
Revision 2.0, Version 1.0

A device may interrupt the host when CDAT content changes using the MSI associated
with this DOE Capability instance. A device may share the instance of this DOE mailbox
with other Data Objects.

This type of Data object is identified as shown below. The Vendor ID must be set to the
CXL Vendor ID to indicate that this Object Type is defined by the CXL Specification. The
Data Object Type must be set to 2h to advertise that this is a Table Access type of data
object.

8.1.11.1 Read Entry

Read the specified entry from the specified table within the device or the switch.

Table 133. Coherent Device Attributes- Data Object Header

Field Bit Location Value

Vendor ID 15:0 1E98h

Data Object Type 23:16 2h

Table 134. Read Entry Request

Data Object
Byte Location Length Description

0 8 Standard DOE Request Header - See PCIe Specification.

8 1
Table Access Request Code – 0 to indicate this is a request to read an entry.
All other values are reserved.

9 1
Table Type -
0 - CDAT
All other types are reserved.

0Ah 2 EntryHandle - Handle value associated with the entry being
requested.EntryHandle=0 represents the very first entry in the table.

Table 135. Read Entry Response

Data
Object
Byte

Location
Length Description

0 8 Standard DOE Request Header - See PCIe Specification.

8 1 Table Access Response Code – 0 to indicate this is a response to read entry request.

9 1

Table Type -
0 - CDAT
All other types are reserved.
Shall match the input supplied during the matching Read Entry Request.

0Ah 2
EntryHandle - EntryHandle value associated with the next entry in the Table.
EntryHandle=FFFFh represents the very last entry in the table and thus end of the
table.

0Ch Variable
The current table entry.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 284
Revision 2.0, Version 1.0

8.1.12 Memory Device Configuration Space Layout

This section defines the configuration space registers required for CXL memory devices.

8.1.12.1 PCI Header - Class Code Register (Offset 09h)

To advertise CXL memory device interface support, the PCI Header, Class Code Register
(Offset 09h) shall be implemented as follows. Such a CXL device shall advertise a
Register DVSEC Locator entry with Register Block Identifier=03h.

8.1.12.2 Memory Device PCIe Capabilities and Extended Capabilities

The optional PCI and PCIe capabilities described in this section are required for a CXL
memory device. Refer to the PCIe Base Specification for definitions of the associated
registers.

8.2 Memory Mapped Registers
CXL memory mapped registers are located in six general regions as specified in
Table 137. Notably, the CXL 1.1 Downstream Port and CXL 1.1 Upstream Port are not
discoverable through PCIe configuration space. Instead, the CXL 1.1 Downstream and
Upstream Port registers are implemented using PCIe root complex registers blocks
(RCRBs). Additionally, the CXL 1.1 Downstream and Upstream ports each implement an
MEMBAR0 region (also known as Component Registers) to host registers for configuring
the CXL subsystem components associated with the respective Port. MEMBAR0 register
(Figure 134) holds the address of Component Registers.

The CXL 1.1 memory mapped register regions appear in memory space as shown in
Figure 133. Note that the RCRBs do not overlap with the MEMBAR0 regions. Also, note
that the Upstream Port’s MEMBAR0 region must fall within the range specified by the
Downstream Port’s memory base and limit register. So long as these requirements are
satisfied, the details of how the RCRBs are mapped into memory space are
implementation specific.

Software shall use CXL.io Memory Read and Write to access memory mapped register
defined in this section. Unless otherwise specified, software shall restrict the accesses
width based on the following:

• A 32 bit register shall be accessed as a 1 Byte, 2 Bytes or 4 Bytes quantity.
• A 64 bit register shall be accessed as a 1 Byte, 2 Bytes, 4 Bytes or 8 Bytes quantity

Bit Attributes Description

7:0 RO
Programming Interface (PI): This field specifies the device supports the CXL 2.0
or later memory device programming interface.
Shall be set to 10h.

15:8 RO
Sub Class Code (SCC): Indicates the sub class code as CXL memory device.
Shall be set to 02h.

23:16 RO
Base Class Code (BCC): Indicates the base class code as a memory controller.
Shall be set to 05h.

Table 136. Memory Device PCIe Capabilities and Extended Capabilities

PCIe Capabilities and Extended
Capabilities Exceptions Notes

Device Serial Number Extended
Capability

Uniquely identifies the CXL
memory device.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 285
Revision 2.0, Version 1.0

• The address shall be a multiple of the access width, e.g. when accessing a register
as a 4 Byte quantity, the address shall be multiple of 4.

• The accesses shall map to contiguous bytes.

If these rules are not followed, the behavior is undefined.

Table 137. CXL Memory Mapped Registers Regions

Memory Mapped Region Description Location

CXL 1.1 Downstream Port RCRB

This is a 4K region with registers
based upon PCIe defined registers
for a Root Port with deltas listed in
this chapter. Includes registers
from PCIe Type 1 Config Header
and PCIe capabilities and extended
capabilities.

This is a contiguous 4K memory
region relocatable via an
implementation specific
mechanism. This region is located
outside of the Downstream Port’s
MEMBAR0 region. Note: The
combined CXL 1.1 Downstream
and Upstream Port RCRBs are a
contiguous 8K region.

CXL 1.1 Upstream Port RCRB

This is a 4K region with registers
based upon PCIe defined registers
for an Upstream Port with deltas
listed in this chapter. Includes 64B
Config Header and PCIe
capabilities and extended
capabilities.

This is a contiguous 4K memory
region relocatable via an
implementation specific
mechanism. This region is located
outside of the Upstream Port’s
MEMBAR0 region. This region may
be located within the range
specified by the Downstream Port’s
memory base/limit registers, but
that is not a requirement. Note:
The combined CXL 1.1
Downstream and Upstream Port
RCRBs are a contiguous 8K region.
The CXL 1.1 Upstream Port
captures the base of its RCRB from
the Address field of the first MMIO
Read (MRd) request received after
the Conventional Reset.

CXL 1.1 Downstream Port
Component Registers

This memory region hosts registers
that allow software to configure
CXL Downstream Port subsystem
components, such as the CXL
protocol, link, and physical layers
and the CXL ARB/MUX.

The location of this region is
specified by a 64-bit MEMBAR0
register located at offset 0x10 and
0x14 of the Downstream Port’s
RCRB.

CXL 1.1 Upstream Port Component
Registers

This memory region hosts registers
that allow software to configure
CXL Upstream Port subsystem
components, such as CXL protocol,
link, and physical layers and the
CXL ARB/MUX.

The location of this region is
specified by a 64-bit MEMBAR0
register located at offset 0x10 and
0x14 of the Upstream Port’s RCRB.
This region is located within the
range specified by the Downstream
Port’s memory base/limit registers.

CXL 2.0 Port Specific Component
Registers

This memory region hosts registers
that allow software to configure
CXL Port subsystem components,
such as CXL protocol, link, and
physical layers and the CXL ARB/
MUX. These are located in CXL 2.0
Root Ports, CXL Switch
Downstream Ports, CXL Upstream
Ports and CXL 2.0 Devices.

The CXL 2.0 Port specific
component registers are mapped
in memory space allocated via a
standard PCIe BAR associated with
the appropriate PCIe non-virtual
Function.
Register Locator DVSEC structure
(Section 8.1.9) describes the BAR
number and the offset within the
BAR where these registers are
mapped.

CXL 2.0 CHBCR (CXL Host Bridge
Component Registers)

This memory region hosts registers
that allow software to configure
CXL functionality that affects
multiple Root Ports such as
Memory Interleaving.

These registers are mapped in
memory space, but the base
address is discovered via ACPI
CEDT Table(Section 9.14.1).

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 286
Revision 2.0, Version 1.0

8.2.1 CXL 1.1 Upstream and Downstream Port Registers

8.2.1.1 CXL 1.1 Downstream Port RCRB

The CXL 1.1 Downstream Port RCRB is a 4K memory region that contains registers
based upon the PCIe specification defined registers for a Root Port. Figure 134
illustrates the layout of the CXL RCRB for a Downstream Port. With the exception of the
first DWORD, the first 64 bytes of the CXL DP RCRB implement the registers from a
PCIe Type 1 Configuration Header. The first DWORD of the RCRB contains a NULL
Extended Capability ID with a Version of 0h and a Next Capability Offset pointer. A 64-
bit MEMBAR0 is implemented at offset 10h and 14h; this points to a private memory
region that hosts registers for configuring Downstream Port subsystem components as
specified in Table 137. The supported PCIe capabilities and extended capabilities are
discovered by following the linked lists of pointers. Supported PCIe capabilities are
mapped into the offset range from 040h to 0FFh. Supported PCIe extended capabilities
are mapped into the offset range from 100h to FFFh. The CXL Downstream Port
supported PCIe capabilities and extended capabilities are listed in Table 138; please
refer to the PCIe 5.0 Base Specification for definitions of the associated registers.

Figure 133. CXL 1.1 Memory Mapped Register Regions

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 287
Revision 2.0, Version 1.0

Figure 134. CXL Downstream Port RCRB

Table 138. CXL 1.1 Downstream Port PCIe Capabilities and Extended Capabilities (Sheet
1 of 2)

PCIe Capabilities and Extended
Capabilities Exceptions1 Notes

PCI Express Capability

Slot Capabilities, Slot Control, Slot
Status, Slot Capabilities 2, Slot
Control 2, and Slot Status 2
registers are not applicable.

N/A

PCI Power Management Capability Not Applicable. Software should
ignore. N/A

MSI Capability Not Applicable. Software should
ignore. N/A

Advanced Error Reporting
Extended Capability

Not Applicable. Software should
ignore.

Required for CXL device despite
being optional for PCIe.
Downstream Port is required to
forward ERR_ messages.

ACS Extended Capability None N/A

Multicast Extended Capability Not Applicable. Software should
ignore. N/A

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 288
Revision 2.0, Version 1.0

8.2.1.2 CXL 1.1 Upstream Port RCRB

The CXL 1.1 Upstream Port RCRB is a 4K memory region that contains registers based
upon the PCIe specification defined registers. The Upstream Port captures the upper
address bits [63:12] of the first memory read received after link initialization as the
base address for the Upstream Port RCRB. Figure 135 illustrates the layout of the CXL
RCRB for an Upstream Port. With the exception of the first DW, the first 64 bytes of the
CXL UP RCRB implement the registers from a PCIe Type 0 Configuration Header. The
first DW of the RCRB contains a NULL Extended Capability ID with a Version of 0h and a
Next Capability Offset pointer. A 64-bit BAR (labeled MEMBAR0) is implemented at
offset 10h and 14h; this points to a memory region that hosts registers for configuring
Upstream Port subsystem CXL.mem as specified in Table 137. The supported PCIe
capabilities and extended capabilities are discovered by following the linked lists of
pointers. Supported PCIe capabilities are mapped into the offset range from 040h to
0FFh. Supported PCIe extended capabilities are mapped into the offset range from
100h to FFFh. The CXL Upstream Port supported PCIe capabilities and extended
capabilities are listed in Table 139; please refer to the PCIe 5.0 Base Specification for
definitions of the associated registers.

The following standard registers that are part of the PCI Type 0 header definition are
considered reserved and have no effect on the behavior of CXL 1.1 Upstream Port:

• Command Register (Offset 04h)
• Status Register (Offset 06h).

Per PCIe Base Specification, the following registers in the PCI Express Capability are
marked reserved for an RCiEP and shall not be implemented by the Device 0, Function
0 of the CXL 1.1 Device.

• Link Registers - Link Capabilities Register, Link Control Register, Link Status
Register, Link Capabilities 2 Register, Link Control 2 Register and Link Status 2
Register

Downstream Port Containment
Extended Capability

Use with care. DPC trigger will
bring down physical link, reset
device state, disrupt CXL.cache
and CXL.mem traffic.

N/A

Designated Vendor-Specific
Extended Capability (DVSEC) None Please refer to Section 8.2.1.3 for

Flex Bus Port DVSEC definition.

Secondary PCI Express Extended
Capability None None

Data Link Feature Extended
Capability None None

Physical Layer 16.0 GT/s Extended
Capability None None

Physical Layer 32.0 GT/s Extended
Capability None None

Lane Margining at the Receiver
Extended Capability None None

Alternate Protocol Extended
Capability None None

1. Note: It is the responsibility of software to be aware of the registers within the capabilities that are not
applicable in CXL mode in case designs choose to use a common code base for PCIe and CXL mode.

Table 138. CXL 1.1 Downstream Port PCIe Capabilities and Extended Capabilities (Sheet
2 of 2)

PCIe Capabilities and Extended
Capabilities Exceptions1 Notes

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 289
Revision 2.0, Version 1.0

• Slot Registers - Slot Capabilities Register, Slot Control Register, Slot Status
Register, Slot Capabilities 2 Register, Slot Control 2 Register and Slot Status 2
Register

• Root Port Registers - Root Capabilities Register, Root Control Register and Root
Status Register.

Software must reference the Link Registers in the Upstream Port RCRB PCI Express
Capability structure in order to discover the link capabilities and link status; and
configure the link properties. These registers shall follow the PCIe Base Specification
definition of an Upstream Switch Port. Software must set the ASPM Control field in the
Link Control register if it wishes to enable CXL.io L1.

All fields in Upstream Port’s Device Capabilities Register, Device Control Register,
Device Status Register, Device Capabilities 2 Register, Device Control 2 Register and
Device Status 2 Register are reserved.

The Device/Port Type, Slots Implemented and Interrupt Message Number fields in the
Upstream Port’s Capability Register are reserved.

Figure 135. CXL 1.1 Upstream Port RCRB

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 290
Revision 2.0, Version 1.0

8.2.1.3 Flex Bus Port DVSEC

All CXL ports implement a Flex Bus Port DVSEC. This DVSEC is located in the RCRBs of
the 1.1 Upstream and 1.1 Downstream ports. CXL 1.1 ports may implement DVSEC
Revision = 0 or 1 of this DVSEC. See Table 124 for the complete listing. If a CXL 1.1
Port implements Revision = 1, software shall ignore certain fields that are specified as
“reserved for CXL 1.1” below.

This DVSEC is also located in the configuration space of CXL 2.0 Root Ports, Upstream
Switch Ports, Downstream Switch Port and CXL 2.0 Device’s primary function (Device
0, Function 0). CXL 2.0 components shall report DVSEC Revision = 1 of this DVSEC.

Figure 136 shows the layout of the Flex Bus Port DVSEC and Table 140 shows how the
header1 and header2 registers shall be set. The following subsections give details of
the registers defined in the Flex Bus Port DVSEC.

Table 139. CXL 1.1 Upstream Port PCIe Capabilities and Extended Capabilities

PCIe Capabilities and Extended
Capabilities Exceptions1

1. Note: It is the responsibility of software to be aware of the registers within the capabilities that are not
applicable in CXL mode in case designs choose to use a common code base for PCIe and CXL mode.

Notes

PCI Express Capability See Section 8.2.1.2. None.

Advanced Error Reporting
Extended Capability

Not Applicable. Software should
ignore.

Required for CXL devices despite
being optional for PCIe. Link/
Protocol errors detected by
Upstream Port are logged/reported
via RCiEP.

Virtual Channel Extended
Capability None VC0 and VC1

Designated Vendor-Specific
Extended Capability (DVSEC) None Please refer to Section 8.2.1.3 for

Flex Bus Port DVSEC definition.

Secondary PCI Express Extended
Capability None None

Data Link Feature Extended
Capability None None

Physical Layer 16.0 GT/s Extended
Capability None None

Physical Layer 32.0 GT/s Extended
Capability None None

Lane Margining at the Receiver
Extended Capability None None

Alternate Protocol Extended
Capability None None

Figure 136. PCIe DVSEC for Flex Bus Port

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 291
Revision 2.0, Version 1.0

8.2.1.3.1 DVSEC Flex Bus Port Capability (Offset 0Ah)

Note: The Mem_Capable, IO_Capable, and Cache_Capable fields are also present in the Flex
Bus DVSEC for the device. This allows for future scalability where multiple devices,
each with potentially different capabilities, may be populated behind a single Port.

8.2.1.3.2 DVSEC Flex Bus Port Control (Offset 0Ch)

The Flex Bus physical layer uses the values that software sets in this register as a
starting point for alternate protocol negotiation as long as the corresponding bit in the
Flex Bus Port Capability register is set. The Flex Bus physical layer shall sample the
values in this register only during exit from the Detect LTSSM state; the physical layer
shall ignore any changes to this register in all other LTSSM states.

Table 140. PCI Express DVSEC Header Registers Settings for Flex Bus Port

Register Bit
Location Field Value

Designated Vendor-Specific Header 1
(Offset 04h) 15:0 DVSEC

Vendor ID 1E98h

Designated Vendor-Specific Header 1
(Offset 04h) 19:16 DVSEC

Revision
0x1:CXL 2.0,
0:CXL 1.1

Designated Vendor-Specific Header 1
(Offset 04h) 31:20 DVSEC

Length 10h for Revision 0
14h for Revision 1

Designated Vendor-Specific Header 2
(Offset 08h) 15:0 DVSEC ID 0x7

Bit Attributes Description

0 RO Cache_Capable: If set, indicates CXL.cache protocol support when operating in Flex
Bus.CXL mode. This should be set to 0 for all functions of an MLD.

1 RO IO_Capable: If set, indicates CXL.io protocol support when operating in Flex
Bus.CXL mode. Must be 1.

2 RO Mem_Capable: If set, indicates CXL.mem protocol support when operating in Flex
Bus.CXL mode. This must be 1 for all functions of an MLD.

4:3 RsvdP Reserved

5 RO
CXL2p0_Capable: If set, indicates CXL Revision 2.0 functionality support available
when operating in Flex Bus.CXL mode. This bit is reserved on CXL1.1 components.
This must be 1 for all functions of an MLD.

6 RO

CXL_Multi-Logical_Device_Capable: If set, indicates Multi-Logical Device support
available when operating in Flex Bus.CXL mode. This bit is reserved on CXL 1.1
components. This bit must be set to 0 on CXL2.0 host Downstream ports. The value
must be the same for all functions of an MLD.

15:7 RsvdP Reserved

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 292
Revision 2.0, Version 1.0

8.2.1.3.3 DVSEC Flex Bus Port Status (Offset 0Eh)

The Flex Bus physical layer reports the results of alternate protocol negotiation in this
register.

Bit Attributes Description

0

RW if
Downstream
Port, HwInit
otherwise

Cache_Enable: When set, enables CXL.cache protocol operation when in Flex
Bus.CXL mode.
Default value of this field is 0.

1 RO IO_Enable: When set, enables CXL.io protocol operation when in Flex Bus.CXL
mode. (Must always be set to 1)

2

RW if
Downstream
Port, HwInit
otherwise

Mem_Enable: When set, enables CXL.mem protocol operation when in Flex Bus.CXL
mode.
Default value of this field is 0.

3

RW if
Downstream
Port, HwInit
otherwise

CXL_Sync_Hdr_Bypass_Enable: When set, enables bypass of the 2-bit sync header
by the Flex Bus physical layer when operating in Flex Bus.CXL mode. This is a
performance optimization.
Default value of this field is 0.

4

RW if
Downstream
Port, HwInit
otherwise

Drift_Buffer_Enable: When set, enables drift buffer (instead of elastic buffer) if
there is a common reference clock.
Default value of this field is 0.

5

RW if
Downstream
Port, HwInit
otherwise

CXL2p0_Enable: When set, enable CXL2.0 protocol operation when in Flex Bus.CXL
mode. This bit is reserved on CXL1.1 components.
Default value of this field is 0.

6

RW if
Downstream
Port, HwInit
otherwise

CXL_Multi-Logical_Device_Enable: When set, enable Multi-Logical Device operation
when in Flex Bus.CXL mode. This bit is reserved on CXL1.1 components. This bit
shall always be set to 0 for CXL2.0 host Downstream ports.
Default value of this field is 0.

7

RW if
Downstream
Port, HwInit
otherwise

Disable_CXL1p1_Training: When set, CXL1.0 training is disabled. Typical usage
model is that System Firmware will use this bit to disable hot plug of CXL1.1 devices
below a CXL2.0 Downstream Port. This bit is reserved on all CXL Upstream ports and
on CXL1.1 components.
Default value of this field is 0.

8

RW if
Downstream
Port, RsvdP
otherwise

Retimer1_Present: When set, indicates presence of retimer1. This bit is defined only
for a Downstream Port. This bit is reserved for an Upstream Port.
Default value of this field is 0.
This bit is only used by CXL1.1 Downstream Ports. Downstream Ports compliant to
CXL Specification 2.0 and later revisions shall ignore this bit.

9

RW if
Downstream
Port, RsvdP
otherwise

Retimer2_Present: When set, indicates presence of retimer2. This bit is defined only
for a Downstream Port. This bit is reserved for an Upstream Port.
Default value of this field is 0.
This bit is only used by CXL1.1 Downstream Ports. Downstream Ports compliant to
CXL Specification 2.0 and later revisions shall ignore this bit.

15:10 RsvdP Reserved

Bit Attributes Description

0 RO Cache_Enabled: When set, indicates that CXL.cache protocol operation has been
enabled as a result of PCIe alternate protocol negotiation for Flex Bus.

1 RO IO_Enabled: When set, indicates that CXL.io protocol operation has been enabled as
a result of PCIe alternate protocol negotiation for Flex Bus.

2 RO Mem_Enabled: When set, indicates that CXL.mem protocol operation has been
enabled as a result of PCIe alternate protocol negotiation for Flex Bus.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 293
Revision 2.0, Version 1.0

8.2.1.3.4 DVSEC Flex Bus Port Received Modified TS Data Phase1 (Offset 10h)

If CXL alternate protocol negotiation is enabled and the “Modified TS Received” bit is
set in the PCIe register “32GT/s Status Register”, then this register contains the values
received in Symbols 12 through 14 of the Modified TS1 Ordered Set during Phase1 of
CXL alternate protocol negotiation. This register is not defined in the CXL1.1
specification.

8.2.2 CXL 1.1 Upstream and Downstream Port Subsystem Component
Registers

The CXL 1.1 Upstream and Downstream Port subsystem components implement
registers in memory space allocated via the MEMBAR0 register. In general, these
registers are expected to be implementation specific; Section 8.2.4 defines the
architected registers. Table 141 lists the relevant offset ranges from MEMBAR0 for
CXL.io, CXL.cache, CXL.mem, and CXL ARB/MUX registers.

Software shall use CXL.io Memory Read and Write to access CXL Component registers
defined in Section 8.2.5 and Section 8.2.6. Software shall restrict the accesses width
based on the following rules:

3 RO
CXL_Sync_Hdr_Bypass_Enabled: When set, indicates that bypass of the 2-bit sync
header by the Flex Bus physical layer has been enabled when operating in Flex
Bus.CXL mode as a result of PCIe alternate protocol negotiation for Flex Bus.

4 RO Drift_Buffer_Enabled: When set, indicates that the physical layer has enabled its
drift buffer instead of its elastic buffer.

5 RO CXL2p0_Enabled: When set, indicates that CXL2.0 protocol operation has been
enabled as a result of PCIe alternate protocol negotiation for Flex Bus.

6 RO CXL_Multi-Logical_Device_Enabled: When set, indicates that CXL Multi-Logical
Device operation has been negotiated.

7 RsvdZ Reserved

8 RW1CS CXL_Correctable_Protocol_ID_Framing_Error: See Section 6.2.2 for more details.

9 RW1CS CXL_Uncorrectable_Protocol_ID_Framing_Error: See Section 6.2.2 for more details.

10 RW1CS
CXL_Unexpected_Protocol_ID_Dropped: When set, indicates that the physical layer
dropped a flit with an unexpected protocol ID that is not due to an Uncorrectable
Protocol ID Framing Error. See Section 6.2.2 for more details

11 RW1CS

CXL_Retimers_Present_Mismatched: When set, indicates that the Downstream Port
physical layer detected an inconsistency in the “Retimers Present” or “Two Retimers
Present” bits in the received TS2 Ordered Sets during Polling.Config versus
Config.Complete LTSSM states. The physical layer will force disable of the sync
header bypass optimization when this error condition has been detected. See
Section 6.3.1.2.1 for more details. This bit is reserved on Upstream Ports.

12 RW1CS

FlexBusEnableBits_Phase2_Mismatch: When set, indicates that the Downstream
Port physical layer detected that the Upstream Port did not reflect precisely the Flex
Bus enable bits located in symbols 12-14 of the modified TS2 during Phase 2 of the
negotiation. Please refer to Section 6.3.1.1 for more details. This bit is reserved on
Upstream Ports.

15:13 RsvdZ Reserved ().

Bit Attributes Description

Bit Attributes Description

23:0 RO
Received_Flex_Bus_Data_Phase_1: This field contains the values received in
Symbols 12 through 14 of the Modified TS1 Ordered Set during Phase 1 of CXL
alternate protocol negotiation.

31:24 RsvdZ Reserved.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 294
Revision 2.0, Version 1.0

• A 32 bit register shall be accessed as a 4 Bytes quantity. Partial reads are not
permitted.

• A 64 bit register shall be accessed as a 8 Bytes quantity. Partial reads are not
permitted.

• The accesses shall map to contiguous bytes.

If these rules are not followed, the behavior is undefined. Note that these rules are
more stringent than the general rules for memory mapped registers that are specified
in Section 8.2.

8.2.3 CXL 2.0 Component Registers

CXL 2.0 Component Registers may be specific to a CXL 2.0 Port or may cover more
than one Port. See Figure 152 and Figure 153.

The CXL 2.0 Port specific component registers are mapped in memory space allocated
via a standard PCIe BAR. The Register Locator DVSEC structure (Section 8.1.9)
describes the BAR number and the offset within the BAR where these registers are
mapped.

CXL 2.0 Root Complex may contain Component Registers that control the functionality
of one or more CXL 2.0 Root Ports. These are labeled CHBCR. These registers are also
mapped in memory space, and the base address is discovered via ACPI CEDT Table.

The access restrictions specified in Section 8.2.2 also apply to CXL 2.0 Component
Registers.

8.2.4 Component Register Layout and Definition

The layout and discovery mechanism of the Component Register is identical for CXL 1.1
Upstream Ports, CXL 1.1 Downstream Ports, CXL 2.0 Ports and CXL 2.0 Host Bridges
(CHBCR). Table 141 lists the relevant offset ranges from the Base of the Component
Register Block for CXL.io, CXL.cache, CXL.mem, and CXL ARB/MUX registers.

8.2.5 CXL.cache and CXL.mem Registers

Within the 4KB region of memory space assigned to CXL.cache and CXL.mem, the
location of architecturally specified registers will be described using an array of
pointers. The array, described in Table 144, will be located starting at offset 0x0 of this
4KB region. The first element of the array will declare the version of CXL.cache and
CXL.mem protocol as well as the size of the array. Each subsequent element will then
host the pointers to capability specific register blocks within the 4KB region.

Table 141. CXL Subsystem Component Register Ranges

Range Size Destination

0000_0000h - 0000_0FFFh 4K CXL.io registers

0000_1000h - 0000_1FFFh 4K CXL.cache and CXL.mem registers

0000_2000h - 0000_DFFFh 48K Implementation specific

0000_E000h - 0000_E3FFh 1K CXL ARB/MUX registers

0000_E400h - 0000_FFFFh 7K Reserved

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 295
Revision 2.0, Version 1.0

For each capability ID, CXL_Capability_Version field is incremented whenever the
structure is extended to add more functionality. Backward compatibility shall be
maintained during this process. For all values of n, CXL_Capability_Version=n+1
structure may extend CXL_Capability_Version=n by replacing fields that are marked as
reserved in CXL_Capability_Version= n, but shall not redefine the meaning of existing
fields. Software that was written for a lower CXL_Capability_Version may continue to
operate on structures with a higher CXL_Capability_Version, but will not be able to take
advantage of new functionality.

CXL_Capability_ID field represents the functionality and CXL_Capability_Version
represents the version of the structure. The following values of CXL_Capability_ID are
defined by CXL specification.

Table 142. CXL_Capability_ID Assignment

Capability ID Highest
version Mandatory1

1. P- PCI Express device, D1 - CXL 1.1 Device, D2 - CXL 2.0 Device, LD - Logical Device, FMLD - Fabric
Manager owned LD 0xFFFF, UP1 - CXL 1.1 Upstream Port RCRB, DP1 - CXL 1.1 Downstream Port
RCRB, R - CXL 2.0 Root Port, USP - CXL Switch Upstream Port, DSP - CXL Switch Downstream Port

Not
Permitted Optional

CXL Capability (Section 8.2.5.1) 1 1

D1, D2, LD,
FMLD, UP1,
DP1, R, USP,
DSP

P

CXL RAS Capability
(Section 8.2.5.9) 2 2

D1, D2, LD,
FMLD, UP1,
DP1, R, USP,
DSP

P

CXL Security Capability
(Section 8.2.5.10) 3 1 DP1 All others

CXL Link Capability
(Section 8.2.5.11) 4 1

D1, D2, LD,
FMLD, UP1,
DP1, R, USP,
DSP

P

CXL HDM Decoder_Capability
(Section 8.2.5.12) 5 1 Type 3 D2,

LD, R, USP All others Type 2 D2

CXL Extended Security Capability
(Section 8.2.5.13) 6 1 R All others

CXL IDE
Capability(Section 8.2.5.14) 7 1 P, D1, LD,

UP1, DP1,
D2, FMLD,
R, USP, DSP

CXL Snoop Filter Capability
(Section 8.2.5.14.5) 8 1 R

P, D1, D2,
LD, FMLD,
UP1, USP,
DSP

DP1

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 296
Revision 2.0, Version 1.0

8.2.5.1 CXL Capability Header Register (Offset 0x0)

Table 143. CXL.cache and CXL.mem Architectural Register Discovery

Offset Register Name

0x0 CXL_Capability_Header

0x4
(Length = n*4, where
n is the number of
capability headers)

An array of individual capability headers.
CXL 1.1 defined capabilities are -
• CXL_RAS_Capability_Header,
• CXL_Security_Capability_Header,
• CXL_Link_Capability_Header

CXL 2.0 introduces
• CXL_HDM_Decoder_Capability_Header
• CXL_Extended_ Security_Capability_Header
• CXL_IDE_Capability_Header
• CXL_Snoop_Filter_Capability_Header

Table 144. CXL.cache and CXL.mem Architectural Register Header Example

Offset Register Name

0x0 CXL_Capability_Header

0x4 CXL_RAS_Capability_Header

0x8 CXL_Security_Capability_Header

0xC CXL_Link_Capability_Header

Bit Location Attributes Description

15:0 RO
CXL_Capability_ID: This defines the nature and format of the
CXL_Capability register. For the CXL_Capability_Header register,
this field must be 0x1.

19:16 RO
CXL_Capability_Version: This defines the version number of
the CXL_Capability structure present. For this the prior version
of the specification, this field must be 0x1.

23:20 RO
CXL_Cache_Mem_Version: This defines the version of the
CXL Cache Mem Protocol supported. For this and the prior
versions of the specification, this field must be 0x1.

31:24 RO

Array_Size: This defines the number of elements present in
the CXL_Capability array, not including the
CXL_Capability_Header element. Each element is 1 DWORD in
size and is located contiguous with previous elements.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 297
Revision 2.0, Version 1.0

8.2.5.2 CXL RAS Capability Header (Offset: Varies)

8.2.5.3 CXL Security Capability Header (Offset: Varies)

8.2.5.4 CXL Link Capability Header (Offset:Varies)

8.2.5.5 CXL HDM Decoder Capability Header (Offset: Varies)

Bit Location Attributes Description

15:0 RO
CXL_Capability_ID: This defines the nature and format of the
CXL_Capability register. For the CXL_RAS_Capability_Pointer
register, this field shall be 0x2.

19:16 RO
CXL_Capability_Version: This defines the version number of
the CXL_Capability structure present. For this version of the
specification, this field must be 0x2.

31:20 RO
CXL_RAS_Capability_Pointer: This defines the offset of the
CXL_Capability relative to beginning of CXL_Capability_Header
register. Details in Section 8.2.5.9.

Bit Location Attributes Description

15:0 RO
CXL_Capability_ID: This defines the nature and format of the
CXL_Capability register. For the
CXL_Security_Capability_Pointer register, this field shall be 0x3.

19:16 RO
CXL_Capability_Version: This defines the version number of
the CXL_Capability structure present. For this version of the
specification, this field must be 0x1.

31:20 RO
CXL_Security_Capability_Pointer: This defines the offset of
the CXL_Capability relative to beginning of
CXL_Capability_Header register. Details in Section 8.2.5.10

Bit Location Attributes Description

15:0 RO
CXL_Capability_ID: This defines the nature and format of the
CXL_Capability register. For the CXL_Link_Capability_Pointer
register, this field shall be 0x4.

19:16 RO

CXL_Capability_Version: This defines the version number of
the CXL_Capability structure present. Version 0x1 represents
the structure as defined in CXL 1.1 specification. Version 0x2
represents the structure as defined in this specification.

31:20 RO
CXL_Link_Capability_Pointer: This defines the offset of the
CXL_Capability relative to beginning of CXL_Capability_Header
register. Details in Section 8.2.5.11

Bit Location Attributes Description

15:0 RO

CXL_Capability_ID: This defines the nature and format of the
CXL_Capability register. For the
CXL_HDM_Decoder_Capability_Pointer register, this field shall
be 0x5.

19:16 RO
CXL_Capability_Version: This defines the version number of
the CXL_Capability structure present. For this version of the
specification, this field must be 0x1.

31:20 RO
CXL_HDM_Decoder_Capability_Pointer: This defines the
offset of the CXL_Capability relative to beginning of
CXL_Capability_Header register. Details in Section 8.2.5.12

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 298
Revision 2.0, Version 1.0

8.2.5.6 CXL Extended Security Capability Header (Offset: Varies)

8.2.5.7 CXL IDE Capability Header (Offset: Varies)

This capability header is present in all ports that implement CXL IDE.

8.2.5.8 CXL Snoop Filter Capability Header (Offset: Varies)

This capability header is required for Root Ports and optional for CXL 1.1 Downstream
Ports.

8.2.5.9 CXL RAS Capability Structure

Bit Location Attributes Description

15:0 RO
CXL_Capability_ID: This defines the nature and format of the
CXL_Capability register. For the CXL_Extended
Security_Capability_Pointer register, this field shall be 0x6.

19:16 RO
CXL_Capability_Version: This defines the version number of
the CXL_Capability structure present. For this version of the
specification, this field must be 0x1.

31:20 RO
CXL_Extended_Security_Capability_Pointer: This defines
the offset of the CXL_Capability relative to beginning of
CXL_Capability_Header register. Details in Section 8.2.5.13

Bit Location Attributes Description

15:0 RO
CXL_Capability_ID: This defines the nature and format of the
CXL_Capability register. For the CXL_IDE_Capability_Header
register, this field shall be 0x7.

19:16 RO
CXL_Capability_Version: This defines the version number of
the CXL_Capability structure present. For this version of the
specification, this field must be 0x1.

31:20 RO
CXL IDE Capability Pointer: This defines the offset of the CXL
IDE Capability relative to beginning of CXL_Capability_Header
register. Details in Section 8.2.5.14.

Bit Location Attributes Description

15:0 RO

CXL_Capability_ID: This defines the nature and format of the
CXL_Capability register. For the
CXL_Snoop_Filter_Capability_Header register, this field shall be
0x8.

19:16 RO
CXL_Capability_Version: This defines the version number of
the CXL_Capability structure present. For this version of the
specification, this field shall be 0x1.

31:20 RO
CXL Snoop Filter Capability Pointer: This defines the offset
of the CXL Snoop Filter Capability relative to beginning of
CXL_Capability_Header register. Details in Section 8.2.5.15.

Offset Register Name

0x0 Uncorrectable Error Status Register

0x4 Uncorrectable Error Mask Register

0x8 Uncorrectable Error Severity Register

0xC Correctable Error Status Register

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 299
Revision 2.0, Version 1.0

8.2.5.9.1 Uncorrectable Error Status Register (Offset 0x0)

8.2.5.9.2 Uncorrectable Error Mask Register (Offset 0x4)

The Uncorrectable Error Mask Register controls reporting of individual errors. When a
bit is set, the corresponding error status bit in Uncorrectable Error Status Register upon
the error event is not set, the error is not recorded or reported in the Header Log and is
not signaled.

0x10 Correctable Error Mask Register

0x14 Error Capability and Control Register

0x18 Header Log Registers

Bit Location Attributes Description

0 RW1CS Cache_Data_Parity: Internal Data Parity error on CXL.cache.
Header Log contains H2D Data Header.

1 RW1CS Cache_Address _Parity: Internal Address Parity error on
CXL.cache. Header Log contains H2D Data Header.

2 RW1CS Cache_BE_Parity: Internal Byte Enable Parity error on
CXL.cache. Header Log contains H2D Data Header.

3 RW1CS Cache_Data_ECC: Internal Data ECC error on CXL.cache.
Header Log contains H2D Data Header.

4 RW1CS Mem_Data_Parity: Internal Data Parity error on CXL.mem.
Header Log contains M2S RwD Data Header.

5 RW1CS

Mem_Address_Parity: Internal Address Parity error on
CXL.mem. If Bit 0 of Header Log is '0, rest of Header Log
contains M2S Req. If Bit 0 of Header Log is '1, rest of Header
Log contains M2S RwD Data Header.

6 RW1CS Mem_BE_Parity: Internal Byte Enable Parity error on
CXL.mem. Header Log contains M2S RwD Data Header.

7 RW1CS Mem_Data_ECC: Internal Data ECC error on CXL.mem.
Header Log contains M2S RwD Data Header.

8 RW1CS REINIT_Threshold: REINIT Threshold Hit. Header Log not
applicable.

9 RW1CS Rsvd_Encoding_Violation: Received unrecognized encoding.
Header Log contains the entire flit received.

10 RW1CS Poison_Received: Received Poison from the peer.

11 RW1CS

Receiver_Overflow: First 3b of the Header Log are relevant
and should be interpreted as such:
3'b000 --> D2H Req
3'b001 --> D2H Rsp
3'b010 --> D2H Data
3'b100 --> S2M NDR
3'b101 --> S2M DRS
The above shows which buffer had the overflow

143:12 RsvdZ Reserved (Do not use)

14 RW1CS Internal_Error: Component specific error

15 RW1CS CXL_IDE_Tx_Error: See Section 8.2.5.14.4 for the next
level details.

16 RW1CS CXL_IDE_Rx_Error: See Section 8.2.5.14.4 for the next
level details.

31:17 RsvdZ Reserved

Offset Register Name

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 300
Revision 2.0, Version 1.0

8.2.5.9.3 Uncorrectable Error Severity Register (Offset 0x8)

The Uncorrectable Error Severity Register controls whether an individual error is
reported as a Non-fatal or Fatal error. An error is reported as fatal uncorrectable when
the corresponding error bit in the severity register is Set. If the bit is Clear, the
corresponding error is reported as non-fatal uncorrectable error.

Bit Location Attributes Description

0 RWS
Cache_Data_Parity_Mask
Default value for this field is 1.

1 RWS
Cache_Address_Parity_Mask
Default value for this field is 1

2 RWS
Cache_BE_Parity_Mask
Default value for this field is 1

3 RWS
Cache_Data_ECC_Mask
Default value for this field is 1

4 RWS
Mem_Data_Parity_Mask
Default value for this field is 1

5 RWS
Mem_Address_Parity_Mask
Default value for this field is 1

6 RWS
Mem_BE_Parity_Mask
Default value for this field is 1

7 RWS
Mem_Data_ECC_Mask
 Default value for this field is 1

8 RWS
REINIT_Threshold_Mask
Default value for this field is 1

9 RWS
Rsvd_Encoding_Violation_Mask
Default value for this field is 1

10 RWS
Poison_Received_Mask
Default value for this field is 1

11 RWS Receiver_Overflow_Mask

13:12 RsvdP Reserved (Do not use)

14 RWS Internal_Error_Mask: Default value for this field is 1

15 RWS
CXL_IDE_Tx_Mask
Default value for this field is 1

16 RWS
CXL_IDE_Rx_Mask
Default value for this field is 1

31:17 RsvdP Reserved

Bit Location Attributes Description

0 RWS
Cache_Data_Parity_Severity
Default value for this field is 1

1 RWS
Cache_Address _Parity_Severity
Default value for this field is 1

2 RWS
Cache_BE_Parity_Severity
Default value for this field is 1

3 RWS
Cache_Data_ECC_Severity
Default value for this field is 1

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 301
Revision 2.0, Version 1.0

Correctable Error Status Register (Offset 0xC)

8.2.5.9.4 Correctable Error Mask Register (Offset 0x10)

The Correctable Error Mask Register controls reporting of individual errors. When a bit
is set in this register, the corresponding error status bit is not set upon the error event,
and the error is not signaled.

4 RWS
Mem_Data_Parity_Severity
Default value for this field is 1

5 RWS
Mem_Address_Parity_Severity
Default value for this field is 1

6 RWS
Mem_BE_Parity_Severity
Default value for this field is 1

7 RWS
Mem_Data_ECC_Severity
Default value for this field is 1

8 RWS
REINIT_Threshold_Severity
Default value for this field is 1

9 RWS
Rsvd_Encoding_Violation_Severity
Default value for this field is 1

10 RWS
Poison_Received_Severity
Default value for this field is 1

11 RWS
Receiver_Overflow_Severity
Default value for this field is 1

13:12 RsvdP Reserved (Do not use)

14 RWS Internal_Error_Severity: Default value for this field is 1

15 RWS
CXL_IDE_Tx_Severity
Default value for this field is 1

16 RWS
CXL_IDE_Rx_Severity
Default value for this field is 1

31:17 RsvdP Reserved

Bit Location Attributes Description

0 RW1CS Cache_Data_ECC: Internal Data ECC error on CXL.cache.

1 RW1CS Mem_Data_ECC: Internal Data ECC error on CXL.mem.

2 RW1CS CRC_Threshold: CRC Threshold Hit

3 RW1CS Retry_Threshold: Retry Threshold Hit

4 RW1CS Cache_Poison_Received: Received Poison from the peer on
CXL.cache.

5 RW1CS Mem_Poison_Received: Received Poison from the peer on
CXL.mem.

6 RW1CS Physical_Layer_Error: Received error indication from
Physical Layer

31:7 RsvdZ Reserved

Bit Location Attributes Description

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 302
Revision 2.0, Version 1.0

8.2.5.9.5 Error Capabilities and Control Register (Offset 0x14)

8.2.5.9.6 Header Log Registers (Offset 0x18)

8.2.5.10 CXL Security Capability Structure

This capability structure only applies for CXL 1.1 Downstream Port.

Bit Location Attributes Description

0 RWS
Cache_Data_ECC_Mask
Default value for this field is 1

1 RWS
Mem_Data_ECC_Mask
Default value for this field is 1

2 RWS
CRC_Threshold_Mask
Default value for this field is 1

3 RWS
Retry_Threshold_Mask
Default value for this field is 1

4 RWS
Cache_Poison_Received_Mask
.Default value for this field is 1

5 RWS
Mem_Poison_Received_Mask
Default value for this field is 1

6 RWS
Physical_Layer_Error_Mask
Default value for this field is 1

31:7 RsvdP Reserved

Bit Location Attributes Description

5:0 ROS First_Error_Pointer: This identifies the bit position of the first
error reported in the Uncorrectable Error Status register.

8:6 RsvdP Reserved

9 RO Multiple_Header_Recording_Capability: If this bit is set, it
indicates if recording more than one error header is supported.

12:10 RsvdP Reserved

13 RWS

Poison_Enabled: If this bit is 0, CXL 1.1 Upstream Ports, CXL
1.1 Downstream Ports and CXL 2.0 Root Port shall treat poison
received on CXL.cache or CXL.mem as uncorrectable error and
log the error in Uncorrectable Error Status Register. If this bit is
1, these ports shall treat poison received on CXL.cache or
CXL.mem as correctable error and log the error in Correctable
Error Status Register. This bit defaults to 1.
This bit is hardwired to 1 in CXL 2.0 Upstream Switch Port, CXL
2.0 Downstream Switch Port and CXL 2.0 device.

31:14 RsvdZ Reserved

Bit Location Attributes Description

511:0 ROS

Header Log: The information logged here depends on the type
of Uncorrectable Error Status bit recorded as described in
Section 8.2.5.9.1. If multiple errors are logged in Uncorrectable
Error Status register, First_Error_Pointer field in Error
Capabilities and Control Register identifies the error that this log
corresponds to.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 303
Revision 2.0, Version 1.0

8.2.5.10.1 CXL Security Policy Register (Offset 0x0)

8.2.5.11 CXL Link Capability Structure

8.2.5.11.1 CXL Link Layer Capability Register (Offset 0x0)

Offset Register Name

0x0 CXL Security Policy Register

Table 145. Device Trust Level

Bit Location Attributes Description

1:0 RW

Device Trust Level:
'0 --> Trusted CXL Device. At this setting, a CXL Device will be
able to get access on CXL.cache for both host-attached and
device attached memory ranges. The Host can still protect
security sensitive memory regions.
'1 --> Trusted for Device Attached Memory Range Only. At this
setting, a CXL Device will be able to get access on CXL.cache for
device attached memory ranges only. Requests on CXL.cache
for host-attached memory ranges will be aborted by the Host.
'2 --> Untrusted CXL Device. At this setting, all requests on
CXL.cache will be aborted by the Host.
Please note that these settings only apply to requests on
CXL.cache. The device can still source requests on CXL.io
regardless of these settings. Protection on CXL.io will be
implemented using IOMMU based page tables.
Default value of this field is 2.

31:2 RsvdP Reserved

Offset Register Name

0x0 CXL Link Layer Capability Register

0x8 CXL Link Control and Status Register

0x10 CXL Link Rx Credit Control Register

0x18 CXL Link Rx Credit Return Status Register

0x20 CXL Link Tx Credit Status Register

0x28 CXL Link Ack Timer Control Register

0x30 CXL Link Defeature

Bit Location Attributes Description

3:0 RWS

CXL Link Version Supported: Version of CXL Specification the
Port is compliant with. For CXL 1.0, this should be 0001b. The
value in this field does not affect the link behavior. The reset
default for a CXL 2.0 capable port is 0010b.

7:4 RO CXL Link Version Received: Version of CXL Specification
received from INIT.Param flit. Used for debug.

15:8 RWS
LLR Wrap Value Supported: LLR Wrap value supported by
this entity. Used for debug.
The default value of this field will be implementation dependent.

23:16 RO LLR Wrap Value Received: LLR Wrap value received from
INIT.Param flit. Used for debug.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 304
Revision 2.0, Version 1.0

8.2.5.11.2 CXL Link Layer Control and Status Register (Offset 0x8)

28:24 RO NUM_Retry_Received: Num_Retry value reflected in the last
Retry.Req message received. Used for debug.

33:29 RO NUM_Phy_Reinit_Received: Num_Phy_Reinit value reflected
in the last Retry.Req message received. Used for debug.

41:34 RO Wr_Ptr_Received: Wr_Ptr value reflected in the last Retry.Ack
message received

49:42 RO Echo_Eseq_Received: Echo_Eseq value reflected in the last
Retry.Ack message received

57:50 RO Num_Free_Buf_Received: Num_Free_Buf value reflected in
the last Retry.Ack message received

58 RO No_LL_Reset_Support: If set, indicates that the LL_Reset
configuration bit is not supported.

63:59 RsvdP Reserved

Bit Location Attributes Description

Bit Location Attributes Description

0 RW

LL_Reset: Re-initialize without resetting values in sticky
registers.
When this bit is set, the link layer reset is initiated. When link
layer reset completes, hardware will clear the bit to '0.
Entity triggering LL_Reset should ensure that link is quiesced.
Support for this bit is optional. If LL_Reset is not supported,
NO_LL_Reset_Support bit in CXL Link Layer Control and Status
Register shall be set (see Section 8.2.5.11.2).
The use of this bit is expected to be for debug. Any production
need for Link Layer re-initialization is to be satisfied using CXL
Hot Reset.

1 RWS
LL_Init_Stall: If set, link layer stalls the transmission of the
LLCTRL-INIT.Param flit until this bit is cleared
The default value of this field is 0.

2 RWS
LL_Crd_Stall: If set, link layer stalls credit initialization until
this bit is cleared
 The reset default value of this field is 0.

4:3 RO

INIT_State:
This field reflects the current initialization status of the Link
Layer, including any stall conditions controlled by bits 2:1
'00 --> NOT_RDY_FOR_INIT (stalled or unstalled): LLCTRL-
INIT.Param flit not sent
'01 --> PARAM_EX: LLCTRL-INIT.Param sent and waiting to
receive it
'10 --> CRD_RETURN_STALL: Parameter exchanged
successfully, and Credit return is stalled
'11 --> INIT_DONE: Link Initialization Done - LLCTRL-
INIT.Param flit sent and received, and initial credit refund not
stalled

12:5 RO LL_Retry_Buffer_Consumed: Snapshot of link layer retry
buffer consumed

63:13 RsvdP Reserved

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 305
Revision 2.0, Version 1.0

8.2.5.11.3 CXL Link Layer Rx Credit Control Register (Offset 0x10)

The default settings are component specific. The contents of this register represent the
credits advertised by the component.

Software may program this register and issue a hot reset in order to operate the
component with credit settings that are lower than the default. The values in these
registers take effect on the next hot reset. If software configures any of these fields to
a value that is higher than the default, the results will be undefined.

8.2.5.11.4 CXL Link Layer Rx Credit Return Status Register (Offset 0x18)

Bit Location Attributes Description

9:0 RWS

Cache Req Credits: Credits to advertise for Cache Request
channel at init. The default value represents the maximum
number of Cache Request channel credits the component
supports.

19:10 RWS

Cache Rsp Credits: Credits to advertise for Cache Response
channel at init. The default value represents the maximum
number of Cache Response channel credits the component
supports.

29:20 RWS
Cache Data Credits: Credits to advertise for Cache Data
channel at init. The default value represents the maximum
number of Cache Data channel credits the component supports.

39:30 RWS

Mem Req _Rsp Credits: Credits to advertise for Mem Request
or Response channel at init. The default value represents the
maximum number of Mem Request and Response channel
credits the component supports.

49:40 RWS
Mem Data Credits: Credits to advertise for Mem Data channel
at init. The default value represents the maximum number of
Mem Date channel credits the component supports.

63:50 RsvdP Reserved

Bit Location Attributes Description

9:0 RO Cache Req Credits: Running snapshot of accumulated Cache
Request credits to be returned

19:10 RO Cache Rsp Credits: Running snapshot of accumulated Cache
Response credits to be returned

29:20 RO Cache Data Credits: Running snapshot of accumulated Cache
Data credits to be returned

39:30 RO Mem Req _Rsp Credits: Running snapshot of accumulated
Mem Request or Response credits to be returned

49:40 RO Mem Data Credits: Running snapshot of accumulated Mem
Data credits to be returned

63:50 RsvdP Reserved

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 306
Revision 2.0, Version 1.0

8.2.5.11.5 CXL Link Layer Tx Credit Status Register (Offset 0x20)

8.2.5.11.6 CXL Link Layer Ack Timer Control Register (Offset 0x28)

The default settings are component specific.

Software may program this register and issue a hot reset in order to operate the
component with settings that are different from the default. The values in these
registers take effect on the next hot reset.

8.2.5.11.7 CXL Link Layer Defeature Register (Offset 0x30)

Bit Location Attributes Description

9:0 RO Cache Req Credits: Running snapshot of Cache Request
credits for Tx

19:10 RO Cache Rsp Credits: Running snapshot of Cache Response
credits for Tx

29:20 RO Cache Data Credits: Running snapshot of Cache Data credits
for Tx

39:30 RO Mem Req _Rsp Credits: Running snapshot of Mem Req or
Response credits for Tx

49:40 RO Mem Data Credits: Running snapshot of Mem Data credits for
Tx

63:50 RsvdP Reserved

Bit Location Attributes Description

7:0 RWS

Ack Force Threshold: This specifies how many Flit Acks the
Link Layer should accumulate before injecting a LLCRD. The
recommended default value is 0x10 (16 decimal).
If configured to a value greater than (LLR Wrap Value Received -
6), the behavior will be undefined.
If configured to a value below 10h, the behavior will be
undefined.
See Section 4.2.8.2 for additional details.

17:8 RWS

Ack or CRD Flush Retimer: This specifies how many link layer
clock cycles the entity should wait in case of idle, before flushing
accumulated Acks or CRD using a LLCRD. This applies for any
case where accumulated Acks is greater than 1 or accumulated
CRD for any channel is greater than 0. The recommended
default value is 0x20. If configured to a value below 20h, the
behavior will be undefined.
See Section 4.2.8.2 for additional details.

63:18 RsvdP Reserved

Bit Location Attributes Description

0 RWS

MDH Disable: Write '1 to disable MDH. Software needs to
ensure it programs this value consistently on the UP & DP. After
programming, a hot reset is required for the disable to take
effect.
 The default value of this field is 0.

63:1 RsvdP Reserved

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 307
Revision 2.0, Version 1.0

8.2.5.12 CXL HDM Decoder Capability Structure

CXL HDM Decoder Capability Structure enables interleaving of HDM across CXL.mem-
capable devices.

A CXL Host Bridge is identified as an ACPI device with Host Interface ID (HID) of
“ACPI0016” and is associated with one or more CXL Root ports. Any CXL 2.0 Host
Bridge that is associated with more than one CXL Root Port must contain one instance
of this capability structure in the CHBCR. This capability structure resolves the target
CXL Root Ports for a given memory address.

A CXL switch component may contain one Upstream Switch Port and one or more
Downstream Switch Ports. A CXL Upstream Switch Port that is capable of routing
CXL.mem traffic to more than one Downstream Switch Ports shall contain one instance
of this capability structure. The capability structure, located in CXL Upstream Switch
Port, resolves the target CXL Downstream Switch Ports for a given memory address.

A CXL 2.0 Type 3 device shall contain one instance of this capability structure. The
capability structure, located in a device, translates the Host Physical Address (HPA) into
a Device Physical Address (DPA) after taking interleaving into account.

Offset Register Name

0h CXL HDM Decoder Capability Register

4h CXL HDM Decoder Global Control Register

8h Reserved

0Ch Reserved

Decoder 0:

10h CXL HDM Decoder 0 Base Low Register

14h CXL HDM Decoder 0 Base High Register

18h CXL HDM Decoder 0 Size Low Register

1Ch CXL HDM Decoder 0 Size High Register

20h CXL HDM Decoder 0 Control Register

24h
CXL HDM Decoder 0 Target List Low Register (not applicable to devices)
CXL HDM Decoder 0 DPA Skip Low Register (devices only)

28h
CXL HDM Decoder 0 Target List High Register (not applicable to devices)
CXL HDM Decoder 0 DPA Skip High Register (devices only)

Decoder 1:

30h – 4Fh CXL HDM Decoder 1 registers

…

Decoder n:

20h *n+ 10h : 20h*n +
2Fh CXL HDM Decoder n registers

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 308
Revision 2.0, Version 1.0

8.2.5.12.1 CXL HDM Decoder Capability Register (Offset 00h)

8.2.5.12.2 CXL HDM Decoder Global Control Register (Offset 04h)

Bit Location Attributes Description

3:0 RO

Decoder Count: Reports the number of memory address decoders implemented
by the component.
0 – 1 Decoder
1 – 2 Decoders
2 – 4 Decoders
3– 6 Decoders
4– 8 Decoders
5– 10 Decoders
All other values are reserved

7:4 RO

Target Count: The number of target ports each decoder supports (applicable to
Upstream Switch Port and Root Port only). Maximum of 8.
1 – 1 target port
2 – 2 target ports
4 – 4 target ports
8 – 8 target ports
All other values are reserved.

8 RO

If set, the component supports interleaving based on Address bit 11, Address bit
10, Address bit 9 and Address bit 8.
Root Ports and Upstream Switch Ports shall always set this bit indicating support
for interleaving based on Address bit 11-8.

9 RO

If set, the component supports interleaving based on Address bit 14, Address bit
13 and Address bit 12.
Root ports and switches shall always set this bit indicating support for
interleaving based on Address bits 14-12.

10 RO

 Poison On Decode Error Capability: If set, the component is capable of returning
poison on read access to addresses that are not positively decoded by any HDM
Decoders in this component. If clear, the component is not capable of returning
poison under such scenarios.

31:11 RsvdP Reserved.

Bit Location Attributes Description

0 RW

Poison On Decode Error Enable: This bit is RO and is hard-wired to 0 if Poison On
Decode Error Capability=0.
If set, the component returns poison on read access to addresses that are not
positively decoded by the component. If clear, the component returns all 1’s data
without a poison under such scenarios.
Note: Writes to addresses that are not positively decoded shall be dropped and a
No Data Response (Section 3.3.5) shall be sent regardless of the state of this bit.
Default value of this field is 0.

1 RW

HDM Decoder Enable: This bit is only applicable to CXL.mem devices and shall
return 0 on Root Ports and Upstream Switch Ports. When this bit is set, device
shall use HDM decoders to decode CXL.mem transactions and not use HDM Base
registers in DVSEC ID 0. Root Ports and Upstream Switch Ports always use HDM
Decoders to decode CXL.mem transactions.
Default value of this field is 0.

31:2 RsvdP Reserved.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 309
Revision 2.0, Version 1.0

8.2.5.12.3 CXL HDM Decoder 0 Base Low Register (Offset 10h)

8.2.5.12.4 CXL HDM Decoder 0 Base High Register (Offset 14h)

8.2.5.12.5 CXL HDM Decoder 0 Size Low Register (Offset 18h)

8.2.5.12.6 CXL HDM Decoder 0 Size High Register (Offset 1Ch)

Bit Location Attributes Description

27:0 RsvdP Reserved.

31:28 RWL Memory Base Low: Corresponds to bits 31:28 of the base of the address range
managed by decoder 0. The locking behavior is described in Section 8.2.5.12.21.

Bit Location Attributes Description

31:0 RWL
Memory Base High: Corresponds to bits 63:32 of the base of the address range
managed by decoder 0. The locking behavior is described in Section 8.2.5.12.21.
Default value of this field is 0.

Bit Location Attributes Description

27:0 RsvdP Reserved.

31:28 RWL
Memory Size Low: Corresponds to bits 31:28 of the size of the address range
managed by decoder 0. The locking behavior is described in Section 8.2.5.12.21.
Default value of this field is 0.

Bit Location Attributes Description

31:0 RWL
Memory Size High: Corresponds to bits 63:32 of the size of address range
managed by decoder 0. The locking behavior is described in Section 8.2.5.12.21.
Default value of this field is 0.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 310
Revision 2.0, Version 1.0

8.2.5.12.7 CXL HDM Decoder 0 Control Register (Offset 20h)

8.2.5.12.8 CXL HDM Decoder 0 Target List Low Register (Offset 24h)

This register is not applicable to devices, which use this field as DPA Skip Low as
described in Section 8.2.5.12.9.The Target Port Identifier for a given Downstream Port
is reported via Port Number field in Link Capabilities Register. (See PCI Express Base
Specification).

Bit Location Attributes Description

3:0 RWL

Interleave granularity (IG). The number of consecutive bytes that are assigned
to each target in the Target List.
0 – 256 Bytes
1 – 512 Bytes
2 – 1024 Bytes (1KB)
3 – 2048 Bytes (2KB)
4 – 4096 Bytes (4KB)
5 – 8192 Bytes (8 KB)
6 – 16384 Bytes (16 KB)
All other – Reserved

The device reports its desired interleave setting via Desired_Interleave field in
DVSEC Flex Bus Range1/Range 2 Size Low register.
The locking behavior is described in Section 8.2.5.12.21.
Default value of this field is 0.

7:4 RWL

Interleave Ways (IW). The number of targets across which this memory range is
interleaved.
0 - 1 way
1 - 2 way
2 – 4 way
3 – 8 way
All other reserved.
The locking behavior is described in Section 8.2.5.12.21.
Default value of this field is 0.

8 RWL

Lock On Commit – If set, all RWL fields in Decoder 0 registers will become read
only when Committed changes to 1. The locking behavior is described in
Section 8.2.5.12.21.
Default value of this field is 0.

9 RWL
Commit - Software sets this to 1 to commit this decoder. The locking behavior is
described in Section 8.2.5.12.21.
Default value of this field is 0.

10 RO Committed - Indicates the decoder is active

11 RO Error Not Committed – Indicates the decode programming had an error and
decoder is not active.

12 RWL

Target Device Type
0: Target is a CXL Type 2 Device
1: Target is a CXL Type 3 Device
The locking behavior is described in Section 8.2.5.12.21.
Default value of this field is 0.

31:13 RsvdP Reserved.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 311
Revision 2.0, Version 1.0

The targets must be distinct if LockOnCommit=1. In that case, Target Port identifier
cannot repeat. For example, Target Port Identifiers for Interleave Way=0, 1, 2, 3 must
be distinct if Control.IW=2 (4 way interleave).

8.2.5.12.9 CXL HDM Decoder 0 DPA Skip Low Register (Offset 24h)

This register is applicable to devices only, for non-devices this field contains the Target
List Low Register as described in Section 8.2.5.12.8.

8.2.5.12.10 CXL HDM Decoder 0 Target List High Register (Offset 28h)

This register is not applicable to devices, which use this field as DPA Skip High as
described in Section 8.2.5.12.11. Returns the Target Port associated with Interleave
Way 4 through 7.

The targets must be distinct. For example, all 8 Target Port Identifiers must be distinct
if Control.IW=3.

Bit Location Attributes Description

7:0 RWL
Target Port Identifier for Interleave Way=0. The locking behavior is
described in Section 8.2.5.12.21.
Default value of this field is 0.

15:8 RWL

Target Port Identifier for Interleave Way=1. The locking behavior is
described in Section 8.2.5.12.21.
Default value of this field is 0.
Valid if Decoder 0 Control.IW>0.

23:16 RWL

Target Port Identifier for Interleave Way=2. The locking behavior is
described in Section 8.2.5.12.21.
Default value of this field is 0.
Valid if Decoder 0 Control.IW>1.

31:24 RWL

Target Port Identifier for Interleave Way=3. The locking behavior is
described in Section 8.2.5.12.21.
Default value of this field is 0.
Valid if Decoder 0 Control.IW>1.

Bit Location Attributes Description

27:0 RsvdP Reserved.

31:28 RWL

DPA Skip Low: Corresponds to bits 31:28 of the DPA Skip length which, when
non-zero, specifies a length of DPA space that is skipped, unmapped by any
decoder, prior to the HPA to DPA mapping provided by this decoder.
Default value of this field is 0.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 312
Revision 2.0, Version 1.0

8.2.5.12.11 CXL HDM Decoder 0 DPA Skip High Register (Offset 28h)

This register is applicable to devices only, for non-devices this field contains the Target
List High Register as described in Section 8.2.5.12.10.

8.2.5.12.12 CXL HDM Decoder n Base Low Register (Offset 20h*n+10h)

8.2.5.12.13 CXL HDM Decoder n Base High Register (Offset 20h*n+14h)

Bit Location Attributes Description

7:0 RWL

Target Port Identifier for Interleave Way=4. The locking behavior is
described in Section 8.2.5.12.21.
Default value of this field is 0.
Valid if Decoder 0 Control.IW>2.

15:8 RWL

Target Port Identifier for Interleave Way=5. The locking behavior is
described in Section 8.2.5.12.21.
Default value of this field is 0.
Valid if Decoder 0 Control.IW>2.

23:16 RWL

Target Port Identifier for Interleave Way=6. The locking behavior is
described in Section 8.2.5.12.21.
Default value of this field is 0.
Valid if Decoder 0 Control.IW>2.

31:24 RWL

Target Port Identifier for Interleave Way=7. The locking behavior is
described in Section 8.2.5.12.21.
Default value of this field is 0.
Valid if Decoder 0 Control.IW>2.

Bit Location Attributes Description

31:0 RWL

DPA Skip High: Corresponds to bits 63:32 of the DPA Skip length which, when
non-zero, specifies a length of DPA space that is skipped, unmapped by any
decoder, prior to the HPA to DPA mapping provided by this decoder.
Default value of this field is 0.

Bit Location Attributes Description

31:28 RWL
Memory Base Low: Corresponds to bits 31:28 of the base of the address range
managed by decoder n. The locking behavior is described in Section 8.2.5.12.21.
Default value of this field is 0.

Bit Location Attributes Description

31:0 RWL
Memory Base High: Corresponds to bits 63:32 of the base of the address range
managed by decoder n. The locking behavior is described in Section 8.2.5.12.21.
Default value of this field is 0.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 313
Revision 2.0, Version 1.0

Figure 137. CXL HDM Decoder n Size Low Register (Offset 20h*n+18h)

8.2.5.12.14 CXL HDM Decoder n Size High Register (Offset 20h*n+1Ch)

8.2.5.12.15 CXL HDM Decoder n Control Register (Offset 20h*n+20h)

Bit Location Attributes Description

27:0 RsvdP Reserved.

31:28 RWL
Memory Size Low: Corresponds to bits 31:28 of the size of the address range
managed by decoder n. The locking behavior is described in Section 8.2.5.12.21.
Default value of this field is 0.

Bit Location Attributes Description

31:0 RWL
Memory Size High: Corresponds to bits 63:32 of the size of address range
managed by decoder n. The locking behavior is described in Section 8.2.5.12.21.
Default value of this field is 0.

Bit Location Attributes Description

3:0 RWL

Interleave granularity (IG). The number of consecutive bytes that are assigned
to each target in the Target List.
0 – 256 Bytes
1 – 512 Bytes
2 – 1024 Bytes (1KB)
3 – 2048 Bytes (2KB)
4 – 4096 Bytes (4KB)
5 – 8192 Bytes (8 KB)
6 – 16384 Bytes (16 KB)
All other – Reserved

The device reports its desired interleave setting via Desired_Interleave field in
DVSEC Flex Bus Range1/Range 2 Size Low register.
The locking behavior is described in Section 8.2.5.12.21.
Default value of this field is 0.

7:4 RWL

Interleave Ways (IW). The number of targets across which decode n memory
range is interleaved.
0 - 1 way (no interleaving)
1 - 2 way interleaving
2 – 4 way interleaving
3 – 8 way interleaving
All other reserved
The locking behavior is described in Section 8.2.5.12.21.
Default value of this field is 0.

8 RWL

Lock On Commit – If set, all RWL fields in decoder n shall become read only
when Committed changes to 1.
The locking behavior is described in Section 8.2.5.12.21.
Default value of this field is 0.

9 RWL
Commit - SWSoftware sets this to 1 to commit decoder n.
The locking behavior is described in Section 8.2.5.12.21.
Default value of this field is 0.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 314
Revision 2.0, Version 1.0

8.2.5.12.16 CXL HDM Decoder n Target List Low Register (Offset 20h*n+24h)

This register is not applicable to devices, which use this field as DPA Skip Low as
described in Section 8.2.5.12.17. The targets must be distinct and identifier cannot
repeat. For example, Target Port Identifiers for Interleave Way=0, 1, 2, 3 must be
distinct if Control.IW=2.

The Target Port Identifier for a given Downstream Port is reported via Port Number field
in Link Capabilities Register. (See PCI Express Base Specification).

8.2.5.12.17 CXL HDM Decoder n DPA Skip Low Register (Offset 20h*n + 24h)

This register is applicable to devices only, for non-devices this field contains the Target
List Low Register as described in Section 8.2.5.12.16.

10 RO Committed - Indicates decoder n is active.

11 RO Error Not Committed – Indicates programming of decoder n had an error and
decoder n is not active.

12 RWL

Target Device Type
0: Target is a CXL Type 2 Device
1: Target is a CXL Type 3 Device
The locking behavior is described in Section 8.2.5.12.21.
Default value of this field is 0.

31:13 RsvdP Reserved.

Bit Location Attributes Description

7:0 RWL
Target Port Identifier for Interleave Way=0.
The locking behavior is described in Section 8.2.5.12.21.
Default value of this field is 0.

15:8 RWL

Target Port Identifier for Interleave Way=1.
Valid if Decoder n Control.IW>0.
The locking behavior is described in Section 8.2.5.12.21.
Default value of this field is 0.

23:16 RWL

Target Port Identifier for Interleave Way=2.
Valid if Decoder n Control.IW>1.
The locking behavior is described in Section 8.2.5.12.21.
Default value of this field is 0.

31:24 RWL

Target Port Identifier for Interleave Way=3.
Valid if Decoder n Control.IW>1
The locking behavior is described in Section 8.2.5.12.21.
Default value of this field is 0.

Bit Location Attributes Description

27:0 RsvdP Reserved.

31:28 RWL

DPA Skip Low: Corresponds to bits 31:28 of the DPA Skip length which, when
non-zero, specifies a length of DPA space that is skipped, unmapped by any
decoder, prior to the HPA to DPA mapping provided by this decoder.
Default value of this field is 0.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 315
Revision 2.0, Version 1.0

8.2.5.12.18 CXL HDM Decoder n Target List High Register (Offset 20h*n+28h)

This register is not applicable to devices, which use this field as DPA Skip High as
described in Section 8.2.5.12.19. Returns the Target Port associated with Interleave
Way 4 through 7.

The targets must be distinct. For example, all 8 Target Port Identifiers must be distinct
if Control.IW=3.

8.2.5.12.19 CXL HDM Decoder n DPA Skip High Register (Offset 20h*n + 28h)

This register is applicable to devices only, for non-devices this field contains the Target
List High Register as described in Section 8.2.5.12.18.

8.2.5.12.20 Committing Decoder Programming

If Software intends to set Lock On Commit, Software must configure the decoders in
order. In other words, decoder m must be configured and committed before decoder
m+1 for all values of m. Decoder m must cover an HPA range that is below decoder
m+1.

Bit Location Attributes Description

7:0 RWL

Target Port Identifier for Interleave Way=4.
Valid if Decoder n Control.IW>2.
The locking behavior is described in Section 8.2.5.12.21.
Default value of this field is 0.

15:8 RWL

Target Port Identifier for Interleave Way=5
Valid if Decoder n Control.IW>2.
The locking behavior is described in Section 8.2.5.12.21.
Default value of this field is 0.

23:16 RWL

Target Port Identifier for Interleave Way=6
Valid if Decoder n Control.IW>2.
The locking behavior is described in Section 8.2.5.12.21.
Default value of this field is 0.

31:24 RWL

Target Port Identifier for Interleave Way=7.
Valid if Decoder n Control.IW>2.
The locking behavior is described in Section 8.2.5.12.21.
Default value of this field is 0.

Bit Location Attributes Description

31:0 RWL

DPA Skip High: Corresponds to bits 63:32 of the DPA Skip length which, when
non-zero, specifies a length of DPA space that is skipped, unmapped by any
decoder, prior to the HPA to DPA mapping provided by this decoder.
Default value of this field is 0.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 316
Revision 2.0, Version 1.0

Each interleave decoder must be committed before it actively decodes CXL.Mem
transactions. Software configures all the registers associated with the individual
decoder and optionally sets the Lock On Commit bit prior to setting the Commit bit.
When the Commit bit in decoder m+1 transitions from 0 to 1 and Lock On Commit=1,
the decoder logic shall perform the following consistency checks before setting
Committed bit

• Decoder[m+1].Base >= (Decoder[m].Base+Decoder[m].Size). This ensures that
the Base of the decoder being committed is greater than or equal to the limit of the
previous decoder. This check is not applicable when committing the decoder 0.

• Decoder[m+1].Base <= Decoder[m+1].Base+Decoder[m+1].Size (no
wraparound)

• Target Port Identifiers for Interleave Way=0 through 2**IW -1 must be distinct.
This ensures no two interleave ways are pointing to the same target.

• Decoder[m].Committed=1. This ensures that the previous decoder is committed
and has passed the above checks.

Decoder logic does not allow Decoder[m+1] registers to be modified while these checks
are in progress (Commit=1, (Committed OR ErrorNotCommited)=0).

These checks ensure that all decoders within a given component are self-consistent and
do not create aliasing.

It is legal for software to program Decoder Size to 0 and commit it. Such a decoder will
not participate in HDM decode.

If these checks fail and the decoder is not committed, decoder logic shall set Error Not
Committed flag. Software may remedy this situation by clearing the Commit bit,
reprogramming the decoder with legal values and setting Commit bit once again.

If Lock On Commit=0, decoder logic does not implement the above checks. Software is
fully responsible for avoiding aliasing and protecting the HDM Decoder registers via
other mechanisms such as CPU page tables.

Decoder logic shall set either Committed or Error Not Committed flag within 10 ms of a
write to the Commit bit.

8.2.5.12.21 Decoder Protection

Software may choose to set Lock On Commit bit prior to setting Commit. If Lock On
Commit is 1, Decoder logic shall perform alias checks listed in the previous section prior
to committing the decoder and further disallow modifications to all RWL fields in that
decoder when the decoder is in Committed state.

If Lock On Commit is 0, software may clear Commit bit, reprogram the decoder fields
and set Commit bit again for the new values to take effect. In order to avoid
misbehavior, software is responsible for quiescing memory traffic that is targeting the
decoder while it is being reprogrammed. If decoder logic does not positively decode an
address of a read, it may either return all 1s or return poison based on CXL HDM
Decoder Global Control Register setting. During reprogramming, software must follow
the same restrictions as the initial programming. Specifically, decoder m must be
configured and committed before decoder m+1 for all values of m; Decoder m must
cover an HPA range that is below decoder m+1 and all Targets must be distinct.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 317
Revision 2.0, Version 1.0

IMPLEMENTATION NOTE

Software may set Lock On Commit=1 in systems that do not support hot-plug. In
such systems, the decoders are generally programmed at boot time, can be arranged
in increasing HPA order and never modified until the next reset.

If the system supports CXL hot-plug, software may need significant flexibility in terms
of reprogramming the decoders during runtime. In such systems, software may
choose to leave Lock On Commit=0.

IMPLEMENTATION NOTE

Root Port and Upstream Switch Port Decode Flow

Step 1: Check if the incoming HPA satisfies Base <= HPA < Base+Size for any active
decoder. If no decoder satisfies this equation for a write, drop the writes. If no
decoder satisfies this equation for a read and Poison On Decode Error Enable=0,
return all 1’s. If no decoder satisfies this equation for a read and Poison On Decode
Error Enable=1, return poison.

Step2: If Decoder[n] satisfies this equation.
• Extract IW bits starting with bit position IG+8 in HPA1. This returns the Interleave

Way
• Send transactions to downstream Port=Decoder[n].Target List[Interleave Way]

Example
• HPA = 129 GB + 1028d
• Decoder[2].Base= 128 GB, Decoder[2].Size = 4 GB.
• Assume IW=2 (4 way), IG = 1 (512 bytes).

Step 1: Decoder[2] positively decodes this address, so n=2.
Step 2:

• Extracting bits 10:9 from HPA returns Interleave Way=2.
(HPA=…_xxxx_0000_0100_0000_0100b)

Forward access to Port number Decoder[2].Target List Low[23:16]

1. In the general case, the bits must be extracted from (HPA – Base[n]). However,
Decoder Base is a multiple of 256M and the highest interleave granularity is 16K.
Therefore, extracting IW bits from HPA still returns the correct Index value.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 318
Revision 2.0, Version 1.0

IMPLEMENTATION NOTE

Device Decode Logic

As part of Commit processing flow, the device decoder logic may accumulate
DPABase field for every decoder as follows.

• Decoder[0].DPABase = Decoder[0].DPASkip,

Decoder[m+1]. DPABase = Decoder[m+1].DPASkip + Decoder[m].DPABase +
(Decoder[m].Size / 2 ** IW)
DPABase is not exposed to software, but may be tracked internally by the decoder
logic to speed up decode process. Decoder[m].DPABase represents the lowest DPA
address that the lowest HPA address decoded by Decoder[m] maps to. The DPA
mappings for a device typically start at DPA 0 for Decoder[0] and are sequentially
accumulated with each additional decoder used, however the DPASkip field in the
decoder may be used to leave ranges of DPA unmapped, as required by the needs of
the platform.

During the decode:

Step 1: check if the incoming HPA satisfies Base <= HPA < Base+Size for any active
decoder. If no decoder satisfies this equation for a write, drop the writes. If no
decoder satisfies this equation for a read and Poison On Decode Error Enable=0,
return all 1’s. If no decoder satisfies this equation for a read and Poison On Decode
Error Enable=1, return poison.

Step 2: If Decoder[n] satisfies this equation.
• Calculate HPAOffset = HPA – Decoder[n].Base
• Remove IW bits starting with bit position IG+8 in HPAOffset to get DPAOffset.

This operation will right shift the bits above IG+IW+8 by IW positions.
• DPA=DPAOffset + Decoder[n].DPABase.

Example
• HPA = 129 GB + 1028d
• Software programmed Decoder[0].Base= 32 GB, Decoder[1].Size = 32 GB.
• Software programmed Decoder[1].Base= 128 GB, Decoder[1].Size = 4 GB.
• Assume IW=3 (8 way), IG = 1 (512 bytes) for both decoders.
• Decoder[1].DPABase= 32/8 GB = 4 GB

Step 1: Select Decoder[1].

Step 2:
• HPAOffset = 1 GB + 1028d (0x4000_0404, 0x0404= 0000_0100_0000_0100b)
• Removing bits 11:9 from HPA returns DPAOffset=0x800_0004.

Add DPABase 4 GB to get DPA= 0x1_0800_0004

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 319
Revision 2.0, Version 1.0

8.2.5.13 CXL Extended Security Capability Structure
This capability structure only applies to CXL Root Complex and may be located in CHBCR.

Table 146. CXL Extended Security Structure Entry Count

Table 147. Root Port n Security Policy Register

Table 148. Root Port n ID Register

Offset Register Name

0h CXL Extended Security Structure Entry Count.n (Max 256)

24h Root Port 1 Security Policy

8h Root Port 1 ID

0Ch Root Port 2 Security Policy

10h Root Port 2 ID

... ...

8* n- 4 Root Port n Security Policy

8* n Root Port n ID

Bit Location Attributes Description

7:0 HwInit

The number of Extended Security Structures that are part of this capability
structure.
The number of entries must match the CXL.cache capable Root Ports that are
associated with this Host Bridge. Each entry consists of two DWORD registers -
Security Policy Register and Root Port ID Register.

31:8 RsvdP Reserved

Bit Location Attributes Description

1:0 RW
Trust Level for the CXL.cache Device below Root Port n: See Table 145 for
definition of this field.
Default value of this field is 2.

31:2 RsvdP Reserved

Bit Location Attributes Description

7:0 HwInit Port Identifier of the Root Port n (referenced using Port Number field in Link
Capabilities Register. See PCI Express Base Specification).

31:8 RsvdP Reserved

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 320
Revision 2.0, Version 1.0

8.2.5.14 CXL IDE Capability Structure

8.2.5.14.1 CXL IDE Capability (Offset 0)

8.2.5.14.2 CXL IDE Control (Offset 04h)

Offset Register Name

0h CXL IDE Capability Register

04h CXL IDE Control

08h CXL IDE Status

0Ch CXL IDE Error Status

10h Key Refresh Time Capability

14h Truncation Transmit Delay Capability

18h Key Refresh Time Control

1Ch Truncation Transmit Delay Control

Bit Location Attributes Description

0 HwInit / RsvdP CXL IDE Capable - When Set, indicates that the Port support
CXL IDE

16:1 HwInit / RsvdP

Supported CXL IDE Modes:

Bit 1 of the register - If set, Skid Mode is supported.
Bit 2 of the register- If set, Containment mode is supported. If
bit 0 of this register is set, this bit must be set as well.

All other bits are reserved.

21:17 HwInit

Supported Algorithms - Indicates the supported algorithms for
securing CXL IDE, encoded as:
00000b - AES-GCM 256 key size, 96b MAC
Others - Reserved

31:22 RsvdP Reserved

Bit Location Attributes Description

0 RW

PCRC Disable: When set, the component disable enhancing the
MAC generation with the plaintext CRC. Software must ensure
that this bit is programmed consistently on both ends of the
CXL link.
Changes to this field when CXL.cachemem IDE is active results
in undefined behavior.
The default values of this field is 0.

31:1 RsvdZ Reserved.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 321
Revision 2.0, Version 1.0

8.2.5.14.3 CXL IDE Status (Offset 08h)

8.2.5.14.4 CXL IDE Error Status (Offset 0ch)

8.2.5.14.5 Key Refresh Time Capability (Offset 10h)

Bit Location Attributes Description

3:0 RO

Rx IDE Status:
0: Reserved
1: Active Containment Mode
2: Active Skid Mode
4: Fail Insecure Error

All other reserved.

7:4 RO

Tx IDE Status:
0: Reserved
1: Active Containment Mode
2: Active Skid Mode
4: Fail Insecure Error

All other reserved.

31:8 RsvdZ Reserved.

Bit Location Attributes Description

3:0 RW1CS

Rx Error Status:
Describes the error condition that transitioned the link to Fail
Insecure Mode.
0b0000: No Error
0b0001: Integrity failure on received secure traffic
0b0010: MAC Header received when the link is not in secure
mode (when integrity is not enabled and the receiver detects
MAC header)
0b0011: MAC header received when not expected (No MAC
EPCOH running but the receiver detects a MAC header)
0b0100: MAC Header not received when expected (MAC header
not received within 6 flit after MAC EPCOH has terminated)
0b0101: Truncated MAC flit received when not expected (if the
receiver gets truncated MAC flit corresponding to a completed
MAC EPCOH)
0b0110:After early MAC termination, the receiver detects a
protocol before the truncation delay
0b0111: Protocol flit received earlier than expected after key
switch (less than Rx Key Refresh Time number of IDE Idle flits
after start_indication)
All other encodings are reserved

7:4 RW1CS
Tx IDE Status:
0: No Error
All other encodings are reserved.

31:8 RsvdZ Reserved.

Bit Location Attributes Description

31:0 HwInit

Rx Min Key Refresh Time - Number of flits the receiver needs to
be ready to receive protocol flits after IDE.start flit is received.
Transmitter is configured by Software to block transmission of
protocol flits for at least this duration when switching keys.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 322
Revision 2.0, Version 1.0

8.2.5.14.6 Truncation Transmit Delay Capability (Offset 14h)

8.2.5.14.7 Key Refresh Time Control (Offset 18h)

8.2.5.14.8 Truncation Transmit Delay Control (Offset 1Ch)

8.2.5.15 CXL Snoop Filter Capability Structure

8.2.5.15.1 Snoop Filter Group ID (Offset 0)

8.2.5.15.2 Snoop Filter Effective Size (Offset 4)

Bit Location Attributes Description

7:0 HwInit

Rx Min Truncation Transmit Delay - Number of flits the receiver
needs to be ready to receive protocol flits after a Truncated MAC
is received. Transmitter is configured, by software, to block
transmission of protocol flits for at least this duration.

31:8 RsvdP Reserved

Bit Location Attributes Description

31:0 RW
Tx Key Refresh Time - Minimum number of flits transmitter
needs to block transmission of protocol flits after IDE.Start has
sent. Used when switching keys.

Bit Location Attributes Description

7:0 RW

Tx Truncation Transmit Delay - Configuration parameter to
account for the potential discarding of any precomputed values
by the receiver. This parameter feeds into the computation of
minimum number of IDE idle flits Transmitter needs send after
sending a truncated MAC flit.

31:8 RsvdP Reserved

Offset Register Name

0h Snoop Filter Group ID

04h Snoop Filter Capacity

Bit Location Attributes Description

15:0 HwInit

Group ID - Uniquely identifies a snoop filter instance that is
used to track CXL.cache devices below this Port. All Ports that
share a single Snoop Filter instance shall set this field to the
same value.

31:16 RsvdP Reserved

Bit Location Attributes Description

31:0 HwInit
Capacity - Effective Snoop Filter Capacity representing the size
of cache that can be effectively tracked by the Snoop Filter with
this Group ID, in multiples of 64K.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 323
Revision 2.0, Version 1.0

8.2.6 CXL ARB/MUX Registers

The following registers are located within the 4 KB region of memory space assigned to
CXL ARB/MUX.

8.2.6.1 ARB/MUX Arbitration Control Register for CXL.io (Offset 0x180)

8.2.6.2 ARB/MUX Arbitration Control Register for CXL.cache and CXL.mem
(Offset 0x1C0)

8.2.7 BAR Virtualization ACL Register Block

These registers are located at a 64K aligned offset within one of the device's BARs (or
BEI) as indicated by the DVSEC ID 8 BAR Virtualization ACL Register Base register.
They may be implemented by a CXL 2.0 or 1.1 device that implements the DVSEC BAR
Virtualization ACL Register Base register. The registers specify a standard way of
communicating to the hypervisors which sections of the device BAR register space are
safe to assign to a Virtual Machine (VM) when the PF is directly assigned to that VM.
Identifying which registers are not safe for assignment to a VM will depend on the
device micro architecture and the device security objectives, and is outside the scope of
the specification, but examples could include registers that could affect correct
operation of the device memory controller, perform device burn-in by altering its
frequency or voltage, or bypass hypervisor protections for isolation of device memory
assigned to one VM from the rest of the system.

The registers consist of an array of 3 tuples of register blocks. Each tuple represents a
set of contiguous registers that are safe to assign to a VM. The 3 tuple consists of the
BAR number (or BAR Equivalent Index), Offset within the BAR to the start of the
registers which can be safely assigned (64K aligned), and the size of the assigned
register block (multiple of 64Kbytes).

Bit Attributes Description

3:0 RsvdP Reserved

7:4 RW

CXL.io Weighted Round Robin Arbitration Weight:
This is the weight assigned to CXL.io in the weighted round robin arbitration
between CXL protocols.
Default value of this field is 0.

31:8 RsvdP Reserved

Bit Attributes Description

3:0 RsvdP Reserved

7:4 RW

CXL.cache and CXL.mem Weighted Round Robin Arbitration Weight:
This is the weight assigned to CXL.cache and CXL.mem in the weighted round robin
arbitration between CXL protocols.
Default value of this field is 0.

31:8 RsvdP Reserved

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 324
Revision 2.0, Version 1.0

8.2.7.1 BAR Virtualization ACL Size Register (Offset 00h)

8.2.7.1.1 BAR Virtualization ACL Array Entry Offset Register (Offset varies)

Table 149. BAR Virtualization ACL Register Block Layout

Offset Register Name

0h BAR Virtualization ACL Size register

Entry 0:

8h BAR Virtualization ACL Array Entry Offset Register[0]

10h BAR Virtualization ACL Array Entry Size Register[0]

Entry 1:

18h BAR Virtualization ACL Array Entry Offset Register[1]

20h BAR Virtualization ACL Array Entry Size Register[1]

Entry n:

10h *n+ 8 ...

Bit Attributes Description

9:0 HwInit
Number of Array Entries - Number of array elements starting at Offset 8 in this
register block. Each array element consists of two 64 bit registers - Entry offset
Register, Entry Size Register.

31:10 RsVdP Reserved

Bit Attributes Description

3:0 HwInit

Register BIR - Indicates which one of a Function's Base Address Registers, located
beginning at 10h in Configuration Space, or entry in the Enhanced Allocation
capability with a matching BAR Equivalent Indicator (BEI), is being referenced.
Defined encodings are:
0 Base Address Register 10h
1 Base Address Register 14h
2 Base Address Register 18h
3 Base Address Register 1Ch
4 Base Address Register 20h
5 Base Address Register 24h
All other Reserved.

15:4 RsVdP Reserved

63:16 HwInit

Start Offset- offset][63:16] from the address contained by the function's BAR
register to the Register block within that BAR that can be safely assigned to a Virtual
Machine. The starting offset is 64 Kbyte aligned since Offset[15:0] are assumed to
be 0.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 325
Revision 2.0, Version 1.0

8.2.7.1.2 BAR Virtualization ACL Array Entry Size Register(Offset varies)

8.2.8 CXL Device Register Interface

CXL device registers are mapped in memory space allocated via a standard PCIe BAR.
Register Locator DVSEC structure (Section 8.1.9) describes the BAR number and the
offset within the BAR where these registers are mapped. The PCIe BAR shall be marked
as prefetchable in the PCI header. At the beginning of the CXL device register block is a
CXL Device Capabilities Array Register which defines the size of the CXL Device
Capabilities Array followed by a list of CXL Device Capability headers. Each header
contains an offset to the capability specific register structure from the start of the CXL
device register block.

An MLD device shall implement one instance of this in the MMIO space of all applicable
LDs.

No registers defined in Section 8.2.8 are larger than 64-bits wide so that is the
maximum access size allowed for these registers. If this rule is not followed, the
behavior is undefined.

Bit Attributes Description

15:0 RsVdP Reserved

63:16 HwInit
Size - Indicates the Size[63:16] of the register space in bytes within the BAR that
can be safely assigned to a VM.
Size is a multiple of 64Kbytes since Size[15:0] are assumed to be 0.

Figure 138. CXL Memory Device Registers

+00h

CXL Device Capability 1 Header +10h

CXL Device Capability 2 Header +20h

CXL Device Capability n Header +n*10h

CXL Device Capabilities Array Register

Byte Offset

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 326
Revision 2.0, Version 1.0

8.2.8.1 CXL Device Capabilities Array Register (Offset 00h)

8.2.8.2 CXL Device Capability Header Register (Offset Varies)

Each capability in the CXL device capabilities array is described by a CXL Device
Capability Header Register which identifies the specific capability and points to the
capability register structure in register space.

8.2.8.2.1 CXL Device Capabilities

CXL device capability register structures are identified by a 2-byte identifier as specified
in the table below. Capability identifiers 0000h-3FFFh describe generic CXL device
capabilities. Capability identifiers 4000h-7FFFh describe specific capabilities associated
with the Class Code Register in the PCI Header (Offset 09h). Capability identifiers
8000h-FFFFh describe vendor specific capabilities.

Capability identifiers 0000h-3FFFh that are not specified in this table are reserved.

Bits Attributes Description

15:0 RO Capability ID: Defines the nature and format of the capability register structure.
For the CXL Device Capabilities Array Register, this field shall be set to 0000h.

23:16 RO

Version: Defines the version of the capability structure present. This field shall be
set to 01h. Software shall check this version number during initialization to
determine the layout of the device capabilities, treating an unknown version number
as an error preventing any further access to the device by that software.

31:24 RO Reserved

47:32 RO
Capabilities Count: The number of elements in the CXL device capabilities array,
not including this header register. Each capability header element is 16 bytes in
length and contiguous to previous elements.

Bits Attributes Description

15:0 RO Capability ID: Defines the supported capability register structure. See
Section 8.2.8.2.1 for the list of capability identifiers.

23:16 RO

Version: Defines the version of the capability register structure.
The version is incremented whenever the capability register structure is extended to
add more functionality. Backward compatibility shall be maintained during this
process. For all values of n, version n+1 may extend version n by replacing fields
that are marked as reserved in version n but must not redefine the meaning of
existing fields. Software that was written for a lower version may continue to
operate on capability structures with a higher version but will not be able to take
advantage of new functionality. If backwards compatibility cannot be maintained, a
new capability ID shall be created. Each field in a capability register structure is
assumed to be introduced in version 1 of that structure unless otherwise stated in
the field’s definition in this specification.

31:24 RO Reserved

63:32 RO
Offset: Offset of the capability register structure from the start of the CXL device
registers. The offset of performance sensitive registers and security sensitive
registers shall be in separate 4 KB regions within the CXL device register space.

95:64 RO Length: Size of the capability register structure in bytes.

127:96 RO Reserved

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 327
Revision 2.0, Version 1.0

*M = mandatory for all devices that advertises Register Block Identifier=3 in Register
Locator DVSEC (Section 8.1.9); O = Optional.

8.2.8.3 Device Status Registers (Offset Varies)

8.2.8.3.1 Event Status Register (Device Status Registers Capability Offset + 00h)

The Event Status Register indicates which events are currently ready for host actions,
such as fetching event log records. The host may choose to poll for these events by
periodically reading this register, or it may choose to enable interrupts for some of
these events, essentially telling the host when to poll. The only poll-able/interruptible
events that are not indicated in this register are mailbox command completions since
each set of mailbox registers provides that information directly.

Unless otherwise stated in the field definitions below, each field is present in version 1
and later of this structure. The device shall report the version of this structure in the
Version field of the CXL Device Capability Header Register.

8.2.8.4 Mailbox Registers (Offset Varies)

The mailbox registers provide the ability to issue a command to the device. Refer to
Section 8.2.9 for details about the commands. There are two types of mailboxes:
primary and secondary. The register interface for both types of mailboxes is the same
and is described in this section. The difference between the two types of mailboxes is
their intended use and commands allowed. Details on these differences are described in
Section 8.2.8.4.1 and Section 8.2.8.4.2. Devices implementing more than one mailbox
shall process commands from those mailboxes in a manner which avoids “starvation,”
so that commands submitted to one mailbox do not prevent commands from other
mailboxes from being handled. The exact algorithm for accepting commands from
multiple mailboxes is implementation specific.

Capability ID Description Required* Version

0001h
Device Status Registers: Describes the generic
CXL device status registers. Only one instance of this
register structure shall exist per device.

M 01h

0002h
Primary Mailbox Registers: Describes the primary
mailbox registers. Only one instance of this register
structure shall exist per device.

M 01h

0003h
Secondary Mailbox Registers: Describes the
secondary mailbox registers. At most one instance of
this register structure shall exist per device.

O 01h

Bits Attributes Description

31:0 RO

Event Status: When set, one or more event records exist in the specified event log.
Use the Get and Clear Event Records commands to retrieve and clear the event
records. Once the event log has zero event records, the bit is cleared.
• Bit[0]: Informational Event Log
• Bit[1]: Warning Event Log
• Bit[2]: Failure Event Log
• Bit[3]: Fatal Event Log
• Bits[31:4]: Reserved

63:32 RO Reserved

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 328
Revision 2.0, Version 1.0

The mailbox interface shall be used in a single-threaded manner only. It is software’s
responsibility to avoid simultaneous, uncoordinated access to a mailbox using
techniques such as locking.

The mailbox command timeout is 2 seconds. Commands that require a longer
execution time shall be completed asynchronously in the background. Only one
command can be executed in the background at a time. The status of a background
command can be retrieved from the Background Command Status Register.
Background commands do not continue to execute across Conventional Resets. For
devices with multiple mailboxes, only the primary mailbox shall be used to issue
background commands.

Devices may support sending MSI/MSI-X interrupts to indicate command status.
Support for mailbox interrupts is enumerated in the Mailbox Capabilities Register and
enabled in the Mailbox Control Register. Mailbox interrupts are only supported on the
primary mailbox.

Unless otherwise stated in the field definitions for the mailbox registers below, each
field is present in version 1 and later of these structures. The device shall report the
version of these structures in the Version field of the CXL Device Capability Header
Register.

The flow for executing a command is described below. The term “caller” represents the
entity submitting the command:
1. Caller reads MB Control Register to verify doorbell is clear
2. Caller writes Command Register
3. Caller writes Command Payload Registers if input payload is non-empty
4. Caller writes MB Control Register to set doorbell
5. Caller either polls for doorbell to be clear or waits for interrupt if configured
6. Caller reads MB Status Register to fetch Return code
7. If command successful, Caller reads Command Register to get Payload Length
8. If output payload is non-empty, host reads Command Payload Registers

In case of a timeout, the caller may attempt to recover the device by either issuing CXL
reset, hot reset, warm reset or a cold reset to the device.

When a command is successfully started as a background operation, the device shall
return the Background Command Started return code defined in Section 8.2.8.4.5.1.
While the command is executing in the background, the device should update the
percentage complete in the Background Command Status Register at least once per
second. Once the command completes in the background, the device shall update the
Background Command Status Register with the appropriate return code as defined in
Section 8.2.8.4.5.1. The caller may then retrieve the results of the background
operation by issuing a new command.

The mailbox registers are described below.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 329
Revision 2.0, Version 1.0

8.2.8.4.1 Attributes of the Primary Mailbox

The primary mailbox supports all commands described in Section 8.2.9. The primary
mailbox also supports the optional feature to provide mailbox completion interrupts, if
implemented by a device. Implementation of the primary mailbox is mandatory.

The exact details on how the primary mailbox is used may vary from platform to
platform. The intended use is to provide the main method for submitting commands to
the device, used by both pre-boot software and OS software. The platform shall
coordinate the use of the primary mailbox so that only one software entity “owns” the
mailbox at a given time and that the transfer of ownership happens in-between mailbox
commands so that one entity cannot corrupt the mailbox state of the other. The
intended practice is that the pre-boot software uses the primary mailbox until control is
transferred to the OS being booted, and at that time the OS takes over sole ownership
of the primary mailbox until the OS is shutdown. Since the physical address of the
primary mailbox can change due to PCIe reconfiguration performed by the primary
mailbox owner, each time the primary mailbox changes ownership, the new owner shall
read the appropriate configuration registers to find the current location of the mailbox
registers, just as it does during device initialization.

8.2.8.4.2 Attributes of the Secondary Mailbox

The secondary mailbox, if implemented by a device, supports only a subset of the
commands described in Section 8.2.9. The Command Effects Log shall specify which
commands are allowed on the secondary mailbox, and all other commands shall return
the error Unsupported Mailbox. The secondary mailbox does not support mailbox
completion interrupts. Implementation of the secondary mailbox is optional.

Figure 139. Mailbox Registers
\

MB status

+00hMB Capabilities

Command Payload Registers

+18h

+20h

Background Command Status Register

Command Register

MB Control

Byte Offset0151631Bits

+10h

+04h
+08h

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 330
Revision 2.0, Version 1.0

The exact details on how the secondary mailbox is used may vary from platform to
platform. The intended use is to provide a method for submitting commands to the
device by platform firmware that processes events while the OS owns the primary
mailbox. By using the secondary mailbox, platform firmware does not corrupt the state
of any in-progress mailbox operations on the primary mailbox.

Devices shall indicate which commands are allowed on the secondary mailbox by
setting the Secondary Mailbox Supported flag for the supported opcodes in the
Command Effects Log. Exactly which commands are supported on the secondary
mailbox is implementation specific. It is recommended (but not required) that the
secondary mailbox supports all commands in the Events, Logs, and Identify command
sets defined in Section 8.2.9.

Since the physical address of the secondary mailbox can change due to PCIe
reconfiguration performed by the primary mailbox owner, each time the secondary
mailbox is used, the software using it shall read the appropriate configuration registers
to find the current location of the mailbox registers.

8.2.8.4.3 Mailbox Capabilities Register (Mailbox Registers Capability Offset + 00h)

Bits Attributes Description

4:0 RO Payload Size: Size of the Command Payload Registers in bytes, expressed as 2^n.
The minimum size is 256 bytes (n=8) and the maximum size is 1 MB (n=20).

5 RO
MB Doorbell Interrupt Capable: When set, indicates the device supports
signaling an MSI/MSI-X interrupt when the doorbell is cleared. Only valid for the
primary mailbox. This bit shall be zero for the secondary mailbox.

6 RO

Background Command Complete Interrupt Capable: When set, indicates the
device supports signaling an MSI/MSI-X interrupt when a command completes in
the background. Only valid for the primary mailbox. This bit shall be zero for the
secondary mailbox.

10:7 RO

Interrupt Message Number: This field indicates which MSI/MSI-X vector is used
for the interrupt message generated in association with this mailbox instance. Only
valid for the primary mailbox. This bit shall be zero for the secondary mailbox.

For MSI, the value in this field indicates the offset between the base Message Data
and the interrupt message that is generated. Hardware is required to update this
field so that it is correct if the number of MSI Messages assigned to the Function
changes when software writes to the Multiple Message Enable field in the Message
Control Register for MSI.

For MSI-X, the value in this field indicates which MSI-X Table entry is used to
generate the interrupt message. The entry shall be one of the first 16 entries even if
the Function implements more than 16 entries. The value in this field shall be within
the range configured by system software to the device. For a given MSI-X
implementation, the entry shall remain constant.

If both MSI and MSI-X are implemented, they are permitted to use different vectors,
though software is permitted to enable only one mechanism at a time. If MSI-X is
enabled, the value in this field shall indicate the vector for MSI-X. If MSI is enabled
or neither is enabled, the value in this field indicate the vector for MSI. If software
enables both MSI and MSI-X at the same time, the value in this field is undefined.

31:11 RsvdP Reserved

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 331
Revision 2.0, Version 1.0

8.2.8.4.4 Mailbox Control Register (Mailbox Registers Capability Offset + 04h)

8.2.8.4.5 Command Register (Mailbox Registers Capability Offset + 08h)

This register shall only be used by the caller when the doorbell in the Mailbox Control
Register is clear.

8.2.8.4.5.1 Command Return Codes

In general, retries are not recommended for commands that return an error except
when indicated in the return code definition.

Bits Attributes Description

0 RW

Doorbell: When clear, the device is ready to accept a new command. Set by the
caller to notify the device that the command inputs are ready. Read-only when set.
Cleared by the device when the command completes, or the command is started in
the background.

1 RW

MB Doorbell Interrupt: If doorbell interrupts are supported on this mailbox, this
register is set by the caller to enable signaling an MSI/MSI-X interrupt when the
doorbell is cleared. Read-only when the doorbell is set. Ignored if doorbell interrupts
are not supported on this mailbox instance (MB Doorbell Interrupt Capable = 0 in
the Mailbox Capabilities Register).
• 0b = Disabled
• 1b = Enabled

2 RW

Background Command Complete Interrupt: If background command complete
interrupts are supported on this mailbox, this register is set by the caller to enable
signaling an interrupt when the command completes in the background. Ignored if
the command is not a background command. Read-only when the doorbell is set.
Ignored if background command complete interrupts are not supported on this
mailbox instance (Background Command Complete Interrupt Capable = 0 in the
Mailbox Capabilities Register).
• 0b = Disabled
• 1b = Enabled

31:3 RsvdP Reserved

Bits Attributes Description

15:0 RW Command Opcode: The command identifier. Refer to Section 8.2.9 for the list of
command opcodes.

36:16 RW

Payload Length: The size of the data in the command payload registers (0-Payload
Size). Expressed in bytes. Written by the caller to provide the command input
payload size to the device prior to setting the doorbell. Written by the device to
provide the command output payload size to the caller when the doorbell is cleared.

63:37 RsvdP Reserved

Table 150. Command Return Codes

Value Definition

0000h Success: The command completed successfully.

0001h Background Command Started: The background command started successfully. Refer to the
Background Command Status register to retrieve the command result.

0002h Invalid Input: A command input was invalid.

0003h Unsupported: The command is not supported.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 332
Revision 2.0, Version 1.0

8.2.8.4.6 Mailbox Status Register (Mailbox Registers Capability Offset + 10h)

0004h Internal Error: The command was not completed due to an internal device error.

0005h Retry Required: The command was not completed due to a temporary error. An optional
single retry may resolve the issue.

0006h Busy: The device is currently busy processing a background operation. Wait until background
command completes and then retry the command.

0007h Media Disabled: The command could not be completed because it requires media access and
media is disabled.

0008h FW Transfer in Progress: Only one FW package can be transferred at a time. Complete the
current FW package transfer before starting a new one.

0009h FW Transfer Out of Order: The FW package transfer was aborted because the FW package
content was transferred out of order.

000Ah FW Authentication Failed: The FW package was not saved to the device because the FW
package authentication failed.

000Bh Invalid Slot: The FW slot specified is not supported or not valid for the requested operation.

000Ch Activation Failed, FW Rolled Back: The new FW failed to activate and rolled back to the
previous active FW.

000Dh Activation Failed, Cold Reset Required: The new FW failed to activate. A cold reset is
required.

000Eh Invalid Handle: One or more Event Record Handles were invalid.

000Fh Invalid Physical Address: The physical address specified is invalid.

0010h Inject Poison Limit Reached: The device’s limit on allowed poison injection has been
reached. Clear injected poison requests before attempting to inject more.

0011h Permanent Media Failure: The device could not clear poison due to a permanent issue with
the media.

0012h Aborted: The background command was aborted by the device.

0013h Invalid Security State: The command is not valid in the current security state.

0014h Incorrect Passphrase: The passphrase does not match the currently set passphrase.

0015h Unsupported Mailbox: The command is not supported on the mailbox it was issued on. Used
to indicate an unsupported command issued on the secondary mailbox.

0016h
Invalid Payload Length: The payload length specified in the Command Register is not valid.
The device is required to perform this check prior to processing any command defined in this
specification.

Table 150. Command Return Codes

Value Definition

Bits Attributes Description

0 RO

Background Operation: When set, the device is executing a command in the
background. Only one command can be executing in the background, therefore
additional background commands shall be rejected with the busy return code. Refer
to the Background Command Status Register to retrieve the status of the
background command. Only valid for the primary mailbox. This bit shall be zero for
the secondary mailbox.

31:1 RO Reserved

47:32 RO Return Code: The result of the command. Only valid after the doorbell is cleared.
Refer to Section 8.2.8.4.5.1.

63:48 RO Vendor Specific Extended Status: The vendor specific extended status
information. Only valid after the doorbell is cleared.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 333
Revision 2.0, Version 1.0

8.2.8.4.7 Background Command Status Register (Mailbox Registers Capability Offset +
18h)

Reports information about the last command executed in the background since the last
cold or warm or hot reset. Zeroed if no background command status is available. Only
valid for the primary mailbox, this register shall be zeroed on the secondary mailbox.

8.2.8.4.8 Command Payload Registers (Mailbox Registers Capability Offset + 20h)

These registers shall only be used by the caller when the doorbell in the Mailbox Control
Register is clear.

8.2.8.5 Memory Device Registers

This section describes the capability registers specific to CXL memory devices that
implement the PCI Header Class Code Register as defined in Section 8.1.12.1.

CXL memory device register structures are identified by a 2-byte identifier as specified
in the table below. Capability identifiers 4000h-7FFFh describe capabilities registers
specific to CXL memory devices that implement the PCI Header Class Code Register as
defined in Section 8.1.12.1.

Capability identifiers 4000h-7FFFh that are not specified in this table are reserved.

Bits Attributes Description

15:0 RO Command Opcode: The command identifier of the last command executed in the
background. Refer to Section 8.2.9 for the list of command opcodes.

22:16 RO Percentage Complete: The percentage complete (0-100) of the background
command.

31:23 RsvdP Reserved

47:32 RO Return Code: The result of the command run in the background. Only valid when
Percentage Complete = 100. Refer to Section 8.2.8.4.5.1.

63:48 RO Vendor Specific Extended Status: The vendor specific extended status of the last
background command. Only valid when Percentage Complete = 100.

Offset Length Attributes Description

0 Varies RW

Payload: Written by the caller to provide the command input payload to
the device prior to setting the doorbell. Written by the device to provide
the command output payload back to the caller when the doorbell is
cleared.

The size of the payload data is specified in the Command Register. Any
data beyond the size specified in the Command Register shall be ignored
by the caller and the device.

Refer to Section 8.2.9 for the format of the payload data for each
command.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 334
Revision 2.0, Version 1.0

*M = mandatory for all devices that implement a Register DVSEC Locator entry with Register Block
Identifier=03h; PM = mandatory for devices that support persistence and implement a Register DVSEC Locator
entry with Register Block Identifier=03h; O = Optional.

8.2.8.5.1 Memory Device Status Registers (Offset Varies)

The CXL memory device status registers provide information about the status of the
memory device.

8.2.8.5.1.1 Memory Device Status Register (Memory Device Status Registers Capability
Offset + 00h)

Unless otherwise stated in the field definitions below, each field is present in version 1
and later of this structure. The device shall report the version of this structure in the
Version field of the CXL Device Capability Header Register.

Table 151. CXL Memory Device Capabilities Identifiers

Capability ID Description Required Version

4000h

Memory Device Status Registers: Describes the
memory device specific status registers. Only one
instance of this register structure shall exist per
device.

M 01h

Bits Attributes Description

0 RO Device Fatal: When set, the device has encountered a fatal error. Vendor specific
device replacement or recovery is recommended.

1 RO FW Halt: When set, the device has encountered a FW error and is not responding.

3:2 RO

Media Status: Describes the status of the device media.
• 00b = Not Ready - Media training is incomplete.
• 01b = Ready - The media trained successfully and is ready for use.
• 10b = Error - The media failed to train or encountered an error.
• 11b = Disabled - Access to the media is disabled.

If the media is not in the ready state, user data is not accessible.

4 RO Mailbox Interfaces Ready: When set, the device is ready to accept commands
through the mailbox register interfaces.

7:5 RO

Reset Needed: When non-zero, indicates the least impactful reset type needed to
return the device to the operational state. A cold reset is considered more impactful
than a warm reset. A warm reset is considered more impactful that a hot reset,
which is more impactful than a CXL reset. This field returns non-zero value if FW
Halt is set or Media Status is not in the ready state.

000 =Device is operational and no reset is required
001 = Cold Reset
010 = Warm Reset
011 = Hot Reset
100 = CXL Reset (Device must not report this value if it does not support CXL Reset)
All other encodings are reserved.

63:8 RsvdP Reserved

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 335
Revision 2.0, Version 1.0

8.2.9 CXL Device Command Interface

CXL device commands are identified by a 2-byte Opcode as specified in the table below.
Opcodes 0000h-3FFFh describe generic CXL device commands. Opcodes 4000h-BFFFh
describe Class Code specific commands. Opcodes C000h-FFFFh describe vendor specific
commands.

Opcodes 0000h-3FFFh that are not specified in this table are reserved.

Opcodes also provide an implicit major version number, which means a command’s
definition shall not change in an incompatible way in future revisions of this
specification. Instead, if an incompatible change is required, the specification defining
the change shall define a new opcode for the changed command. Commands may
evolve by defining new fields in areas of the parameter and payload definitions that
were originally defined as Reserved, but only in a way where software written using the
earlier definition will continue to work correctly, and software written to the new
definition can use the zero value or the payload size to detect devices that do not
support the new field. This implicit minor versioning allows software to be written with
the understanding that an opcode shall only evolve by adding backward-compatible
changes.

*M = mandatory for all devices that implement a Register DVSEC Locator entry with Register Block
Identifier=03h; O = Optional.

+Indicates a variable length payload follows the size indicated.

Table 152. CXL Device Command Opcodes

Opcode

Required*
Input

Payload
Size (B)

Output
Payload
Size (B)Command Set

Bits[15:8]
Command
Bits[7:0]

Combined
Opcode

01h Events

00h
Get Event Records
(Section 8.2.9.1.2)

0100h M 1 20h+

01h
Clear Event Records
(Section 8.2.9.1.3)

0101h M 8+ 0

02h
Get Event Interrupt
Policy
(Section 8.2.9.1.4)

0102h M 0 4

03h
Set Event Interrupt
Policy
(Section 8.2.9.1.5)

0103h M 4 0

02h
Firmware
Update

00h
Get FW Info
(Section 8.2.9.2.1)

0200h O 0 50h

01h
Transfer FW
(Section 8.2.9.2.2)

0201h O 80h+ 0

02h
Activate FW
(Section 8.2.9.2.3)

0202h O 2 0

03h Timestamp

00h
Get Timestamp
(Section 8.2.9.3.1)

0300h O 0 8

01h
Set Timestamp
(Section 8.2.9.3.2)

0301h O 8 0

04h Logs

00h
Get Supported Logs
(Section 8.2.9.4.1)

0400h M 0 8+

01h
Get Log
(Section 8.2.9.4.2)

0401h M 18h 0+

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 336
Revision 2.0, Version 1.0

8.2.9.1 Events

This section defines the standard event record format that all CXL devices shall utilize
when reporting events to the host. Also defined are the Get Event Record and Clear
Event Record commands which operate on those event records. The device shall
support at least 1 event record in each event log. Devices shall return event records to
the host in the temporal order the device detected the events in. The event occurring
the earliest in time, in the specific event log, shall be returned first.

8.2.9.1.1 Event Records

This section describes the events reported by devices through the Get Event Records
command. The device shall utilize the Common Event Record format when generating
events for any event log.

A device implement a Register DVSEC Locator entry with Register Block Identifier=03h
shall utilize the Memory Module Event Record format when reporting general device
events and shall utilize either the General Media Event Record or DRAM Event Record
when reporting media events.

Table 153. Common Event Record Format

Byte Offset Length Description

0 10h

Event Record Identifier: UUID representing the specific Event Record
format. The following UUIDs are defined in this spec
• fbcd0a77-c260-417f-85a9-088b1621eba6 – General Media Event

Record (See Table 154)
• 601dcbb3-9c06-4eab-b8af-4e9bfb5c9624 – DRAM Event Record (See

Table 155)
• fe927475-dd59-4339-a586-79bab113b774 – Memory Module Event

Record (See Table 156)
• 77cf9271-9c02-470b-9fe4-bc7b75f2da97 – Physical Switch Event

Record (See Table 120)
• 40d26425-3396-4c4d-a5da-3d47263af425 – Virtual Switch Event

Record (See Table 121)
• 8dc44363-0c96-4710-b7bf-04bb99534c3f – MLD Port Event Record

(See Table 122)

10h 1 Event Record Length: Number of valid bytes that are in the event
record, including all fields.

11h 3

Event Record Flags: Multiple bits may be set
• Bits[1:0]: Event Record Severity: The severity of the event. This

shall match the event log where the event was placed by the device.
— 00h = Informational Event
— 01h = Warning Event
— 02h = Failure Event
— 03h = Fatal Event

• Bit[2]: Permanent Condition: The event reported represents a
permanent condition for the device. This shall not be set when
reporting Event Record Severity of Informational.

• Bit[3]: Maintenance Needed: The device requires maintenance. This
shall not be set when reporting Event Record Severity of
Informational.

• Bit[4]: Performance Degraded – The device is no longer operating
at optimal performance. This shall not be set when reporting Event
Record Severity of Informational.

• Bit[5]: Hardware Replacement Needed – The device should be
replaced immediately. This shall not be set when reporting Event
Record Severity of Informational.

• Bits[23:6]: Reserved

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 337
Revision 2.0, Version 1.0

8.2.9.1.1.1 General Media Event Record

The General Media Event Record defines a general media related event. The device
shall generate a General Media Event Record for each general media event occurrence.

14h 2

Event Record Handle: The event log unique handle for this event record.
This is the value the host shall use when requesting the device to clear
events using the Clear Event Records command. This value shall be non-
zero.

16h 2
Related Event Record Handle: Optional event record handle to another
related event in the same event log. If there are no related events, this
field shall be set to 0.

18h 8
Event Record Timestamp: The time the device recorded the event. The
number of unsigned nanoseconds that have elapsed since midnight, 01-
Jan-1970, UTC. If the device does not have a valid timestamp, return 0.

20h 10h Reserved

30h 50h Event Record Data: Format depends on the Event Record Identifier

Table 153. Common Event Record Format

Byte Offset Length Description

Table 154. General Media Event Record

Byte Offset Length Description

0 10h Event Record Identifier: This field shall be set to fbcd0a77-c260-417f-
85a9-088b1621eba6 which identifies a General Media Event Record.

10h 20h Common Event Record: See corresponding common event record fields
defined in Section 8.2.9.1.1.

30h 8

Physical Address: The physical address where the memory event
occurred.
• Bit[0]: Volatile: When set, indicates the DPA field is in the volatile

memory range. When clear, indicates the DPA is in the persistent
memory range.

• Bits[5:1]: Reserved
• Bits[7:6]: DPA[7:6]
• Bits[15:8]: DPA[15:8]
• …
• Bits[63:56]: DPA[63:56]

38h 1

Memory Event Descriptor: Additional memory event information. Unless
stated below, these shall be valid for every Memory Event Type reported.
• Bit[0]: Uncorrectable Event: When set, indicates the reported event is

uncorrectable by the device. When clear, indicates the reported event
was corrected by the device.

• Bit[1]: Threshold Event: When set, the event is the result of a
threshold on the device having been reached. When clear, the event is
not the result of a threshold limit.

• Bit[2]: Poison List Overflow Event: When set, the Poison List has
overflowed, and this event is not in the Poison List. When clear, the
Poison List has not overflowed.

• Bits[7:3]: Reserved

39h 1

Memory Event Type: Identifies the type of event that occurred. The
specific memory event types logged by the device will depend on the RAS
mechanisms implemented in the device and is implementation dependent.
• 00h = Media ECC Error
• 01h = Invalid Address – A host access was for an invalid address

range. The DPA field shall contain the invalid DPA the host attempted
to access. When returning this event type, the Poison List Overflow
Event descriptor does not apply.

• 02h = Data path Error –Internal device data path, media link, or
internal device structure errors not directly related to the media

Other values reserved.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 338
Revision 2.0, Version 1.0

8.2.9.1.1.2 DRAM Event Record

The DRAM Event Record defines a DRAM related event. The device shall generate a
DRAM Event Record for each DRAM event occurrence.

3Ah 1

Transaction Type: The first device detected transaction that caused the
event to occur.
• 00h = Unknown/Unreported
• 01h = Host Read
• 02h = Host Write
• 03h = Host Scan Media
• 04h = Host Inject Poison
• 05h = Internal Media Scrub
• 06h = Internal Media Management

Other values reserved.

3Bh 2

Validity Flags: Indicators of what fields are valid in the returned data
• Bit[0]: When set, the Channel field is valid
• Bit[1]: When set, the Rank field is valid
• Bit[2]: When set, the Device field is valid
• Bit[3]: When set, the Component Identifier field is valid
• Bits[15:4]: Reserved

3Dh 1
Channel: The channel of the memory event location. A channel is defined
as an interface that can be independently accessed for a transaction. The
CXL device may support one or more channels.

3Eh 1
Rank: The rank of the memory event location. A rank is defined as a set of
memory devices on a channel that together execute a transaction. Multiple
ranks may share a channel.

3Fh 3 Device: A bit mask representing all devices in the rank associated with the
memory event location.

42h 10h Component Identifier: Device specific component identifier for the
event. This may describe a field replaceable sub-component of the device.

52h 2Eh Reserved

Table 154. General Media Event Record

Byte Offset Length Description

Table 155. DRAM Event Record

Byte Offset Length Description

0 10h Event Record Identifier: This field shall be set to 601dcbb3-9c06-4eab-
b8af-4e9bfb5c9624 which identifies a DRAM Event Record.

10h 20h Common Event Record: See corresponding common event record fields
defined in Section 8.2.9.1.1.

30h 8

Physical Address: The physical address where the memory event
occurred.
• Bit[0]: Volatile: When set, indicates the DPA field is in the volatile

memory range. When clear, indicates the DPA is in the persistent
memory range

• Bits[5:1]: Reserved
• Bits[7:6]: DPA[7:6]
• Bits[15:8]: DPA[15:8]
• …
• Bits[63:56]: DPA[63:56]

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 339
Revision 2.0, Version 1.0

38h 1

Memory Event Descriptor: Additional memory event information. Unless
stated below, these shall be valid for every Memory Event Type reported.
• Bit[0]: Uncorrectable Event: When set, indicates the reported event is

uncorrectable by the device. When clear, indicates the reported event
was corrected by the device.

• Bit[1]: Threshold Event: When set, the event is the result of a
threshold on the device having been reached. When clear, the event is
not the result of a threshold limit.

• Bit[2]: Poison List Overflow Event: When set, the
• Poison List has overflowed, and this event is not in the Poison List.
• Bits[7:3]: Reserved

39h 1

Memory Event Type: Identifies the type of event that occurred. The
specific memory event types logged by the device will depend on the RAS
mechanisms implemented in the device and is implementation dependent.
• 00h = Media ECC Error
• 01h = Scrub Media ECC Error
• 02h = Invalid Address – A host access was for an invalid address. The

DPA field shall contain the invalid DPA the host attempted to access.
When returning this event type, the Poison List Overflow Event
descriptor does not apply.

• 03h = Data path Error – Internal device data path, media link, or
internal device structure errors not directly related to the media

Other values reserved.

3Ah 1

Transaction Type: The first device detected transaction that caused the
event to occur.
• 00h = Unknown/Unreported
• 01h = Host Read
• 02h = Host Write
• 03h = Host Scan Media
• 04h = Host Inject Poison
• 05h = Internal Media Scrub
• 06h = Internal Media Management

Other values reserved.

3Bh 2

Validity Flags: Indicators of what fields are valid in the returned data
• Bit[0]: When set, the Channel field is valid
• Bit[1]: When set, the Rank field is valid
• Bit[2]: When set, the Nibble Mask field is valid
• Bit[3]: When set, the Bank Group field is valid
• Bit[4]: When set, the Bank field is valid
• Bit[5]: When set, the Row field is valid
• Bit[6]: When set, the Column field is valid
• Bit[7]: When set, the Correction Mask field is valid
• Bits[15:8]: Reserved

3Dh 1
Channel: The channel of the memory event location. A channel is defined
as an interface that can be independently accessed for a transaction. The
CXL device may support one or more channels.

3Eh 1
Rank: The rank of the memory event location. A rank is defined as a set of
memory devices on a channel that together execute a transaction. Multiple
ranks may share a channel.

3Fh 3

Nibble Mask: Identifies one or more nibbles in error on the memory bus
producing the event. Nibble Mask bit 0 shall be set if nibble 0 on the
memory bus produced the event, etc. This field should be valid for
corrected memory errors. See the example below on how this field is
intended to be utilized.

42h 1 Bank Group: The bank group of the memory event location

43h 1 Bank: The bank number of the memory event location

44h 3 Row: The row number of the memory event location

Table 155. DRAM Event Record

Byte Offset Length Description

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 340
Revision 2.0, Version 1.0

8.2.9.1.1.3 Memory Module Event Record

The layout of a Memory Module Event Record is shown below.

47h 2 Column: The column number of the memory event location

49h 20h

Correction Mask: Identifies the bits in error within that nibble in error on
the memory bus producing the event. The lowest nibble in error in the
Nibble Mask utilizes Correction Mask 0, the next lowest nibble utilizes
Correction Mask 1, etc. Burst position 0 utilizes Correction Mask nibble 0,
etc. Four correction masks allow for up to 4 nibbles in error. This field
should be valid for corrected memory errors. See the example below on
how this field is intended to be utilized.
Offset 49h: Correction Mask 0 (8 bytes)
Offset 51h: Correction Mask 1 (8 bytes)
Offset 59h: Correction Mask 2 (8 bytes)
Offset 61h: Correction Mask 3 (8 bytes)

69h 17h Reserved

Table 155. DRAM Event Record

Byte Offset Length Description

IMPLEMENTATION NOTE

The following example illustrates how the Nibble Mask and Correction Mask are
utilized for a sample DDR4 and DDR5 DRAM implementation behind a CXL memory
device where nibble #3 and #9 contain the location of the corrected error.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 341
Revision 2.0, Version 1.0

8.2.9.1.1.4 Vendor Specific Event Record

The layout of a vendor specific event record is shown below.

8.2.9.1.2 Get Event Records (Opcode 0100h)

Retrieve the next event records that may exist in the device’s requested event log. This
command shall retrieve as many event records from the event log that fit into the
mailbox output payload. The device shall set the More Event Records indicator if there
are more events to get beyond what fits in the output payload. Devices shall return
event records to the host in the temporal order the device detected the events in. The
event occurring the earliest in time, in the specific event log, shall be returned first.

Event records shall be cleared from the device for the device to recycle those entries for
a future event. Each returned event record includes an event log specific, non-zero,
record handle that the host shall utilize when clearing events from the device’s event
log. The device shall maintain unique handles for every event placed in each event log.

In response to this command, the device shall return an overflow indicator when there
are more events detected than could be stored in the specific event log. This indicator
shall remain set until the host has consumed one or more events and called Clear Event
Records to return the event handles to the device. When an event log overflows, the
device shall retain all event records, in the specific event log, that occurred before the
overflow event.

Table 156. Memory Module Event Record

Byte Offset Length Description

0 10h Event Record Identifier: This field shall be set to fe927475-dd59-4339-
a586-79bab113b774 which identifies a Memory Module Event Record.

10h 20h Common Event Record: See corresponding common event record fields
defined in Section 8.2.9.1.1.

30h 1

Device Event Type: Identifies the type of event that occurred. The
specific device event types logged by the device will depend on the RAS
mechanisms implemented in the device and is implementation dependent.
• 00h = Health Status Change
• 01h = Media Status Change
• 02h = Life Used Change
• 03h = Temperature Change
• 04h = Data path Error –Internal device data path, media link or

internal device structure errors not directly related to the media
• 05h = LSA Error – An error occurred in the device Label Storage Area

Other values reserved.

31h 12h Device Health Information: A complete copy of the device’s health info
at the time of the event. The format of this field is described in Table 181.

43h 3Dh Reserved

Table 157. Vendor Specific Event Record

Byte Offset Length Description

0 10h Vendor Specific Event Record Identifier: Vendor specific UUID
representing the format of this vendor specific event.

10h 20h Common Event Record: See corresponding common event record fields
defined in Section 8.2.9.1.1.

30h 50h Vendor Specific Event Data

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 342
Revision 2.0, Version 1.0

Possible Command Return Codes:
• Success
• Invalid Parameter
• Internal Error
• Retry Required
• Invalid Payload Length

Command Effects:
• None

Table 158. Get Event Records Input Payload

Byte Offset Length Description

0 1

Event Log: The specific device event log to retrieve the next event records
for
• 00h = Informational Event Log
• 01h = Warning Event Log
• 02h = Failure Event Log
• 03h = Fatal Event Log

Other values reserved.

Table 159. Get Event Records Output Payload

Byte Offset Length Description

0 1

Flags:
• Bit[0]: Overflow - This bit shall be set by the device when errors occur

that the device cannot log without overwriting an existing log event.
When set, the Overflow Error Count, First Overflow Event Timestamp
and Last Overflow Event Timestamp fields shall be valid. This indicator
shall remain set until the host has consumed one or more events and
returned the event handles to the device or cleared all the events
using the Clear Event Records command.

• Bit[1]: More Event Records - This bit shall be set by the device if there
are more event records to retrieve than fit in the Get Event Records
output payload. The host should continue to retrieve records using this
command, until this indicator is no longer set by the device.

• Bits[7:2]: Reserved

1 1 Reserved

2 2

Overflow Error Count: The number of errors detected by the device that
were not logged due to an overflow of this event log. The counter does not
wrap if more errors occur than can be counted. A value of 0 indicates the
device does not have a count of errors that occurred after the overflow was
established. This field is only valid if the overflow indicator is set.

4 8

First Overflow Event Timestamp: The time of the first event that
caused the overflow of the event log to occur. This field is only valid if the
overflow indicator is set. The number of unsigned nanoseconds that have
elapsed since midnight, 01-Jan-1970, UTC. If the device does not have a
valid timestamp, return 0.

0Ch 8

Last Overflow Event Timestamp: The time of the last event that the
device detected since the overflow of the event log occurred. This field is
only valid if the overflow indicator is set. The number of unsigned
nanoseconds that have elapsed since midnight, 01-Jan-1970, UTC. If the
device does not have a valid timestamp, return 0.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 343
Revision 2.0, Version 1.0

8.2.9.1.3 Clear Event Records (Opcode 0101h)

Clear Event Records provides a mechanism for the host to clear events it has consumed
from the device’s Event Log.

If the host has more events to clear than space in the input payload, it shall utilize
multiple calls to Clear Event Records to clear them all.

If the Event Log has overflowed, the host may clear all the device’s stored event logs
for the requested Event Log instead of explicitly clearing each event with the unique
handle.

Possible Command Return Codes:
• Success
• Invalid Parameter
• Internal Error
• Retry Required
• Invalid Handle
• Invalid Payload Length

Command Effects:
• Immediate Log Change

14h 2 Event Record Count: The number of event records in the Event Records
list. A value of 0 indicates that there are no more event records to return.

16h 0Ah Reserved

20h Varies Event Records: A list of returned Event Records.

Table 159. Get Event Records Output Payload

Byte Offset Length Description

Table 160. Clear Event Records Input Payload

Byte Offset Length Description

0 1

Event Log: The specific device Event Log to clear the Event Records for
• 00h = Informational Event Log
• 01h = Warning Event Log
• 02h = Failure Event Log
• 03h = Fatal Event Log

Other values reserved.

1 1

Clear Event Flags:
• Bit[0]: Clear All Events: When set, the device shall clear all events

that it currently has stored internally for the requested Event Log.
When utilizing this mechanism, if the event log has not overflowed, it
is possible to clear events that the host has not yet been notified of.

• Bits[7:1]: Reserved

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 344
Revision 2.0, Version 1.0

8.2.9.1.4 Get Event Interrupt Policy (Opcode 0102h)

Retrieve the settings for interrupts that are signaled for device events.

Possible:
• Success
• Internal Error
• Retry Required
• Invalid Payload Length

Command Effects:
• None

2 1
Number of Event Record Handles: The number of Event Record
Handles in the Clear Event Records input payload. If Clear All Events is set,
this shall be 0.

3 3 Reserved

6 Varies

Event Record Handles: A list of Event Record Handles the host has
consumed and the device shall now remove from its internal Event Log
store. These values are device specific and reported to the host in each
event record using the Get Event Records command. All event record
handles shall be non-zero value. A value of 0 shall be treated by the device
as an invalid handle.

Table 160. Clear Event Records Input Payload

Byte Offset Length Description

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 345
Revision 2.0, Version 1.0

Interrupt message number is defined as follows:

If Interrupt Mode = MSI/MSI-X:
For MSI, interrupt message number indicates the offset between the base Message
Data and the interrupt message that is generated. Hardware is required to update
this field so that it is correct if the number of MSI Messages assigned to the
Function changes when software writes to the Multiple Message Enable field in the
Message Control Register for MSI.

For MSI-X, interrupt message number indicates which MSI-X Table entry is used to
generate the interrupt message. The entry shall be one of the first 16 entries even
if the Function implements more than 16 entries. The value shall be within the
range configured by system software to the device. For a given MSI-X

Table 161. Get Event Interrupt Policy Output Payload

Byte Offset Length Description

0 1

Informational Event Log Interrupt Settings: When enabled, the
device shall signal an interrupt when the information event log transitions
from having no entries to having one or more entries.
• Bits[1:0]: Interrupt Mode

— 00b = No interrupts
— 01b = MSI/MSI-X
— 10b = FW Interrupt (EFN VDM)
— 11b = Reserved

• Bits[3:2]: Reserved
• Bits[7:4]: Interrupt Message Number - see definition below.

1 1

Warning Event Log Interrupt Settings: When enabled, the device shall
signal an interrupt when the warning event log transitions from having no
entries to having one or more entries.
• Bits[1:0]: Interrupt Mode

— 00b = No interrupts
— 01b = MSI/MSI-X
— 10b = FW Interrupt (EFN VDM)
— 11b = Reserved

• Bits[3:2]: Reserved
• Bits[7:4]: Interrupt Message Number - see definition below.

2 1

Failure Event Log Interrupt Settings: When enabled, the device shall
signal an interrupt when the failure event log transitions from having no
entries to having one or more entries.
• Bits[1:0]: Interrupt Mode

— 00b = No interrupts
— 01b = MSI/MSI-X
— 10b = FW Interrupt (EFN VDM)
— 11b = Reserved

• Bits[3:2]: Reserved
• Bits[7:4]: Interrupt Message Number - see definition below.

3 1

Fatal Event Log Interrupt Settings: When enabled, the device shall
signal an interrupt when the fatal event log transitions from having no
entries to having one or more entries.
• Bits[1:0]: Interrupt Mode

— 00b = No interrupts
— 01b = MSI/MSI-X
— 10b = FW Interrupt (EFN VDM)
— 11b = Reserved

• Bits[3:2]: Reserved
• Bits[7:4]: Interrupt Message Number - see definition below.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 346
Revision 2.0, Version 1.0

implementation, the entry shall remain constant.

If both MSI and MSI-X are implemented, they are permitted to use different
vectors, though software is permitted to enable only one mechanism at a time. If
MSI-X is enabled, interrupt message number shall indicate the vector for MSI-X. If
MSI is enabled or neither is enabled, interrupt message number shall indicate the
vector for MSI. If software enables both MSI and MSI-X at the same time, interrupt
message number is undefined.

If Interrupt Mode = FW Interrupt:
Interrupt message number is the FW Interrupt vector the device uses to issue
Firmware Notification via Event Firmware Notification (EFN) message.

8.2.9.1.5 Set Event Interrupt Policy (Opcode 0103h)

Change the settings for the interrupts that are signaled for device events.

Possible Command Return Codes:
• Success
• Invalid Parameter
• Internal Error
• Retry Required
• Invalid Payload Length

Command Effects:
• Immediate Policy Change

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 347
Revision 2.0, Version 1.0

8.2.9.2 Firmware Update

FW Update is an optional feature for devices to provide a mechanism to update the FW.
If supported, the Get FW Info command and the Transfer FW command are required;
the Activate FW command is optional.

Table 162. Set Event Interrupt Policy Input Payload

Byte Offset Length Description

0 1

Informational Event Log Interrupt Settings: Specifies the settings for
the interrupt when the information event log transitions from having no
entries to having one or more entries.
• Bits[1:0]: Interrupt Mode

— 00b = No interrupts
— 01b = MSI/MSI-X
— 10b = FW Interrupt (EFN VDM)
— 11b = Reserved

• Bits[3:2]: Reserved
• Bits[7:4]: FW Interrupt Message Number - Specifies the FW interrupt

vector the device shall use to issue the firmware notification. Only
valid if Interrupt Mode = FW Interrupt.

1 1

Warning Event Log Interrupt Settings: Specifies the settings for the
interrupt when the warning event log transitions from having no entries to
having one or more entries.
• Bits[1:0]: Interrupt Mode

— 00b = No interrupts
— 01b = MSI/MSI-X
— 10b = FW Interrupt (EFN VDM)
— 11b = Reserved

• Bits[3:2]: Reserved
• Bits[7:4]: FW Interrupt Message Number - Specifies the FW interrupt

vector the device shall use to issue the firmware notification. Only
valid if Interrupt Mode = FW Interrupt.

2 1

Failure Event Log Interrupt Settings: Specifies the settings for the
interrupt when the failure event log transitions from having no entries to
having one or more entries.
• Bits[1:0]: Interrupt Mode

— 00b = No interrupts
— 01b = MSI/MSI-X
— 10b = FW Interrupt (EFN VDM)
— 11b = Reserved

• Bits[3:2]: Reserved
• Bits[7:4]: FW Interrupt Message Number - Specifies the FW interrupt

vector the device shall use to issue the firmware notification. Only
valid if Interrupt Mode = FW Interrupt.

3 1

Fatal Event Log Interrupt Settings: Specifies the settings for the
interrupt when the fatal event log transitions from having no entries to
having one or more entries.
• Bits[1:0]: Interrupt Mode

— 00b = No interrupts
— 01b = MSI/MSI-X
— 10b = FW Interrupt (EFN VDM)
— 11b = Reserved

• Bits[3:2]: Reserved
• Bits[7:4]: FW Interrupt Message Number - Specifies the FW interrupt

vector the device shall use to issue the firmware notification. Only
valid if Interrupt Mode = FW Interrupt.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 348
Revision 2.0, Version 1.0

FW refers to a FW package that may contain multiple FW images. The management of
multiple FW images or the FW on multiple controllers is the responsibility of the device
and outside the scope of this specification. Product vendors can implement any means
of managing multiple FW images provided those means do not conflict with or alter the
specifications described herein.

The number of FW slots the device supports is vendor specific, up to four. The minimum
FW slots supported shall be two, one slot for the active FW and one slot for a FW
package that is staged for activation. Only one slot may be active at a time and only
one slot may be staged for activation at a time. FW packages stored in a slot persist
across power cycles.

8.2.9.2.1 Get FW Info (Opcode 0200h)

Retrieve information about the device FW.

Possible Command Return Codes:
• Success
• Unsupported
• Internal Error
• Retry Required
• Invalid Payload Length

Command Effects:
• None

Table 163. Get FW Info Output Payload

Byte Offset Length Description

0 1
FW Slots Supported: The number of FW slots the device supports, up to
four. The minimum FW slots supported shall be two, one slot for the active
FW and one slot for a FW that is staged for activation.

1 1

FW Slot Info: Indicates the active and staged FW slots.
• Bits[2:0]: The slot number of the active FW version. Only one slot may

be active at a time. 0 is an illegal value. Values greater than “FW Slots
Supported” are also illegal.

• Bits[5:3]: The slot number of the FW that is activated on the next cold
reset. If zero, no FW is currently staged for activation. Refer to the FW
Activation Capabilities to determine if the FW can be activated at
runtime. If the FW fails to activate, the device shall fall back to the
previously active FW. Only one slot may be staged for activation at a
time. Values greater than “FW Slots Supported” are illegal.

• Bits[7:6]: Reserved

2 1

FW Activation Capabilities: Defines the capabilities supported by the
device for activating a new FW without a cold reset.
• Bit[0]: When set, the device supports online FW activation with the

Activate FW command.
• Bits[7:1]: Reserved

3 0Dh Reserved

10h 10h
Slot 1 FW Revision: Contains the revision of the FW package in slot 1
formatted as an ASCII string. If there is no FW in slot 1, this field shall be
cleared to zero.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 349
Revision 2.0, Version 1.0

8.2.9.2.2 Transfer FW (Opcode 0201h)

Transfer all or part of a FW package from the caller to the device. FW packages shall be
128 byte aligned.

If the FW package is transferred in its entirety, the caller makes one call to Update FW
with Action = Full FW Transfer.

If a FW package is transferred in parts, the caller makes one call to Transfer FW with
Action = Start, zero or more calls with Action = Continue, and one call with Action =
Finish or Abort. The FW package parts shall be transferred in order, otherwise the
device shall return the FW Transfer Out of Order return code.

Only one FW package may be transferred at a time. The device shall return the FW
Transfer in Progress return code if it receives a Transfer FW command with Action = Full
FW Transfer or Action = Initiate FW Transfer until the current FW package transfer is
completed or aborted.

Once the entire FW package is fully transferred to the device, the device shall verify the
FW package and store it in the specified slot. Verification of the FW package is vendor
specific.

Possible Command Return Codes:
• Success
• Background Command Started
• Invalid Parameter
• Unsupported
• Internal Error
• Retry Required
• Busy
• Media Disabled
• FW Transfer in Progress
• FW Transfer Out of Order
• FW Authentication Failed
• Invalid Slot
• Aborted
• Invalid Security State
• Invalid Payload Length

Command Effects:

20h 10h
Slot 2 FW Revision: Contains the revision of the FW package in slot 2
formatted as an ASCII string. If there is no FW in slot 2, this field shall be
cleared to zero.

30h 10h
Slot 3 FW Revision: Contains the revision of the FW package in slot 3
formatted as an ASCII string. If there is no FW in slot 3 or the device does
not support 3 or more FW slots, this field shall be cleared to zero.

40h 10h
Slot 4 FW Revision: Contains the revision of the FW package in slot 4
formatted as an ASCII string. If there is no FW in slot 4 or the device does
not support 4 FW slots, this field shall be cleared to zero.

Table 163. Get FW Info Output Payload

Byte Offset Length Description

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 350
Revision 2.0, Version 1.0

• Configuration Change after Cold Reset
• Background Operation

8.2.9.2.3 Activate FW (Opcode 0202h)

Activate FW is an optional command to make a FW previously stored on the device with
the Transfer FW command, the active FW. Devices may support activating a new FW
while online or on cold reset, as indicated by the Get FW Info command.

If a device supports online firmware activation, this command may be executed as a
background command as indicated by the command return code.

If the new FW fails to online activate, the device shall roll back to the previous FW, if
possible. A cold reset may be required to restore the operating state of the FW on
activation failure.

Possible Command Return Codes:
• Success
• Background Command Started
• Invalid Parameter
• Unsupported
• Internal Error
• Retry Required
• Busy
• Activation Failed, FW Rolled back
• Activation Failed, Cold Reset Required
• Invalid Slot
• Aborted
• Invalid Payload Length

Table 164. Transfer FW Input Payload

Byte Offset Length Description

0 1

Action: Specifies the stage of the FW package transfer.
• 00h = Full FW transfer
• 01h = Initiate FW transfer
• 02h = Continue FW Transfer
• 03h = End Transfer
• 04h = Abort Transfer

Other values reserved.

1 1

Slot: Specifies the FW slot number to store the FW once the transfer is
complete and the FW package is validated. Shall not be the active FW slot,
otherwise the Invalid Slot return code shall be returned. Only valid if
Action = Full transfer or End Transfer, ignored otherwise.

2 2 Reserved

4 4 Offset: The byte offset in the FW package data. Expressed in multiples of
128 bytes. Ignored if Action = Full FW transfer.

8 78h Reserved

80h Varies Data: The FW package data.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 351
Revision 2.0, Version 1.0

Command Effects:
• Configuration Change after Cold Reset
• Immediate Configuration Change

8.2.9.3 Timestamp

Timestamp is an optional setting that enables the host to set a time value in the device
to correlate the device timer with the system time. The use of the timestamp is beyond
the scope of this specification. The accuracy of the timestamp after it is set may be
affected by vendor specific factors. Therefore, the timestamp shouldn’t be used for
time sensitive applications. Although the format of the timestamp is in nanoseconds,
the resolution of time maintained by the device is implementation specific, so software
shall not assume a device provides nanosecond resolution.

8.2.9.3.1 Get Timestamp (Opcode 0300h)

Get the timestamp from the device. Timestamp is initialized via the Set Timestamp
command. If the timestamp has never been set, the output shall be zero.

Possible Command Return Codes:
• Success
• Unsupported
• Internal Error
• Retry Required
• Invalid Payload Length

Command Effects:
• None

8.2.9.3.2 Set Timestamp (Opcode 0301h)

Set the timestamp on the device. It is recommended that the host set the timestamp
after every hot reset, every warm reset, every cold reset, and every function level
reset. Otherwise, the timestamp may be inaccurate.

Possible Command Return Codes:

Table 165. Activate FW Input Payload

Byte Offset Length Description

0 1

Action: Specifies the activation method.
• 00h = Online.
• 01h = On the next cold reset.

Other values reserved.

1 1 Slot: Specifies the FW slot number to activate. Shall not be the active FW
slot, otherwise the Invalid Slot return code shall be returned.

Table 166. Get Timestamp Output Payload

Byte Offset Length Description

0 8 Timestamp: The number of unsigned nanoseconds that have elapsed
since midnight, 01-Jan-1970, UTC.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 352
Revision 2.0, Version 1.0

• Success
• Invalid Parameter
• Unsupported
• Internal Error
• Retry Required
• Invalid Payload Length

Command Effects:
• Immediate Policy Change

8.2.9.4 Logs

Commands to return device specific logs.

8.2.9.4.1 Get Supported Logs (Opcode 0400h)

Retrieve the list of device specific logs (identified by UUID) and the maximum size of
each Log.

Possible Command Return Codes:
• Success
• Internal Error
• Retry Required
• Invalid Payload Length

Command Effects:
• None

Table 167. Set Timestamp Input Payload

Byte Offset Length Description

0 8 Timestamp: The number of unsigned nanoseconds that have elapsed
since midnight, 01-Jan-1970, UTC.

Table 168. Get Supported Logs Output Payload

Byte Offset Length Description

0 2 Number of Supported Log Entries: The number of Supported Log
Entries returned in the output payload.

2 6 Reserved

8 Varies Supported Log Entries: Device specific list of supported log identifier
UUIDs and the current size of each log.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 353
Revision 2.0, Version 1.0

8.2.9.4.2 Get Log (Opcode 0401h)

Retrieve a log from the device, identified by a specific UUID. The host shall retrieve the
size of the log first using the Get Supported Logs command, then issue enough of these
commands to retrieve all the log information, incrementing the Log Offset each time.
The device shall return Invalid Parameter if the Offset or Length fields attempt to
access beyond the size of the log as reported by Get Supported Logs.

Possible Command Return Codes:
• Success
• Invalid Parameter
• Internal Error
• Retry Required
• Invalid Payload Length

Command Effects:
• None

Table 169. Get Supported Logs Supported Log Entry

Byte Offset Length Description

0 10h

Log Identifier: UUID representing the log to retrieve data for. The
following Log Identifier UUIDs are defined in this specification:
• 0da9c0b5-bf41-4b78-8f79-96b1623b3f17 – Command Effects Log

(CEL)
• 5e1819d9-11a9-400c-811f-d60719403d86 – Vendor Debug Log

10h 4 Log Size: The number of bytes of log data available to retrieve for the log
identifier.

Table 170. Get Log Input Payload

Byte Offset Length Description

0 10h

Log Identifier: UUID representing the log to retrieve data for. The
following Log Identifier UUIDs are defined in this specification:
• 0da9c0b5-bf41-4b78-8f79-96b1623b3f17 – Command Effects Log

(CEL)
• 5e1819d9-11a9-400c-811f-d60719403d86 – Vendor Debug Log

10h 4 Offset: The byte offset in the log data to return in the output payload.

14h 4 Length: Length in bytes of log data to return in the output payload.

Table 171. Get Log Output Payload

Byte Offset Length Description

0 Varies Log Data

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 354
Revision 2.0, Version 1.0

8.2.9.4.2.1 Command Effects Log (CEL)

The Command Effect Log (CEL) is a variable length log page that reports support for
each command and the effect each command will have on the device subsystem.

Devices shall implement the CEL for all commands supported by the device, including
any vendor specific commands that extend beyond those specified in this specification.

Some host drivers may not allow unspecified commands to be passed through to the
device if the commands are not advertised in the CEL.

The CEL shall utilize a Log Identifier of:
• 0da9c0b5-bf41-4b78-8f79-96b1623b3f17

Each Command Effect Log entry shall have a specific set of bit definitions describing the
effect of issuing the command as outlined below.

Table 172. CEL Output Payload

Byte Offset Length Description

0 4 Command 1 CEL Entry: Contains the Command Effect Log Entry for 1st
supported command.

4 4 Command 2 CEL Entry: Contains the Command Effect Log Entry for 2nd
supported command.

(4*(n-1)) 4 Command n CEL Entry: Contains the Command Effect Log Entry for nth
supported command.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 355
Revision 2.0, Version 1.0

8.2.9.4.2.2 Vendor Debug Log

All devices that support a debug log shall support the Vendor Debug Log to allow the
log to be accessed through a common host driver, for any vendors device, with Log
Identifier of:

• 5e1819d9-11a9-400c-811f-d60719403d86

The contents of the output payload are vendor specific.

8.2.9.5 Memory Device Commands

CXL memory device commands are identified by a 2-byte Opcode as specified in the
table below. Opcodes 4000h-BFFFh describe CXL memory device specific commands.

Opcodes 4000-BFFFh that are not specified in this table are reserved.

Opcodes also provide an implicit major version number, which means a command’s
definition shall not change in an incompatible way in future revisions of this
specification. Instead, if an incompatible change is required, the specification defining
the change shall define a new opcode for the changed command. Commands may
evolve by defining new fields in the payload definitions that were originally defined as
Reserved, but only in a way where software written using the earlier definition will
continue to work correctly, and software written to the new definition can use the zero
value or the payload size to detect devices that do not support the new field. This
implicit minor versioning allows software to be written with the understanding that an
opcode shall only evolve by adding backward-compatible changes.

Table 173. CEL Entry Structure

Byte Offset Length Description

0 2 Opcode: The command opcode.

2 2

Command Effect: Bit mask containing one or more effects for the
command opcode
• Bit[0]: Configuration Change after Cold Reset - When set, this opcode

makes a driver visible change to the configuration of the device or
data contained within persistent memory regions of the device. The
change does not take effect until a device cold reset.

• Bit[1]: Immediate Configuration Change - When set, this opcode
makes an immediate driver visible change to the configuration of the
device or data contained within persistent memory regions of the
device.

• Bit[2]: Immediate Data Change - When set, this opcode makes an
immediate driver visible change to the data written to the device.

• Bit[3]: Immediate Policy Change - When set, this opcode makes an
immediate change to the policies utilized by the device.

• Bit[4]: Immediate Log Change - When set, this opcode makes an
immediate change to a device log.

• Bit[5]: Security State Change - When set, this opcode results in an
immediate driver visible change in the security state of the device.
Security state changes that require a reboot to take effect do not use
this effect.

• Bit[6]: Background Operation - When set, this opcode is executed in
the background.

• Bit[7]: Secondary Mailbox Supported – When set, submitting this
opcode via the secondary mailbox is supported, otherwise this opcode
will return Unsupported Mailbox if issued on the secondary mailbox.

• Bits[15:8]: Reserved, shall be set to zero.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 356
Revision 2.0, Version 1.0

Table 174. CXL Memory Device Command Opcodes

Opcode

Required
Input

Payload
Size (B)

Output
Payload
Size (B)Command Set

Bits[15:8]
Command
Bits[7:0]

Combined
Opcode

40h Identify 00h
Identify Memory
Device
(Section 8.2.9.5.1.1)

4000h M 0 43h

41h

Capacity
Config and
Label
Storage

00h
Get Partition Info
(Section 8.2.9.5.2.1)

4100h O 0 20h

01h
Set Partition Info
(Section 8.2.9.5.2.2)

4101h O 0Ah 0

02h
Get LSA
(Section 8.2.9.5.2.3)

4102h PM 8 0+

03h
Set LSA
(Section 8.2.9.5.2.4)

4103h PM 8+ 0

42h Health Info
and Alerts

00h
Get Health Info
(Section 8.2.9.5.3.1)

4200h M 0 12h

01h
Get Alert Configuration
(Section 8.2.9.5.3.2)

4201h M 0 10h

02h
Set Alert Configuration
(Section 8.2.9.5.3.3)

4202h M 0Ch 0

03h
Get Shutdown State
(Section 8.2.9.5.3.4)

4203h PM 0 1

04h
Set Shutdown State
(Section 8.2.9.5.3.5)

4204h PM 1 0

43h Media and
Poison Mgmt

00h
Get Poison List
(Section 8.2.9.5.4.1)

4300h PM 10h 20h+

01h
Inject Poison
(Section 8.2.9.5.4.2)

4301h O 8 0

02h
Clear Poison
(Section 8.2.9.5.4.3)

4302h O 48h 0

03h
Get Scan Media
Capabilities
(Section 8.2.9.5.4.4)

4303h PM 10h 4

04h
Scan Media
(Section 8.2.9.5.4.5)

4304h PM 11h 0

05h
Get Scan Media Results
(Section 8.2.9.5.4.6)

4305h PM 0 20h+

44h Sanitize

00h
Sanitize
(Section 8.2.9.5.5.1)

4400h O 0 0

01h
Secure Erase
(Section 8.2.9.5.5.2)

4401h O 0 0

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 357
Revision 2.0, Version 1.0

*M = mandatory for all devices that implement a Register DVSEC Locator entry with Register Block
Identifier=03h; PM = mandatory for devices that support persistence and implement a Register DVSEC Locator
entry with Register Block Identifier=03h; O = Optional.

+Indicates a variable length payload follows the size indicated.

8.2.9.5.1 Identify

8.2.9.5.1.1 Identify Memory Device (Opcode 4000h)

Retrieve basic information about the memory device.

Possible Command Return Codes:
• Success
• Internal Error
• Retry Required
• Invalid Payload Length

Command Effects:
• None

45h

Persistent
Memory
Data-at-rest
Security

00h
Get Security State
(Section 8.2.9.5.6.1)

4500h O 0 4

01h
Set Passphrase
(Section 8.2.9.5.6.2)

4501h O 60h 0

02h
Disable Passphrase
(Section 8.2.9.5.6.3)

4502h O 40h 0

03h
Unlock
(Section 8.2.9.5.6.4)

4503h O 20h 0

04h
Freeze Security State
(Section 8.2.9.5.6.5)

4504h O 0 0

05h
Passphrase Secure
Erase
(Section 8.2.9.5.6.6)

4505h O 40h 0

46h Security
Passthrough

00h
Security Send
(Section 8.2.9.5.7.1)

4600h O 8+ 0

01h
Security Receive
(Section 8.2.9.5.7.2)

4601h O 8 0+

47h
SLD QoS
Telemetry

00h
Get SLD QoS Control
(Section 8.2.9.5.8.1)

4700h O 0 4

01h
Set SLD QoS Control
(Section 8.2.9.5.8.2)

4701h O 4 0

02h
Get SLD QoS Status
(Section 8.2.9.5.8.3)

4702h O 0 1

Table 174. CXL Memory Device Command Opcodes

Opcode

Required
Input

Payload
Size (B)

Output
Payload
Size (B)Command Set

Bits[15:8]
Command
Bits[7:0]

Combined
Opcode

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 358
Revision 2.0, Version 1.0

Table 175. Identify Memory Device Output Payload

Byte Offset Length Description

0 10h
FW Revision: Contains the revision of the active FW formatted as an
ASCII string. This is the same information that may be retrieved with the
Get FW Info command.

10h 8

Total Capacity: This field indicates the total usable capacity of the device.
Expressed in multiples of 256 MB. Total device usable capacity is divided
between volatile only capacity, persistent only capacity, and capacity that
can be either volatile or persistent. Total Capacity shall be greater than or
equal to the sum of Volatile Only Capacity and Persistent Only Capacity.

18h 8
Volatile Only Capacity: This field indicates the total usable capacity of
the device that may only be used as volatile memory. Expressed in
multiples of 256 MB.

20h 8
Persistent Only Capacity: This field indicates the total usable capacity of
the device that may only be used as persistent memory. Expressed in
multiples of 256 MB.

28h 8

Partition Alignment: If the device has capacity that may be used either
as volatile memory or persistent memory, this field indicates the partition
alignment size. Expressed in multiples of 256 MB. Partitionable capacity is
equal to Total Capacity - Volatile Only Capacity - Persistent Only Capacity.
If 0, the device doesn’t support partitioning the capacity into both volatile
and persistent capacity.

30h 2
Informational Event Log Size: The number of events the device can
store in the Informational Event Log before it overflows. The device shall
support 1 or more events in each Event Log.

32h 2
Warning Event Log Size: The number of events the device can store in
the Warning Event Log before it overflows. The device shall support 1 or
more events in each Event Log.

34h 2
Failure Event Log Size: The number of events the device can store in the
Failure Event Log before it overflows. The device shall support 1 or more
events in each Event Log.

36h 2
Fatal Event Log Size: The number of events the device can store in the
Fatal Event Log before it overflows. The device shall support 1 or more
events in each Event Log.

38h 4 LSA Size: The size of the Label Storage Area. Expressed in bytes.

3Ch 3

Poison List Maximum Media Error Records: The maximum number of
Media Error Records that the device can track in its Poison List. The device
shall set the Poison List Overflow in the Get Poison List output if this limit is
exceeded. The device shall size the poison list accordingly to limit the
chances of the list overflowing.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 359
Revision 2.0, Version 1.0

8.2.9.5.2 Capacity Configuration and Label Storage

8.2.9.5.2.1 Get Partition Info (Opcode 4100h)

Get the Active and Next capacity settings for a memory device, describing the amount
of volatile and persistent memory capacities available. The Active values describe the
current capacities provided by the device in the currently active configuration. The Next
values describe a new configuration that has not yet taken effect, to become active on
the next cold reset.

Possible Command Return Codes:
• Success
• Unsupported
• Internal Error
• Retry Required
• Invalid Payload Length

Command Effects:
• None

3Fh 2

Inject Poison Limit: The device’s supported maximum number of
physical addresses that can be poisoned by the Inject Poison command.
When zero, the device does not have a poison injection limit. When non-
zero, the device has a maximum limit of poison that can be injected using
the Inject Poison command.

41h 1

Poison Handling Capabilities: The device’s poison handling capabilities.
• Bit[0]: Injects Persistent Poison – When set and the device supports

poison injection, any poison injected in nonvolatile DPA address shall
remain persistent across all types of device resets. When clear and the
device supports poison injection, hot reset, warm reset, CXL reset or
cold reset shall clear the injected poison automatically.

• Bit[1]: Scans for Poison - When set, the device shall periodically scan
its media for errors and shall automatically alert the host of those
errors. If clear, the device does not periodically scan for memory
errors and does not generate an alert.

• Bits[7:2]: Reserved

42h 1

QoS Telemetry Capabilities: Optional QoS Telemetry for memory SLD
capabilities for management by system software. See Section 3.3.2.
• Bit[0]: Egress Port Congestion Supported - When set, the associated

feature is supported; and the Get SLD QoS Control, Set SLD QoS
Control, and Get SLD QoS Status commands shall be implemented.
See Section 3.3.2.3.4.

• Bit [1]:Temporary Throughput Reduction Supported - When set, the
associated feature is supported; and the Get SLD QoS Control and Set
SLD QoS Control commands shall be implemented. See
Section 3.3.2.3.5.

• Bits[7:2]: Reserved

Table 175. Identify Memory Device Output Payload

Byte Offset Length Description

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 360
Revision 2.0, Version 1.0

8.2.9.5.2.2 Set Partition Info (Opcode 4101h)

Set the partitioning between volatile capacity and persistent capacity. This command
shall fail with an Unsupported error if there is no partitionable capacity (i.e. Identify
Memory Device reports Partition Alignment as zero). Using this command to change the
size of the persistent capacity shall result in the loss of data stored.

Possible Command Return Codes:
• Success
• Invalid Parameter
• Unsupported
• Internal Error
• Retry Required
• Invalid Payload Length

Command Effects:
• Configuration Change after Cold Reset
• Immediate Configuration Change
• Immediate Data Change

Table 176. Get Partition Info Output Payload

Byte Offset Length Description

0 8

Active Volatile Capacity: Total device volatile memory capacity in
multiples of 256 MB. This is the sum of the device’s Volatile Only capacity
and the capacity that is partitioned for volatile use. The device shall
provide this volatile capacity starting at DPA 0.

8 8

Active Persistent Capacity: Total device persistent memory capacity in
multiples of 256 MB. This is the sum of the device’s Persistent Only
capacity and the capacity that is partitioned for persistent use. The device
shall provide this persistent capacity starting at the DPA immediately
following the volatile capacity.

10h 8

Next Volatile Capacity: If non-zero, this value shall become the Active
Volatile Capacity on the next cold reset. If both this field and the Next
Persistent Capacity field are zero, there is no pending change to the
partitioning.

18h 8

Next Persistent Capacity: If non-zero, this value shall become the
Active Persistent Capacity on the next cold reset. If both this field and the
Next Volatile Capacity field are zero, there is no pending change to the
partitioning.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 361
Revision 2.0, Version 1.0

8.2.9.5.2.3 Get LSA (Opcode 4102h)

The Label Storage Area (LSA) shall be supported by a memory device that provides
persistent memory capacity and may be supported by a device that provides only
volatile memory capacity. The format of the LSA is specified in Section 9.14.2. The size
of the Label Storage Area is retrieved from the Identify Memory Device command.

Possible Command Return Codes:
• Success
• Invalid Parameter
• Unsupported
• Internal Error
• Retry Required
• Media Disabled
• Invalid Security State
• Invalid Payload Length

Command Effects:
• None

Table 177. Set Partition Info Input Payload

Byte Offset Length Description

0 8
Volatile Capacity: The amount of partitionable capacity that shall be
allocated to volatile capacity, in multiples in 256 MB. The remainder of the
partitionable capacity shall be allocated to persistent capacity.

8 1

Flags:
• Bit[0]: Immediate - When set, the change is requested immediately. If

clear, the change in partitioning shall become the “next” configuration,
to become active on the next device reset. In this case, the new
configuration shall be reported in the Next Volatile Capacity and Next
Persistent Capacity fields returned by the Get Partition Info command.
It is the caller’s responsibility to avoid immediate changes to the
partitioning when the device is in use.

• Bits[7:1]: Reserved

Table 178. Get LSA Input Payload

Byte Offset Length Description

0 4 Offset: The byte offset in the LSA to return in the output payload.

4 4 Length: Length in bytes of LSA to return in the output payload.

Table 179. Get LSA Output Payload

Byte Offset Length Description

0 Varies Data: Requested bytes from the LSA.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 362
Revision 2.0, Version 1.0

8.2.9.5.2.4 Set LSA (Opcode 4103h)

The format of the Label Storage Area is specified in Section 9.14.2.

Possible Command Return Codes:
• Success
• Invalid Parameter
• Unsupported
• Internal Error
• Retry Required
• Media Disabled
• Invalid Security State
• Invalid Payload Length

Command Effects:
• Immediate Configuration Change
• Immediate Data Change

8.2.9.5.3 Health Information and Alerts

8.2.9.5.3.1 Get Health Info (Opcode 4200h)

Get the current instantaneous health of the device. It is not necessary to poll for health
changes. Anytime the health of the device changes, the device shall add an appropriate
event to its internal event log, update the Event Status Register, and if configured
interrupt the host.

Possible Command Return Codes:
• Success
• Unsupported
• Internal Error
• Retry Required
• Invalid Payload Length

Command Effects:
• None

Table 180. Set LSA Input Payload

Byte Offset Length Description

0 4 Offset: The byte offset in the LSA.

4 4 Reserved

8 Varies Data: The data to be written to LSA at the specified offset.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 363
Revision 2.0, Version 1.0

Table 181. Get Health Info Output Payload

Byte Offset Length Description

0 1

Health Status: Overall device health summary. Normal health status is all
bits clear.
• Bit[0]: Maintenance Needed - The device requires maintenance. When

transitioning from this bit being cleared to this bit being set, the device
shall add an event to the Warning or Failure Event Log, update the
Event Status Register, and if configured interrupt the host.

• Bit[1]: Performance Degraded - The device is no longer operating at
optimal performance. When transitioning from this bit being cleared to
this bit being set, the device shall add an event to the Warning Event
Log, update the Event Status Register, and if configured interrupt the
host.

• Bit[2]: Hardware Replacement Needed - The device should be
replaced immediately. When transitioning from this bit being cleared
to this bit being set, the device shall add an event to the Failure or
Fatal Event Log, update the Event Status Register, and if configured
interrupt the host.

• Bits[7:3]: Reserved

1 1

Media Status: Overall media health summary. When transitioning from
any state to any other state, the device shall add an event to the Failure or
Fatal Event Log, update the Event Status Register, and if configured
interrupt the host. When transitioning from Not Ready to Normal state, no
Event Record is required.
• 00h = Normal - The device’s media is operating normally
• 01h = Not Ready - The device’s media is not ready.
• 02h = Write persistency Lost - The device cannot persist write

requests but is able to read stored data. This is considered an
abnormal status only for reporting if the device media can be written
to and not an indicator of whether the device is in a security state that
allows writing.

• 03h = All data lost – All data has been lost from the device.
• 04h = Write Persistency Loss in the Event of Power Loss – The device’s

ability to persist subsequent write requests may be lost in the event of
a power loss.

• 05h = Write Persistency Loss in Event of Shutdown - The device’s
ability to persist subsequent write requests may be lost when the
device is shutdown.

• 06h = Write Persistency Loss Imminent - The device’s ability to persist
subsequent write requests may be lost.

• 07h = All Data Loss in the Event of Power Loss - All data on the device
may be lost in the event of a power loss.

• 08h = All Data Loss in the Event of Shutdown - All data on the device
may be lost when the device is shutdown.

• 09h = All Data Loss Imminent - All data on the device may be lost.
Other values reserved.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 364
Revision 2.0, Version 1.0

2 1

Additional Status:
• Bits[1:0]: Life Used – The device’s current life used status

— 0h = Normal - The device’s life used is in normal operating
range.

— 1h = Warning - The device’s Life Used has risen to the user
programmable warning threshold. When transitioning from
Normal to Warning status, the device shall add an event to the
Warning Event Log, update the Event Status Register, and if
configured interrupt the host.

— 2h = Critical - The device Life Used has risen to the point where
the performance or reliability of the device may be affected, and
the device should be replaced. When transitioning from Normal
or Warning to Critical status, the device shall add an event to the
Failure or Fatal Event Log, update the Event Status Register, and
if configured interrupt the host.

— Other values reserved.
• Bits[3:2]: Device Temperature - The device’s current temperature

status.
— 0h = Normal - The device’s temperature is in normal operating

range. When transitioning from Warning or Critical state to
Normal, the device shall add an event to the Informational Event
Log, update the Event Status Register, and if configured,
interrupt the host.

— 1h = Warning - The device’s temperature has reached the user
programmable warning threshold. When transitioning from
Normal to Warning status, the device shall add an event to the
Warning Event Log, update the Event Status Register, and if
configured interrupt the host.

— 2h = Critical - The device temperature has reached the point
where the performance or reliability of the device may be
affected, and immediate action should be taken to correct the
device temperature. When transitioning from Normal or Warning
to Critical status, the device shall add an event to the Failure or
Fatal Event Log, update the Event Status Register, and if
configured interrupt the host.

— Other values reserved.
• Bit[4]: Corrected Volatile Error Count – The device’s current corrected

volatile error count
— 0h = Normal – The device’s corrected error counts are below the

warning threshold.
— 1h = Warning – The device’s count of total corrected errors has

risen to or above the user programmable warning threshold.
When transitioning from Normal to Warning status, the device
shall add an event to the Warning Event Log, update the Event
Status Register, and if configured interrupt the host.

• Bit[5]: Corrected Persistent Error Count – The device’s current
corrected persistent error count

— 0h = Normal – The device’s corrected error counts are below the
warning threshold.

— 1h = Warning – The device’s count of total corrected errors has
risen to or above the user programmable warning threshold.
When transitioning from Normal to Warning status, the device
shall add an event to the Warning Event Log, update the Event
Status Register, and if configured interrupt the host.

• Bits[7:6]: Reserved

3 1

Life Used: The device’s used life as a percentage value (0-100) of factory
expected life span. A value of 100 means that the device’s calculated
useful life span has been reached and the device should be replaced. It
does not imply that the device stops functioning when it reaches 100.
Returns 0FFh if not implemented.

4 2
Device Temperature: The device’s current temperature in degrees
Celsius, represented as a 2’s complement value. Returns 0FFFFh if not
implemented.

6 4

Dirty Shutdown Count: A monotonically increasing counter which is
incremented whenever the device fails to save and/or flush data to the
persistent media or is unable to determine if data loss may have occurred.
The count is persistent across power loss and wraps back to 0 at overflow.

Table 181. Get Health Info Output Payload

Byte Offset Length Description

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 365
Revision 2.0, Version 1.0

8.2.9.5.3.2 Get Alert Configuration (Opcode 4201h)

Retrieve the device’s critical alert and programmable warning configuration. Critical
alerts shall automatically be configured by the device after a device reset. If supported,
programmable warning thresholds shall be initialized to vendor recommended defaults
by the device upon device reset.

Possible Command Return Codes:
• Success
• Unsupported
• Internal Error
• Retry Required
• Invalid Payload Length

Command Effects:
• None

0Ah 4

Corrected Volatile Error Count: The total number of correctable
memory errors the device has detected, occurring in the volatile memory
partition. The initial value of this counter shall be 0 and the counter shall
saturate at 0xFFFFFFFF. The counter shall be maintained by the device and
cannot be modified by the host. Return 0 for devices that do not track
corrected errors. This count is reset on a Conventional reset.

0Eh 4

Corrected Persistent Error Count: The total number of correctable
memory errors the device has detected, occurring in the persistent
memory partition. The initial value of this counter shall be 0 and the
counter shall saturate at 0xFFFFFFFF. The counter shall be maintained by
the device and cannot be modified by the host. Return 0 for devices that
do not track corrected errors. This count is reset on a Conventional reset.

Table 181. Get Health Info Output Payload

Byte Offset Length Description

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 366
Revision 2.0, Version 1.0

Table 182. Get Alert Configuration Output Payload

Byte Offset Length Description

0 1

Valid Alerts: Indicators of what alert fields are valid in the returned data
• Bit[0]: When set, the Life Used Programmable Warning Threshold field

is valid
• Bit[1]: When set, the Device Over-Temperature Programmable

Warning Threshold field is valid
• Bit[2]: When set, the Device Under-Temperature Programmable

Warning Threshold field is valid
• Bit[3]: When set, the Corrected Volatile Memory Error Programmable

Warning Threshold field is valid
• Bit[4]: When set, the Corrected Persistent Memory Error

Programmable Warning Threshold field is valid
• Bits[7:5]: Reserved

1 1

Programmable Alerts: Indicators of which device alerts are
programmable by the host
• Bit[0]: When set, the Life Used Programmable Warning Threshold is

programmable by the host
• Bit[1]: When set, the Device Over-Temperature Programmable

Warning Threshold field is programmable by the host
• Bit[1]: When set, the Device Under-Temperature Programmable

Warning Threshold field is programmable by the host
• Bit[3]: When set, the Corrected Volatile Memory Error Programmable

Warning is programmable by the host
• Bit[4]: When set, the Corrected Persistent Memory Error

Programmable Warning is programmable by the host
• Bits[7:5]: Reserved

2 1 Life Used Critical Alert Threshold: The device’s default alert when the
Life Used rises above this percentage-based value. Valid values are 0-100.

3 1

Life Used Programmable Warning Threshold: The device’s currently
programmed warning threshold when the life used rises to and above this
percentage-based value. Valid values are 0-100. The life used warning
threshold shall be less than the life used critical alert value.

4 2

Device Over-Temperature Critical Alert Threshold: The device's
default critical over-temperature alert threshold when the device
temperature rises to and above this threshold in degrees Celsius,
represented as a 2's complement value.

6 2

Device Under-Temperature Critical Alert Threshold: The device's
default critical under-temperature alert threshold when the device
temperature falls to and below this threshold in degrees Celsius,
represented as a 2's complement value.

8 2

Device Over-Temperature Programmable Warning Threshold: The
device's currently programmed over-temperature warning threshold when
the device temperature rises to and above this threshold in degrees
Celsius, represented as a 2's complement value. Note that, the device
temperature set by this field (not the 2's complement value) shall be less
than the device temperature set by the Device Over-Temperature Critical
Alert Threshold field (not its 2's complement value).

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 367
Revision 2.0, Version 1.0

8.2.9.5.3.3 Set Alert Configuration (Opcode 4202h)

Set Alert Configuration allows the host to optionally configure programmable warning
thresholds. If supported, programmable warning thresholds shall be initialized to
vendor recommended defaults by the device upon device reset. After completion of this
command the requested programmable warning thresholds shall replace any previously
programmed warning thresholds.

Any time a programmed warning threshold is reached, the device shall add an
appropriate event record to its event log, update the Event Status Register, and if
configured, interrupt the host. If the conditions are already met for the newly
programmed warning at the time this command is executed, the device shall generate
the event record and interrupt for the alert immediately.

Possible Command Return Codes:
• Success
• Invalid Parameter
• Unsupported
• Internal Error
• Retry Required
• Invalid Payload Length

Command Effects:
• Immediate Policy Change

0Ah 2

Device Under-Temperature Programmable Warning Threshold: The
device's currently programmed under-temperature warning threshold
when the device temperature falls to and below this threshold in degrees
Celsius, represented as a 2's complement value. Note that, the device
temperature set by this field (not the 2's complement value) shall be
higher than the device temperature set by the Device Under-Temperature
Critical Alert Threshold field (not its 2's complement value).

0Ch 2

Corrected Volatile Memory Error Programmable Warning
Threshold: The device’s currently programmed warning threshold for
corrected volatile memory errors before signaling a corrected error event
to the host. A single event is generated whenever the total number of
corrected errors on the device becomes equal to this threshold value and
no corrected error events are generated before that has occurred.

0Eh 2

Corrected Persistent Memory Error Programmable Warning
Threshold: The device’s currently programmed warning threshold for
corrected persistent memory errors before signaling a corrected error
event to the host. A single event is generated whenever the total number
of corrected errors on the device becomes equal to this threshold value
and no corrected error events are generated before that has occurred.

Table 182. Get Alert Configuration Output Payload

Byte Offset Length Description

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 368
Revision 2.0, Version 1.0

8.2.9.5.3.4 Get Shutdown State (Opcode 4203h)

Possible Command Return Codes:
• Success

Table 183. Set Alert Configuration Input Payload

Byte Offset Length Description

0 1

Valid Alert Actions: Indicators of what alert fields are valid in the
supplied input payload.
• Bit[0]: When set, the Life Used Programmable Warning Threshold

Enable Alert Action and field shall be valid.
• Bit[1]: When set, the Device Over-Temperature Programmable

Warning Threshold Enable Alert Action and field shall be valid.
• Bit[2]: When set, the Device Under-Temperature Programmable

Warning Threshold Enable Alert Action and field shall be valid.
• Bit[3]: When set, the Corrected Volatile Memory Error Programmable

Warning Threshold Enable Alert Action and field shall be valid.
• Bit[4]: When set, the Corrected Persistent Memory Error

Programmable Warning Threshold Enable Alert Action and field shall
be valid.

• Bits[7:5]: Reserved

1 1

Enable Alert Actions: The device shall enable the following
programmable alerts.
• Bit[0]: When set, the device shall enable its Life Used Programmable

Warning Threshold. When clear, the device shall disable its life used
programmable warning.

• Bit[1]: When set, the device shall enable its Device Over-Temperature
Programmable Warning Threshold. When clear, the device shall disable
its device Under-Temperature programmable warning.

• Bit[2]: When set, the device shall enable its Device Under-
Temperature Programmable Warning Threshold. When clear, the
device shall disable its device Under-Temperature programmable
warning.

• Bit[3]: When set, the device shall enable its Corrected Volatile Memory
Error Programmable Warning Threshold. When clear, the device shall
disable its corrected volatile memory error programmable warning.

• Bit[4]: When set, the device shall enable its Corrected Persistent
Memory Error Programmable Warning Threshold. When clear, the
device shall disable its corrected persistent memory error
programmable warning.

• Bits[7:5] Reserved

2 1 Life Used Programmable Warning Threshold: The device’s updated
life used programmable warning threshold.

3 1 Reserved

4 2 Device Over-Temperature Programmable Warning Threshold: The
device’s updated Over-Temperature programmable warning threshold.

6 2 Device Under-Temperature Programmable Warning Threshold: The
device’s updated Under-Temperature programmable warning threshold.

8 2

Corrected Volatile Memory Error Programmable Warning
Threshold: The device’s updated programmable warning threshold for
corrected volatile memory errors before signaling a corrected error event
to the host. A single event is generated whenever the total number of
corrected errors on the device becomes equal to this threshold value and
no corrected error events are generated before that has occurred.

0Ah 2

Corrected Persistent Memory Error Programmable Warning
Threshold: The device’s updated programmable warning threshold for
corrected persistent memory errors before signaling a corrected error
event to the host. A single event is generated whenever the total number
of corrected errors on the device becomes equal to this threshold value
and no corrected error events are generated before that has occurred.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 369
Revision 2.0, Version 1.0

• Unsupported
• Internal Error
• Retry Required
• Invalid Payload Length

Command Effects:
• None

8.2.9.5.3.5 Set Shutdown State (Opcode 4204h)

Possible Command Return Codes:
• Success
• Unsupported
• Internal Error
• Retry Required
• Invalid Payload Length

Command Effects:
• Immediate Policy Change

8.2.9.5.4 Media and Poison Management

Table 184. Get Shutdown State Output Payload

Byte Offset Length Description

0 1

State: The current shutdown state
• Bit[0]: Dirty – A one value indicates the device’s internal shutdown

state is “dirty”, a zero value indicates “clean”.
• Bits[7:1]: Reserved

Table 185. Set Shutdown State Input Payload

Byte Offset Length Description

0 1

State: The current shutdown state
• Bit[0]: Dirty – A one value sets the device’s internal shutdown state to

“dirty”, a zero value sets it to “clean”. The device shall persistently
store this state and use it after the next reset, hot, warm or cold, to
determine if the Dirty Shutdown Count described in Section
8.2.9.5.3.1 gets updated. If the Shutdown State is “dirty”, the device
shall increment the Dirty Shutdown Count and then set the Shutdown
State to “clean”. This post-reset logic shall happen before the device
accepts any commands or memory I/O. The value set by this mailbox
command shall be overridden by the device in two cases:

— On a successful GPF flow, the device shall set the Shutdown
State to “clean”

— When handling a shutdown/reset, if the device detects an
internal failure that jeopardizes data integrity (for example, a
failed internal flush), the device shall set the Shutdown State to
“dirty”.

• Bits[7:1]: Reserved

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 370
Revision 2.0, Version 1.0

8.2.9.5.4.1 Get Poison List (Opcode 4300h)

Get Poison List command shall return an unordered list of locations that are poisoned or
result in poison if the addresses were accessed by the host. This command is not a
background operation and the device shall return data without delay. The device may
reject this command if the requested range spans the device’s volatile and persistent
partitions.

The device shall return the known list of locations with media errors for the requested
address range, when it processes the command. Any time the device detects a new
poisoned location it shall add the DPA to the Poison List, add an appropriate event to its
Warning, Informational, or Failure Event Log, update the Event Status Register, and if
configured, interrupt the host. In response the host should issue this command again
to retrieve the updated list. If the device does not support poison list for volatile ranges
and any location in the requested list maps to volatile, the device shall return Invalid
Physical Address.

Possible Command Return Codes:
• Success
• Invalid Parameter
• Unsupported
• Internal Error
• Retry Required
• Media Disabled
• Invalid Physical Address
• Invalid Security State
• Invalid Payload Length

Command Effects:
• None

Table 186. Get Poison List Input Payload

Byte Offset Length Description

0 8

Get Poison List Physical Address: The starting DPA to retrieve the
Poison List for.
• Bits[5:0]: Reserved
• Bits[7:6]: DPA[7:6]
• Bits[15:8]: DPA[15:8]
• …
• Bits[63:56]: DPA[63:56]

8 8
Get Poison List Physical Address Length: The range of physical
addresses to retrieve the Poison List for. This length shall be in units of 64
bytes.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 371
Revision 2.0, Version 1.0

The Media Error Records returned here are also utilized for the Get Scan Media Results
command (Section 8.2.9.5.4.6) and are defined in Table 188.

Table 187. Get Poison List Output Payload

Byte Offset Length Description

0 1

Poison List Flags: Flags that describe the returned list.
• Bit[0]: More Media Error Records: When set, the device has more

Media Error Records to return for the given Get Poison List address
range. The host should keep issuing the Get List Poison command and
retrieve records until this indicator is no longer set.

• Bit[1]: Poison List Overflow: When set, the returned list has
overflowed, and the returned list can no longer be considered a
complete list. The device shall freeze the contents of the list and
continue to report the overflow condition until the list is cleared and
rebuilt by performing a Scan Media request using the full address
range. There is no guarantee that rebuilding the list will remove the
overflow condition. When set, the Overflow Timestamp field shall be
valid.

• Bit[2]: Scan Media in Progress: When set, a background operation to
scan the media is executing and the returned list may or may not be a
complete list while this flag is set.

• Bits[7:3]: Reserved

1 1 Reserved

2 8

Overflow Timestamp: The time that the device determined the poison
list overflowed. This field is only valid if the overflow indicator is set. The
number of unsigned nanoseconds that have elapsed since midnight, 01-
Jan-1970, UTC. If the device does not have a valid timestamp, return 0.

0Ah 2 Media Error Record Count: Number of records in the Media Error
Records list.

0Ch 14h Reserved

20h Varies Media Error Records: The list of media error records.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 372
Revision 2.0, Version 1.0

8.2.9.5.4.2 Inject Poison (Opcode 4301h)

An optional command to inject poison into a requested physical address. If the host
injects poison using this command, the device shall return poison when the address is
accessed through the CXL.mem bus.

Injecting poison shall add the new physical address to the device’s poison list and the
error source shall be set to an injected error. In addition, the device shall add an
appropriate poison creation event to its internal Informational Event Log, update the
Event Status Register, and if configured interrupt the host.

It is not an error to inject poison in to a DPA that already has poison present and no
error is returned.

Possible Command Return Codes:
• Success
• Unsupported
• Internal Error
• Retry Required
• Media Disabled
• Invalid Physical Address
• Inject Poison Limit Reached
• Invalid Security State
• Invalid Payload Length

Command Effects:
• Immediate Data Change

Table 188. Media Error Record

Byte Offset Length Description

0 8

Media Error Address: The DPA of the memory error and error source
• Bits[2:0]: Error Source – The device shall report one of the following

error sources with each DPA reported
— 000b = Unknown
— 001b = External - Poison received from a source external to the

device
— 010b = Internal – The device generated poison from an internal

source
— 011b = Injected – The error was injected into the device for

testing purposes
— 111b = Vendor Specific
— Other values reserved.

• Bits[5:3]: Reserved
• Bits[7:6]: DPA[7:6]
• Bits[15:8]: DPA[15:8]
• …
• Bits[63:56]: DPA[63:56]

8 4
Media Error Length: The number of adjacent DPAs in this media error
record. This shall be non-zero. Devices may coalesce adjacent memory
errors into a single entry. This length shall be in units of 64 bytes.

0Ch 4 Reserved

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 373
Revision 2.0, Version 1.0

8.2.9.5.4.3 Clear Poison (Opcode 4302h)

An optional command to clear poison from the requested physical address and
atomically write the included data in its place. This provides the same functionality as
the host writing new data to the device directly.

Clearing poison shall remove the physical address from the device’s Poison List. It is
not an error to clear poison from an address that does not have poison set. If the
device detects that it is not possible to clear poison from the physical address, it shall
return a permanent media failure code for this command.

Possible Command Return Codes:
• Success
• Invalid Parameter
• Unsupported
• Internal Error
• Retry Required
• Media Disabled
• Invalid Physical Address
• Permanent Media Failure
• Invalid Security State
• Invalid Payload Length

Command Effects:
• Immediate Data Change

Table 189. Inject Poison Input Payload

Byte Offset Length Description

0 8

Inject Poison Physical Address: The requested DPA where poison shall
be injected by the device.
• Bits[5:0]: Reserved
• Bits[7:6]: DPA[7:6]
• Bits[15:8]: DPA[15:8]
• …
• Bits[63:56]: DPA[63:56]

Table 190. Clear Poison Input Payload

Byte Offset Length Description

0 8

Clear Poison Physical Address: The requested DPA where poison shall
be cleared by the device.
• Bits[5:0]: Reserved
• Bits[7:6]: DPA[7:6]
• Bits[15:8]: DPA[15:8]
• …
• Bits[63:56]: DPA[63:56]

8 40h Clear Poison Write Data: The data the device shall write into the
requested physical address, atomically, while clearing poison.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 374
Revision 2.0, Version 1.0

8.2.9.5.4.4 Get Scan Media Capabilities (Opcode 4303h)

This command allows the device to report capabilities and options for the Scan Media
feature based on the requested range. The device may reject this command if the
range requested spans the device’s volatile and persistent partitions.

Possible Command Return Codes:
• Success
• Unsupported
• Invalid Parameter
• Internal Error
• Retry Required
• Media Disabled
• Invalid Physical Address
• Invalid Security State
• Invalid Payload Length

Command Effects:
• None

8.2.9.5.4.5 Scan Media (Opcode 4304h)

The Scan Media command causes the device to initiate a scan of a portion of its media
for locations that are poisoned or result in poison if the addresses were accessed by the
host. The device may update its Poison List as a result of executing the scan and shall
complete any changes to the Poison List before signally completion of the Scan Media
background operation. If the device updates its Poison List while the Scan Media
background operation is executing, the device shall indicate that a media scan is in
progress if Get Poison List is called during the scan. The host should only utilize this

Table 191. Get Scan Media Capabilities Input Payload

Byte Offset Length Description

0 8

Get Scan Media Capabilities Start Physical Address: The starting DPA
from where to retrieve Scan Media capabilities.
• Bits[5:2]: Reserved
• Bits[7:6]: DPA[7:6]
• Bits[15:8]: DPA[15:8]
• …
• Bits[63:56]: DPA[63:56]

8 8
Get Scan Media Capabilities Physical Address Length: The range of
physical addresses to retrieve Scan Media capabilities for. This length shall
be in units of 64 bytes.

Table 192. Get Scan Media Capabilities Output Payload

Byte Offset Length Description

0 4

Estimated Scan Media Time: The number of milliseconds the device
estimates are required to complete the Scan Media request over the range
specified in the input. The device shall return 0 if it cannot estimate a time
for the specified range.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 375
Revision 2.0, Version 1.0

command if the poison list has overflowed and is no longer a complete list of the
memory errors that exist on the media. The device may reject this command if the
requested range spans the device’s volatile and persistent partitions.

If interrupts are enabled for reporting internally or externally generated poison, and the
poison list has not overflowed, the host should avoid using this command. It is
expensive and may impact the performance of other operations on the device. This is
intended only as a backup to retrieve the list of memory error locations in the event the
poison list has overflowed.

Since the execution of a media scan may take significant time to complete, it is
considered a background operation. The Scan Media command shall initiate the
background operation and provide immediate status on the device’s ability to start the
scan operation. Any previous Scan Media results are discarded by the device upon
receiving a new Scan Media command. Once the Scan Media command is successfully
started, the Background Command Status Register is utilized to retrieve the status. The
Get Scan Media Results command shall return the list of poisoned memory locations.

Possible Command Return Codes:
• Success
• Background Command Started
• Invalid Parameter
• Unsupported
• Internal Error
• Retry Required
• Busy
• Media Disabled
• Invalid Physical Address
• Aborted
• Invalid Security State
• Invalid Payload Length

Command Effects:
• Background Operation

Table 193. Scan Media Input Payload

Byte Offset Length Description

0 8

Scan Media Physical Address: The starting DPA where to start the scan.
• Bits[5:2]: Reserved
• Bits[7:6]: DPA[7:6]
• Bits[15:8]: DPA[15:8]
• …
• Bits[63:56]: DPA[63:56]

8 8 Scan Media Physical Address Length: The range of physical addresses
to scan. This length shall be in units of 64 bytes.

10h 1

Scan Media Flags:
• Bit[0]: No Event Log - When set, the device shall not generate event

logs for media errors found during the Scan Media operation.
• Bits[7:1]: Reserved.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 376
Revision 2.0, Version 1.0

8.2.9.5.4.6 Get Scan Media Results (Opcode 4305h)

Get Scan Media Results returns an unordered list of poisoned memory locations, in
response to the Scan Media command. The completion status for the Scan Media
command is returned in the Background Command Status Register and is not repeated
here.

Since the returned list can be larger than the output payload size, it is possible to
return the list in multiple calls to Get Scan Media Results. The More Media Error Records
indicator shall be set by the device anytime there are more records to retrieve. The
caller should continue to issue this command until this indicator is no longer set.

If the device cannot complete the scan and requires the host to retrieve scan media
results before the device can continue the scan, the device shall set the Scan Media
Stopped Prematurely indicator, return a valid Scan Media Restart Physical Address and
Scan Media Restart Physical Address Length. This is the physical address range the
device would require the Scan Media command to be called again with to continue the
scan. It is the responsibility of the host to issue the Scan Media command utilizing this
restart context to guarantee that the entire physical address range of the device is
eventually scanned.

Possible Command Return Codes:
• Success
• Unsupported
• Internal Error
• Retry Required
• Media Disabled
• Busy
• Invalid Security State
• Invalid Payload Length

Command Effects:
• None

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 377
Revision 2.0, Version 1.0

The Media Error Records returned here are also utilized for the Get Poison List
command (Section 8.2.9.5.4.1) and are defined in Table 188.

8.2.9.5.5 Sanitize

8.2.9.5.5.1 Sanitize (Opcode 4400h)

Sanitize the device in order to securely re-purpose or decommission it. This is done by
ensuring that all user data and meta-data, whether it resides in persistent capacity,
volatile capacity, or the label storage area, is made permanently unavailable by
whatever means is appropriate for the media type. The exact method used to sanitize
is vendor specific. Sanitize also deletes all event logs on the device. Sanitize does not
reset any internal usage statistics or counters and shall not artificially prolong the life of
the device in any way. Unlike Secure Erase, which erases data by changing encryption
keys, a successful Sanitize command ensures that no user data is available, encrypted
or otherwise.

Table 194. Get Scan Media Results Output Payload

Byte Offset Length Description

0 8

Scan Media Restart Physical Address: The location where the host
should restart the Scan Media operation if the device could not complete
the requested scan. The device shall report a valid restart address if it
returns Scan Media Stopped Prematurely status.
• Bits[5:0]: Reserved
• Bits[7:6]: DPA[7:6]
• Bits[15:8]: DPA[15:8]
• …
• Bits[63:56]: DPA[63:56]

8 8

Scan Media Restart Physical Address Length: The remaining range
where the host should restart the Scan Media operation if the device could
not complete the requested scan. The device shall report a valid restart
length if it returns Scan Media Stopped Prematurely status. This length
shall be in units of 64 bytes.

10h 1

Scan Media Flags
• Bit[0]: More Media Error Records - When set, the device has more

Media Error Records to return for the given Scan Media address range.
The host should keep issuing the Scan Media command with the same
Scan Media Physical Address & Scan Media Physical Address Length
and retrieve records until this indicator is no longer set.

• Bit[1]: Scan stopped prematurely - The device has run out of internal
storage space for the error list. The device shall report a valid Scan
Media Restart Physical Address and Scan Media Restart Physical
Address Length to allow the host to restart the Scan Media command
after retrieving the errors from the current scan.

• Bits[7:2]: Reserved

11h 1 Reserved

12h 2 Media Error Record Count: The number of records in the Media Error
Records list.

14h 0Ch Reserved

20h Varies Media Error Records: The list of media error records.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 378
Revision 2.0, Version 1.0

Once the Sanitize command has started successfully, the device shall be placed in the
media disabled state. If the command fails or is interrupted by a reset or power failure,
it shall remain in the media disabled state until a successful Sanitize command has
been completed. In this state, the Media Status field in the Memory Device Status
Register will indicate 11b (Disabled), all memory writes to the device will have no
effect, and all memory reads will return random values (no user data returned, even for
locations that the failed Sanitize operation didn’t sanitize yet). Mailbox commands shall
still be processed in the disabled state, except that commands that access Sanitized
areas shall fail with the Media Disabled error code (Get/Set LSA, for example).

Prior to using the sanitize command, any security applied to the user data areas of the
device shall be disabled.

This command does not have any input or output payloads.

Possible Command Return Codes:
• Success
• Background Command Started
• Unsupported
• Internal Error
• Retry Required
• Busy
• Media Disabled
• Aborted
• Invalid Security State
• Invalid Payload Length

Command Effects:
• Immediate Data Change
• Security State Change
• Background Operation

8.2.9.5.5.2 Secure Erase (Opcode 4401h)

Erase user data by changing the media encryption keys for all user data areas of the
device.

Prior to using the secure erase command, any security applied to the user data areas of
the device shall be disabled or unlocked.

This command does not have any input or output payloads.

Possible Command Return Codes:
• Success
• Unsupported
• Internal Error
• Retry Required
• Media Disabled
• Invalid Security State
• Invalid Payload Length

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 379
Revision 2.0, Version 1.0

Command Effects:
• Immediate Data Change
• Security State Change

8.2.9.5.6 Persistent Memory Security

Persistent Memory security is an optional feature that gates access to persistent
memory with a user passphrase. When enabled, the persistent memory shall be locked
on a hot, warm or cold reset until the user passphrase is supplied with the Unlock
command. When the persistent memory is locked, any commands that require access
to the media shall return the Invalid Security State return code.

A master passphrase may optionally be supported to passphrase secure erase the
persistent memory and disable security should the user passphrase be lost.

8.2.9.5.6.1 Get Security State (Opcode 4500h)

Retrieve the current persistent memory security state.

Possible Command Return Codes:
• Success
• Unsupported
• Internal Error
• Retry Required
• Invalid Payload Length

Command Effects:
• None

8.2.9.5.6.2 Set Passphrase (Opcode 4501h)

Set or change the user or master passphrase. When the user passphrase is set, the
device persistent memory shall be locked on hot, warm or cold reset until the user
passphrase is supplied. When the master passphrase is set, the master passphrase

Table 195. Get Security State Output Payload

Byte Offset Length Description

0 4

Security State: Describes the current persistent memory security state.
• Bit[0]: User Passphrase Set - The user passphrase is set. Persistent

memory security is enabled.
• Bit[1]: Master Passphrase Set - The master passphrase is set.
• Bit[2]: Locked - The persistent memory is currently locked.
• Bit[3]: Frozen - No changes can be made to the persistent memory

security state of the device until a cold reset.
• Bit[4]: User Passphrase Attempt Count Reached - An incorrect user

passphrase was supplied three times in a row. A cold reset is required
to reset the user passphrase attempt count. Until then, commands
that require a user passphrase shall return Invalid Security State.

• Bit[5]: Master Passphrase Attempt Count Reached - An incorrect
master passphrase was supplied three times in a row. A cold reset is
required to reset the master passphrase attempt count. Until then,
commands that require a master passphrase shall return Invalid
Security State.

• Bits[31:6]: Reserved

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 380
Revision 2.0, Version 1.0

may be used to passphrase secure erase the device if the user passphrase is lost. The
master passphrase shall only be set in the security disabled state when the user
passphrase is not set.

Possible Command Return Codes:
• Success
• Invalid Parameter
• Unsupported
• Internal Error
• Retry Required
• Invalid Security State
• Incorrect Passphrase
• Invalid Payload Length

Command Effects:
• Security State Change

8.2.9.5.6.3 Disable Passphrase (Opcode 4502h)

Disable the user or master passphrase. When the user passphrase is disabled, the
device persistent memory shall not be locked on hot, warm or cold reset.

Possible Command Return Codes:
• Success
• Invalid Parameter
• Unsupported
• Internal Error
• Retry Required
• Invalid Security State
• Incorrect Passphrase
• Invalid Payload Length

Command Effects:
• Security State Change

Table 196. Set Passphrase Input Payload

Byte Offset Length Description

0 1

Passphrase Type: Specifies the type of passphrase supplied in the input
payload.
• 00h = Master passphrase
• 01h = User passphrase

Other values reserved.

1 1Fh Reserved

20h 20h Current Passphrase: The current passphrase. Ignored if the passphrase
is not currently set.

40h 20h New Passphrase: The new passphrase.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 381
Revision 2.0, Version 1.0

8.2.9.5.6.4 Unlock (Opcode 4503h)

Supply the user passphrase to unlock the device persistent memory.

Possible Command Return Codes:
• Success
• Unsupported
• Internal Error
• Retry Required
• Invalid Security State
• Incorrect Passphrase
• Invalid Payload Length

Command Effects:
• Security State Change

8.2.9.5.6.5 Freeze Security State (Opcode 4504h)

Prevent changes to persistent memory security state until a cold reset. In the frozen
security state, the Set Passphrase, Disable Passphrase, Unlock, and Passphrase Secure
Erase commands shall return Invalid Security State. This command does not have any
input or output payloads.

Possible Command Return Codes:
• Success
• Unsupported
• Internal Error
• Retry Required
• Invalid Security State
• Invalid Payload Length

Command Effects:

Table 197. Disable Passphrase Input Payload

Byte Offset Length Description

0 1

Passphrase Type: Specifies the type of passphrase supplied in the input
payload.
• 00h = Master passphrase
• 01h = User passphrase

Other values reserved.

1 1Fh Reserved

20h 20h Current Passphrase: The current passphrase.

Table 198. Unlock Input Payload

Byte Offset Length Description

0 20h Current Passphrase: The current user passphrase.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 382
Revision 2.0, Version 1.0

• Security State Change

8.2.9.5.6.6 Passphrase Secure Erase (Opcode 4505h)

Erase the device persistent memory by changing the media encryption keys. The user
passphrase shall be disabled after secure erase, but the master passphrase, if set, shall
be unchanged.

Possible Command Return Codes:
• Success
• Invalid Parameter
• Unsupported
• Internal Error
• Retry Required
• Media Disabled
• Invalid Security State
• Incorrect Passphrase
• Invalid Payload Length

Command Effects:
• Immediate Data Change
• Security State Change

8.2.9.5.7 Security Passthrough

CXL devices may support security protocols defined in other industry specifications. The
Security Send and Security Receive commands provide a transport interface to pass
through security protocol data to the device.

8.2.9.5.7.1 Security Send (Opcode 4600h)

The Security Send command is used to transfer security protocol data to the device.
The data structure transferred to the device as part of this command contains security
protocol specific commands to be performed by the device. The data structure
transferred may also contain data or parameters associated with the security protocol
commands. Status and data that is to be returned to the host for the security protocol
commands submitted by a Security Send command are retrieved with the Security
Receive command.

Table 199. Passphrase Secure Erase Input Payload

Byte Offset Length Description

0 1

Passphrase Type: Specifies the type of passphrase supplied in the input
payload.
• 00h = Master passphrase
• 01h = User passphrase

Other values reserved.

1 1Fh Reserved

20h 20h Current Passphrase: The current passphrase. Ignored if the passphrase
is not currently set or is not supported by the device.

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 383
Revision 2.0, Version 1.0

The association between a Security Send command and subsequent Security Receive
command is Security Protocol field dependent as defined in the Security Features for
SCSI Commands (SFSC). Available from http://webstore.ansi.org.

Possible Command Return Codes:
• Success
• Invalid Parameter
• Unsupported
• Internal Error
• Retry Required
• Invalid Payload Length

Command Effects:
• Security State Change

8.2.9.5.7.2 Security Receive (Opcode 4601h)

The Security Receive command transfers the status and data result of one or more
Security Send commands that were previously submitted to the device.

The association between a Security Receive command and previous Security Send
command is dependent on the Security Protocol. The format of the data to be
transferred is dependent on the Security Protocol. Refer to SFSC for Security Protocol
details.

Each Security Receive command returns the appropriate data corresponding to a
Security Send command as defined by the rules of the Security Protocol. The Security
Receive command data may or may not be retaining if there is a loss of communication
between the device and the host, or if a device hot, warm or cold reset occurs.

Possible Command Return Codes:
• Success
• Invalid Parameter
• Unsupported
• Internal Error
• Retry Required
• Invalid Payload Length

Command Effects:
• None

Table 200. Security Send Input Payload

Byte Offset Length Description

0 1 Security Protocol: Identifies the security command protocol interface.

1 2 SP Specific: Contains bits 15:0 of the Security Protocol Specific Field
defined in SFSC.

3 5 Reserved

8 Varies Data

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 384
Revision 2.0, Version 1.0

8.2.9.5.8 SLD QoS Telemetry

These commands enable system software to manage QoS Telemetry features in SLDs.

8.2.9.5.8.1 Get SLD QoS Control (Opcode 4700h)

This command retrieves the SLD’s QoS control parameters, as defined in Table 203.
This command is mandatory if the Egress Port Congestion Supported bit or the
Temporary Throughput Reduction Supported bit is set. See Table 175.

Possible Command Return Codes:
• Success
• Unsupported
• Internal Error
• Retry Required
• Invalid Payload Length

Command Effects:
• None

Table 201. Security Receive Input Payload

Byte Offset Length Description

0 1 Security Protocol: Identifies the security command protocol interface.

1 2 SP Specific: Contains bits 15:0 of the Security Protocol Specific Field
defined in SFSC.

3 5 Reserved

Table 202. Security Receive Output Payload

Byte Offset Length Description

0 Varies Data

Table 203. Get SLD QoS Control Output Payload and Set SLD QoS Control Input Payload

Byte Offset Length Description

0 1

QoS Telemetry Control: Default is 00h.
Bit[0]: Egress Port Congestion Enable. See Section 3.3.2.3.4.
Bit[1]: Temporary Throughput Reduction Enable. See Section 3.3.2.3.5.
Bits[7:2]: Reserved

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 385
Revision 2.0, Version 1.0

8.2.9.5.8.2 Set SLD QoS Control (Opcode 4701h)

This command sets the SLD’s QoS control parameters. The input payload is defined in
Table 203. The device must complete the set operation before returning the response.
The command response does not return a payload. This command will fail, returning
Invalid Parameter, if any of the parameters are outside their valid range.

This command is mandatory if the Egress Port Congestion Supported bit or the
Temporary Throughput Reduction Supported bit is set. See Table 175.

Possible Command Return Codes:
• Success
• Invalid Parameter
• Unsupported
• Internal Error
• Retry Required
• Invalid Payload Length

Command Effects:
• Immediate Policy Change

8.2.9.5.8.3 Get SLD QoS Status (Opcode 4702h)

This command retrieves the SLD's QoS status as defined in Table 204.

This command is mandatory if the Egress Port Congestion Supported bit is set. See
Table 175.

Possible Command Return Codes:
• Success
• Unsupported
• Internal Error
• Retry Required
• Invalid Payload Length

Command Effects:
• None

1 1
Egress Moderate Percentage: Threshold in percent for Egress Port
Congestion mechanism to indicate moderate congestion. Valid range is 1-
100. Default is 10.

2 1
Egress Severe Percentage: Threshold in percent for Egress Port
Congestion mechanism to indicate severe congestion. Valid range is 1-100.
Default is 25.

3 1

Backpressure Sample Interval: Interval in ns for Egress Port
Congestion mechanism to take samples. Valid range is 0-15. Default is 8
ns sample interval, which corresponds to 800 ns of history. Value of 0
disables the mechanism. See Section 3.3.2.3.6.

Table 203. Get SLD QoS Control Output Payload and Set SLD QoS Control Input Payload

Byte Offset Length Description

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 386
Revision 2.0, Version 1.0

8.2.9.6 FM API Commands

CXL FM API commands are identified by a 2-byte Opcode as specified in Table 205.
Opcodes also provide an implicit major version number, which means a command’s
definition shall not change in an incompatible way in future revisions of this
specification. Instead, if an incompatible change is required, the specification defining
the change shall define a new opcode for the changed command. Commands may
evolve by defining new fields in the payload definitions that were originally defined as
Reserved, but only in a way where software written using the earlier definition will
continue to work correctly, and software written to the new definition can use the zero
value or the payload size to detect devices that do not support the new field. This
implicit minor versioning allows software to be written with the understanding that an
opcode shall only evolve by adding backward-compatible changes.

Table 204. Get SLD QoS Status Output Payload

Byte Offset Length Description

0 1 Backpressure Average Percentage: Current snapshot of the measured
Egress Port average congestion. See Section 3.3.2.3.8.

Table 205. CXL FM API Command Opcodes

Opcode

Required
Command Set

Bits[15:8]
Command
Bits[7:0]

Combined
Opcode

50h Switch Event
Notifications 00h

Event Notification
(Section 7.6.7.1.1)

5000h OSW, PMLD

51h Physical Switch

00h
Identify Switch Device
(Section 7.6.7.1.3)

5100h MSW, PMLD

01h
Get Physical Port State
(Section 7.6.7.1.4)

5101h MSW, PMLD

02h
Physical Port Control
(Section 7.6.7.1.5)

5102h MSW, PMLD

03h
Send PPB CXL.io
Configuration Request
(Section 7.6.7.1.6)

5103h MSW, PMLD

52h Virtual Switch

00h
Get Virtual CXL Switch Info
(Section 7.6.7.2.1)

5200h OSW, PMLD

01h
Bind vPPB
(Section 7.6.7.2.2)

5201h OSW, PMLD

02h
Unbind vPPB
(Section 7.6.7.3)

5202h OSW, PMLD

03h
Generate AER Event
(Section 7.6.7.3.1)

5203h OSW, PMLD

Ev
al

ua
tio

n
C

op
y

Control and Status Registers

 Compute Express Link Specification
October 26, 2020 387
Revision 2.0, Version 1.0

*MSW = mandatory for all switches, PSW = Prohibited for Switches, OSW = Optional for Switches, MMLD =
Mandatory for all MLD components, PMLD = Prohibited for all MLD components, OMLD=Optional for all MLD
components.

§ §

53h MLD Port

00h Tunnel Management
Command (Section 7.6.7.4.1) 5300h OSW, PMLD

01h
Send PPB CXL.io
Configuration Request
(Section 7.6.7.4.2)

5301h OSW, PMLD

02h Send PPB CXL.io Memory
Request (Section 7.6.7.4.3) 5302h OSW, PMLD

54h MLD
Components

00h Get LD Info
(Section 7.6.7.5.1) 5400h MMLD. PSW

01h Get LD Allocations
(Section 7.6.7.5.2) 5401h MMLD, PSW

02h Set LD Allocations
(Section 7.6.7.5.3) 5402h OMLD, PSW

03h Get QoS Control
(Section 7.6.7.5.4) 5403h MMLD, PSW

04h Set QoS Control
(Section 7.6.7.5.5) 5404h MMLD, PSW

05h Get QoS Status
(Section 7.6.7.5.6) 5405h OMLD, PSW

06h Get QoS Allocated BW
(Section 7.6.7.5.7) 5406h MMLD, PSW

07h Set QoS Allocated BW
(Section 7.6.7.5.8) 5407h MMLD, PSW

08h Get QoS BW Limit
(Section 7.6.7.5.9) 5408h MMLD, PSW

09h Set QoS BW Limit
(Section 7.6.7.5.10) 5409h MMLD, PSW

Table 205. CXL FM API Command Opcodes

Opcode

Required
Command Set

Bits[15:8]
Command
Bits[7:0]

Combined
Opcode

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 388
Revision 2.0, Version 1.0

9.0 Reset, Initialization, Configuration and
Manageability

9.1 Compute Express Link Boot and Reset Overview

9.1.1 General

Boot and Power-up sequencing of CXL devices follows the applicable form factor
specifications and as such, will not be discussed in detail in this section.

CXL devices can encounter three types of resets.
1. Hot Reset – Triggered via link (via LTSSM or link down)
2. Warm Reset – Triggered via external signal, PERST# (or equivalent, form factor

specific mechanism)
3. Cold Reset – Involves main Power removal and PERST# (or equivalent, form factor

specific mechanism)

These three reset types are labeled as Conventional Reset. Function Level Reset
(Section 9.5) and CXL Reset (Section 9.7) are not considered Conventional Resets.
These definitions are consistent with the PCIe Base Specification.

However, this chapter will highlight the differences that exist between CXL and native
PCIe for these operations.

A PCIe device generally cannot tell the system level flow that triggered these resets.
System level reset and Sx-entry flows require coordinated coherency domain shutdown
before the sequence can progress. Therefore, the CXL flow will adhere to the following
rules:

• Warnings will be issued to all CXL devices before the above transitions are initiated
by the system, including CXL.io.

• To extend the available messages, CXL PM messages will be used to communicate
between the host and the device. Devices must respond to these messages with
the proper acknowledge, even if no actions are actually performed on the said
device. To prevent a deadlock in the case where one or more downstream
components do not respond, the host must implement a timeout, after which, it
proceeds as if the response has been received.

• A device shall correctly process the reset trigger regardless of these warning
messages. Not all device resets are preceded by a warning message. For example,
setting Secondary Bus Reset bit in a Downstream Port above the device results in a
device hot-reset, but it is not preceded by any warning message. It is also possible
that the PM VDM warning message may be lost due to an error condition.

Sx states are system Sleep States and are enumerated in ACPI Specification.

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 389
Revision 2.0, Version 1.0

9.1.2 Comparing CXL and PCIe Behavior

The following table summarizes the difference in event sequencing and signaling
methods across System Reset and Sx flows, for CXL.io/Cache/Cache+Mem and PCIe.

The terms used in the table are as follows:
• Warning: An early notification of the upcoming event. Devices with coherent cache

or memory are required to complete outstanding transactions, flush internal caches
as needed, and place system memory in a safe state such as Self-refresh as
required. Devices are required to complete all internal actions and then respond
with a proper Ack to the processor

• Signaling: Actual initiation of the state transition, using either wires and/or link-
layer messaging

Notes:
1. All CXL profiles support CXL PM VDMs and use end-end (PM - PM controller) sequences where possible
2. CXL PM VDM with different encodings for different events. If CXL.io devices do not respond to the CXL

PM VDM, the host may still end up in the correct state due to timeouts
3. Flex Bus Physical Layer link states across cold reset, warm reset, surprise reset, and Sx entry match

PCIe Physical Layer link states.

9.1.2.1 Switch Behavior

When a CXL Switch (physical or virtual) is present, the Switch shall forward PM2IP
messages received on its primary interface to CXL devices on the secondary interface
subject to rules specified below. The Switch shall aggregate IP2PM messages from the
secondary interface prior to responding on its primary interface subject to rules
specified below.

Logical Opcode=0 (PM_INFO)
• Do not forward PM2IP messages to downstream devices.
• Execute Credits and PM Initialization flow against the downstream entity whenever

a link trains up in CXL mode.
• Save CAPABILITY_VECTOR from the response.

Logical Opcode=2 (RESETPREP).
• Never forward PM2IP messages to PCIe links.

Table 206. Event Sequencing for Reset and Sx Flows

Case PCIe CXL

System Reset
Entry

Warning: None;
Signaling:
LTSSM Hot-Reset

Warning: PM2IP (ResetWarn,
WarmReset)2;
Signaling: LTSSM Hot-Reset

Surprise System
Reset Entry

Warning: None;
Signaling:
LTSSM detect-entry or PERST#

Warning: None;
Signaling: LTSSM detect-entry or PERST#

System Sx Entry
Warning: PME-Turn_off/Ack;
Signaling: PERST# (Main power will go
down)

Warning: PM2IP ResetWarn, Sx)2;
PME-Turn_off/Ack;
Signaling: PERST# (Main power will go
down)

System Power
Failure Warning: None Warning: PM2IP (GPF Phase 1 and Phase

2)2; See Section 9.8.

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 390
Revision 2.0, Version 1.0

• Forward PM2IP messages to all downstream CXL links that are active.
• Gather the IP2PM messages from all downstream CXL links that are active.

Logical Opcode= 4 (PMREQ).
• Never forward PM2IP messages to PCIe links.
• Forward PM2IP messages to all downstream CXL links that are active.
• Gather the IP2PM messages from all downstream CXL links that are active.

“Conglomerate” LTR requests from all devices by following the rules defined in
Latency Tolerance Reporting (LTR) Mechanism section in PCI Express Specification.

Logical Opcode=6 (GPF).
• Never forward PM2IP messages to PCIe links.
• Never forward PM2IP messages to all downstream CXL links which returned

CAPABILITY_VECTOR[1]=0.
• Forward PM2IP messages to all downstream CXL links which returned

CAPABILITY_VECTOR[1]=1 and gathers the IP2PM responses from all such links.

Logical Opcode=FEh (CREDIT_RTN)
• Do not forward PM2IP message to downstream devices.
• PM Credit management on the primary interface is independent of PM credit

management on the secondary interface.

When communicating with a pooled device, these messages shall carry LD-ID TLP
prefix in both directions.

Figure 140. PMREQ/RESETPREP Propagation by CXL Switch

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 391
Revision 2.0, Version 1.0

9.2 Compute Express Link Device Boot Flow
CXL devices will follow with the appropriate form factor regarding the boot flows. This
specification uses the terms “Warm Reset” and “Cold Reset” in a manner consistent
with PCI Express Base Specification.

9.3 Compute Express Link System Reset Entry Flow
In an OS orchestrated reset flow, it is expected that the CXL devices are already in D3
state with their contexts flushed to the system memory before the platform reset flow
is triggered.

In a platform triggered reset flow (due to a fatal error etc.), a CXL.io device may not be
in D3 State when it receives the ResetPrep message.

During system reset flow, host shall issue a CXL PM VDM (see Table 5) to the
downstream CXL components with the following values.

• PM Logical Opcode[7:0]=RESETPREP
• Parameter[15:0]=REQUEST
• ResetType = Warm Reset
• PrepType = General Prep.

The CXL device shall flush any relevant context to the host (if any), clean up the data
serving the host and put any CXL device connected memory into safe state such as
self-refresh. The CXL device shall take any additional steps that are necessary for the
CXL host to enter LTSSM Hot-Reset. After all the Reset preparation is completed, the
CXL device shall issue a CXL PM VDM with the following value

• PM Logical Opcode[7:0]=RESETPREP
• Parameter[15:0]=RESPONSE
• ResetType = Warm Reset
• PrepType = General Prep

The CXL device may have PERST# asserted after reset handshake. On PERST#
assertion, the CXL device should clear any sticky content internal to the device unless
they are on AuxPower. The CXL device's handling of sticky state is consistent with the
PCI Express Base specification.

To prevent a deadlock in the case where one or more downstream components do not
respond with an Ack, the host must implement a timeout, after which, it proceeds as if
the response has been received.

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 392
Revision 2.0, Version 1.0

9.4 Compute Express Link Device Sleep State Entry Flow
Since OS is the orchestrator of Sx flows always, it is expected that the CXL devices are
already in D3 state with their contexts flushed to the CPU-attached or CXL-attached
memory before the platform Sx flow is triggered.

During Sx flow, the host shall issue a CXL PM VDM (see Table 5) to the downstream
components with the following values.

• PM Logical Opcode[7:0]=RESETPREP
• Parameter[15:0]=REQUEST
• ResetType = host space transition from S0 to Sx (S1, S3, S4 or S5)
• PrepType = General Prep

The CXL device shall flush any relevant context to the host (if any), clean up the data
serving the host and puts any CXL device connected memory into safe state such as
self-refresh. The CXL device shall take any additional steps that are necessary for the
CXL host to initiate a L23 flow. After all the Sx preparation is completed, the CXL device
shall issue a CXL PM VDM with the following values

• PM Logical Opcode[7:0]=RESETPREP
• Parameter[15:0]=RESPONSE
• ResetType = host space transition from S0 to Sx (based on the target sleep state)
• PrepType = General Prep

PERST# to the CXL device may be asserted any time after this handshake is completed.
On PERST# assertion, the CXL device should clear any sticky content internal to the
device unless they are on AuxPower. The CXL device's handling of sticky state is
consistent with the PCI Express Base Specification.

CXL.mem capable adapters may need aux power to retain memory context across S3.

Figure 141. CXL Device Reset Entry Flow

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 393
Revision 2.0, Version 1.0

Note: PERST# shall always be asserted for CXL Sx Entry flows.

9.5 Function Level Reset (FLR)
The PCIe FLR mechanism enables software to quiesce and reset Endpoint hardware
with Function-level granularity. CXL devices expose one or more PCIe functions to host
software. These functions can expose FLR capability and existing PCIe compatible
software can issue FLR to these functions. The PCIe Base Specification provides specific
guidelines on impact of FLR on PCIe function level state and control registers. For
compatibility with existing PCIe software, CXL PCIe functions should follow those
guidelines if they support FLR. For example, any software readable state that
potentially includes secret information associated with any preceding use of the
Function must be cleared by FLR.

FLR has no effect on the CXL.cache and CXL.mem protocol. Any CXL.cache and
CXL.mem related control registers including CXL DVSEC structures and state held by
the CXL device are not affected by FLR. The memory controller hosting the HDM is not
reset by FLR. Upon FLR, all address translations associated with the corresponding
Function are invalidated in accordance with PCI Express Specification. Since the CXL
Function accesses cache using system physical address held in address translation
cache, the Function is unable to access any cachelines after FLR until software explicitly
re-enables ATS. The device is not required to write back its cache during FLR flow. It is
strongly recommended that the device not write back its cache content during FLR if
the cache is shared by multiple functions to avoid an adverse effect on the performance
of the other functions. Cache coherency must be maintained.

In some cases, system software may use FLR to attempt error recovery. In the context
of CXL devices, errors in CXL.mem and CXL.cache logic cannot be recovered by FLR.
FLR may succeed in recovering from CXL.io domain errors.

Figure 142. CXL Device Sleep State Entry Flow

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 394
Revision 2.0, Version 1.0

All Functions in a CXL 2.0 device that participate in CXL.cache or CXL.mem are required
to support either FLR or CXL Reset (Section 9.7).

9.6 Cache Management
A legacy OS or legacy PCIe bus driver is not aware of CXL.cache capability. The device
driver is expected to be aware of this CXL.cache capability and may manage the CXL
cache. Software shall not assume that lines in device cache that map to HDM will be
flushed by CPU cache flush instructions. The behavior may vary from one host to
another.

System software may wish to ensure that a CXL.cache capable device does not contain
any valid cachelines without resetting the system or the entire device. Since a device is
not required to clear cache contents upon FLR, separate control and status bits are
defined for this purpose. This capability is mandatory for all CXL 2.0 CXL.cache capable
devices and highly recommended for CXL 1.1 CXL.cache capable devices. It is
advertised via Cache Writeback and Invalidate Capable flag in the DVSEC CXL
Capability register (Section 8.1.3.1).

Software shall take the following steps to ensure device does not contain any valid
cachelines
1. Set Disable Caching=1. This bit is located in DVSEC CXL Control2 register

(Section 8.1.3.4).
2. Set Initiate Cache Write Back and Invalidation=1. This step may be combined with

the previous step as a single configuration space register write to the DVSEC CXL
Control2 register (Section 8.1.3.4).

3. Wait until Cache Invalid=1. This register is located in the DVSEC CXL Status2
(Section 8.1.3.5). Software may leverage cache size reported in the DVSEC CXL
Capability2 register (Section 8.1.3.7) to compute a suitable timeout value.

Software is required to Set Disable Caching=0 in order to re-enable caching. Upon the
transition of the Disable Caching bit from 1 to 0, the device shall transition the Cache
Invalid bit to 0 if it was previously 1.

9.7 CXL Reset
CXL.mem and CXL.cache resources such as controllers, buffers and caches are likely to
be shared at the device level. CXL Reset is a mechanism to reset all CXL.mem and
CXL.cache state in addition to CXL.io in all non-Virtual Functions that support
CXL.cache and or CXL.mem protocols. Reset of CXL.io has the same scope as FLR.
Section 9.5 describes FLR in the context of CXL devices. CXL Reset will not affect non-
CXL Functions or the physical link. Non-CXL Function Map DVSEC capability is used to
advertise to the Host software which non-Virtual Functions are considered non-CXL i.e.
they neither participate in CXL.cache nor in CXL.mem.

All Functions in a CXL 2.0 SLD that participate in CXL.cache or CXL.mem are required
to support either FLR or CXL Reset. MLDs, on the other hand, are required to support
CXL Reset.

Control, status and capability fields for CXL Reset are exposed in configuration space of
Device 0, Function 0 of a CXL device, but these affect all physical and virtual functions
within the device that participate in CXL.cache or CXL.mem.

The system software is responsible for quiescing all the Functions that are impacted
due to reset of the CXL.cache and CXL.mem state in the device and offlining any
associated HDM ranges. Once the CXL Reset is completed, all CXL Functions on the
device must be re-initialized prior to use.

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 395
Revision 2.0, Version 1.0

CXL Reset may be issued by the System Software or the Fabric Manager. To quiesce the
impacted non-virtual Functions prior to issuing CXL Reset, the System Software shall
complete the following actions for each of the CXL non-virtual Functions:
1. Offline any volatile or persistent HDM Ranges. When offlining is completed, there

shall be no outstanding or new CXL.mem transactions to the affected CXL
Functions.

2. Configure these Functions to stop initiating new CXL.io requests. This procedure is
identical to that for FLR.

3. The FM may issue CXL Reset for various cases described in Chapter 7. In the case
of the FM use of CXL Reset, there may be outstanding commands in the device
which shall be silently discarded.

CXL.io reset of the device shall follow the definition of FLR in PCIe Base Specification.
Note that only PCIe mapped memory shall be cleared or randomized by the non-virtual
Functions during FLR.

Reset of CXL.cache and CXL.mem state as part of the CXL reset flow at the device level
has the following behavior:

• All outstanding or new CXL.mem reads shall be silently discarded. Previously
accepted writes to persistent HDM ranges shall be persisted. Writes to volatile HDM
ranges may be discarded.

• The device caches (Type 1 and Type 2 Devices) shall be written back and
invalidated by the device. Software is not required to write back and invalidate
device cache (Section 9.6) prior to issuing the CXL reset.

• No new CXL.cache requests shall be issued except for the above cache flushing
operation. Snoops shall continue to be serviced.

• Contents of volatile HDM ranges may or may not be retained and the device may
optionally clear or randomize these ranges if this capability is supported and is
requested during CXL Reset (See the CXL Reset Mem Clr Capable in the DVSEC CXL
Capability Register and the CXL Reset Mem Clr Enable bit in the DVSEC Control2
Register). Contents of the persistent HDM ranges will be retained by device.

• Any errors during a CXL Reset shall be logged in the error status registers in the
usual manner. Failure to complete a CXL Reset shall result in the CXL Reset Error bit
in the DVSEC CXL Status2 Register being set. The system software may choose to
retry CXL Reset, assert other types of device resets, or restart the system in
response to a CXL Reset failure.

• Unless otherwise specified, all non-sticky registers defined in this specification shall
be initialized to their defaults value upon CXL reset. The CONFIG_LOCK bit in the
DVSEC Config Lock register (Section 8.1.3.6) and any register fields that are locked
by CONFIG_LOCK shall not be affected by CXL Reset. Any sticky registers such as
the error status registers shall be preserved across CXL Reset. If the device is in
the viral state, it shall remain in that state after a CXL reset.

If the device is unable to complete CXL Reset within the timeout period specified, the
System Software shall consider this a failure and may choose to take actions similar to
when the CXL Reset Error bit is set.

Pooled Type 3 device (MLD) must ensure that only the LD assigned to the Host issuing
CXL Reset is impacted. This includes the clearing or randomizing of the volatile HDM
ranges on the device. Other LDs must continue to operate normally.

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 396
Revision 2.0, Version 1.0

9.7.1 Effect on the Contents of the Volatile HDM

Since the ownership of the volatile HDM ranges may change following a CXL Reset, it is
important to ensure that there is no leak of volatile memory content that was present
prior to the CXL Reset (This condition does not apply to persistent memory content
whose security is ensured by other means not discussed here).

There are two cases to consider:
1. The device remains bound to the same Host and the System Software reallocates

the volatile HDM ranges to a different software entity. The System Software is often
responsible for ensuring that the memory range is re-initialized prior to any
allocation. The device may implement an optional capability to perform clearing or
randomizing of all impacted volatile HDM ranges. This may be invoked using the
optional Secure Erase function (Section 8.2.9.5.5.2). Optionally, the device may be
capable of clearing or randomizing volatile HDM content as part of CXL Reset. If this
capability is available, the System Software may take advantage of it. However,
since this is an optional capability, the System Software should not depend on it.

2. The device is migrated to a different Host with FM involvement as described in
Chapter 7. The FM must use either Secure Erase operation (Section 8.2.9.5.5.2) or
utilize CXL Reset if the CLX Reset Mem Clr capability exists to clear or randomize
any volatile HDM ranges prior to re-assigning device to a different Host.

Capability for clearing and randomizing volatile HDM ranges in the device is reported by
the CXL Reset Mem Clr Capable bit in the DVSEC CXL Capability Register. If present,
this capability may be optionally used by setting the CXL Reset Mem Clr Enable in the
DVSEC CXL Control2 Register.

9.7.2 Software Actions

System Software shall follow these steps while performing CXL Reset:
1. Determine if device supports the CXL Reset and the CXL Reset Mem Clr capability.

by consulting the DVSEC CXL Capability Register (Section 8.1.3.1).
2. If the device supports the CXL Reset Mem Clr capability, program the CXL Reset

Mem Clr Enable in the DVSEC Control2 Register (Section 8.1.3.4) as required.
3. Determine the timeout for completion by consulting the DVSEC CXL Capability

Register.
4. Prepare the rest of the system for CXL Reset (e.g. offline memory, quiesce

initiators) as described earlier.
5. Set the Initiate CXL Reset=1 in the DVSEC CXL Control2 register.
6. Wait for CXL Reset Complete=1 or CXL Reset Error = 1 in the DVSEC CXL Status2

register (Section 8.1.3.5) for up to the timeout period.

System Software should follow these steps while re-initializing and onlining a device:
1. Set up the device as required to enable functions impacted by CXL Reset.
2. Optionally check to see if the device performed clearing or randomizing of memory

during the CXL Reset. If yes, skip software-based initialization prior to re-
allocation. If not, perform software-based initialization.

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 397
Revision 2.0, Version 1.0

9.8 Global Persistent Flush (GPF)
Global Persistent Flush (GPF) is a hardware-based mechanism associated with
persistent memory that is used to flush cache and memory buffers to a persistence
domain. A persistence domain is defined as a location that is guaranteed to preserve
the data contents across a restart of the device containing the data. GPF operation is
global in nature since all CXL agents that are part of a cache coherency domain
participate in the GPF flow. A CXL cache coherency domain consists of one or more
hosts, all CXL Root Ports that belong to these hosts, and the virtual hierarchies
associated with these Root Ports.

GPF may be triggered in response to an impending non-graceful shutdown such as a
sudden power loss. The host may initiate GPF to ensure any in-flight data is written
back to persistent media prior to power going away. GPF may also be triggered upon
other asynchronous or synchronous events that may or may not involve power loss.
The complete list of such events, the mechanisms by which host is notified and
coordination across CXL Root Ports are outside the scope of this specification.

9.8.1 Host and Switch Responsibilities

All hosts and switches that comply with 2.0 or a later version of CXL shall support GPF
as outlined in this section.

GPF flow consists of two phases, GPF Phase 1 and GPF Phase 2. During Phase 1, the
devices are expected to stop injecting new traffic and write back their caches. During
Phase 2, the persistent devices are expected to flush their local write buffers to a
persistence domain. This two-phase approach ensures a device does not receive any
new traffic while it is flushing its local memory buffers. The host shall enforce a barrier
between the two phases. The host shall ensure that it stops injecting new CXL.cache
transactions and its local caches are written back prior to entering GPF Phase 2.

In certain configurations, the cache write back step may be skipped during GPF Phase
1. There are various possible reasons for implementing this mode of operation that are
outside the scope of this specification. One possible reason could be that the host does
not have the required energy to write back all the caches in time before power loss.
When operating in this mode, the system designer may use other means, outside the
scope of this specification, to ensure that the data that is meant to be persistent is not
lost. The host shall set the Payload[1] flag in the GPF Phase 1 request to indicate that
the devices shall write back their caches during the Phase 1. The host uses a host
specific mechanism to determine the correct setting of Payload[1].

During each phase, the host shall transmit a CXL GPF PM VDM request to each GPF
capable device or switch directly connected to each of its Root Ports and wait for a
response. Table 5 describes the format of these messages. The Switch’s handling of a
GPF PM VDM is described in Section 9.1.2.1. The CXL Root Ports and CXL downstream
Switch Ports shall implement timeouts to prevent a single device from blocking GPF
forward progress. These timeouts are configured by system software (see
Section 8.1.6). A host or a switch may assume that the GPF timeouts configured across
Downstream Ports at the same level in the hierarchy are identical. If a Switch detects a
timeout, it shall set the Payload [8] in the response to indicate an error condition. This
enables a CXL Root Port to detect GPF Phase 1 errors anywhere in the virtual hierarchy
it spawns. If an error is detected by any Root Port in the coherency domain, the host
shall set the Payload[8] flag during the Phase 2 flow informing every CXL device of an
error during the GPF Phase 1. Persistent devices may log this indication in a device
specific manner and make this information available to system software. If the host is
positively aware that the GPF event will be followed by a powerfail, it should set the
Payload[0] in the GPF Phase 1 request message. If the host cannot guarantee that the
GPF event will be followed by a powerfail, it shall not set the Payload[0] in the GPF
Phase 1 request message.

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 398
Revision 2.0, Version 1.0

The CXL devices and switches must be able to receive and process GPF messages
without dependency on any other PM messages. GPF messages do not use a credit and
no CREDIT_RTN message is expected in response to a GPF request.

The host may reset the device any time after completion of GPF Phase 2.

 If the host detection or processing of a GPF event and a reset event overlap, the host
may process either event and ignore the other event. If the host detection or
processing of a GPF event and an Sx event overlap, the host may process either event
and ignore the other event. If host detects a GPF event while it is entering a lower
power state, it is required to process the GPF event in a timely fashion.

9.8.2 Device Responsibilities

If a device supports GPF, it shall set Bit 1 of CAPABILITY_VECTOR field in its
AGENT_INFO response (see Table 5). All CXL 2.0 and later devices shall support GPF. A
CXL 1.1 device may support GPF functionality. If a device supports GPF, it shall respond
to all GPF request messages regardless of whether it is required to take any action. A
lack of response within a software configured timeout window may be interpreted as an
error by the Host. For example, a Type 3 device may or may not take any specific
action during GPF Phase 1 other than generating a GPF Phase 1 response message.

Upon receiving a GPF Phase 1 request message, a CXL device shall execute the
following steps in the specified order:
1. Stop injecting new CXL.cache transactions except for cache write backs described

in step 3 below
2. If CXL.cache capable and Payload[1]=1, disable caching. This will ensure that the

device no longer caches any coherent memory and thereby not cache any writes
received over the CXL interface in its CXL cache.

3. If CXL.cache capable and Payload[1]=1, write back all modified lines in the device
cache. The memory destination may be local or remote.
— In order to minimize GPF latency, the device should ignore lines that are not

dirty
— In order to minimize GPF latency, the device should not write back lines that it

knows are mapped to volatile memory. The mechanism by which the device
obtains this knowledge is outside of this specification.

— The device must write back all dirty lines that are mapped to its local persistent
HDM using device internal mechanisms.

— The device must write back all dirty lines that are not mapped to its local HDM
and may be of persistent type. Each such dirty line must be written back to the
destination HDM in two steps:
Issue DirtyEvict request to the host (Section 3.2.4.1.15)
Issue Clflush request to the host (Section 3.2.4.1.13).

4. Indicate the device is ready to move to the GPF Phase 2 by sending a GPF Phase 1
response message. Set the Payload [8] in the response if the Phase 1 processing
was not successful.

A device may take additional steps to reduce power draw from the system if the
Payload[0] flag is set in the request message indicating power failure is imminent. For
example, a device may choose to not wait for responses to the previously issued reads
before initiating the write back operation [step 3] above as long as the read responses
do not impact persistent memory content.

Until the receipt of GPF Phase 2 request message, the device must respond to and
complete any accesses it receives over CXL interface. This is to ensure the other
requestors can continue to make forward progress through GPF flow.

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 399
Revision 2.0, Version 1.0

Upon receiving a GPF Phase 2 request, a CXL device shall execute the following steps in
the specified order
1. If it is a persistent memory device and the Payload[8] flag is set, increment Dirty

Shutdown Count (See section Section 8.2.9.5.3.1)
2. Flush internal memory buffers to local memory if applicable
3. Acknowledge the request by sending a GPF Phase 2 response message.
4. Enter the lowest possible power state.

As this exchange may be performed in the event of an impending power loss, it is
important that any flushing activity in either phase is performed in an expedient
manner, and that the acknowledgment of each phase is sent as quickly as possible.

A device may have access to an alternate power source (e.g., a device with a large
memory buffer may include a charged capacitor or battery) and may acknowledge GPF
Phase 2 requests as soon as it has switched over to the alternate power source. Such a
device shall ensure that PERST# assertion does not interfere with the local flush flow
and shall handle a subsequent power-up sequence correctly even if the local flush is in
progress.

A device is not considered to be fully operational after it receives a GPF Phase 1
Request. In this state, a device shall correctly process Conventional Reset request; and
return to operational state upon successful completion of these resets.

If the device detection or processing of a GPF event and a reset event overlap, the
device may process either event and ignore the other event. If the device detection or
processing of a GPF event and an Sx event overlap, the device may process either
event and ignore the other event. If a device receives a GPF request while it is entering
a lower power state, it shall process the GPF request in a timely fashion.

A pooled device is composed of multiple LDs, which are assigned to different Virtual
Hierarchies. Because a GPF event may or may not be coordinated across these
hierarchies, each LD shall be capable of independently processing GPF messages
targeting that individual LD, without affecting any other LD within the MLD. An MLD
cannot go into a lower power state until all LDs associated with the device have
indicated that they are ready to go to the lower power state. In addition, the MLD must
be able to process multiple GPF events (from different VCS targeting unique LDs).

If a device receives a GPF Phase 2 request message without a prior GPF Phase1 request
message, it shall respond to that GPF Phase 2 request message.

9.8.3 Energy Budgeting

It is often necessary to assess whether a system has sufficient energy to handle GPF
during a power fail scenario. System software may use the information available in
various CXL DVSEC registers along with its knowledge of the rest of the system to
make this determination.

This information may also be used to calculate appropriate GPF timeout values at
various points in the CXL hierarchy. See the implementation note below. The timeout
values are configured through GPF DVSEC for CXL Ports (Section 8.1.6).

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 400
Revision 2.0, Version 1.0

IMPLEMENTATION NOTE

System software may determine the total energy needs during powerfail GPF. There
may always be a non-zero possibility that Power fail GPF may fail (e.g. under unusual
thermal conditions or fatal errors). The goal of the system designer is to make sure
the probability of failure is sufficiently low and meets the system design objectives.

The following high-level algorithm may be followed for calculating timeouts and
energy requirements
1. Iterate through every CXL device and calculate T1, T2 as defined in Column (Time

needed) in Table 207.
2. Calculate T1MAX and T2MAX.

a. T1MAX = MAX of T1 values calculated for all devices plus propagation delay,
host side processing delays and any other host/system specific delays.

b. T2MAX = MAX of T2 values calculated for all devices in the hierarchy plus
propagation delay, host side processing delays and any other host/system
specific delays. This could be same as GPF Phase 2 timeout at RC.

3. Calculate E1 and E2 for each device. See Column “Energy needed” in Table 207.
4. Do summation over all CXL devices (E1+E2). Add energy needs for host and non-

CXL devices during this window.

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 401
Revision 2.0, Version 1.0

The GPF timeout registers in the Root Port and the Downstream Switch Port CXL Port
GPF Capability Structure may be programmed to T1MAX and T2MAX, respectively.
Device active power is the amount of power the device consumes in D0 state and
may be reported by the device via Power Budgeting Extended Capability. Cache size is
reported via PCIe DVSEC for CXL Devices (Revision 1). This computation may have to
be redone periodically as some of these factors may change. When a CXL device is
hot-added/removed, it may warrant recomputation. Refer to Table 207.

Cache size, T2 and GPF Phase 2 Power parameters are reported by the device via GPF
DVSEC for CXL Devices (Section 8.1.7). The other parameters are system dependent.
System software may use ACPI HMAT to determine average persistent memory
bandwidth, but it could apply additional optimizations if it is aware of the specific
persistent device the accelerator is operating on. In some cases, System Firmware
may be the one performing this computation. Since System Firmware may or may not
be aware of workloads, it may make conservative assumptions.

If the system determines it does not have sufficient energy to handle all CXL devices,
it may be able to take certain steps e.g. reconfigure certain devices to stay within the
system budget by reducing the size of cache allocated to persistent memory or limit
persistent memory usages.Several system level and device level optimizations are
possible:

• Certain accelerators may always operate on volatile memory and could skip the
flush. For these accelerators, T1 would be 0.

• Device could partition cache among volatile vs. non-volatile memory and thus
lower T1. Such partitioning may be accomplished with assistance from system
software.

•
• A device could force certain blocks (e.g. execution engines) in lower power state

upon receiving a GPF Phase 1 request.
• Device may include a local power source and therefore could lower its T1 and T2
• System software may configure all devices so that all T1s and T2s are roughly

equal. This may require performance and/or usage model trade-offs.

Table 207. GPF Energy Calculation Example

Device step Time needed Energy needed

Stop traffic
generation Negligible Negligible

Disable caching Negligible Negligible

Write back cache
content to persistent
memory

T1= Cache size * % of lines in cache
mapped to persistent memory / worst
case persistent memory bandwidth.

E1= T1MAX * device active
Power

Flush local Memory
buffers to local
memory

T2 E2= T2 * GPF Phase 2 Power

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 402
Revision 2.0, Version 1.0

9.9 Hot-Plug
CXL 1.1 hosts and CXL 1.1 devices do not support hot-plug.

CXL 2.0 Root Ports, CXL 2.0 devices and CXL switches shall support Hot-Add and
managed Hot-Remove. In a managed Hot-Remove flow, software is notified of a hot
removal request. This provides CXL aware system software the opportunity to write
back device cachelines and to offline device memory prior to removing power. During a
Hot-Add flow, CXL aware system software discovers the CXL.cache and CXL.mem
capabilities of the adapter and initializes them so they are ready to be used.

CXL leverages PCI Express Hot-plug model and Hot-plug elements as defined in PCI
Express Specification and the applicable form factor specifications.

CXL 2.0 specification does not define the mechanisms for graceful handling of Surprise
Hot-Remove of CXL 1.1 or CXL 2.0 adapters. If a CXL adapter that holds modified lines
in its cache is removed without any prior notification, subsequent accesses to those
addresses may result in timeouts that may be fatal to the host operation. If a CXL
adapter with HDM is removed without any prior notification, subsequent accesses to
HDM locations may result in timeouts that may be fatal to the host operation.

CXL 2.0 capable Downstream Ports and CXL 1.1 Downstream Ports shall hardwire Hot-
Plug surprise bit in Slot Capabilities register to 0. Software may leverage Downstream
Port Containment capability of the Downstream Port to gracefully handle surprise hot
removal of PCIe adapters or contain errors resulting from surprise hot removal or link
down of CXL adapters.

Switches and CXL 2.0 devices should export the Coherent Device Attribute Table
(CDAT) via ReadTable DOE (Section 8.1.11). Software may use this interface to learn
about performance and other attributes of the device or the Switch.

The Root complex and Upstream Switch Ports implement HDM Decoder Capability
Structure. Software may program these to account for the HDM capacity with
appropriate interleaving scheme (Section 9.13.1). Software may choose to leave the
decoders unlocked for maximum flexibility and use other protections (such as page
tables) to limit access to the registers. All unused decoders are unlocked by definition
and software may claim these to decode additional HDM capacity during Hot-Add flow.

All CXL 2.0 CXL.cache capable devices should implement Cache Writeback and
Invalidation capability (Section 9.6). Software may use this capability to ensure a
CXL.cache capable device does not have any modified cachelines prior to removing
power.

Software shall make sure the device has completed the Power Management
Initialization (Section 8.1.3.5) prior to enabling its CXL.cache or CXL.mem capabilities.

Software shall make sure it does not enable CXL.cache device below a given Root Port
if the Root Port does not support CXL.cache. The Root Port’s capabilities are exposed
via DVSEC Flex Bus Port Capability register. All CXL 2.0 CXL.cache capable devices
should expose the size of its cache via DVSEC CXL Capability2 register. Software may
cross check this against the host's effective snoop filter capabilities
(Section 8.2.5.15.2) during Hot-Add of CXL.cache capable device. Software may
configure Cache_SF_Coverage field in DVSEC CXL control register to indicate to the
device how much snoop filter capacity it should use (0 being a legal value). In extreme
scenarios, software may disable a CXL.cache devices to avoid snoop filter over-
subscription.

During Hot-Add, System Software may reassess GPF energy budget and take corrective
actions if necessary.

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 403
Revision 2.0, Version 1.0

Hot-Add of a CXL 1.1 device may result in unpredictable behavior. The following
mechanisms are defined to ensure that a CXL 1.1 device that is hot-added in runtime is
not be discoverable by standard PCIe software.

• For Root Ports connected to hot-plug capable slots, it is recommended that System
Firmware set Disable CXL1p1 Training bit (Section 8.2.1.3.2) after completion of
System Firmware PCIe enumeration but before OS hand-off. This will ensure that a
CXL 2.0 Downstream Port will fail the link training if a CXL 1.1 device is hot-added.
A hot-plug event may be generated in these cases, and the hot-plug handler may
be invoked. The hot-plug handler may treat this condition as a failed hot-plug,
notify user and power down the slot.

• A Downstream Switch Port may itself be hot-added and cannot rely on System
Firmware setting Disable CXL1p1 Training bit. A Switch shall not report link up
condition and shall not report presence of an adapter when it is connected to a CXL
1.1 adapter. System Firmware or CXL aware software may still consult DVSEC Flex
Bus Port Status (Section 8.2.1.3.3) and discover that the Port is connected to a CXL
1.1 device.

IMPLEMENTATION NOTE

CXL 2.0 Type 3 device Hot-Add flow
1. System Firmware may prepare the system for a future Hot-Add (e.g., pad

resources to accommodate the needs of an adapter to be hot-added)
2. User hot-adds a CXL 2.0 memory expander in an empty slot. Downstream Ports

brings up the link in CXL 2.0 mode.
3. PCIe hot-plug interrupt is generated.
4. Bus driver performs the standard PCIe Hot-Add operations, thus enabling CXL.io.

This process assigns BARs to the device.
5. CXL aware software (CXL bus driver in OS, the device driver or other software

entity) probes CXL DVSEC capabilities on the device and ensures that HDM is
active. Memory may be initialized either by hardware or FW on the adapter or the
device driver.

6. CXL aware software configures the CXL DVSEC structures on the device, switches
and Root Complex (e.g., GPF DVSEC, HDM decoders).

7. CXL aware software notifies OS memory manager about the new memory and its
attributes such as latency and bandwidth. Memory manager processes a request
and adds the new memory to its allocation pool.

8. The user may be notified via attention indicator or some other user interface of
successful completion.

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 404
Revision 2.0, Version 1.0

IMPLEMENTATION NOTE

CXL 2.0 Type 3 device managed Hot-Remove flow
1. User initiates a Hot-Remove request via attention button or some other user

interface.
2. The standard PCIe Hot-Remove flow is triggered (e.g. via hot-plug interrupt if

attention button was used).
3. CXL aware software (CXL bus driver in OS, the device driver or other software

entity) probes CXL DVSEC capabilities on the device and determines active
memory ranges.

4. CXL aware software requests the OS memory manager to vacate these ranges.
5. If the Memory Manager is unable to fulfill this request (e.g., because of presence

of pinned pages), CXL aware software will return an error to the Hot-Remove
handler, which will notify the user that the operation has failed.

6. If the Memory Manager is able to fulfill this request, CXL aware system software
reconfigures HDM Decoders in CXL switches and Root Ports. This is followed by
the standard PCIe Hot-Remove flow that will process CXL.io resource
deallocation.

7. If the PCIe Hot-Remove flow fails, the user is notified that the Hot-Remove
operation has failed. Otherwise, the user is notified that the Hot-Remove flow has
successfully completed.

IMPLEMENTATION NOTE

CXL 2.0 Type 1 device Hot-Add flow
1. System Firmware may prepare the system for a future Hot-Add (e.g. pad MMIO

resources to accommodate the needs of an adapter to be hot-added)
2. The user Hot-Adds a CXL 2.0 Type 1 device in an empty slot.The downstream Port

brings up the link in CXL 2.0 mode.
3. A PCIe hot-plug interrupt is generated.
4. The bus driver performs the standard PCIe Hot-Add operations, thus enabling

CXL.io. This process assigns BARs to the device.
5. CXL aware software (CXL bus driver in OS, the device driver or other software

entity) probes CXL DVSEC capabilities on the device. If the device is hot-added
below a Root Port that cannot accommodate a CXL.cache enabled device, Hot-
Add is rejected. If the device has larger cache than what the host snoop filter can
handle, Hot-Add is rejected. The user may be notified via attention indicator or
some other user interface of this.

6. If the above checks pass, CXL aware software configures the CXL DVSEC
structures on the device and switches (e.g. GPF DVSEC).

7. The hot-Add flow is complete. The user may be notified via attention indicator or
some other user interface of successful completion.

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 405
Revision 2.0, Version 1.0

9.10 Software Enumeration
A CXL 2.0 device is exposed to the host software as one or more PCI Express
Endpoints. A CXL 1.1 device is exposed to the host software as one or more Root
Complex Integrated Endpoints. PCIe is the most widely used device model by various
OSs. In addition to leveraging the software infrastructure and device driver writer
expertise, this choice also enables us to readily use PCIe extensions like SR-IOV and
PASID.

A CXL device cannot claim I/O resources since it is not a Legacy Endpoint. For definition
of Legacy Endpoint, see PCI Express Base Specification.

Discovery of CXL devices follows the PCIe model, but there are some important
differences between a CXL 1.1 Hierarchy and a CXL 2.0 Virtual Hierarchy.

9.11 CXL 1.1 Hierarchy
In a CXL 1.1 Hierarchy, the link itself is not exposed to the Operating System as a PCIe
link. This is different from PCIe model where PCIe bus driver in OS is able to manage
the PCIe link. This approach ensures 100% compatibility with legacy PCIe software.

Since the link is not exposed to legacy OS, each CXL 1.1 device creates a new PCIe
enumeration hierarchy in the form of an ACPI defined PCIe Host Bridge (PNP ID
PNP0A08). CXL Endpoints appear as Root Complex Integrated Endpoints (RCiEP).

CXL Endpoints report “PCIe” interface errors to OS via Root Complex Event Collector
(RCEC) implemented in the host. This is enabled via an extension to the RCEC (Root
Complex Event Collector Bus Number Association ECN) to PCIe specification.

9.11.1 PCIe Software View of the CXL 1.1 Hierarchy

Figure 143. PCIe Software View of CXL 1.1 Hierarchy

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 406
Revision 2.0, Version 1.0

Since the CXL link is not exposed to legacy OS, the System Firmware view of the
hierarchy is different than that of the legacy OS.

9.11.2 System Firmware View of CXL 1.1 Hierarchy

The functionality of the CXL 1.1 Downstream Port and the CXL1.1Upstream Port can be
accessed via memory mapped registers. These will not show up in standard PCI bus
scan by existing Operating Systems. The base addresses of these registers are set up
by System Firmware and System Firmware can use that knowledge to configure CXL.

System Firmware configures the Downstream Port to decode the memory resource
needs of the CXL device as expressed by PCIe BAR registers and Upstream Port BAR(s).
PCIe BARs are not to be configured to decode any HDM associated with the CXL device.

9.11.3 OS View of CXL 1.1 Hierarchy

The CXL device instantiates one or more ACPI Host bridges. The _BBN method for this
Host Bridge matches the bus number that hosts CXL RCiEPs.

This ACPI Host Bridge spawns a legal PCIe hierarchy. All PCIe Endpoints located in the
CXL device are children of this ACPI Host Bridge. These Endpoints may appear directly
on the Root bus number or may appear behind a Root Port located on the Root bus.

The _CRS method for PCIe root bridge returns bus and memory resources claimed by
the CXL Endpoints. _CRS response does not include HDM on CXL.mem capable device.
Nor does it comprehend any Upstream Port BARs (hidden from OS).

CXL aware OS may use CXL Early Discovery Table(CEDT) or _CBR object in ACPI
namespace to locate the Downstream Port and Upstream Port registers. CEDT
enumerates all CXL Host Bridges that are present at the time of OS hand-off and _CBR
is limited to CXL Host Bridges that are hot-added.

9.11.4 CXL 1.1 Hierarchy System Firmware Enumeration Flow

Since CXL 1.1 Hierarchy does not support Hot-Addition of CXL devices, it is enumerated
by System Firmware prior to OS handoff.

The CXL 1.1 hardware autonomous mode selection flow cannot automatically detect
the number of retimers. If the system includes retimers, the System Firmware shall
follow these steps to ensure the number of retimers is correctly configured.
1. Prior to the link training, the System Firmware should set the DVSEC Flex Bus Port

control register, based on the available information, to indicate whether there are
0, 1, or 2 retimers present. (It is possible that retimers on a CXL add-in card or a
backplane may not be detected by BIOS prior to link training and the initial
programming may not account for all retimers in the path.)

2. After the link training completes successfully or fails, the System Firmware should
read the Retimer Presence Detected and Two Retimers Presence Detected values
logged in the PCIe standard Link Status 2 register and see if they are consistent
with what was set in the Flex Bus Port DVSEC in the previous step. If they are
different, the System Firmware should bring the link down by setting Link Disable
bit in the Downstream Port, update the Retimer1_Present and Retimer2_Present
bits in the Flex Bus Port DVSEC and initiate link training again.

9.11.5 CXL 1.1 device discovery

1. Parse configuration space of device 0, function 0 on the Secondary bus # and
discover CXL specific attributes. These are exposed via PCIe DVSEC for CXL
Devices Capability structures. See Section 8.1.3.

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 407
Revision 2.0, Version 1.0

2. If the device supports CXL.cache, configure the CPU coherent bridge. Set Cache
Enable bit in the DVSEC CXL Control register.

3. If the device supports CXL.mem, check Mem_HwInit_Mode by reading DVSEC CXL
Capability register and determine the number of HDM ranges supported by reading
HDM_Count field in the same register.

4. If Mem_HwInit_Mode =1
• The device must set the Memory_Info_Valid bit in each applicable DVSEC CXL

Range X Size Low registers (X=1, 2) within 1 second of reset deassertion.
• The device must set the Memory_Active_Valid bit in each applicable DVSEC CXL

Range X Size Low registers (X=1, 2) within Memory_Active_Timeout duration of
reset deassertion.

• When Memory_Info_Valid is 1, System Firmware reads Memory_Size_High and
Memory_Size_Low fields for each supported HDM range. If System Firmware
cannot delay boot until the Memory_Active get set, the System Firmware may
continue with HDM base assignment and may delay OS hand-off until
Memory_Active bit is set.

• System Firmware computes the size of each HDM range and maps those in system
address space.

• System Firmware programs the Memory_Base_Low and the Memory_Base_High
fields for each HDM range.

• System Firmware programs the ARB/MUX arbitration control registers if necessary.
• System Firmware sets CXL.mem Enable. Once Memory_Active=1, Any subsequent

accesses to HDM are decoded and routed to the local memory by the device.
• Each HDM range is later exposed to the OS as a separate, memory-only NUMA

node via ACPI SRAT table.
• System Firmware obtains Coherent Device Attribute Table from the UEFI device

driver or directly from the device via Table Access DOE (Section 8.1.11) and uses
this information during the construction of ACPI memory map, ACPI SRAT and ACPI
HMAT.

5. If Mem_HwInit_Mode =0
• The device must set Memory_Info_Valid bit in each applicable DVSEC CXL Range X

Size Low registers (X=1, 2) within 1 second of reset deassertion.
• When Memory_Info_Valid is 1, System Firmware reads Memory_Size_High and

Memory_Size_Low fields for supported HDM ranges.
• System Firmware computes the size of each HDM range and maps those in system

address space.
• System Firmware programs the Memory_Base_Low and the Memory_Base_High

fields for each HDM range.
• System Firmware programs ARB/MUX arbitration control registers if necessary.
• System Firmware sets CXL.mem Enable. Any subsequent accesses to the HDM

ranges are decoded and completed by the device. The reads shall return all 1's and
the writes will be dropped.

• Each HDM range is later exposed to the OS as a separate, memory-only NUMA
node via ACPI SRAT table.

• If the memory is initialized prior to OS boot by UEFI device driver,
— The UEFI driver is responsible for setting Memory_Active.
— Once Memory_Active is set, any subsequent accesses to the HDM range are

decoded and routed to the local memory by the device.

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 408
Revision 2.0, Version 1.0

— System Firmware uses the information supplied by UEFI driver or Table Access
DOE (Section 8.1.11) during the construction of ACPI memory map and ACPI
HMAT. See UEFI Specification for further details.

• If the memory is initialized by an OS device driver post OS boot,
— System Firmware may use the information supplied by UEFI driver or Table

Access DOE (Section 8.1.11) during the construction of ACPI memory map and
ACPI HMAT. In future, CXL aware OS may extract this information directly from
the device via Table Access DOE.

— At OS hand-off, System Firmware reports that the size of memory associated
with HDM NUMA node as zero.

— The OS device driver is responsible for setting Memory_Active after memory
initialization is complete. Any subsequent accesses to the HDM memory are
decoded and routed to the local memory by the device.

— Availability of memory is signaled to the OS via capacity add flow.

CXL.io resource needs are discovered as part of PCIe enumeration. PCIe Root Complex
registers including Downstream Port registers are appropriately configured to decode
these resources. CXL Downstream Port and Upstream Port requires MMIO resources.
These are also accounted for during this process.

System Firmware programs the memory base and limit registers in the Downstream
Port to decode CXL Endpoint MMIO BARs, CXL Downstream Port MMIO BARs, CXL
Upstream Port MMIO BARs.

9.11.6 CXL 1.1 Devices with Multiple Flex Bus Links

9.11.6.1 Single CPU Topology

Figure 144. One CPU Connected to a Dual-Headed CXL Device Via Two Flex Bus Links

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 409
Revision 2.0, Version 1.0

In this configuration, the System Firmware shall report two PCI Host Bridges to the
Operating system, one that hosts the left Device 0, Function 0 and the second one that
hosts the Device 0, function 0 on the right. Both Device 0, function 0 instances
implement PCIe DVSEC for CXL Devices and a Device Serial Number PCIe Extended
Capability. A vendor ID and serial number match indicates that the two links are
connected to a single CXL device and this enables System Firmware to perform certain
optimizations.

In some cases, the CXL device may expose a single CXL device function that is
managed by the CXL device’s driver, whereas the other Device 0/function 0 represents
a dummy device. In this configuration, application software may submit work to the
single CXL device instance. However, the CXL device hardware is free to use both links
for traffic and snoops as long as the programming model is not violated.

The System Firmware maps the HDM into system address space using the following
rules.

Table 208. Memory Decode Rules in Presence of One CPU/Two Flex Bus Links

Left D0, F0
Mem_Capable

Left D0, F0
Mem_Size

Right D0, F0
Mem_ Capable

Right D0, F0
Mem_Size System Firmware requirements

0 NA 0 NA No HDM

1 M 0 NA
Range of size M decoded by Left Flex Bus
link. Right Flex Bus link does not receive
CXL.mem traffic.

0 NA 1 N
Range of size N decoded by Right Flex Bus
link. Left Flex Bus link does not receive
CXL.mem traffic.

1 M 1 N
Two ranges set up, Range of size M decoded
by Left Flex Bus link, Range of size N decoded
by right Flex Bus link

1 M 1 0 Single range of size M. CXL.mem traffic is
interleaved across two links

1 0 1 N Single range of size N. CXL.mem traffic is
interleaved across two links

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 410
Revision 2.0, Version 1.0

9.11.6.2 Multiple CPU Topology

In this configuration, System Firmware shall report two PCI Host Bridges to the
Operating system, one that hosts the left Device 0, Function 0 and the second one that
host the Device 0, function 0 on the right. Both Device 0, function 0 instances
implement PCIe DVSEC for CXL Devices and a Device Serial Number PCIe Extended
Capability. A vendor ID and serial number match indicates that the two links are
connected to a single accelerator and this enables System Firmware to perform certain
optimizations.

In some cases, the accelerator may choose to expose a single accelerator function that
is managed by the accelerator device driver and handles all work requests. This may be
necessary if the accelerator framework or applications do not support distributing work
across multiple accelerator instances. Even in this case, both links should spawn a legal
PCIe Host Bridge hierarchy with at least one PCIe function. However, the accelerator
hardware is free to use both links for traffic and snoops as long as the programming
model is not violated. To minimize the snoop penalty, the accelerator needs to be able
to distinguish between the system memory range decoded by CPU 1 versus CPU 2. The
device driver can obtain this information via ACPI SRAT table and communicate it to the
accelerator using device specific mechanisms.

The System Firmware maps the HDM into system address space using the following
rules. Unlike the single CPU case, the System Firmware shall never interleave the
memory range across the two Flex Bus links.

Figure 145. Two CPUs Connected to One CXL Device Via Two Flex Bus Links

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 411
Revision 2.0, Version 1.0

9.12 CXL 2.0 Enumeration
A CXL 2.0 capable host may be represented to system software as zero or more CXL
2.0 Host bridges, zero or more CXL 1.1 Host Bridges and zero or more PCIe Host
Bridges. Host Bridge is a software concept that represents a collection of Root Ports.

Enumeration of PCIe Host Bridges and PCIe hierarchy underneath them is governed by
PCI Express Base Specification. Enumeration of CXL Host Bridges is described below.

In an ACPI compliant system, CXL 2.0 Host Bridges and CXL 1.1 Host Bridges are
identified with ACPI Hardware ID (HID) of “ACPI0016”. CXL Early Discover Table (CEDT)
may be used to differentiate between a CXL 2.0 and a CXL 1.1 Host Bridge.
Enumeration of CXL 1.1 Host Bridges and CXL 1.1 devices is described in Section 9.11.

9.12.1 CXL 2.0 Root Ports

Each CXL 2.0 Host Bridge is associated with Base Bus Number and that bus number
shall contain one or more CXL 2.0 capable Root Ports. These Root Ports appears in PCIe
configuration space with a Type 1 header and Device/Port Type field in PCI Express
Capabilities Register shall identify these as standard PCIe Root Port. Unless stated
otherwise, CXL 2.0 Root Ports may implement all Capabilities that are defined in PCIe
Base Specification as legal for PCIe Root Port. These Root Ports can be in one of four
states
1. Disconnected
2. Connected to CXL 2.0 Device/Switch
3. Connected to CXL 1.1 Device
4. Connected to a PCIe Device/Switch

Section 9.12.3 describes how software can determine the current state of a CXL 2.0
Capable Root Port and the corresponding enumeration algorithm.

9.12.2 CXL 2.0 Virtual Hierarchy

CXL 2.0 capable Root Ports operating in CXL 2.0 mode may be directly connected to a
CXL 2.0 device or a CXL Switch. These Root Ports spawn a CXL 2.0 Virtual Hierarchy
(VH). Enumeration of CXL VH is described below.

CXL 2.0 devices appear as a standard PCI Express Endpoints with Type 0 Header. CXL
2.0 device’s primary function (device number 0, function number 0) shall carry one

Table 209. Memory Decode Rules in Presence of Two CPU/Two Flex Bus Links

Left D0, F0
Mem_Capable

Left D0, F0
Mem_Size

Right D0, F0
Mem_ Capable

Right D0, F0
Mem_Size System Firmware requirements

0 NA 0 NA No HDM

1 M 0 NA Range of size M decoded by Left Flex Bus
link. Right Flex Bus link does not receive
CXL.mem traffic.1 M 1 0

0 NA 1 N Range of size N decoded by Right Flex Bus
link. Left Flex Bus link does not receive
CXL.mem traffic.1 0 1 N

1 M 1 N
Two ranges set up, Range of size M decoded
by Left Flex Bus link, Range of size N
decoded by right Flex Bus link

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 412
Revision 2.0, Version 1.0

instance of CXL DVSEC ID 0 with Revision 1 or greater. Software may use this DVSEC
instance to distinguish a CXL 2.0 device from an ordinary PCIe device. Unless stated
otherwise, CXL 2.0 devices may implement all Capabilities that are defined in the PCIe
Base Specification as legal for PCIe devices.

A CXL 2.0 VH may include zero or more CXL 2.0 switches. Specific configuration
constraints are documented in Chapter 7.0. From enumeration software perspective,
each CXL Switch consists of one Upstream Switch Port and one or more Downstream
Switch Ports.

The configuration space of the Upstream Switch Port of CXL 2.0 Switch has a Type 1
header and the Device/Port Type field in the PCI Express Capabilities Register shall
identify it as Upstream Port of PCIe Switch. The configuration space carries one
instance of a CXL DVSEC ID 3 and one instance of DVSEC ID 7. DVSEC Flex Bus Port
Status register in CXL DVSEC ID 7 structure of the peer Port shall indicate that CXL 2.0
protocol was negotiated with the Upstream Switch Port during the link training. Unless
stated otherwise, CXL 2.0 Upstream Switch Ports may implement all Capabilities that
are defined in the PCIe Base Specification as legal for PCIe Upstream Switch Port.

The configuration space of a Downstream Switch Port of CXL 2.0 Switch also has a Type
1 header but the Device/Port Type field in the PCI Express Capabilities Register shall
identify these as Downstream Port of a PCIe Switch. Unless stated otherwise, CXL 2.0
Downstream Switch Ports may implement all Capabilities that are defined in the PCIe
Base Specification as legal for PCIe Downstream Switch Port. All of these Ports are CXL
2.0 capable and can be in one of four states just like the CXL 2.0 capable Root Ports
1. Disconnected
2. Connected to CXL 2.0 Device/Switch
3. Connected to CXL 1.1 Device
4. Connected to a PCIe Device/Switch

Section 9.12.3 describes how software can determine the current state of a CXL 2.0
Capable Downstream Switch Port and the corresponding enumeration algorithm.

A CXL 2.0 Downstream Switch Port operating in CXL 2.0 mode may be connected to
another CXL Switch or a CXL 2.0 device. The rules for enumerating CXL switches and
CXL 2.0 devices are already covered earlier in this section.

9.12.3 Enumerating CXL 2.0 Capable Downstream Ports

Software may use the combination of the Link Status registers and the CXL DVSEC ID 7
structure in the Downstream Port configuration space to determine which state a CXL
2.0 Capable Downstream Port is in.
1. CXL 2.0 capable Downstream Ports are in the Disconnected state when they do not

have an active link. The status of the link can be detected by following the PCIe
Base specification. If the link is not up, software shall ignore the CXL DVSEC ID 3
and the CXL DVSEC ID 7 capability structures. A Hot-Add event may transition a
Disconnected Port to a CXL 2.0 Connected state or a PCIe Connected state. Hot-
adding CXL 1.1 adapter will transition the Port to an Undefined state.

2. CXL 2.0 capable Downstream Ports connected to a CXL 2.0 device/Switch shall
expose one instance of the CXL DVSEC ID 3 and one instance of the CXL DVSEC ID
7 capability structures. The DVSEC Flex Bus Port Status register in the CXL DVSEC
ID 7 structure shall indicate that the CXL 2.0 protocol was successfully negotiated
during link training. System Firmware may leave the Unmask SBR and the Unmask
Link Disable bits in Port Control Override register of the Downstream Port at the
default (0) values to prevent legacy PCIe software from resetting the device and
the link respectively.

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 413
Revision 2.0, Version 1.0

3. CXL 2.0 capable Downstream Ports connected to a CXL 1.1 device shall expose one
instance of the CXL DVSEC ID 3 and one instance of the CXL DVSEC ID 7 capability
structures. The DVSEC Flex Bus Port Status register in the CXL DVSEC ID 7
structure shall indicate that the CXL 2.0 protocol was not negotiated, but that
either the CXL.cache or the CXL.mem protocol was negotiated during link training.
There are two possible sub-states:
a. Not Operating in the CXL 1.1 addressing mode - Immediately after the link

negotiation, the Port registers appear in the PCIe configuration space with a
Type 1 header.

b. Operating in the CXL 1.1 addressing mode - System Firmware may program CXL
1.1 RCRB Base register in the Port's CXL DVSEC ID 3 capability structure to
transition the Port to this mode. Once the Port is in this mode, it can only
transition out of it after a reset. A downstream Port operating in this mode shall
ignore hot reset requests received from the Upstream Port.

4. CXL 2.0 capable Downstream Ports connected to a PCIe device/Switch may or may
not expose the CXL DVSEC ID 3 and the CXL DVSEC ID 7 capability structures.
a. If the PCI Root Port configuration space contains an instance of CXL DVSEC ID

3 structure, it shall also contain an instance of CXL DVSEC ID 7 structure.
b. If the PCI Root Port configuration space contains an instance of CXL DVSEC ID

7 structure, DVSEC Flex Bus Port Status register shall indicate this Port did not
train up in CXL mode. Software shall ignore the contents of the CXL DVSEC ID
3 structure for such a Port.

If the Port is in the disconnected state, the branch does not need further enumeration.

If the Port is connected to a CXL 2.0 device/Switch, the software follows section 9.12.2
for further enumeration until it reaches the leaf of the branch.

If the Port is connected to a CXL 1.1 device, the software follows section 9.12.4 to
enumerate the device.

If the Port is connected to a PCIe device/Switch, the enumeration flow is governed by
the PCI Express Base Specification.

Figure 146. CXL 2.0 Downstream Port State Diagram

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 414
Revision 2.0, Version 1.0

9.12.4 CXL 1.1 Device Connected to CXL 2.0 Capable Downstream Port

A CXL 1.1 device may be connected to a CXL 2.0 Root Port or a CXL 2.0 Downstream
Switch Port. CXL 1.1 devices report themselves as RCiEP and hence cannot appear, to
software, to be below a PCIe enumerable Downstream Port. System Firmware is
responsible for detecting such a condition and reconfiguring the CXL Ports in the path
so that the CXL 1.1 device appears in a CXL 1.1 hierarchy to software and not in a CXL
2.0 hierarchy.

Boot time Reconfiguration of CXL 2.0 Capable Ports to Enable a CXL 1.1 Device

1. At reset, the Downstream Port registers are visible in the PCI configuration space
with a Type 1 header. During enumeration, System Firmware shall identify all the
Downstream Ports that are connected to CXL 1.1 device by reading the DVSEC ID 7
register instead of the Link status registers. If the training was successful, the
DVSEC Flex Bus Port Status register in the CXL DVSEC ID 7 structure shall indicate
the CXL 2.0 protocol was not negotiated, but shall indicate that either the
CXL.cache or the CXL.mem protocol was negotiated during link training. If the
training was unsuccessful, the DVSEC Flex Bus Port Received Modified TS Data
Phase1 Register in the CXL DVSEC ID 7 structure shall indicate the device is CXL
capable, but shall indicate that it is not CXL 2.0 capable. A Downstream Switch Port
shall not report link-up status in the PCIe Link Status register when it detects a CXL
1.1 device on the other end to prevent the legacy software from discovering it.

2. System Firmware identifies MMIO and bus resource needs for all CXL 1.1 devices
below a CXL 2.0 Root Port. System Firmware adds MMIO resources needed for CXL
1.1 RCRB (8KB MMIO per link) and CXL 1.1 Component Registers (128KB MMIO per
link).

3. System Firmware assigns MMIO and bus resources and programs Alternate MMIO
Base/Limit and Alternate Bus Base/Limit registers in all the Root and Switch Ports
in the path and the CXL 1.1 device BARs except the downstream port that is
connected to the CXL 1.1 device. These Alternate decoders follow the standard
PCIe rules and are described in Section 8.1.5.

4. System Firmware sets Alt BME and Alt Memory and ID Space Enable bits in all the
Root and Switch Ports in the path of every CXL 1.1 device.

5. For each Downstream Port that is connected to CXL 1.1 device, System Firmware
programs the CXL RCRB Base Address and then write 1 to the CXL RCRB Enable bit.
The write to the CXL RCRB Enable bit transitions the Port addressing mode to CXL
1.1. The Downstream Port registers now appear in MMIO space at RCRB Base and
not in configuration space. System Firmware issues a read to the address RCRB
Base+4KB. The CXL 1.1 Upstream Port captures its RCRB base as described in
section 9.11. System Firmware configures Upstream Port and Downstream Port
registers as necessary. If this is a Switch Downstream Port, it shall ignore any hot
reset requests received from the Upstream Port.

6. System Firmware configures the CXL 1.1 device using algorithm described in
section 9.11.

The System Firmware shall report each CXL 1.1 device under a separate CXL 1.1 Host
Bridge and not as a child of CXL 2.0 Host Bridge.

The Switch shall make sure there is always a DSP visible at Device 0, function 0.

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 415
Revision 2.0, Version 1.0

These concepts are illustrated by the configuration shown in Figure 147. In this
configuration, CXL 1.1 devices F and D are attached to a CXL 2.0 switch. The Switch
DSPs are labeled E and C. The Switch USP and the CXL Root Port are labeled B and A
respectively. The left half of Figure 147 represents the address map and how normal
decoders and Alt Mem decoders of A, B, C and E are configured.

If the host accesses an MMIO address belonging to D, the access flows through A, B
and C:
1. Host issues a read
2. A Alt Decoder positively decodes the access and sends to B since A’s Alt MSE=1
3. B Alt Decoder positively decodes the access since B’s Alt MSE=1
4. C normal decoder positively decodes the access and forwards it to D since C MSE=1
5. D positively decodes and responds since D MSE=1

Figure 147. CXL 1.1 Device MMIO Address Decode - Example

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 416
Revision 2.0, Version 1.0

The left half of Figure 148 represents the configuration space map for the same
configuration as in Figure 147 and how the bus decoders and the Alt Mem decoders of
A, B, C and E are configured.

If the host accesses configuration space of F, the access flows through A, B and E:
1. Host issues configuration read to F’s configuration space
2. A’s Alt Decoder positively decodes, forwards to B as Type 1
3. B’s Alt Decoder positively decodes, forwards down as Type 1
4. E’s RCRB regular decoder positively decodes, forwards to F as Type 0 since the bus

number matches E’s RCRB Secondary Bus number
5. F positively decodes and responds

If D detects a protocol or link error, the error signal will flow to the system via the
following path:
1. D issues ERR_ message with the Requestor ID of D
2. C shall not expose DPC capability
3. C forwards ERR_ message it to B
4. B forwards the message to A
5. A forwards the message to RCEC in the Root Complex since the requestor’s bus

number hits Alt Bus Decoder
6. RCEC generates MSI if enabled
7. Root Complex Event Collector Endpoint Association Extended Capability of RCEC

describes it can handle errors from bus range = Alt Bus Decoder in RP

Figure 148. CXL 1.1 Device Configuration Space Decode - Example

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 417
Revision 2.0, Version 1.0

8. A shall not trigger DPC upon ERR_ message. Since the requestor’s bus number hits
Alt Bus Decoder, it is treated differently than a normal ERR_ message.

9.12.5 CXL 2.0 Host/Switches with CXL 1.1 Devices - Example

Figure 149 represents the physical connectivity of a host with four Root Ports, one
Switch and 5 devices. The corresponding software view is shown in Figure 150. Note
that the numbers (e.g. the “1” in PCI Device 1) in this diagram do not represent the
device number or the function number.

As shown in Figure 149, the Switch makes the CXL 1.1 device 1 below its DSP (DSP 1)
appear as an RCiEP in CXL 1.1 Hierarchy. CXL 1.1 Device 1 is exposed as a separate
Host Bridge, as would be expected of a CXL 1.1 device. This device hosts a CXL DVSEC
ID 0 instance in Device number 0, Function number 0 configuration space. The CXL 1.1
Downstream Port and CXL 1.1 Upstream Port registers appear in MMIO space as
expected.

When a CXL 2.0 capable Root Port detects a PCIe device (PCIe Device 1), it trains up in
PCIe mode. The Root Port configuration space (Type 1) may include the CXL DVSEC ID
3 and the CXL DVSEC ID 7. If present, the DVSEC ID 7 instance will indicate that the
link trained up in PCIe mode. Other CXL DVSEC ID structures may be present as well.

If a CXL 2.0 capable Root Port (RP2) is connected to an empty slot, its configuration
space (type 1) hosts the CXL DVSEC ID 3 and the CXL DVSEC ID 7, but the DVSEC ID
7 shall indicate no CXL connectivity and the PCIe Link status register indicate that there
is no PCIe connectivity. Other CXL DVSEC ID structures may be present as well. The
user can hot-add a CXL 2.0 device, a CXL 2.0 Switch or a PCIe device in this slot.

Figure 149. CXL 2.0 Physical Topology - Example

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 418
Revision 2.0, Version 1.0

A CXL 2.0 capable Root Port (RP3) connected to a CXL Switch spawns a CXL 2.0 Virtual
Hierarchy. The Root Port as well as the Upstream Switch Port configuration space (type
1) each host an instance of CXL DVSEC ID 3 and an instance of CXL DVSEC ID 7, but
the DVSEC ID 7instance will indicate that these Ports are operating in CXL 2.0 mode.
Other CXL DVSEC ID structures may be present as well.

If a CXL Downstream Switch Port (DSP2) is connected to a CXL 2.0 device,DSP2’s
configuration space (type 1) hosts an instance of CXL DVSEC ID 3 and an instance of
CXL DVSEC ID 7, but the DVSEC ID 7 instance will indicate that this Port is connected
to a CXL 2.0 device. Other CXL DVSEC ID structures may be present as well.

In this example, CXL Downstream Switch Port (DSP 3) is connected to a PCIe device
and its configuration space (type 1) does not host an instance of CXL DVSEC ID 7.
Absence of a CXL DVSEC ID 7 indicates that this Port is not operating in the CXL mode.
Note that it is legal for DSP 3 to host a DVSEC ID 7 instance as long as the DVSEC Flex
Bus Port Status Register in the DVSEC ID 7 structure reports the link is not operating in
CXL mode.

If a CXL 2.0 capable Root Port (RP 4) is connected to a CXL 1.1 device, the Root Port
operates as a CXL 1.1 Downstream Port. CXL 1.1 device 2 appears as an RCiEP in CXL
1.1 hierarchy under its own Host Bridge. This device hosts an instance of the CXL
DVSEC ID 0 in Device number 0, Function number 0 configuration space. The CXL 1.1
Downstream Port and the CXL 1.1 Upstream Port registers appear in MMIO space as
expected.

If the Switch is hot-pluggable, System Firmware may instantiate an _DEP object in the
ACPI namespace to indicate that device 1 is dependent on the CXL USP. A legacy PCIe
bus driver interprets that to mean that the Switch hot removal has a dependency on
CXL 1.1 device 1, even though the ACPI/PCIe hierarchy does not show such a
dependency.

Figure 150. CXL 2.0 Virtual Hierarchy - Software View

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 419
Revision 2.0, Version 1.0

9.12.6 Mapping of Link and Protocol Registers in CXL 2.0 VH

In a CXL 1.1 hierarchy, the link and protocol registers appear in MMIO space (RCRB and
Component Registers in the Downstream Port and the Upstream Port). See Figure 151.

Since a CXL 2.0 Virtual Hierarchy appears as a true PCIe hierarchy, the Component
Register block are mapped using a standard BAR of CXL 2.0 components. The registers
that were mapped via a CXL 1.1 RCRB are mapped into PCI Configuration Space of CXL
2.0 components.

Each CXL 2.0 Host Bridge includes the CHBCR that includes the registers that are
common to all Root Ports under that Host Bridge. In an ACPI compliant system, the
base address of this register block is discovered via ACPI via the CEDT table or the
_CBR method. The CHBCR include the HDM Decoder registers.

Each CXL 2.0 Root Port carries a single BAR that points to the associated Component
Register block. The offset within that BAR is discovered via the CXL DVSEC ID 8. See
Section 8.1.9. The layout of the Component Register Block is shows in Section 8.2.4.

Each CXL 2.0 device can map its Component Register Block to any of its 6 BARs and a
64K aligned offset within that BAR. The BAR number and the offset is discovered via
CXL DVSEC ID 8. A Type 3 device Component Register Block includes HDM Decoder
registers.

Each CXL 2.0 Upstream Switch Port carries a single BAR that points to the associated
Component Register block. The offset within that BAR is discovered via CXL DVSEC ID
8. Upstream Switch Port Component register block contains the registers that are not
associated with a particular Downstream Ports such as HDM Decoder registers.

Figure 151. CXL Link/Protocol Registers – CXL 1.1 Host and CXL 1.1 Device

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 420
Revision 2.0, Version 1.0

Each CXL 2.0 Downstream Switch Port carries a single BAR that points to the
associated CHBCR, the format of which closely mirrors that of a Root Port. The offset
within that BAR is discovered via CXL DVSEC ID 8.

9.13 Software View of HDM
HDM is exposed to OS/VMM as normal memory. However, HDM likely has different
performance/latency attributes compared to host attached memory. Therefore, a
system with CXL.mem devices can be considered as a heterogeneous memory system.

ACPI HMAT table was introduced for such systems and can report memory latency and
bandwidth characteristics associated with different memory ranges. ACPI Specification
version 6.2 carries the definition of revision 1 of HMAT. As of August 2018, ACPI WG
has decided to deprecate revision 1 of HMAT table because it had a number of

Figure 152. CXL Link/Protocol Registers – CXL 2.0 Root Ports and CXL 2.0 Devices

Figure 153. CXL Link/Protocol Registers in a CXL Switch

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 421
Revision 2.0, Version 1.0

shortcomings. As a result, the subsequent discussion refers to revision 2 of HMAT table.
In addition, ACPI has introduced a new type of Affinity structure called Generic Affinity
(GI) Structure. GI structure is useful for describing execution engines such as
accelerators that are not processors. Existing software ignores GI entries in SRAT, but
newer software can take advantage of it. As a result, CXL.mem accelerators will result
in two entries in SRAT - One GI entry to represent the accelerator cores and one
memory entry to represent the attached HDM. GI entry is especially useful when
describing CXL.cache accelerator. Previous to introduction of GI, CXL.cache accelerator
could not be described as a separate entity in SRAT/HMAT and had to be combined with
the attached CPU. With this specification change, CXL.cache accelerator can be
described as a separate proximity domain. _PXM method can be used to associate the
proximity domain associated with the PCI device. Since Legacy OSs do not understand
GI, System Firmware is required to return the processor domain that is most closely
associated with the IO device when running such an OS. ASL code can use bit 17 of
Platform-Wide _OSC Capabilities DWORD 2 to detect whether the OS supports GI or
not.

System Firmware must construct and report SRAT and HMAT table to OS in systems
with CXL.mem devices and CXL.cache devices. Since System Firmware is not aware of
HDM properties, that information must come from the CXL device in the form of
Coherent Device Attribute Table (CDAT). A device may export CDAT via Table Access
DOE or via a UEFI driver.

System Firmware combines the information it has about the host and CXL connectivity
with the HMAT Fragment Tables during construction of SRAT and HMAT tables.

9.13.1 Memory Interleaving

Memory interleaving allows consecutive memory addresses to be mapped to different
CXL devices at a uniform interval. CXL 1.1 devices support a limited form of
interleaving as described in Section 9.11.6.1, whereby memory is interleaved across
the two links between a CPU and a dual-headed device.

CXL 2.0 defines mechanism for interleaving across different devices. The set of devices
that are interleaved together is known as the Interleave Set.

An Interleave Set is identified by
• Base HPA - Multiple of 256 MB
• Size - Also a Multiple of 256 MB
• Interleave Way
• Interleave Granularity
• Targets (applicable to Root Port and Upstream Switch Ports only)

These terms are described below.

Interleave Way: A CXL 2.0 Interleave Set may contain either 1, 2, 4, or 8 CXL
devices. 1 way Interleave is equivalent to no interleaving. The number of devices in an
Interleave set is known as Interleave Ways (IW).

Interleave Granularity: Each device in an Interleave set decodes a specific number
of consecutive bytes, called Chunk, in HPA Space. The size of Chunk is known as
Interleave Granularity (IG). The starting address of each Chunk is a multiple of IG.

• CXL 2.0 Root Ports and Switches must support the following IG values
— 256 Bytes (Interleaving on HPA[8])
— 512 Bytes (Interleaving on HPA[9])
— 1024 Bytes (Interleaving on HPA[10])

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 422
Revision 2.0, Version 1.0

— 2048 Bytes (Interleaving on HPA[11])
— 4096 Bytes (Interleaving on HPA[12])
— 8192 Bytes (Interleaving on HPA[13])
— 16384 Bytes (Interleaving on HPA[14])

• CXL 2.0 Type 3 devices must support at least one of the two IG groups as reported
via HDM Decoder Capability Register (Section 8.2.5.12.1).
— Group 1: Interleaving on HPA[8], HPA[9] and HPA[10]
— Group 2: Interleaving on HPA[11], HPA[12], HPA[13] and HPA[14]

Target: The HDM Decoders in CXL Root Complex are responsible for looking up the
incoming HPA address in a CXL.mem transaction and forwarding it to the appropriate
Root Port Target. The HDM Decoders in CXL Upstream Switch Port are responsible for
looking up the incoming HPA address in a CXL.mem transaction and forwarding it to the
appropriate Downstream Switch Port Target.

An HDM Decoder in a Device is responsible for converting HPA into DPA by stripping off
specific address bits. These flows are described in Section 8.2.5.12.21.

An Interleave set is established by programing an HDM Decoder and committing it
(Section 8.2.5.12.20). A component may implement either 2, 4, 6, 8 or 10 HDM
Decoders. The number of decoders implemented by a component are enumerated via
HDM Decoder Capability Register (Section 8.2.5.12.1). HDM Decoders within a
component must be configured in a congruent manner and the Decoder Commit flow
performs certain self-consistency checks to assist with correct programming.

Software is responsible for ensuring that HDM Decoders inside the components along
the path of a transaction must be configured in a consistent manner.

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 423
Revision 2.0, Version 1.0

ca

Figure 154 illustrates a simple memory fan-out topology with 4 memory devices behind
a CXL Switch. A single HDM Decoder in each Device as well as the Upstream Switch
Port is configured to decode the HPA range 16 to 20 TB, at 1K granularity. The leftmost
Device receives 1KB ranges starting with HPAs 16 TB, 16 TB+4KB, 16 TB+8KB, …,
20 TB-4KB (every 4th chunk). The Root complex does not participate in the
interleaving process.

Multiple level interleaving is supported as long as the all the level use different, but
consecutive HPA bits to select the target and no Interleave set has more than 8
devices. This is illustrated via Figure 155 and Figure 156.

Figure 154. One Level Interleaving at Switch - Example

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 424
Revision 2.0, Version 1.0

Figure 155 illustrates a two level Interleave scheme where the Root Complex as well as
the Switch participates in the interleaving process. This topology has 4 memory devices
behind each CXL Switch. One HDM Decoder in all 8 devices, both Upstream Switch
Ports and the Root Complex is configured to decode the HPA range 16 to 20 TB. The
Root Complex partitions the address range in two halves at 4K granularity (based on
HPA[12]), each half directed to a Root Port. Each Upstream Switch Port splits each half
further in 4 subranges at 1K granularity (based on HPA[11:10]). To each device, it
appears as though the HPA range 16-20 TB is 8 way interleaved at 1K granularity based
on HPA[12:10]. The leftmost Device receives 1KB ranges starting with HPAs 16 TB, 16
TB+8KB, 16 TB+16KB, …, 20 TB-8KB.

Figure 156 illustrates a three level Interleave scheme where the cross-Host Bridge
logic, the Root Complex as well as the Switch participates in the interleaving process.
The cross-host Bridge logic is configured to interleave the address range in two halves
using host proprietary registers at 4K granularity. One HDM Decoder in 8 devices, 4
Upstream Switch Ports and 2 Root Complexes is configured to decode the HPA range 16
to 20 TB. The Root Complex further sub-divides the address range in two at 2K
granularity (using HPA[11]). The Upstream Switch Port in every Switch splits HPA space
further in 2 subranges at 1K granularity (using HPA[10]). To each device, it appears as
though the HPA range 16-20 TB is 8 way interleaved at 1K granularity based on
A[12:10]. Similar to Figure 155, The leftmost Device receives 1KB ranges starting with
HPAs 16 TB, 16 TB+8KB, 16 TB+16KB, …, 20 TB-8KB.

Figure 155. Two Level Interleaving

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 425
Revision 2.0, Version 1.0

9.13.2 The CXL Memory Device Label Storage Area

CXL memory devices which provide volatile memory, such as DRAM, may be exposed
with different interleave geometries each time the system is booted. This can happen
due to the addition or removal of other devices or changes to the platform’s default
interleave policies. For volatile memory, these changes to the interleave usually do not
impact host software since there’s generally no expectation that volatile memory
contents are preserved across reboots. However, with persistent memory, the exact
preservation of the interleave geometry is critical so that the persistent memory
contents are presented to host software the same way each time the system is booted.

Similar to the interleaving configuration, persistent memory devices may be partitioned
into namespaces, which define volumes of persistent memory. These namespaces must
also be reassembled the same way each boot to prevent loss of data.

Section 8.2.9 defines mailbox operations for reading and writing the Label Storage Area
(LSA) on CXL memory devices: Get LSA and Set LSA. In addition, the Get LSA Size
mailbox command exposes the size of the LSA for a given CXL memory device. The LSA
allows both interleave and namespace configuration details to be stored persistently on
all the devices involved, so that the configuration data “follows the device” if the device
is moved to a different socket or machine. The use of an LSA is analogous to how disk
RAID arrays write configuration information to a reserved area of each disk in the array,
so that the geometry is preserved across configuration changes.

Figure 156. Three Level Interleaving Example

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 426
Revision 2.0, Version 1.0

A CXL memory device may contribute to multiple persistent memory interleave sets,
limited by interleave resources such as HDM decoders or other platform resources.
Each persistent memory interleave set may be partitioned into multiple namespaces,
limited by resources such as label storage space and supported platform
configurations.

The format of the LSA and the rules for updating and interpreting the LSA are specified
in this section. CXL memory devices do not interpret the LSA directly, they just provide
the storage area and mailbox commands for accessing it. Software configuring
interleave sets and namespaces, such as pre-boot firmware or host operating systems
shall follow the LSA rules specified here in order to correctly inter-operate with CXL-
compliant memory devices.

9.13.2.1 Overall LSA Layout

The LSA consists of two Label Index Blocks followed by an array of label slots. As
shown in Figure 157, the Label Index Blocks are always a multiple of 256 bytes in size,
and each label slot is exactly 256 bytes in size.

The size of the LSA is implementation-dependent and software must discover the size
using the Identify Memory Device mailbox command. The minimum allowed size is two
index blocks, 256-bytes each in length, two label slots (providing space for a minimal
one region label and one namespace label), and one free slot to allow for updates. This
makes the total minimum LSA size 1280 bytes. It is recommended (but not required)
that a device provides for flexibility of configuration by implementing an LSA large
enough for two region labels per device and one namespace label per 8 Gigs of
persistent memory capacity available on the device.

All updates to the LSA shall follow the update rules laid out in this section, which
guarantee the LSA remains consistent in the face of interruptions such as power loss or
software crashes. There are no atomicity requirements on the Set LSA mailbox
operation – it simply updates the range of bytes provided by the caller. Atomicity and
consistency of the LSA is achieved using checksums and the principle that only free
slots (currently unused) are written to – in-use data structures are never written,
avoiding the situation where an interrupted update to an in-use data structure makes it
inconsistent. Instead, all updates are made by writing to a free slot and then following
the rules laid out in this section to atomically swap the in-use data structure with the
newly written copy.

Figure 157. Overall LSA Layout

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 427
Revision 2.0, Version 1.0

The LSA layout uses Fletcher64 checksums. Figure 158 shows a Fletcher64 checksum
implementation that produces the correct result for the data structures in this
specification when run on a 64-bit system. When performing a checksum on a
structure, any multi-byte integer fields shall be in little-endian byte order. If the
structure contains its own checksum, as is commonly the case, that field shall contain
zero when this checksum routine is called.

The algorithm for updating the LSA is single-threaded. Software is responsible for
protecting a device’s LSA so that only a single thread is updating it at any time. This is
typically done with a common mutex lock.

9.13.2.2 Label Index Blocks

Table 210 shows the layout of a Label Index Block.

Figure 158. The Fletcher64 Checksum Algorithm in C

/*
 * checksum -- compute a Fletcher64 checksum
 */
uint64_t
checksum(void *addr, size_t len)
{
 uint32_t *p32 = addr;
 uint32_t *p32end = addr + len;
 uint32_t lo32 = 0;
 uint32_t hi32 = 0;

 while (p32 < p32end) {
 lo32 += *p32++;
 hi32 += lo32;
 }

 return (uint64_t)hi32 << 32 | lo32;
}

Table 210. Label Index Block Layout

Byte Offset Length Description

0 10h Sig: Signature indicating a Label Index Block. Shall be set to
“NAMESPACE_INDEX\0”.

10h 3 Flags: No flags defined yet, shall be zero.

13h 1 LabelSize: Shall be 1. This indicates the size of labels in this LSA in
multiples of 256 bytes (1 for 256, 2 for 512, etc.).

14h 4 Seq: Sequence number. Only the two least-significant bits of this field are
used and shown in Figure 159 below. All other bits shall be zero.

018h 8
MyOff: Offset of this index block in the LSA. Label Index Block 0 shall have
0 in this field, Label Index Block 1 shall have the size of the index block as
its offset.

20h 8 MySize: Size of an index block in bytes. Shall be a multiple of 256.

28h 8 OtherOff: Offset of the other index block paired with this one.

30h 8 LabelOff: Offset of the first slot where labels are stored.

38h 4 NSlot: Total number of label slots.

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 428
Revision 2.0, Version 1.0

When reading Label Index Blocks, software shall only consider index blocks valid when
their Sig, MyOff, OtherOff, and Checksum fields are correct. In addition, any blocks
with Seq set to zero are discarded as invalid. Finally, if more than 1 Label Index Block
is found to be valid the one with the older sequence number (immediately
counterclockwise to the other, according to Figure 159 below) is discarded. If all checks
pass and the sequence numbers match, the index block at the higher offset shall be
considered the valid block. If no valid Label Index Blocks are found, the entire LSA is
considered uninitialized.

When updating the Label Index Block, the current valid block, according to the rules
above, is never written to directly. Instead, the alternate block is updated with the
appropriate fields and a sequence number that is higher (immediately to the right as
shown in Figure 159 above). It is the appearance of a new block that passes all the
checks and has a higher sequence number that makes this update atomic in the face of
interruption.

Using this method of atomic update, software can allocate and deallocate label slots,
even multiple slots, in a single, atomic operation. This is done by setting the Free bits
to indicate which slots are free and which are in-use, then updating the Label Index
Block atomically as described above. To ensure that it is always possible to update a
label atomically, there must always be at least one free label slot. That way, any used
label slots can be updated by writing the new contents to the free slot and using the
Label Index Block update algorithm to mark the new version and in-use and the old
version and free in one atomic operation. For this reason, software must report a “label
storage area full” error when a caller tries to use the last label slot.

The Free field contains an array of Nslot bits, indicating which label slots are currently
free. The Label Index Block is then padded with zero bits until the total size is a
multiple of 256 bytes. This means that up to 1472 label slots are supported by Label
Index Blocks that are 256 bytes in length. For 1473 to 3520 label slots, the Label Index
Block size must be 512 bytes in length, and so on.

3Ch 2 Major: The major version number of this layout. Shall be 2.

3Eh 2 Minor: The minor version number of this layout. Shall be 1.

40h 8 Checksum: Fletcher 64 checksum of all fields in this Label Index Block.
This field is assumed to be zero when the checksum is calculated.

48h Varies Free: NSlot bits, padded with zeros to align index block to 256 bytes.

Table 210. Label Index Block Layout

Byte Offset Length Description

Figure 159. Sequence Numbers in Label Index Blocks

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 429
Revision 2.0, Version 1.0

9.13.2.3 Common Label Properties

There are three types of labels that may occupy the label slots in the LSA: Region
Labels, Namespace Labels, and Vendor Specific Labels. The first two are identified by
type fields containing UUIDs as specified in the following sections. Vendor Specific
Labels contain a type UUID determined by the vendor per RFC 4122. Software shall
ignore any labels with unknown types. In this way, the Type field in the labels provides
a major version number, where software can assume a UUID it expects to find indicates
a label it understands, since only backward compatible changes are allowed to the label
layout from the point where that UUID first appears in a published CXL specification.

Region Labels and Namespace Labels contain a 4-byte Flags field, used to indicate the
existence of new features. Since those features must be backward compatible,
software may ignore unexpected flags encountered in this field (no error generated).
Software should always write zeros for Flags bits that were not defined at the time of
implementation. In this way, the Flags field provide a minor version number for the
label.

It is sometimes necessary to update labels atomically across multiple CXL devices. For
example, when a Region or Namespace is being defined, the labels are written to every
device that contributes to it. Region Labels and Namespace Labels define a flag,
UPDATING, that indicates a multi-device update is in-progress. Software shall follow
this flow when creating or updates a set of labels across devices:

• Step 1: Write each label across all devices with the UPDATING flag set
• Step 2: Update each label, using the update algorithm described in the previous

section, clearing the UPDATING flag

Any time software encounters a set of labels with any UPDATING flags, it shall execute
these rules:

• If there are missing labels (some components with the expected UUID are
missing), then the entire set of labels is rolled-back due to the update operation
being interrupted before all labels are written. The roll-back means marking each
label in the set as free, following the update algorithm described in the previous
section.

• If there are no missing labels, then the entire set of labels is rolled-forward,
completing the interrupted update operation by removing the UPDATING flag from
all labels in the set, following the update algorithm described in the previous
section.

When sets of Region Labels or Namespace Labels are found to have missing
components, software shall consider them invalid and not attempt to configure the
regions or surface the namespaces with these errors. Exactly how these errors are
reported and how users recover from them is implementation-specific, but it is
recommended that software first report the missing components, providing the
opportunity to correct the misconfiguration, before deleting the erroneous regions or
namespaces.

9.13.2.4 Region Labels

Region labels describe the geometry of a persistent memory interleave set (the term
“region” is synonymous with “interleave set” in this section). Once software has
configured a functional interleave set for a set of CXL memory devices, region labels
are added to the LSA for each device that contributes capacity to it. Table 211 shows
the layout of a Region Label.

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 430
Revision 2.0, Version 1.0

Table 211. Region Label Layout

Byte Offset Length Description

0 10h
Type: Shall contain this UUID: 529d7c61-da07-47c4-a93f-ecdf2c06f444.
In the future, if a new, incompatible Region Label is defined, it shall be
assigned a new UUID in the CXL specification defining it.

10h 10h UUID: UUID of this region per RFC 4122. This field is used to match up
labels on separate devices that together describe a region.

20h 4

Flags: Boolean attributes of the region:

• 00000008h UPDATING

The UPDATING flag is used to coordinate Region Label updates across
multiple CXL devices, as described in Section 9.13.2.3.

All bits below 08h are reserved and shall be written as zero and ignored
when read.

All bits above 08h are currently unused and shall be written as zero. The
intention is to indicate the existence of backward compatible features
added in the future, so any unexpected 1 values in this area shall be
ignored (not treated as an error).

24h 2 NLabel: Total number of devices in this interleave set (interleave ways).

26h 2 Position: Position of this device in the interleave set, starting with the first
device in position zero and counting up from there.

28h 8 DPA: The DPA where the region begins on this device.

30h 8 RawSize: The capacity this device contributes to the interleave set (bytes).

38h 8

HPA: If non-zero, this region needs to be mapped at this HPA. This field is
for platforms that need to restore an interleave set to the same location in
the system memory map each time. A platform that does not support this
shall report an error when a non-zero HPA field is encountered.

40h 4 Slot: Slot index of this label in the LSA.

44h 4

InterleaveGranularity: The number of consecutive bytes that are
assigned to this device.
• 0 – 256 Bytes
• 1 – 512 Bytes
• 2 – 1024 Bytes (1 KB)
• 3 – 2048 Bytes (2 KB)
• 4 – 4094 Bytes (4 KB)
• 5 – 8192 Bytes (8 KB)
• 6 – 16384 Bytes (16 KB)

All other values – Reserved

48h 4

Alignment: The desired region alignment in multiples of 256 MB.
• 0 – No desired alignment
• 1 – 256 MB desired alignment
• 2 – 512 MB desired alignment
• Etc.

4Ch ACh Reserved: Shall be zero.

F8h 8 Checksum: Fletcher64 checksum of all fields in this Region Label. This field
is assumed to be zero when the checksum is calculated.

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 431
Revision 2.0, Version 1.0

9.13.2.5 Namespace Labels

Namespace labels describe partitions of persistent memory that are exposed as
volumes to software, analogous to NVMe namespaces or SCSI LUNs. Exactly how an
operating system uses these volumes is out of scope for this specification –
namespaces may be exposed to applications directly, exposed via file systems, or used
internally by the operating system. Table 212 shows the layout of a Namespace Label.

Table 212. Namespace Label Layout

Byte Offset Length Description

0 10h
Type: Shall contain this UUID: 68bb2c0a-5a77-4937-9f85-3caf41a0f93c.
In the future, if a new, incompatible Namespace Label is defined, it shall be
assigned a new UUID in the CXL specification defining it.

10h 10h UUID: UUID of this namespace per RFC 4122. All labels for this namespace
shall contain matching UUIDs.

20h 40h Name: “Friendly name” for the namespace, null-terminated UTF-8
characters. This field may be set to all zeros if no name is desired.

60h 4

Flags: Boolean attributes of the region:

• 00000008h UPDATING

The UPDATING flag is used to coordinate Namespace Label updates across
multiple CXL devices, as described in Section 9.13.2.3.

All bits below 08h are reserved and shall be written as zero and ignored
when read.

All bits above 08h are currently unused and shall be written as zero. The
intention is to indicate the existence of backward compatible features
added in the future, so any unexpected 1 values in this area shall be
ignored (not treated as an error).

64h 2

NRange: Number of discontiguous ranges this device contributes to
namespace, used when the capacity contributed by this device is not
continuous. Each contiguous range will be described by a label and NRange
described how many labels were required.

66h 2 Position: Position of this device in the range set, starting with zero for the
first label and counting up from there.

68h 8 DPA: The DPA where the region begins on this device.

70h 8 RawSize: The capacity this range contributes to the namespace (bytes).

78h 4 Slot: Slot index of this label in the LSA.

7Ch 4

Alignment: The desired region alignment in multiples of 256 MB.
• 0 – No desired alignment
• 1 – 256 MB desired alignment
• 2 – 512 MB desired alignment
• Etc.

80h 10h
RegionUUID: UUID of the region containing this namespace. If a valid
region does not exist with this UUID, then this namespace is also
considered unusable.

90h 10h
AddressAbstractionUUID: If non-zero, the address abstraction used by
this namespace. Software defines the UUIDs used in this field and their
meaning in software-specific and out of scope for this specification.

A0h 2 LBASize: If non-zero, logical block size of this namespace.

A2h 56h Reserved: Shall be zero.

F8h 8 Checksum: Fletcher64 checksum of all fields in this Namespace Label. This
field is assumed to be zero when the checksum is calculated.

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 432
Revision 2.0, Version 1.0

9.13.2.6 Vendor Specific Labels

Table 213 shows the layout of a Vendor Specific Label. Other than the Type field and
the Checksum field, the vendor is free to store anything in the remaining 232 (E8h)
bytes of the label.

9.14 CXL OS Firmware Interface Extensions

9.14.1 CXL Early Discovery Table (CEDT)

CXL Early Discovery Table enables Operating Systems to locate CXL Host Bridges and
location of Host Bridge registers early during the boot i.e. prior to parsing of ACPI
namespace. The information in this table may be used by early boot code to perform
pre-initialization of CXL Hosts such as configuration of CXL.cache and CXL.mem.

9.14.1.1 CEDT Header

The pointer to CEDT is found in RSDT or XSDT as described in ACPI Specification. An
ACPI specification compliant CXL system shall support CEDT and shall include a CHBS
entry for every CXL host bridge that is present at boot.

CXL Early Discovery Table begins with the following header.

Table 213. Vendor Specific Label Layout

Byte Offset Length Description

0 10h Type: (vendor specific UUID)

10h E8h Vendor specific content

f8h 8 Checksum: Fletcher64 checksum of all fields in this Vendor Specific Label.
This field is assumed to be zero when the checksum is calculated.

Table 214. CEDT Header

Field Byte Length Offset Description

Header

 Signature 4 0 ‘CEDT’. Signature for the CXL Early Discovery
Table.

Length 4 4 Length, in bytes, of the entire CEDT.

Revision 2 8 1

Checksum 1 9 Entire table must sum to zero.

OEM ID 6 10 OEM ID

OEM Table ID 8 16 Manufacturer Model ID

OEM Revision 4 24 OEM Revision

Creator ID 4 28 Vendor ID of utility that created the table.

Creator Revision 4 32 Revision of utility that created the table

CEDT Structure[n] Varies 36 A list of CEDT structures for this
implementation.

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 433
Revision 2.0, Version 1.0

9.14.1.2 CXL Host Bridge Structure (CHBS)

CHBS structure describes a CXL Host Bridge.

In an ACPI compliant system, there shall be one instance of CXL Host Bridge Device
object in ACPI namespace (HID=”ACPI0016”) for every CHBS entry. The _UID object
under a CXL Host Bridge object, when evaluated, shall match the UID field in the
associated CHBS entry.

9.14.2 CXL _OSC

According to ACPI specification, _OSC (Operating System Capabilities) is a control
method that is used by OS to communicate to the System Firmware the capabilities
supported by the OS and to negotiate ownership of specific capabilities.

The _OSC interface defined in this section applies only to “Host Bridge” ACPI devices
that originate CXL hierarchies. As stated in Section 9.12, these ACPI devices must have
a _HID of (or _CID including) EISAID(“ACPI0016”). For CXL 2.0 and later Hierarchies,
CXL _OSC is required. CXL _OSC is optional for CXL 1.1 Hierarchies. A CXL Host Bridge
also originates a PCIe hierarchy and will have a _CID of EISAID(“PNP0A08”). As such, a
CXL Host Bridge device may expose both CXL _OSC and PCIe _OSC.

Table 215. CEDT Structure Types

Value Description

0 CXL Host Bridge Structure

1-255 ‘Reserved

Table 216. CHBS Structure

Field Byte Length Offset Description

Type 1 0 =0 to indicate this is a CHBS entry

Reserved 1 1 ‘Reserved

Record Length 2 2 Length of this record (32)

UID 4 4

CXL Host Bridge Unique ID. Used to associate a
CHBS instance with CXL Host Bridge instance. The
value of this field shall match the output of _UID
under the associated CXL Host Bridge in ACPI
namespace.

CXL Version 4 8
00h: CXL 1.1 Specification compliant Host Bridge
01h: CXL 2.0 Specification compliant Host Bridge

Reserved 4 12 Reserved

Base 8 16

If Version = 0, this represents the base address of
CXL 1.1 Downstream Port RCRB.
If version =1, this represents the base address of
the CXL 2.0 CHBCR.
See Table 137.

Length 8 24

If Version = 0, this field must be set to 8 KB
(2000h).
If Version = 1, this field must be set to 64 KB
(10000h).

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 434
Revision 2.0, Version 1.0

The _OSC interface for a CXL hierarchy is identified by the Universal Unique Identifier
(UUID) 68f2d50b-c469-4d8a-bd3d-941a103fd3fc.

A revision ID of 1 encompasses fields defined in this section of this revision of this
specification, comprises of 5 DWORDs, including the first DWORD described by the
generic ACPI definition of _OSC.

The first DWORD in the _OSC Capabilities Buffer contains bits that are generic to _OSC.
These include status and error information.

The second DWORD in the _OSC capabilities buffer is the PCIe Support Field as defined
by PCI Firmware Specification.

The third DWORD in the _OSC Capabilities Buffer is the PCIe Control Field as defined by
PCI Firmware Specification.

The fourth DWORD in the _OSC capabilities buffer is the CXL Support Field. Bits defined
in the Support Field provide information regarding CXL features supported by the OS.
Just like the PCIe Support field, contents in the Support Field are passed one-way; the
OS will disregard any changes to this field when returned.

The fifth DWORD in the _OSC Capabilities Buffer is the CXL Control Field. Just like the
PCIe Control Field, bits defined in the CXL Control Field are used to submit request by
the OS for control/handling of the associated feature, typically (but not excluded to)
those features that utilize native interrupts or events handled by an OS-level driver. If
any bits in the Control Field are returned cleared (masked to zero) by the _OSC control
method, the respective feature is designated unsupported by the platform and must
not be enabled by the OS. Some of these features may be controlled by System
Firmware prior to OS boot or during runtime for a legacy OS, while others may be
disabled/inoperative until native OS support is available.

If the CXL _OSC control method is absent from the scope of a Host Bridge device, then
the OS must not enable or attempt to use any features defined in this section for the
hierarchy originated by the Host Bridge. Doing so could conflict with System Firmware
operations, or produce undesired results. It is recommended that a machine with
multiple Host Bridge devices should report the same capabilities for all Host Bridges,
and also negotiate control of the features described in the Control Field in the same
way for all Host Bridges.

Table 217. Interpretation of CXL _OSC Support Field

Support Field
bit offset Interpretation

0
CXL 1.1 Port Register Access supported

The OS sets this bit to 1 if it supports access to CXL 1.1 Port registers as defined in
Section 9.11. Otherwise, the OS sets this bit to 0.

1
CXL 2.0 Port/Device Register Access supported
The OS sets this bit to 1 if it supports access to CXL 2.0 Port/Device registers as defined in
Section 9.12. If this bit is 1, bit 0 must be 1 as well. Otherwise, the OS sets this bit to 0.

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 435
Revision 2.0, Version 1.0

9.14.2.1 Rules for Evaluating _OSC

This section defines when and how the OS must evaluate _OSC as well as restrictions
on firmware implementations.

9.14.2.1.1 Query Flag

If the Query Support Flag (Capabilities DWORD 1, bit 0) is set by the OS when
evaluating _OSC, no hardware settings are permitted to be changed by firmware in the
context of the _OSC call. It is strongly recommended that the OS evaluate _OSC with
the Query Support Flag set until _OSC returns the Capabilities Masked bit clear, to
negotiate the set of features to be granted to the OS for native support; a platform may
require a specific combination of features to be supported natively by an OS before
granting native control of a given feature.

2

CXL Protocol Error Reporting Supported
The OS sets this bit to 1 if it supports handling of CXL Protocol Errors. Otherwise, the OS
sets this bit to 0.
If OS sets this bit, it must set either bit 0 or bit 1 above.
NOTE: Firmware may retain control of AER if the OS does not support CXL Protocol Error
reporting since owner of AER owns CXL Protocol error management.

3

CXL Native Hot-Plug supported
The OS sets this bit to 1 if it supports CXL.mem hot-add, CXL.cache hot-add, CXL.mem
managed Hot-Remove and CXL.cache managed Hot-Remove without firmware assistance.
Otherwise, the OS sets this bit to 0.
If OS sets this bit, it must request PCI Express Native Hot- Plug control. If PCIe Express
Native hot-plug control is granted to OS, such an OS must handle CXL hot-plug natively as
well.
If OS sets this bit, it must set bit 1 above.

4-31 Reserved

Table 218. Interpretation of CXL _OSC Control Field, Passed in via Arg3

Control Field
bit offset Interpretation

0

CXL Memory Error Reporting control
The OS sets this bit to 1 to request control over CXL Memory Error Reporting. If the OS
successfully receives control of this feature, it must handle memory errors from all
CXL.mem capable device that support this capability, as described in Section 12.2.3.2.

If OS sets this bit, OS must either set bit 0 or bit 1 in Supported.

1-31 Reserved

Table 219. Interpretation of CXL _OSC Control Field, Returned Value

Control Field
bit offset Interpretation

0

CXL Memory Error Reporting control
The firmware sets this bit to 1 to grant control over CXL Memory Expander Error Reporting.
If firmware grants control of this feature, firmware must ensure no memory expanders are
configured in Firmware First error reporting mode.
If control of this feature was requested and denied or was not requested, firmware returns
this bit set to 0.

1-31 Reserved

Table 217. Interpretation of CXL _OSC Support Field

Support Field
bit offset Interpretation

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 436
Revision 2.0, Version 1.0

9.14.2.1.2 Evaluation Conditions

The OS must evaluate _OSC under the following conditions:
• During initialization of any driver that provides native support for features

described in the section above. These features may be supported by one or many
drivers, but should only be evaluated by the main bus driver for that hierarchy.
Secondary drivers must coordinate with the bus driver to install support for these
features. Drivers shall not relinquish control of features previously obtained. i.e.
bits set in Capabilities DWORD3 and DWORD5 after the negotiation process must
be set on all subsequent negotiation attempts.

• When a Notify(<device>, 8) is delivered to the CXL Host Bridge device.
• Upon resume from S4, System Firmware will handle context restoration when

resuming from S1-S3.

If a CXL Host Bridge device exposes CXL _OSC, CXL aware OSPM shall evaluate CXL
_OSC and not evaluate PCIe _OSC.

9.14.2.1.3 Sequence of _OSC calls

The following rules govern sequences of calls to _OSC that are issued to the same Host
Bridge and occur within the same boot.

• The OS is permitted to evaluate _OSC an arbitrary number of times.
• If the OS declares support of a feature in the Status Field in one call to _OSC, then

it must preserve the set state of that bit (declaring support for that feature) in all
subsequent calls.

• If the OS is granted control of a feature in the Control Field in one call to _OSC,
then it must preserve the set state of that bit (requesting that feature) in all
subsequent calls.

• Firmware shall not reject control of any feature it has previously granted control to.
• There is no mechanism for the OS to relinquish control of a feature previously

requested and granted.

9.14.2.1.4 ASL Example

Device(CXL0)
{

Name(_HID,EISAID("ACPI0016"))// CXL Host Bridge
Name(_CID, Package(2){

EISAID(“PNP0A03), // PCI Compatible Host Bridge

EISAID("PNP0A08") // PCI Express Compatible Host Bridge

})

Name(SUPP,0)// PCI _OSC Support Field value
Name(CTRL,0)// PCI _OSC Control Field value
Name(SUPC,0)// CXL _OSC Support Field value
Name(CTRC,0)// CXL _OSC Control Field value

Method(_OSC,4)
{ // Check for proper UUID

If(LEqual(Arg0,ToUUID("68f2d50b-c469-4d8a-bd3d-941a103fd3fc ")))
{

// Create DWord-adressable fields from the Capabilities Buffer
CreateDWordField(Arg3,0,CDW1)
CreateDWordField(Arg3,4,CDW2)
CreateDWordField(Arg3,8,CDW3)
CreateDWordField(Arg3,12,CDW4)
CreateDWordField(Arg3,16,CDW5)
// Save Capabilities DWord2, 3. 4. 5

Ev
al

ua
tio

n
C

op
y

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
October 26, 2020 437
Revision 2.0, Version 1.0

Store(CDW2,SUPP)
Store(CDW3,CTRL)

Store(CDW4,SUPC)
Store(CDW4,CTRc)
..
..

} Else {
Or(CDW1,4,CDW1)// Unrecognized UUID
Return(Arg3)

}
} // End _OSC

// Other methods such as _BBN, _CRS, PCIe _OSC
} //End CXL0

9.15 Manageability Model for CXL Devices
Manageability is the set of capabilities that a managed entity exposes to a management
entity. In the context of CXL, CXL device is the managed entity. These capabilities are
generally classified in sensors and effectors. Performance counter is an example of a
sensor, whereas ability to update the device firmware is an example of an effector.
Sensors and effectors can either be accessed in-band, i.e., by OS/VMM resident
software, or out of band, i.e., by firmware running on a management controller that is
OS independent.

In band software can access CXL device's manageability capabilities by issuing PCIe
configuration read/write or MMIO read/write transactions. These accesses are generally
mediated by CXL device driver. This is consistent with how PCIe adapters are managed.

Out of band manageability in S0 state can leverage MCTP over PCI Express
infrastructure. This assumes CXL.io path will decode and forward MCTP over PCIe VDMs
in both directions. Form factors such as PCIe CEM provision two SMBUS pins (clock and
data). The SMBUS path can be used for out of band manageability in Sx state or link
down case. This is consistent with PCIe adapters. The exact set of sensors and effectors
exposed by the CXL adapter over SMBUS interface or PCIe are outside the scope of this
specification. These can either be found in other specifications such as PLDM (Platform
Level Data Model).

§ §

Ev
al

ua
tio

n
C

op
y

Power Management

 Compute Express Link Specification
October 26, 2020 438
Revision 2.0, Version 1.0

10.0 Power Management

10.1 Statement of Requirements
All CXL implementations are required to support the Physical Layer Power management
as defined in this chapter. CXL Power management is divided into protocol specific Link
Power management and CXL Physical layer power management. The ARB/MUX layer is
also responsible for managing protocol specific Link Power Management between the
Protocols on both sides of the link. The ARB/MUX co-ordinates the Power Managed
states between Multiple Protocols on both sides of the links, consolidates the Power
states and drives the Physical Layer Power Management.

10.2 Policy-Based Runtime Control - Idle Power - Protocol Flow

10.2.1 General

For CXL connected devices, there is a desire to optimize power management of the
whole system, with the device included.

As such, a hierarchical power management architecture is proposed, where the discrete
device is viewed as a single autonomous entity, with thermal and power management
executed locally, but in coordination with the processor. State transitions are
coordinated with the processor using Vendor Defined Messages over CXL. The
coordination between primary power management controller on the host and the
device is best accomplished via PM2IP and IP2PM messages that are encoded as VDMs.

Since native support of PCIe is also required, support of more simplified protocols is
also possible. The following table highlights the required and recommended handling
method for Idle transitions.

Notes:
1. All CXL components support PM VDMs and use PM Controller - PM controller sequences where possible
2. PM2IP: VDM carrying messages associated with different Reset/PM flows

10.2.2 Package-Level Idle (C-state) Entry and Exit Coordination

At a high level, a discrete CXL device, that is coherent with the processor, is treated like
another processor package. The expectation is that there is coordination and
agreement between the processor and the discrete device before the platform can

Table 220. Runtime-Control - CXL Versus PCIe Control Methodologies

Case PCIe CXL1

Pkg-C Entry/Exit

Devices that do not share coherency with
CPU can work with the PCIe profile:
1. LTR-notifications from Device;
2. Allow-L1 signaling from CPU on Pkg_C
entry

Optimized handshake protocol, for all non-PCIe CXL
profiles
1. LTR-notifications from Device;
2. PMreq/Rsp (VDM) signaling between CPU and device
on Pkg_C entry and exit

Ev
al

ua
tio

n
C

op
y

Power Management

 Compute Express Link Specification
October 26, 2020 439
Revision 2.0, Version 1.0

enter idle power state. Neither device nor processor can enter a low power state
individually as long as its memory resources are needed by the other components. As
an example, in a case where the device may contain shared High-Bandwidth memory
(HBM) on it, while the processor controls the system's DDR, if the device wants to be
able to go into a low power state, it must take into account the processor's need for
accessing the HBM memory. Likewise, if processor wants to go into a low power state,
it must take into account, among other things, the need for the device to access DDR.
These requirements are encapsulated in the LTR requirements that are provided by
entities that need QOS for access to memory. In this case, we would have a notion of
LTR for DDR access and LTR for HBM access. We would expect the device to inform the
processor about its LTR with regard to DDR, and processor to inform the device about
its LTR with regard to HBM.

Managing latency requirements can be done in two methods.
• CXL devices that do not share coherency with the CPU (either a shared coherent

memory or a coherent cache), can notify the processor on changes in its latency
tolerance via the PMReq() and PMRsp() messages. When appropriate latency is
supported and the processor execution has stopped, the processor will enter an
Idle state and proceed to transition the Link to L1 (see Link-Layer section, Section
10.3, “Compute Express Link Power Management”).

• CXL devices that include a coherent cache or memory device are required to
coordinate their state transitions using the CXL optimized VDM based protocol,
which includes the ResetPrep(), PMReq(), PMRsp() and PMGo() messages, to
prevent loss of memory coherency.

10.2.2.1 PMReq Message Generation and Processing Rules

The rules associated with generation and processing of PMReq.Req, PMReq.Rsp and
PMReq.Go messages are:

• A CXL device communicates it latency tolerance via PMReq.Req message. A host
communicates it latency tolerance either via a PMReq.Rsp message or a PMReq.Go
message.

• A CXL device is permitted to unilaterally generate a PMReq.Req message as long as
it has the necessary credits. A host shall not generate a PMReq.Req message.

• A CXL device shall not generate a PMReq.Rsp message. A host is permitted to
unilaterally generate a PMReq.Rsp message as long as it has the necessary credits,
even if it has never received a PMReq.Req message. A CXL device must process a
PMReq.Rsp message normally even if that CXL device had never previously issued a
a PMReq.Req message.

• A CXL device is not permitted to generate a PMReq.Go message. A host is
permitted to unilaterally generate PMReq.Go message as long as it has the
necessary credits, even if it has never received a PMReq.Req message. A CXL
device must process a PMReq.Go message normally even if that CXL device had
never previously issued a a PMReq.Req message. A CXL device must process a
PMReq.Go message normally even if that CXL device had never received a
PMReq.Rsp message.

• A CXL device must continue to operate correctly even if it never receives a
PMReq.Rsp in response to it generating PMReq.Req.

• A CXL device must continue to operate correctly even if it never receives a
PMReq.Go in response to it generating PMReq.Req.

• The Requirement bit associated with the non-snoop Latency Tolerance field in the
PMReq messages must be set to 0 by all CXL 2.0 components.

Section 10.2.3 and Section 10.2.4 include example flows that illustrate these rules.

Ev
al

ua
tio

n
C

op
y

Power Management

 Compute Express Link Specification
October 26, 2020 440
Revision 2.0, Version 1.0

10.2.3 PkgC Entry Flows

Figure 160 illustrates the PkgC entry flow. A device when wishing to enter a higher-
latency Idle state, in which CPU is not active, will issue a PMReq.Req with LTR field
marking the memory access tolerance of the entity. As stated in Section 10.2.2.1, a
device may unilaterally generate PMReq.Req to communicate any changes to its
latency, without any dependency on receipt of a prior PMReq.Rsp or PMReq.Go.
Specifically, a device may transmit two PMReq.Req messages without an intervening
PMReq.Rsp from the host. The LTR value communicated by the device is labeled
MEM_LTR represents its latency tolerance regarding CXL.cache accesses and it could be
different from what is communicated via LTR messages over CXL.io.

If Idle state is allowed, the processor will respond with a matching PMReq.Rsp
message, with the negotiated allowable latency tolerance LTR (labeled CXL_MEM_LTR).
Both entities can independently enter an Idle state without coordination, as long as the
shared resources remain accessible.

For a full package C entry, both entities need to negotiate as to the depth/latency
tolerance, by responding with a PMReq.Rsp message with the agreeable latency
tolerance. Once the master power management agent has coordinated LTR across all

Table 221. PMReq(), PMRsp() and PMGo Encoding

Message PM Logical Opcode Parameter[15:0]

 PMReq.Req, abbreviated as PMReq 04h 01h

PMReq.Rsp, abbreviated as PMRsp 04h 00h

PMReq.Go, abbreviated as PMGo 04h 04h or 05h

Figure 160. PkgC Entry Flow Initiated by Device - Example

Ev
al

ua
tio

n
C

op
y

Power Management

 Compute Express Link Specification
October 26, 2020 441
Revision 2.0, Version 1.0

the agents in the system, it will send a PMReq.Go() with the proper Latency field set
(labeled CXL_MEM_LTR), indicating local idle power actions can be taken subject to the
communicated latency tolerance value.

In case of a transition into deep-idle states (client systems mostly), device will initiate a
CXL transition into L1.

These diagrams represent sequences, but do not imply any timing requirements. A host
may respond to a PMReq.Req from a device with a PMReq.Rsp much later, when it is
ready to enter low power state or may not respond at all. A device, having sent a
PMReq.Req, shall not implement a timeout waiting for PMReq.Rsp or PMReq.Go.
Similarly, a device is not required to reissue PMReq.Req if its latency tolerance
requirements have not changed since previous communication and the link has stayed
up. As shown in Figure 161, a CXL Type 3 device may issue PMReq.Req once after the
link bring up to indicate to the host that it either has no latency requirements or a very
high latency tolerance. The host may communicate any changes to its latency
expectations to such a device. Such a device may initiate low power entry purely based
on the latency tolerance value it receives from the host as shown in Figure 161. When
the host communicates a high enough latency tolerance value to the device, the device
may enter low power state. A type 3 device may enter and exit low power state purely
based on PMReq.Go message from the host without dependency on a prior PMReq.Rsp.

Figure 161. PkgC Entry Flows for Type 3 Device - Example

Ev
al

ua
tio

n
C

op
y

Power Management

 Compute Express Link Specification
October 26, 2020 442
Revision 2.0, Version 1.0

10.2.4 PkgC Exit Flows

Figure 162 illustrates the PkgC exit flow initiated by the device. Link state during Idle
may be in one of the select L1.x states, during Deep-Idle (as depicted here). In-band
wake signaling will be used to transition the link back to L0. For more, see Section
10.3, “Compute Express Link Power Management” .

Once CXL is out of L1, signaling can be used to transfer the device into a Package-C
state, in which shared resources are available across CXL. The device requests a low
latency tolerance value to the processor. Based on that, the processor will bring the
shared resources out of Idle and communicate its latest latency requirements with a
PMReq.Rsp().

Figure 162. PkgC Exit Flows - Triggered by Device Access to System Memory

Ev
al

ua
tio

n
C

op
y

Power Management

 Compute Express Link Specification
October 26, 2020 443
Revision 2.0, Version 1.0

Figure 163 illustrates the PkgC exit flow initiated by the processor. In the case where
the processor, or one of the peer devices connected to it requires to have coherent low
latency access to system memory, the processor will initiate a Link L1 exit towards the
device.

Once the link is running, the processor will follow with a PMGo(Latency=0), indicating
some device in the platform requires very low latency access to coherent memory and
resources. A device receiving PMReq.Go with latency 0 must ensure that further low
power actions that might impede access to memory are not taken.

10.2.5 Compute Express Link Physical Layer Power Management
States

CXL Physical layer supports L1 and L2 states as defined in PCI Express Base
Specification. CXL Physical layer does not support L0s. The entry and exit conditions
from these states are as defined in the PCI Express Base Specification. The notable
difference is that for CXL Physical Layer, the entry and exit from Physical Layer Power
Managed states is directed by CXL ARB/MUX.

10.3 Compute Express Link Power Management
CXL Link Power Management supports Active Link State Power Management and L1 and
L2 are the only 2 Power states supported. The PM Entry/Exit process is further divided
into 3 phases as described below.

Figure 163. PkgC Exit Flows - Execution Required by Processor

Ev
al

ua
tio

n
C

op
y

Power Management

 Compute Express Link Specification
October 26, 2020 444
Revision 2.0, Version 1.0

10.3.1 Compute Express Link PM Entry Phase 1

The CXL PM Entry phase 1 involves protocol specific mechanisms to negotiate entry into
PM state. Once the conditions to enter PM state as defined in the protocol section, are
satisfied, the transaction layer is now ready for Phase 2 entry and directs the ARB/MUX
to enter the PM State.

10.3.2 Compute Express Link PM Entry Phase 2

When directed by the transaction layer to enter PM, the Phase 2 entry process is
initiated by the ARB/MUX. The second Phase of the PM entry consists of bringing the
ARB/MUX interface of both sides of the Link into PM state. This entry into the PM state
is coordinated using ALMPs as described below. The Phase 2 entry is independently
managed for each protocol. The Physical Layer continues to be in L0 until all the
transaction layers enter Phase 2 state.

Figure 164. CXL Link PM Phase 1

CXL.cache
/CXL.memCXL.io

ARB/MUX

CXL PHY

Tx

CXL.ioCXL.cache
/CXL.mem

ARB/MUX

CXL PHY

Rx

Phase 1

Phase 1

Phase 1Phase 1

TxRx

Ev
al

ua
tio

n
C

op
y

Power Management

 Compute Express Link Specification
October 26, 2020 445
Revision 2.0, Version 1.0

Rules for the Phase 2 entry into ASPM are as follows:
1. The Phase 2 Entry into the PM State is always initiated by ARB/MUX on the

Downstream Component.
2. When directed by the transaction layer the ARB/MUX on the Downstream

Component must transmit ALMP request to enter the Virtual LSM state PM.
3. When the ARB/MUX on the Upstream Component is directed to enter L1 and

receives ALMP request from the Downstream Component, the Upstream
Component responds with an ALMP response indicating acceptance of entry into L1
state. The transaction layer on the Upstream Component must also be notified that
the ARB/MUX port has accepted entry into PM state.

4. The Upstream Component ARB/MUX port does not respond with an ALMP response
if not directed by the protocol on the Upstream Component to enter PM.

5. When the ARB/MUX on the Downstream Component is directed to enter L1 and
receives ALMP response from the Upstream Component, it notifies acceptance of
entry into the PM state to the transaction layer on the Downstream component.

Figure 165. CXL Link PM Phase 2

CXL.cache
/CXL.mem CXL.io

ARB/MUX

CXL PHY

CXL.ioCXL.cache/
CXL.mem

ARB/MUX

CXL PHY

Phase 2

Tx

Phase 2

Phase 2Phase 2

Rx Tx Rx

Ev
al

ua
tio

n
C

op
y

Power Management

 Compute Express Link Specification
October 26, 2020 446
Revision 2.0, Version 1.0

6. The Downstream Component ARB/MUX port must wait for at least 1 mS (not
including time spent in recovery states) for a response from the Upstream
Component. If no response is received from the Upstream component then the
Downstream Component is permitted to abort the PM entry or retry entry into PM
again.

7. L2 entry is an exception to rule number 6. Protocol must ensure that Upstream
component is directed to enter L2 before setting up the conditions for the
Downstream Component to request entry into L2 state. This ensures that L2 abort
or L2 Retry conditions do not exist.

8. Transaction layer on either side of the Link is permitted to direct exit from L1 state
once the ARB/MUX interface reaches L1 state.

10.3.3 Compute Express Link PM Entry Phase 3

The third Phase is a conditional phase of PM entry and is executed only when all the
Protocol interfaces of ARB/MUX have entered the same virtual PM state. The phase
consists of bringing the Tx lanes to electrical Idle and is always initiated by the
Downstream Component.

Ev
al

ua
tio

n
C

op
y

Power Management

 Compute Express Link Specification
October 26, 2020 447
Revision 2.0, Version 1.0

Figure 166. CXL PM Phase 3

CXL.cache/
CXL.memCXL.io

ARB/MUX

CXL PHY

Rx Tx

CXL.ioCXL.cache/
CXL.mem

ARB/MUX

CXL PHY

Rx Tx

Phase 2Phase 3

Figure 167. Electrical Idle

Ev
al

ua
tio

n
C

op
y

Power Management

 Compute Express Link Specification
October 26, 2020 448
Revision 2.0, Version 1.0

10.3.4 Compute Express Link Exit from ASPM L1

Components on either end of the Link may initiate exit from the L1 Link State. The
ASMP L1 exit depends on whether the exit is from phase 3 or phase 2 of L1. The exit is
hierarchical and phase 3 must exit before phase 2.

Phase 3 exit is initiated when directed by the ARB/Mux from either end of the link. The
ARB/MUX layer initiates exit from Phase 3 when there is an exit requested on any one
of its primary protocol interfaces. The phase 3 ASPM L1 exit is the same as exit from L1
state as defined in PCI Express Base Specification. The steps are followed until the
LTSSM reaches L0 state. Protocol level information is not permitted to be exchanged
until the virtual LSM on the ARB/MUX interface has exited L1 state.

Phase 2 exit involves bringing the protocol interface at the ARB/MUX out of L1 state
independently. The transaction layer directs the ARB/MUX state to exit virtual LSM
state. If the PHY is in Phase 3 L1 then the ARB/MUX waits for the PHY LTSSM to reach
L0 state. Once the PHY is in L0 state, the following rules apply.

The ARB/MUX on the protocol side that is triggering an exit transmits a ALMP
requesting entry into Active state.

Any ARB/MUX interface that receives the ALMP request to enter Active State must
transmit an ALMP acknowledge response on behalf of that interface. The ALMP
acknowledge response is an indication that the corresponding protocol side is ready to
process received packets.

Any ARB/MUX interface that receives the ALMP request to enter Active State must also
transmit an ALMP Active State request on behalf of that interface if not sent already.

Protocol level transmission must be permitted by the ARB/MUX after an Active State
Status ALMP is transmitted and received. This guarantees that the receiving protocol is
ready to process packets.

10.4 CXL.io Link Power Management
CXL.io Link Power Management is as defined in PCI Express Base Specification with the
following notable differences.

• Only ASPM L1 is supported for CXL 1.1. Unlike a PCI Express Device, a CXL 1.1
device is not required to initiate entry into L1 state when software transitions the
device into D3Hot or D1 state. CXL 2.0 device shall support ASPM L1 as well as PCI-
PM. As such, a CXL 2.0 device shall initiate CXL.io L1 entry when the device is
placed in D3Hot or D1.

• L0s state is not supported
• PCI-PM is not supported when connected to CXL 1.1 device.

All CXL functions shall implement PCI Power Management Capability Structure as
defined in PCI Express Base Specification and shall support D0 and D3 device states.

10.4.1 CXL.io ASPM Phase L1 Entry

• The first phase consists of completing the ASPM L1 negotiation rules as defined in
the PCI Express Base Specification with the following notable exceptions for the
rules in case of acceptance of ASPM L1 Entry. All rules up to the completion of the
ASPM L1 handshake are maintained, however the process of bringing the Transmit
Lanes into Electrical Idle state are divided into 2 additional phases described above.
Phase 1 flow is described below.

Ev
al

ua
tio

n
C

op
y

Power Management

 Compute Express Link Specification
October 26, 2020 449
Revision 2.0, Version 1.0

10.4.2 CXL.io ASPM Phase 2 Entry

The following conditions apply for Phase 2 Entry for CXL.io

Phase 2: The second Phase of L1 entry consists of bringing the CXL.io ARB/MUX
interface of both sides of the Link into L1 state. This entry into L1 state is coordinated
using ALMPs as described below.

Rules for Phase 2 entry into ASPM L1.
1. CXL.io on the Upstream Component must direct the ARB/MUX to be ready to enter

L1 before returning the PM_Request_Ack DLLPs as shown above in Phase 1.
2. When the PM_Request_Ack DLLPs are successfully received by the CXL.io on the

Downstream Component, it must direct the ARB/MUX on the Downstream
Component to transmit ALMP request to enter Virtual LSM state L1.

3. When the ARB/MUX on the Upstream Component is directed to enter L1 and
receives ALMP request from the Downstream Component, it notifies the CXL.io that
the interface has received ALMP request to enter L1 state and has entered L1 state

4. When the Upstream Component is notified entry into virtual LSM it ceases sending
PM_Request_Ack DLLP

5. When the ARB/MUX on the Downstream Component is directed to enter L1 and
receives ALMP Status from the Upstream Component, it notifies the CXL.io that the
interface has entered L1 state

10.4.3 CXL.io ASPM Phase 3 Entry

The Phase 3 entry is dependent on the virtual LSM state of multiple protocols and is
managed by the ARB/MUX as described in the section on Phase 3 entry above.

Figure 168. ASPM L1 Entry Phase 1

Ev
al

ua
tio

n
C

op
y

Power Management

 Compute Express Link Specification
October 26, 2020 450
Revision 2.0, Version 1.0

10.5 CXL.cache + CXL.mem Link Power Management
CXL.cache and CXL.mem support Active Link State Power Management only, unlike
CXL.io there is no PM Entry handshake defined between the Link Layers. Each side
independently requests to the ARB/MUX to enter L1. The ARB/MUX layers on both sides
of the Link co-ordinate the entry into PM state using ALMPs. CXL.cache + CXL.mem
Link Power Management follows the process for PM entry and exit as defined in section
Compute Express Link Power Management.

§ §

Ev
al

ua
tio

n
C

op
y

Security

 Compute Express Link Specification
October 26, 2020 451
Revision 2.0, Version 1.0

11.0 Security

11.1 CXL IDE
CXL Integrity and Data Encryption (CXL IDE) defines mechanisms for providing
Confidentiality, Integrity and Replay protection for data transiting the CXL link. The
cryptographic schemes are aligned with the current industry best practices. It supports
a variety of usage models while providing for broad interoperability. CXL IDE can be
used to secure traffic within a Trusted Execution Environment (TEE) that is composed of
multiple components, however, the framework for such a composition is out of scope
for this specification.

11.1.1 Scope

This chapter focuses on the changes for CXL.cache and CXL.mem traffic transiting the
link and updates/constraints to the PCIe Base specification that governs CXL.io traffic.

• CXL.io IDE definition is based on PCIe IDE. Differences/constraints for CXL.io usage
are called out in Section 11.1.2.

• CXL.cachemem IDE may use the CXL.io based mechanisms for discovery,
negotiation, device attestation, and key negotiation.
— Device attestation/authentication may follow PCIe Base Specification, which in

turn refers to DMTF Security Protocol and Data Model (SPDM) Specification.
— Key exchange protocol to establish the link encryption keys may follow PCIe

Base Specification
— Mechanism of discovery and negotiation of capabilities may follow PCIe Base

Specification.

In this specification, the term CXL IDE is used to refer to the scheme that protects
CXL.io, CXL.cache and CXL.mem traffic. The term CXL.cachemem IDE is used to refer
to the protections associated with CXL.cache and CXL.mem traffic.

Ev
al

ua
tio

n
C

op
y

Security

 Compute Express Link Specification
October 26, 2020 452
Revision 2.0, Version 1.0

IMPLEMENTATION NOTE: SECURITY MODEL

Assets

Assets that are in scope are as follows
• Transactions (data + metadata communicated) between the two sides of the

physical link. This specification only provides the definition for providing Integrity
and Encryption of traffic between the ports.

Notes:
• This threat model does not cover the security exposure due to inadequate Device

implementation.
• Agents that are on each side of the physical link are in the trust boundary of the

respective devices/hardware blocks they live in. These agents will need to provide
implementation specific mechanisms to protect the data internal to the device
and any external connections over which such data can be sent by the device.
Mechanisms for such protection are not in the scope of this definition.

• Symmetric cryptographic keys are used to provide confidentiality, integrity and
replay protection. This specification will not define mechanisms for protecting
these keys inside the host and device.

• Certificates and asymmetric keys used for device authentication and key
exchange are not in scope here. The device attestation and key exchange
mechanism determine the security model for those assets.

TCB

The TCB consists of the following
• Hardware blocks on each side of the link that implement the link encryption and

integrity.
• Agents that are used to configure the crypto engines. For example, trusted

firmware/software agent and/or security agent hardware and firmware that
implement key exchange protocol or facilitate programming of the keys.

• Other hardware blocks in the device that may have access to the assets directly
or indirectly, including those that perform operations such as reset, debug, and
link power management.

Adversaries and Threats
• Threats from physical attacks on links, including cases where an adversary can

examine data intended to be confidential, modify data or protocol meta-data,
record and replay recorded transactions, reorder and/or delete data flits, inject
transactions including requests/data or non-data responses, using lab equipment,
purpose-built interposers, or malicious Extension Devices.

• Threats arising from physical replacement of a trusted device with an untrusted
one, and/or removal of a trusted device and accessing it with a system that is
under adversary’s control.

• CXL.cachemem IDE provides point-to-point protection. Any switches present in
the path between the host and the Endpoint, or between two Endpoints, must
support this specification. In addition, such switches will be in the TCB.

Denial of service attacks are not in scope.

Ev
al

ua
tio

n
C

op
y

Security

 Compute Express Link Specification
October 26, 2020 453
Revision 2.0, Version 1.0

11.1.2 CXL.io IDE

CXL.io IDE follows the PCIE IDE definition. This section covers the notable constraints
and differences between the CXL.io IDE definition and the PCIe IDE definition.

One of the PCIE IDE reserved sub-stream encodings (1000b) is assigned for
CXL.cachemem usage.

11.1.3 CXL.cachemem IDE High Level Overview

• All protocol level retriable flits are encrypted and integrity protected.
• Link Layer control flits and flit CRC are not encrypted nor integrity protected. There

is no confidentiality nor integrity on these flits.
• Link CRC shall be computed on encrypted flits. Link retries happen first and only

flits that pass Link CRC will be decrypted/ integrity checked.
• Any integrity check failures shall result in all future secure traffic getting dropped.
• Multi-Data Header capability must be supported. This allows packing of multiple (up

to 4) data headers into a single slot, followed immediately by 16 slots of all-data.
• AES-GCM with 256 bit key size shall be used for confidentiality, integrity and replay

protection.
• Key refresh without any loss of data must be supported. There are a number of

scenarios where the keys need to be refreshed. Some examples include
— An accelerator device that is migrated from one VM (or process) to a different

one.
— Crypto considerations (concerns about key wear-out) for long running devices

or devices that are part of platform.
• Key refresh is expected to happen infrequently. It is acceptable to take a latency/

bandwidth hit, but there must not be any loss of data.
• Encrypted PCRC mechanism is supported to provide robustness against hard and

soft faults internal to the encryption and decryption engines. Encrypted PCRC
integrates into the standard MAC check mechanism, does not consume incremental
link bandwidth, and can be implemented without adding significant incremental
latency. PCRC is mandatory for CXL.cachemem IDE and is enabled by default.

Table 222. Mapping of PCIE IDE to CXL.io

PCIE IDE Definition CXL.io Support Notes

Link IDE stream Supported Required for CXL.cachemem IDE. CXL.cachemem
will only use keys associated with Link IDE stream.

Selective IDE stream Supported Selective IDE stream only applies to CXL.io.

Aggregation Supported PCIe defined aggregation levels only apply to
CXL.io traffic.

Switches with flow-through selective IDE
streams Supported

CXL Switches need to support Link IDE streams.
CXL switches may either act as terminus for
selective IDE streams or forward them towards
Endpoints.

PCRC mechanism Supported PCRC mechanism may be optionally enabled for the
CXL.IO ports

Ev
al

ua
tio

n
C

op
y

Security

 Compute Express Link Specification
October 26, 2020 454
Revision 2.0, Version 1.0

11.1.4 CXL.cachemem IDE Architecture

• IDE shall operate on a flit granularity for CXL.cachemem protocols. IDE makes use
of the Advanced Encryption Standard-Galois Counter (AES-GCM) mode of operation
as defined in NIST Special Publication 800-38D. AES-GCM takes three inputs
denoted as additional authentication data (AAD – designated A in AES-GCM spec),
plain text (P), and initialization vector (IV).
In the case of CXL.cachemem protocol header flits, the 32 bits of the flit Header
that are part of slot 0 maps to A – it is not encrypted, but is integrity protected. The
rest of the content of slot 0/1/2/3 maps to P, which is encrypted and integrity
protected (see handling of MAC slot below). CXL.cachemem protocol also supports
data-only flits. In the case data-only flits, all 4 slots in the flit map to P.

• The link CRC is not encrypted or integrity protected. The CRC is computed on the
flit content after it has been encrypted.

• As with other protocol flits, IDE flits shall be covered by link layer mechanisms for
detecting and correcting errors. This process shall operate on flits after they are
cryptographically processed by the transmitter and before they are submitted for
cryptographic processing by the receiver.

• AES-GCM is applied to an aggregation of multiple flits referred to as a MAC_Epoch.
The number of flits in the aggregation is determined by the Aggregation Flit Count.
The term Aggregation Flit Count is defined in Section 11.1.7. If PCRC
(Section 11.1.5) is enabled in the CXL IDE Control Register (Section 8.2.5.14.2),
the 32 bits of PCRC shall be appended to the end of the aggregated flit content to
contribute to the final P value that is integrity protected. However, the 32 bits of
PCRC are not transmitted across the link. Figure 169 shows the mapping of the flit
contents into the A and P for the case of aggregation of MAC across 5 flits.

• The Message Authentication Code (MAC), also referred to as the authentication tag
in the AES-GCM specification, shall be 96 bits. The MAC must be transmitted in a
slot 0 header of Type H6 (see Figure 55). Unlike other slot 0 headers, the MAC itself
is neither encrypted nor integrity protected. Figure 170 shows the mapping of flit
contents to A and P for the case of aggregation of MAC across 5 flits with one of the
flits carrying a MAC.

Figure 169. CXL.cachemem IDE Showing Aggregation of 5 Flits

Ev
al

ua
tio

n
C

op
y

Security

 Compute Express Link Specification
October 26, 2020 455
Revision 2.0, Version 1.0

• Figure 171 gives a more detailed view of the 5 flit MAC Epoch example. Flit0 shown
on the top is the first flit to be transmitted in this MAC Epoch. The figure delineates
the header fields that are only integrity protected, and plain text content that is
encrypted and integrity protected. Flit0 plaintext0 byte0 is the first byte of the plain
text. Flit1 plaintext0 byte0 shall immediately follow flit0 plaintext0 byte 11.

Figure 170. CXL.cachemem IDE Showing Aggregation Across 5 Flits Where One Flit
Contains MAC Header in Slot 0

Figure 171. More Detailed View of a 5 Flit MAC Epoch Example

Ev
al

ua
tio

n
C

op
y

Security

 Compute Express Link Specification
October 26, 2020 456
Revision 2.0, Version 1.0

Figure 172 shows the mapping of the header bytes to AES-GCM AAD for the example in
Figure 171.

11.1.5 Encrypted PCRC

Polynomial with the coefficients 0x1EDC6F41 shall be used for PCRC computation.
PCRC computation shall begin with an initial value of 0xFFFFFFFF. The PCRC shall be
computed across all the bytes of plaintext in the aggregated flits that are part of the
given MAC Epoch. PCRC calculation shall begin with bit0 byte0 of flit plaintext content
and sequentially include bits 0 - 7 for each byte of the flit contents that are mapped to
the plaintext. After accumulating the 32-bit value across the flit contents, the PCRC
value shall be finalized by taking 1's complement of the bits of accumulated value to
obtain PCRC [31:0].

On the transmit side (Figure 173), the PCRC value shall be appended to the end of the
aggregated flit plaintext content, encrypted and included in the MAC computation. The
encrypted PCRC value is not transmitted across the link.

On the receiver side(Figure 174), the PCRC value shall be recomputed based on the
received decrypted cipher text. When the last flit of current MAC epoch has been
processed, the accumulated PCRC value shall be XORed (encrypted) with the AES
keystream bits that immediately follow the values used for decrypting the received
cipher flit. This encrypted PCRC value shall be appended to the end of the received
cipher text for the purposes of MAC computation.

Figure 172. Mapping of AAD Bytes for the Example Shown in Figure 171

Ev
al

ua
tio

n
C

op
y

Security

 Compute Express Link Specification
October 26, 2020 457
Revision 2.0, Version 1.0

•

11.1.6 CXL.cachemem IDE Cryptographic Keys and IV

Initialization of a CXL.cachemem IDE Stream involves multiple steps; it is possible that
some of these steps can be merged or performed in a different order. The first step is to
establish the authenticity and identity of the components containing the two ports that
act as Endpoints for a CXL.cachemem IDE Stream. The second step is to establish the
IDE Stream keys. In some cases, these two steps may be combined. Third, the IDE is
configured. Finally, the establishment of the IDE Stream is triggered.

Figure 173. Inclusion of the PCRC mechanism into AES-GCM encryption

Figure 174. Inclusion of the PCRC mechanism into AES-GCM decryption

Ev
al

ua
tio

n
C

op
y

Security

 Compute Express Link Specification
October 26, 2020 458
Revision 2.0, Version 1.0

CXL.cachemem IDE may make use of CXL.io IDE mechanisms for device attestation
and key exchange.

IV (Initialization Vector) construction of CXL.cachemem IDE shall follow the CXL.io PCIe
specification. A 96-bit IV of deterministic construction is used as per the AES-GCM
specification.

• A fixed field is located at bits 95:64 of the IV, where bits 95:92 contain the sub-
stream identifier, 1000b, and bits 91:64 are all 0s. The same sub-stream encoding
is used for both transmitted and received flits, but the keys used by a port during
transmit and receive flows must be distinct.

• An invocation field in bits 63:0 of the IV contains a monotonically incrementing
counter with rollover properties. The invocation field is initially set to the value
0000_0001h for each sub-stream upon establishment of the IDE Stream, and is
incremented every time an IV is consumed. Neither the transmitter nor the receiver
are required to detect IV rollover1 and are not required to take any special actions
when IV rolls over.

11.1.7 CXL.cachemem IDE Modes

CXL.cachemem IDE supports two modes of operation.
• Containment Mode: In this mode the data is released for further processing only

after the integrity check passes. This mode impacts both latency and bandwidth.
The latency impact is due to the need to buffer several flits until the integrity value
has been received and checked. The bandwidth impact comes from the fact that
integrity value is sent quite frequently. If containment mode is supported and
enabled, the devices (and hosts) use an Aggregation Flit Count of 5.

Skid Mode: Skid mode allows the data to be released for further processing without
waiting for the integrity value to be received and checked. This allows for less frequent
transmission of the integrity value. Skid mode allows for near zero latency overhead
and very low bandwidth overhead. In this mode, data modified by an adversary is
potentially consumed by software, but such an attack will be subsequently detected
when the integrity value is received and checked. If skid mode is supported and
enabled, all devices (and hosts) shall use an Aggregation Flit Count of 128. When using
this mode, the software and application stack must be capable of tolerating attacks
within a narrow time window, or the result is undefined.

11.1.7.1 Discovery of Integrity Modes and Settings

Each port shall enumerate the modes it supports and other capabilities via registers in
the CXL IDE Capability Structure(Section 8.2.5.14). All devices adherent to this
specification shall support containment mode.

11.1.7.2 Negotiation of Operating Mode and Settings

The operating mode and timing parameters are configured in the CXL IDE Capability
Structure (Section 8.2.5.14) prior to enabling of CXL.cachemem IDE.

The mechanism for the negotiation of the operating mode is not covered by this
specification.

11.1.8 Rules for MAC Aggregation

The rules for generation and transfer of MAC are listed below.

1. For a x16 link operating at 32 Gbps, a 32 bit IV will take longer than 1000 years to roll over.

Ev
al

ua
tio

n
C

op
y

Security

 Compute Express Link Specification
October 26, 2020 459
Revision 2.0, Version 1.0

• MAC_Epoch: A MAC_Epoch is defined as the set of consecutive flits that are part of
a given aggregation unit. The IDE mode (Section 11.1.7) determines the number of
flits in a standard MAC_Epoch. This number is known as Aggregation Flit Count
(referred to as N below). Every MAC_Epoch with the exception of early MAC
termination (Section 11.1.9) case carry N flits. A given MAC header shall contain
the tag for precisely one MAC_Epoch. The transmitter shall accumulate the integrity
value over flits in exactly one MAC_Epoch (that is at most N flits) prior to
transmitting it.

• In all cases, the transmitter must send MACs in the same order as MAC Epochs.
• Figure 175 shows an example of MAC generation and transmission for one

MAC_Epoch in the presence of back-to-back protocol traffic. The earliest flit to be
transmitted or received is shown on the top of the figure. Thus, flits 0 to N-1
(shown in yellow) belonging to MAC_EPOCH 1 are transmitted in that order. The
MAC is computed over flits 0 to N-1.

• The transmitter shall send the MAC header containing this integrity value at the
earliest possible time. This specification allows for transmission of protocol flits
belonging to the next MAC_Epoch between the transmission of last flit of current
MAC_Epoch and the actual transmission of the MAC header for that MAC_Epoch.
This is needed to handle the transmission of all-data flits and is also useful for
avoiding bandwidth bubbles due to MAC computation latency. It is recommended
that the transmitter send the MAC header on the first available Slot0 header
immediately after the MAC computations are completed. In all cases (including the
cases with multi-data headers), at most 5 protocol flits belonging to the current
MAC_Epoch are allowed to be transmitted prior to the transmission of the MAC for
the previous MAC_Epoch.

Figure 175. MAC Epochs and MAC Transmission in Case of Back-to-Back Traffic (a) Earliest
MAC Header Transmit (b) Latest MAC Header Transmit in the Presence of
Multi-Data Header

Ev
al

ua
tio

n
C

op
y

Security

 Compute Express Link Specification
October 26, 2020 460
Revision 2.0, Version 1.0

• On the receive side, the receiver may expect the MAC header to come in on any
protocol flit from first to sixth protocol flits after the last flit of the previous
MAC_Epoch (Figure 175 (b)).

• In the containment mode, the receiver must not release flits of a given MAC_Epoch
for consumption until the MAC header that contains the integrity value for those
flits has been received and the integrity check has passed. Since the receiver can
receive up to five protocol flits belonging to the current MAC_Epoch before
receiving the MAC header for the previous MAC_Epoch, the receiver shall buffer the
flits of the current MAC_Epoch to ensure that there is no loss of data. For example,
referring to Figure 175(b), both the yellow and green flits are buffered until the
MAC header for MAC_Epoch 1 is received and the integrity check passes. If the
check passes, the yellow flits can be released for consumption. The green flits
cannot, however, be released until the green MAC flit has been received and the
integrity verified. Section 11.1.11 defines the receiver behavior upon integrity
check failure.

• In skid mode, the receiver may decrypt and release the flits for consumption as
soon as they are received. The MAC value shall be accumulated as needed and
checked when the MAC header for the flits in the MAC_Epoch arrives. Again,
referring to example in Figure 175 (b), both the yellow and green flits may be
decrypted and released for consumption without waiting for the MAC header for
MAC_Epoch1 to be received and verified. When the MAC header for MAC_Epoch1 is
received, it is verified. If the check passes, there is no action to be taken. If the
MAC header is not received within six protocol flits after the end of the previous
MAC_Epoch, the receiver shall treat the absence of MAC as an error.
Section 11.1.11 defines the receiver behavior upon integrity check failure or
missing MAC header or a delayed MAC header.

Figure 176. Example of MAC Header Being Received in the Very First Flit of the Current
MAC_Epoch

Ev
al

ua
tio

n
C

op
y

Security

 Compute Express Link Specification
October 26, 2020 461
Revision 2.0, Version 1.0

11.1.9 Early MAC Termination

A transmitter is permitted to terminate the MAC_Epoch early and transmit the MAC for
the flits in a truncated MAC_Epoch when fewer than the Aggregation Flit Count of flits
have been transmitted in the current MAC_Epoch. This can happen as part of link idle
handling. The link may be ready to go idle after the transmission of a number of
protocol flits, less than the Aggregation Flit Count, in the current MAC_Epoch.

The following rules shall apply to the early termination of the MAC_Epoch and the
transmission of the MAC.

The transmitter is permitted to terminate the MAC_Epoch early if and only if the
number of protocol flits in the current MAC_Epoch is less than Aggregation Flit Count.
The MAC for this truncated MAC_Epoch shall be transmitted by itself in the IDE.TMAC
Link Layer Control flit (see Table 54). This sub-type is referred to as a Truncated MAC
flit in remainder of this specification. Any subsequent protocol flits would become part
of a new MAC Epoch and would be transmitted after the Truncated MAC Flit. The MAC
for the truncated MAC Epoch is computed identically to the MAC computation for the
normal cases, except that it is accumulated over fewer flits.

Figure 178 shows an example of truncating the current MAC Epoch after 3 protocol flits.
Flits in current MAC Epoch can contain any valid protocol flit including a header flit that
contains the MAC for the previous MAC Epoch. The MAC for the current MAC Epoch shall
be sent using a Truncated MAC Flit. The Truncated MAC flit will be transmitted following
the three protocol flits of the current MAC Epoch with no other intervening protocol flits
from the next MAC Epoch.

IMPLEMENTATION NOTE

In the containment mode, the receiver must not release any decrypted flits for
consumption unless their associated MAC check has been performed and has passed.
This complies with the algorithm for the Authenticated Decryption Function as defined
in NIST Special Publication 800-38D (AES-GCM spec).

In the skid mode, the receiver is permitted to release any decrypted flits for
consumption without waiting for their associated MAC check to be performed. Unless
there are additional device-specific mechanisms to prevent this consumption, the use
of skid mode will not meet the requirements of the above-mentioned algorithm.

Solution stack designers must carefully weigh the benefits versus the downsides
when choosing between the containment mode and the skid mode. The containment
mode guarantees that potentially corrupted data will not be consumed. Skid mode
provides data privacy and eventual detection of data integrity loss, with significantly
less latency impact and link bandwidth loss compared to containment mode.
However, the use of skid mode may be more vulnerable to security attacks and will
require additional device-specific mechanisms if it is necessary to prevent the
consumption of corrupted data.

Ev
al

ua
tio

n
C

op
y

Security

 Compute Express Link Specification
October 26, 2020 462
Revision 2.0, Version 1.0

In the case where the link goes idle after sending exactly the Aggregation Flit Count
number of flits in the MAC_Epoch, then the Truncated MAC flit as defined above must
not be used. The MAC header must be part of the next MAC Epoch. This new MAC
Epoch is permitted to be terminated early using the Truncated MAC Flit (see
Figure 179).

Figure 177. Early Termination and Transmission of Truncated MAC Flit

Figure 178. CXL.cachemem IDE Transmission with Truncated MAC Flit

Ev
al

ua
tio

n
C

op
y

Security

 Compute Express Link Specification
October 26, 2020 463
Revision 2.0, Version 1.0

Once the transmitter sends out the MAC flit for all the previous flits that were in flight,
it may go idle. The receiver is permitted to go idle after the MAC flit corresponding to
flits has been received and verified. IDE idle control flits are retriable and may be
resent as part of replay.

After early MAC Termination and transmittal of the Truncated MAC, the transmitter
must send at least TruncationDelay number of IDE idle flits before it can transmit any
protocol flits. TruncationDelay is defined via the following equations:

Equation 1.
TruncationDelay = Min(Remaining Flits, Tx Min Truncation Transmit Delay)

Tx Min Truncation Transmit Delay (Section 8.2.5.14.6) is a configuration parameter to
account for the potential discarding of any precomputed AES keystream values for the
current MAC Epoch that need to be discarded. Remaining Flits represents the number
flits remaining to complete current MAC Epoch and is calculated as

Equation 2.
Remaining Flits= Aggregation Flit Count - Number of protocol flits received in
current MAC Epoch

Figure 179. Link Idle Case After Transmission of Aggregation Flit Count Number of Flits

Ev
al

ua
tio

n
C

op
y

Security

 Compute Express Link Specification
October 26, 2020 464
Revision 2.0, Version 1.0

11.1.10 Handshake to Trigger the Use of Keys

Each port exposes a register interface that software can use to program the transmit
and receive keys and associated parameters. These programmed keys remain pending
in registers until activation. While the keys are in the process of being exchanged and
configured in both upstream and Downstream Ports, the link may be actively using a
previously configured key. The new keys shall not take effect until the actions described
below are taken.

The mechanism described below is used to switch the backup keys to the active state.
This is needed to ensure the Transmitter and Receiver switch to using the programmed
keys in a coordinated manner.

After the keys are programmed into pending registers on both sides of the link, there
shall be a device specific action on each transmitter on each port to trigger the
transmission of IDE.Start Link Layer Control flit (see Table 54). The mechanism for
determining and ensuring both sides are fully configured is not part of this
specification.

After IDE.Start has been sent, all future protocol flits shall be protected by the new
keys. In order to allow the receiver to get ready to receive the flits protected with new
key, the Transmitter is required to send IDE.idle flits, as defined in Table 54 for the
number of flits specified by the register field Tx Key Refresh Time (see
Section 8.2.5.14.7) prior to sending any protocol flits with the new key. These idle flits
are not encrypted or integrity protected. Tx Key Refresh Time in the transmitter must
be configured to a value higher than the worst-case latency in the receiver to get ready
to use the new keys, which is advertised by the receiver via Rx Min Key Refresh Time
register field (Section 8.2.5.14.5).

After receiving IDE.Start flit, the receiver must switch to using the new keys.

IDE.start flit shall be ordered with respect to the protocol flits. In case of link level
retries, the receiver shall complete retries of previously sent protocol flits before
handling the IDE.start flit and switching to the new key. Other events such as link
retraining can happen in the middle of this flow as long as the ordering stated above is
maintained.

11.1.11 Error Handling

CXL IDE does not impact or require any changes to the link CRC error handling and the
link retry flow.

The details regarding CXL.cachemem errors are logged in CXL IDE Error Status register
(Section 8.2.5.14.4). When a CXL.cachemem IDE error is detected, the appropriate
bits in Uncorrectable Error Status register (Section 8.2.5.9.1) are also set and the error
is signaled using the standard CXL.cachemem protocol error signaling mechanism.

Upon detection of an integrity failure on received secure traffic:
• An integrity failure shall be logged in the error reporting registers and an error

signaled using standard CXL.cachemem protocol error signaling mechanisms.
• Any buffered protocol flits are dropped and all subsequent secure traffic dropped

until the link is reset.
• Device shall prevent any leakage of keys or user data. The device may need to

implement mechanisms to clear out data/state or have access control to prevent
leakage of secrets. Such mechanisms and actions are device specific and beyond
the scope of this specification.

Ev
al

ua
tio

n
C

op
y

Security

 Compute Express Link Specification
October 26, 2020 465
Revision 2.0, Version 1.0

The following conditions must be treated like an integrity failure:
• A MAC Header is received when the link is not in secure mode
• A MAC Header is not received when expected
• A truncated MAC Flit is received when not expected
• Protocol flit is received earlier than expected after Truncated MAC flit
• Protocol flit is received earlier than expected after key switch

11.1.12 Switch Support

A CXL switch that supports CXL.cachemem IDE must support Link IDE for CXL.io traffic.
It may, in addition, optionally support Selective Stream IDE for CXL.io traffic including
Selective Stream IDE in flow-through mode. A CXL switch may just support Selective
Stream IDE in flow-through mode for CXL.io traffic. In this case, CXL.cachemem IDE
cannot not be enabled on host side. In the case of multi-VCS capable switches, CXL IDE
may be enabled on a per Root Port basis. However, once any Root Port has enabled CXL
IDE, the downstream link from the switch to the MLD devices that support CXL IDE,
must have link IDE enabled. Thus, the traffic from a Root Port which has not enabled
CXL IDE that is targeting an MLD device that has enabled CXL IDE, would be encrypted
and integrity protected between the switch and the device.

§ §

IMPLEMENTATION NOTE: IDE CONFIGURATION OF CXL SWITCHES

The examples below describe three different models for configuring the
CXL.cachemem IDE and performing key exchanges with the CXL switches and the
devices attached to them.

Model A

Host performs key exchange with the CXL switch and enables CXL IDE. The host will
then enumerate the Downstream Ports in the CXL switch and performs key exchange
with those downstream devices that support CXL IDE. It then programs the keys into
the respective Downstream Ports of the switch and enables CXL IDE.

Model B

Host performs key exchange with the CXL switch and enables CXL IDE. In parallel,
CXL switch will enumerate downstream devices, performs key exchange with those
downstream devices that support CXL IDE. Switch then programs the keys into the
respective Downstream Ports of the switch and enables CXL IDE. Host can obtain a
report from the CXL switch regarding the enabling of CXL IDE for downstream devices
which includes information about the public key used to attest to the device EP. Host
may obtain an attestation from the device Endpoint directly and confirm that the
Endpoint in question has the same public key that was used by switch as part of the
key exchange.

Model C

An out-of-band agent may configure keys into the host, switch and devices via out-of-
band means and then enable CXL IDE directly.

Ev
al

ua
tio

n
C

op
y

Reliability, Availability and Serviceability

 Compute Express Link Specification
October 26, 2020 466
Revision 2.0, Version 1.0

12.0 Reliability, Availability and Serviceability

CXL RAS capabilities are built on top of PCI Express. Additional capabilities are
introduced to address cache coherency and memory as listed below.

12.1 Supported RAS Features
The table below lists the RAS features supported by CXL and their applicability to
CXL.io vs. CXL.cache and CXL.mem.

12.2 CXL Error Handling
As shown in Figure 180, CXL can simultaneously carry three protocols: CXL.io,
CXL.cache and CXL.mem. CXL.io carries PCIe like semantics and must be supported by
all CXL Endpoints. All RAS capabilities must address all of these protocols and usages.
For details of CXL architecture and all protocols, please refer to the other sections in
this document.

Figure 180 below is an illustration of CXL and the focus areas for CXL RAS. Namely,
Link & protocol RAS, which applies to the CXL component to component communication
mechanism and Device RAS which applies exclusively to the device itself. All CXL
protocol errors are reflected to the OS via PCIe AER mechanisms as “Correctable
Internal Error” (CIE) or “Uncorrectable Internal Error” (UIE). Errors may also be
reflected to Platform software if so configured.

Table 223. CXL RAS Features

Feature CXL.io CXL.cache and CXL.mem

Link CRC and Retry Required Required

Link Retraining and Recovery Required Required

eDPC Optional

Leverage CXL.io capability. CXL.cache or
CXL.mem errors may be signaled via
ERR_FATAL or ERR_NONFATAL and may
trigger eDPC.

ECRC Optional N/A

Hot-Plug
Not Supported in CXL
1.1, Managed hot-plug
supported in CXL 2.0 Same as CXL.io.

Data Poisoning Required Required

Viral N/A Required

Ev
al

ua
tio

n
C

op
y

Reliability, Availability and Serviceability

 Compute Express Link Specification
October 26, 2020 467
Revision 2.0, Version 1.0

Referring to Figure 180, the CXL 1.1 Host/Root Complex is located on the north side
and contains all the usual error handling mechanisms such as Core error handling (e.g.
MCA architecture), PCIe AER, RCEC and other platform level error reporting and
handling mechanisms. CXL.mem and CXL.cache protocol errors encountered by the
device are communicated to the CPU across CXL.io. to be logged in PCIe AER registers.
The following sections will focus on the link layer and transaction layer error handling
mechanisms as well as CXL device error handling.

Errors detected by CXL 2.0 ports are escalated and reported using standard PCIe error
reporting mechanisms over CXL.io as UIE/CIE.

12.2.1 Protocol and Link Layer Error Reporting

Protocol and Link errors are detected and communicated to the Host where they can be
exposed and handled. There are no error pins connecting CXL devices to the Host.
Errors are communicated between the Host and the CXL device via messages over
CXL.io.

Figure 180. CXL 1.1 Error Handling

Ev
al

ua
tio

n
C

op
y

Reliability, Availability and Serviceability

 Compute Express Link Specification
October 26, 2020 468
Revision 2.0, Version 1.0

12.2.1.1 CXL 1.1 Downstream Port (DP) Detected Errors

Errors detected by the CXL 1.1 DP are escalated and reported via the Root Complex
error reporting mechanisms as UIE/CIE. The various signaling and logging steps are
listed below and illustrated in Figure 181.
1. DPA CXL.io detected errors are logged in local AER Extended Capability in DPA

RCRB. Software must ensure that Root Port Control register in DPA AER Extended
Capability are not configured to generate interrupt.

2. DPA CXL.cache and CXL.mem logs errors in CXL RAS Capability Structure
(Section 8.2.5.9)

3. DPA CXL.cache, CXL.mem, or CXL.io sends error message to RCEC
4. RCEC logs UIE/CIE
5. RCEC generates MSI if enabled

OS error handler may begin by inspecting the RCEC AER Extended Capability and follow
PCI Express rules to discover the source of the error. Platform Software Error Handler
may interrogate the Platform specific error logs in addition to the error logs defined in
PCI Express Base Specification and this specification.

Figure 181. CXL 1.1 DP Detects Error

Ev
al

ua
tio

n
C

op
y

Reliability, Availability and Serviceability

 Compute Express Link Specification
October 26, 2020 469
Revision 2.0, Version 1.0

12.2.1.2 CXL 1.1 Upstream Port (UP) Detected Errors

Errors detected by the CXL 1.1 UP are also escalated and reported via the Root
Complex Event Collector. The various signaling and logging steps are listed below and
illustrated in Figure 182.
1. If CXL.cache or CXL.mem block in UPZ detects protocol or link error, it shall log it in

CXL RAS Capability Structure (Section 8.2.5.9)
2. UP RCRB shall not implement AER Extended Capability
3. UPZ sends error message to all CXL.io Functions that are affected by this error (This

example shows a device with a single function. The message must include all the
details the CXL.io function needs for constructing AER record

4. .IO Functions log received message in their respective AER Extended Capability
5. Each affected CXL.io Function sends ERR_ message to UPZ with its own Requestor

ID
6. UPZ forwards this Error message across the Link without logging
7. DPA forwards Error message to RCEC
8. RCEC logs the error and signals interrupt if enabled in accordance with PCIe Base

Specification

Figure 182. CXL 1.1 UP Detects Error

Ev
al

ua
tio

n
C

op
y

Reliability, Availability and Serviceability

 Compute Express Link Specification
October 26, 2020 470
Revision 2.0, Version 1.0

12.2.1.3 CXL 1.1 RCiEP Detected Errors

Errors detected by the CXL 1.1 RCiEP are also escalated and reported via the Root
Complex Event Collector. The various signaling and logging steps are listed below and
also illustrated in Figure 183.
1. CXL.cache (or CXL.mem) notifies all affected CXL.io Functions of the error
2. All affected CXL.io Functions logs UIE/CIE in their respective AER Extended

Capability
3. CXL.io Functions generate PCIe ERR_ message on the Link with Tag = 0
4. DPA forwards the ERR_ message to RCEC
5. RCEC logs UIE/CIE and generates MSI if enabled in accordance with PCIe Base

Specification

12.2.2 CXL 2.0 Root Ports, Downstream Switch Ports, and Upstream
Switch Ports

Errors detected by these ports are escalated and reported using PCIe error reporting
mechanisms as UIE/CIE.

OS error handler may begin by inspecting the Root Port AER Extended Capability and
follow PCI Express rules to discover the source of the error. Platform Software Error
Handler may interrogate the Platform specific error logs in addition to the error logs
defined in PCI Express Base Specification and this specification.

Figure 183. CXL 1.1 RCiEP Detects Error

Ev
al

ua
tio

n
C

op
y

Reliability, Availability and Serviceability

 Compute Express Link Specification
October 26, 2020 471
Revision 2.0, Version 1.0

12.2.3 CXL Device Error Handling

Whenever a CXL device returns data that is either known to be bad or suspect, it must
ensure the consumer of the data is made aware of the nature of the data either at the
time of consumption or prior to the consumption of data. This allows the consumer to
take the appropriate containment actions.

CXL defines two containment mechanisms - poison and viral
1. Poison: Return data on CXL.io and CXL.cachemem may be tagged as poisoned.
2. Viral: CXL.cachemem supports viral, which is generally used to indicate more

severe error conditions at the device. See section <link to viral section>. Any data
returned by a device on CXL.cachemem after it has communicated Viral is
considered suspect even if it is not explicitly poisoned.

A device must set the MetaField to No-op in CXL.cachemem return response when the
MetaData is suspect.

If a CXL component is not in the Viral condition, it shall poison all data responses on
CXL interface if the data being returned is known to be bad or suspect.

If Viral is enabled and a CXL component is in the Viral condition, it is recommended that
the component not poison the subsequent data responses on CXL.cachemem interface
to avoid error pollution.

The Host may send poisoned data to the CXL connected device. How the CXL device
responds to Poison is device specific but must follow PCIe guidelines. The device must
consciously make a decision about what to make of poisoned data. In some cases,
simply ignoring poisoned data may lead to SDC (Silent Data Corruption). A CXL 2.0
device is required keep track of any poison data it receives on a 64 Byte granularity.

Any device errors that cannot be handled with Poison indication shall be signaled by the
device back to the Host as messages since there are no error pins. To that end,
Table 224 below shows a summary of the error types, their mappings and error
reporting guidelines for devices that do not implement Memory Error Logging and
Signaling Enhancements (Section 12.2.3.2).

For devices that implement Memory Error Logging and Signaling Enhancements,
Section 12.2.3.2 describes how memory errors are logged and signaled. Such devices
should follow Table 224 for dealing with all non-memory errors.

Table 224. Device Specific Error Reporting and Nomenclature Guidelines (Sheet 1 of 2)

Error Severity Definition/
Example

Signaling Options
(SW picks one) Logging Host HW/FW/SW

Response

Corrected
Memory single bit
error corrected via
ECC

MSI or MSI-X to
Device driver

Device specific
registers

Device specific flow
in Device driver

Uncorrected
Recoverable

UC errors that device
can recover from,
with minimal or no
software help (e.g.,
error localized to
single computation)

MSI or MSI-X to
driver

Device specific
registers

Device specific flow
in driver (e.g.,
discard results of
suspect computation)

Ev
al

ua
tio

n
C

op
y

Reliability, Availability and Serviceability

 Compute Express Link Specification
October 26, 2020 472
Revision 2.0, Version 1.0

In keeping with the standard error logging requirements, all error logs should be sticky.

12.2.3.1 CXL.mem and CXL.cache Errors

If demand accesses to memory results in an uncorrected data error, the CXL device
must return data with poison. The requester (processor core or a peer device) is
responsible for dealing with the poison indication. The CXL device should not signal an
uncorrected error along with the poison. If the processor core consumes the poison,
the error will be logged and signaled by the Host.

Any non-demand uncorrected errors detected by CXL 1.1 device (e.g., memory scrub
logic in CXL device memory controller) will be signaled to the device driver via device
MSI or MSI-X. Any corrected memory errors will be signaled to the device driver via
device MSI or MSI-X. The driver may choose to deallocate memory pages with repeated
errors. Neither the platform firmware nor the OS directly deal with these errors. A CXL
1.1 device may implement the capabilities described in Section 12.2.3.2, in which case
a device driver is not required.

If a CXL 2.0 component is not able to positively decode a CXL.mem address, the
handling is described in Section 8.2.5.12.2. If a component does not implement HDM
Decoders (Section 8.2.5.12), it shall drop such a write transaction and return all 1s
response to such a read transaction.

12.2.3.2 Memory Error Logging and Signaling Enhancements

Errors in memory may be encountered during a demand access or independent of any
request issued to it and it is important to log enough data about such errors to enable
the use of host platform-level RAS features, such as page retirement, without
dependence on a driver.

In addition, general device events unrelated to the media at all, including changes in
the devices health or environmental conditions detected by the device, need to be
reported using the same general event logging facility.

Figure 184 illustrates a use case where the two methods of signaling supported by a
CXL.mem device - VDM and MSI/MSI-X – are used by a host to implement Firmware-
first and OS-first error handling

Uncorrected
NonFatal

Equivalent to PCIe
UCNF, contained by
the device (e.g.,
write failed, memory
error that affects
many computations)

MSI or MSI-X to
Device Driver

Device specific
registers

Device specific (e.g.,
reset affected device)
flow in driver. Driver
can escalate through
software.

PCIe AER Internal
Error

Device specific
registers + PCIe AER

System FW/SW AER
flow, ends in reset.

Uncorrected
Fatal

Equivalent to PCIe
UCF, poses
containment risk
(e.g., command/
parity error, Power
management Unit
ROM error)

PCIe AER Internal
error

Device specific
registers + PCIe AER

System FW/SW AER
flow, ends in reset.

AER + Viral System FW/SW Viral
flow

Table 224. Device Specific Error Reporting and Nomenclature Guidelines (Sheet 2 of 2)

Error Severity Definition/
Example

Signaling Options
(SW picks one) Logging Host HW/FW/SW

Response

Ev
al

ua
tio

n
C

op
y

Reliability, Availability and Serviceability

 Compute Express Link Specification
October 26, 2020 473
Revision 2.0, Version 1.0

A CXL device that supports Memory Error Logging and Signaling Enhancements
capability, must log such errors locally and expose the error log to system software via
MMIO Mailbox (Section 8.2.8.4.3). Reading an error record from the mailbox will not
automatically result in deletion of the error record on the device. An explicit clear
operation is required to delete an error record from the device. To support error record
access and deletion, the device shall implement the Get Event Records and Clear Event
Records commands.

Both operations must execute atomically. Furthermore, all writes or updates to the
error records by the CXL.mem device must also execute atomically.

Using these two operations, a host can retrieve an error record as follows:
1. The host reads a number of event records using the Get Event Records command.
2. When complete, the host clears the event records from the device with the Clear

Event Records command, supplying one or more event record handles to clear.

The error records will be owned by the host firmware or OS so that all logged errors are
made available to the host to support platform-level RAS features.

Figure 184. CXL 2.0 Memory Error Reporting Enhancements

Ev
al

ua
tio

n
C

op
y

Reliability, Availability and Serviceability

 Compute Express Link Specification
October 26, 2020 474
Revision 2.0, Version 1.0

Error records stored on the CXL device must be sticky across device resets. The records
must not be initialized or modified by a hot reset or FLR or Enhanced FLR. Devices that
consume auxiliary power must preserve the error records when auxiliary power
consumption is enabled. In these cases, the error records are neither initialized nor
modified by hot, warm, or cold reset.

12.2.3.3 CXL Device Error Handling Flows

CXL 1.1 Device errors maybe sourced from a Root Port (RP) or Endpoint (RCiEP). For
the purpose of differentiation RCiEP sourced errors shall use tag value of zero whereas
RP sourced errors shall use tag of non-zero value. CXL 2.0 device errors may be
sourced from CXL 2.0 Endpoint (EP). Errors detected by the CXL device shall be
communicated to the host via PCIe Error messages across the CXL.io link. Errors that
are not related to any specific Function within the device (Non-Function errors) and not
reported via MSI/MSI-X are reported to the Host via PCIe error messages where they
can be escalated to the platform. The UP reports non-function errors to all EPs/RCiEPs
where they are logged. Each EP/RCiEP reports the non-function specific errors to the
host via PCIe error messages. Software should be aware that even though an RCiEP
does not have a software-visible link, it may still log link-related errors. At most one
error message of a given severity is generated for a multi-function device. The error
message must include the Requester ID of a function that is enabled to send the error
message. Error messages with the same Requester ID may be merged for different
errors with the same severity. No error message is sent if no function is enabled to do
so. If different functions are enabled to send error messages of different severity, at
most one error of each severity level is sent. Error generated by a CXL 1.1 RCiEP will be
sent to the corresponding RCEC. Each RCiEP must be associated with no more than one
RCEC. Error generated by a CXL 2.0 component will be logged in the CXL 2.0 Root Port.

12.3 CXL Link Down Handling
There is no expectation of a graceful Link Down. A Link Down condition will most likely
result in a timeout in the Host since it is quite possible that there are transactions
headed to or from the CXL device that will end up not making progress.

Software may configure CXL Downstream Port to trigger Downstream Port Containment
(DPC) upon certain class of errors. eDPC may enable predictable containment in certain
scenarios but would generally not be a recoverable event.

12.4 CXL Viral Handling
CXL links and CXL devices are expected to be Viral compliant. Viral is an error
containment mechanism. A platform must choose to enable Viral at boot time. The Host
implementation of Viral allows the platform to enable the Viral feature by writing into a
register. Similarly, a BIOS accessible control register on the device is written to enable
Viral behavior (both receiving and sending) on the device. Viral support capability and
control for enabling are reflected in DVSEC.

When enabled, a Viral indication is generated whenever an Uncorrected_Fatal error is
detected. Viral is not a replacement for existing error reporting mechanisms. Instead,
its purpose is an additional error containment mechanism. The detector of the error is
responsible for reporting the error through AER and generating a Viral indication. Any
entity that is capable of reporting Uncorrected_Fatal errors must also be capable of
generating a Viral indication.

Ev
al

ua
tio

n
C

op
y

Reliability, Availability and Serviceability

 Compute Express Link Specification
October 26, 2020 475
Revision 2.0, Version 1.0

CXL.mem and CXL.cache come enabled with the Viral concept. Viral needs to be
communicated in both directions. When Viral is enabled and the Host runs into a Viral
condition, it shall communicate Viral across CXL.mem and/or CXL.cache to all
downstream components. The Viral indication must arrive before any data that may
have been affected by the error (general Viral requirement). If the host receives a Viral
indication from any CXL components, it shall propagate Viral to all downstream
components.

All types of Conventional Resets shall clear viral condition. CXL Reset shall have no
effect on viral condition. FLR shall have no effect on viral condition.

12.4.1 Switch Considerations

Viral is enabled on a per vPPB basis and the expectation is that if Viral is enabled on
one or more DSPs, then it will also be enabled on the USP within a VCS.

A Viral indication received on any port transitions that VCS into the Viral state but does
not trigger a new uncorrected fatal error inside the switch. A Viral indication in one VCS
has no effect on other VCSs within the switch component. The switch continues to
process all CXL.io traffic targeting the switch and forward all traffic. All CXL.cache and
CXL.mem traffic sent to all ports within the VCS is considered to have the Viral bit
asserted. The Viral indication shall propagate from an input port to all output ports in
the VCS faster than any subsequent CXL.mem or CXL.cache transaction. The Viral bit is
propagated across upstream links and links connected to SLDs with the Viral LD-ID
Vector (see Table 54) set to zero for compatibility with CXL 1.1.

If the switch detects an uncorrected fatal error it must determine if that error affects
one or multiple VCSs. Any affected VCS enters the Viral state, sets the Viral_Status bit
(see Section 8.1.3.3) to indicate that a Viral condition has occurred, asserts the Viral
bit in all CXL.cache and CXL.mem traffic sent to all ports within the VCS, and sends an
AER message. The affected VCS continues to forward all CXL traffic.

Hot-remove and hot-add of devices below DSPs has no effect on the Viral state of the
VCS within the switch.

If the switch has configured and enabled MLD ports, then there are additional
considerations. When a VCS with an MLD port enters the Viral state, it propagates the
Viral indication to LDs within the MLD Component by setting the Viral Bit in the Viral
LD-ID Vector (see Table 54) for the LDs in that VCS. If an uncorrected fatal error
causes one or more VCSs to enter the Viral state, then the corresponding bits in LDVV
shall be set. An LD within an MLD component that has entered the Viral state sets the
Viral bit in CXL.mem traffic with the LDVV mask set to identify all the LD-IDs associated
with all the affected VCSs. The indication from each LD-ID propagates the Viral state to
all associated VCSs that have Viral containment enabled.

12.4.2 Device Considerations

The device’s reaction to Viral is going to be device specific but the device is expected to
take error containment actions consistent with Viral requirements. Chiefly, it must
prevent bad data from being committed to permanent storage. If the device is
connected to any permanent storage or to an external interface that may be connected
to permanent storage, then the device is required to self-isolate in order to be Viral
compliant. This means that the device has to take containment actions without
depending on help from the Host.

Ev
al

ua
tio

n
C

op
y

Reliability, Availability and Serviceability

 Compute Express Link Specification
October 26, 2020 476
Revision 2.0, Version 1.0

The containment actions taken by the device must not prevent the Host from making
forward progress. This is important for diagnostic purposes as well as avoiding error
pollution (e.g., withholding data for read transactions to device memory may cause
cascading timeouts in the Hosts). Therefore, on Viral detection, in addition to the
containment requirements, the device shall:

• Drop writes to the persistent HDM ranges on the device or connected to the device.
• Completion response must always be returned.
• Set MetaField to No-op in all read responses.
• Fail the Set Shutdown State command (defined in Section 8.2.9.5.3.5) with an

Internal Error when attempting to change the state from “dirty” to “clean”.
• Not transition the Shutdown State to “clean” after a GPF flow.
• Commit to the persistent HDM ranges any writes that were completed over the CXL

interface before receipt of the viral.
• Keep responding to snoops.
• Complete pending writes to Host memory.
• Complete all reads and writes to Device volatile memory.

When the device itself runs into a Viral condition and Viral is enabled, it shall:
• Set the Viral Status bit to indicate that a Viral condition has occurred
• Containment – Take steps to contain the error within the device (or logical device in

an MLD component) and follow the Viral containment steps listed above.
• Communicate the Viral condition back up CXL.mem and CXL.cache towards the

Host.
— Viral propagates to all devices in the Virtual Hierarchy including the host.

Viral Control and Status bits are defined in DVSEC (please refer to Section 8.0, “Control
and Status Registers” for details).

12.5 CXL Error Injection
The major aim of error injection mechanisms is to allow system validation and system
FW/software development etc. the means to create error scenarios and error handling
flows. To this end, CXL UP and DP are recommended to implement the following error
injection hooks to a specified address (where applicable):

• One type of CXL.io UC error (optional - similar to PCIe).
— CXL.io is always present in any CXL connection

• One type of CXL.mem UC error (if applicable)
• One type of CXL.cache UC error (if applicable)
• Link Correctable errors

— Transient mode and
— Persistent mode

• Returning Poison on a read to a specified address (CXL.mem only)

Error injection interfaces are documented in the Compliance chapter.

§ §

Ev
al

ua
tio

n
C

op
y

Performance Considerations

 Compute Express Link Specification
October 26, 2020 477
Revision 2.0, Version 1.0

13.0 Performance Considerations

Compute Express Link (CXL) provides a low-latency, high-bandwidth path for an
accelerator to access the system. Performance on CXL is dependent on a variety of
factors. The following table captures the key performance attributes of CXL.

In general, it is expected that the downstream-facing port and the upstream-facing
ports are rate-matched. However, if the implementations are not rate-matched, it
would require the faster of the implementations to limit the rate of its protocol traffic to
match the slower (including bursts), whenever there is no explicit flow-control loop.

CXL allows accelerators/devices to coherently access host memory and allows memory
attached to an accelerator/device to be mapped into the system address map and
accessed directly by the host as writeback memory. In order to support this, it supports
a Bias-based Coherency model as described in Section 2.2.1. There are specific
performance considerations to take into account for selecting the method for mode
management. This is addressed in Section 2.2.1.3.

Note: On CXL.cache, in order to ensure system performance is not negatively impacted, it is
recommended that the maximum latency for a snoop-miss is 50ns from H2D snoop
request seen on the CXL pins to a D2H snoop-response back at the CXL pins. Similarly,
the maximum latency for a H2D Wr_Pull response to D2H Data response is 40ns.

Note: On CXL.mem, in order to ensure system performance is not negatively impacted, it is
recommended that the maximum latency for a memory read is 80ns from M2S Req
seen on the CXL pins to a S2M DRS back at the CXL pins. Similarly, the maximum
latency for a M2S RwD to S2M NDR is 40ns. The latency budgets mentioned here are
for HBM or DDR type memory technologies. If a slower memory technology is used,
and the above targets cannot be met, the device and Host may need to provision for
special QoS in order to ensure that the rest of the system is not negatively affected.
These QoS mechanisms are outside the scope of this specification.

§ §

Characteristic Compute Express Link
via Flex Bus (if Gen 4)

Compute Express Link
via Flex Bus (if Gen 5)

Width 16 Lanes 16 Lanes

Link Speed 16 GT/s 32 GT/s

Total Bandwidth per
link1

1. Achieved bandwidth depends on protocol and payload size. Expect 60-90% efficiency
on CXL.cache and CXL.mem. Efficiency similar to PCIe on CXL.io.

32 GB/s 64 GB/s

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 478
Revision 2.0, Version 1.0

14.0 CXL Compliance Testing

Note: The newly introduced features included in CXL 2.0, release revision will be addressed
for the compliance chapter through the use of ECNs against the CXL 2.0 specification.

14.1 Applicable Devices Under Test (DUTs)
The tests outlined in this chapter are applicable to all devices that support alternate
protocol negotiation and are capable of CXL only or CXL and PCIe protocols. The tests
are broken into the different categories corresponding to the different chapters of CXL
specification, starting with Chapter 3.0.

14.2 Starting Configuration/Topology (Common for All Tests)
In most tests, the initial conditions assumed are as follows (deviations from these
conditions are pointed out in specific tests, if applicable):

System is powered on, running in test environment OS, device specific drivers have
loaded on device, and link has trained to supported CXL modes. All error status
registers should be clear on the device under test.

Some tests make assumptions about only one CXL device present in the system – this
is called out in relevant tests. If nothing is mentioned, there is no limit on the number
of CXL devices present in the system, however, the number of DUTs is limited to what
the test software can support.

Certain tests may also require the presence of a protocol analyzer to monitor flits on
the physical link for determining Pass or Fail results.

Each category of tests has certain device capability requirements in order to exercise
the test patterns. The associated registers and programming is defined in the following
sections.

Figure 185. Example Test Topology

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 479
Revision 2.0, Version 1.0

Refer to Section 14.16, “Device Capability and Test Configuration Control” for registers
applicable to tests in the following sections.

14.2.1 Test Topologies

Some tests may require a specific topology in order to achieve the desired
requirements. Throughout this chapter there will be references to these topologies as
required. This section of the document will describe these topologies at a high level in
order to provide context for the intended test configuration.

14.2.1.1 Single Host, Direct Attached SLD EP (SHDA)

Figure 186 is the most direct connected topology between a root port and an endpoint
device.

14.2.1.2 Single Host, Switch Attached SLD EP (SHSW)

Figure 187 is the initial configuration for utilizing a CXL capable switch in the test
configurations.

Figure 186. Example SHDA Topology

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 480
Revision 2.0, Version 1.0

14.2.1.3 Single Host, Fabric Managed, Switch Attached SLD EP (SHSW-FM)

Figure 188 shows the configuration which will utilize the fabric manager as part of the
test configuration.

Figure 187. Example Single Host, Switch Attached, SLD EP (SHSW) Topology

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 481
Revision 2.0, Version 1.0

14.2.1.4 Dual Host, Fabric Managed, Switch Attached SLD EP (DHSW-FM)

Figure 189 shows an example configuration topology for having dual hosts during a
test.

Figure 188. Example SHSW-FM Topology

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 482
Revision 2.0, Version 1.0

14.2.1.5 Dual Host, Fabric Managed, Switch Attached MLD EP (DHSW-FM-MLD)

Figure 190 shows the topology for having dual hosts in a managed environment with
multiple logical devices.

Figure 189. Example DHSW-FM Topology

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 483
Revision 2.0, Version 1.0

14.3 CXL.cache and CXL.io Application Layer/Transaction Layer
Testing

14.3.1 General Testing Overview

Standard practices of testing coherency rely on “false sharing” of cachelines. Different
agents in the system (cores, I/O etc.) are assigned one or more fixed byte locations
within a shared set of cachelines. Each agent continuously executes an assigned
Algorithm independently. Since multiple agents are sharing the same cacheline,
stressful conflict scenarios can be exercised. Figure 191 illustrates the concept of false
sharing. This can be used for CXL.io (Load/Store semantics) or CXL.cache (caching
semantics) or (CXL.cache + CXL.mem) devices (Type 2 devices).

Figure 190. Example DHSW-FM-MLD Topology

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 484
Revision 2.0, Version 1.0

This document outlines three Algorithms that enable stressing the system with false
sharing tests. In addition, this document specifies the required device capabilities to
execute, verify and debug runs for the Algorithms. All of the Algorithms are applicable
for CXL.io and CXL.cache (protocols that originate requests to the host). Devices are
permitted to be self-checking. Self-checking devices must have a way to disable the
checking Algorithm independent of executing the Algorithm. All devices must support
the non-self-checking flow in the Algorithms outlined below. The algorithms presented
for false sharing require co-ordination with the cache on the device (if present). Hence,
it may add certain responsibility on the application layer if the cache resides there.

14.3.2 Algorithms

14.3.3 Algorithm 1a: Multiple Write Streaming

In this Algorithm, the device is setup to stream an incrementing pattern of writes to
different sets of cachelines. Each set of cacheline is defined by a base address “X”, and
an increment address “Y”. Increments are in multiples of 64B. The number of
increments “N” dictates the size of the set beginning from base address X. The base
address includes the byte offset within the cacheline. A pattern P (of variable length in
bytes) determines the starting pattern to be written. Subsequent writes in the same set
increment P. A device is required to provide a byte mask configuration capability that
can be programmed to replicate pattern P in different parts of the cacheline. The
programmed byte masks must be consistent with the base address.

Different sets of cachelines are defined by different base addresses (so a device may
support a set like “X1, X2, X3”). “X1” is programmed by software in the base address
register, X2 is obtained by adding a fixed offset to X1 (offset is programmed by software
in a different register).X3 is obtained by adding the same offset to X2 and so on.
Minimum support of 2 sets is required by the device. Figure 192 illustrates the flow of
this Algorithm as implemented on the device. Address Z is the write back address
where system software can poll to verify the expected pattern associated with this
device, in cases where self-checking on the device is disabled. There is 1:1
correspondence between X and Z. It is the responsibility of the device to ensure that
the writes in the execute phase are globally observable before beginning the verify
phase. Depending on the write semantics used, this may imply additional fencing
mechanism on the device to make sure the writes are visible globally before the verify
phase can begin. When beginning a new set iteration, devices must also give an option
to use “P” again for the new set, or continue incrementing “P” for the next set. The
select is programmed by software in “PatternParameter” field described in the register
section.

Figure 191. Representation of False Sharing Between Cores (on Host) and CXL Devices

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 485
Revision 2.0, Version 1.0

14.3.4 Algorithm 1b: Multiple Write Streaming with Bogus Writes

This Algorithm is a variation on Algorithm 1a, except that before writing the expected
pattern to an address, the device does “J” iterations of writing a bogus pattern “B” to
that address. Figure 193 illustrates this Algorithm. In this case, if ever a pattern “B” is
seen in the cacheline during the Verify phase, it is a Fail condition. The bogus writes
help give a longer duration of conflicts in the system. It is the responsibility of the
device to ensure that the writes in the execute phase are globally observable before
beginning the verify phase. Depending on the write semantics used, this may imply
additional fencing mechanism on the device to make sure the writes are visible globally
before the verify phase can begin. When beginning a new set iteration, devices must
also give an option to use “P” again for the new set, or continue incrementing “P” for
the next set. The select is programmed by software in “PatternParameter” field
described in the register section.

Figure 192. Flow Chart of Algorithm 1a

Write Pattern P to Address X
Write Pattern (P+1) to Address X + Y

Write Pattern (P+2) to Address X + 2*Y
.
.

Write Pattern (P+N) to Address X + N*Y

Read and check Address X
Read and check Address X + Y

Read and check Address X + 2*Y
.
.

Read and check Address X + N*Y

Execute Phase

Verify Phase

Repeat Loo p for a next X, Z
X_next = X_current + SetOffset
Z_next = Z_cu rrent + SetO ffset

If PatternParameter==1, P = P+N+1

self-checking?

Read Address X and writeback to Address Z
Read Address X+Y and writeback to Address Z+Y

Read Address X+2*Y and writeback to Address Z+2*Y
.
.

Read Address X+N*Y and writeback to Address Z+N*Y

Yes No

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 486
Revision 2.0, Version 1.0

14.3.5 Algorithm 2: Producer Consumer Test

This Algorithm aims to test the scenario where a Device is a producer and the CPU is a
consumer. Device simply executes a pre-determined Algorithm of writing known
patterns to a data location followed by a flag update write. Threads on the CPU poll the
flag followed by reading the data patterns, followed by polling the flag again. This is a
simple way of making sure the required ordering rules of producer consumer workloads
are being followed through the stack. Device only participates in the execute phase of
this Algorithm. Figure 194 illustrates the device execute phase. The Verify phase is run
on the CPU, software reads addresses in the following order [F, X, (X+Y)…(X+N*Y), F].
Knowing the value of the flag at two ends, the checker knows the range in which [X,
(X+Y)…(X+N*Y)] have to be in. For example, if P=0, the first read of F returns a value
of 3 and the next read of F returns a value of 4, then checker knows that all
intermediate values have to be either 3 or 4. Moreover, if the device is using strongly
ordered semantics, then the checker should never see a transition of values from 3 to 4
(implying monotonically decreasing values for the non-flag addresses). If using
CXL.cache protocol, device must ensure global observability of previous “data” writes
before updating the flag. When using strongly ordered semantics, each update must be
globally visible before the next one. Depending on the flow used for dirty evicts, this
can be implementation specific. It is the responsibility of the device to ensure that the
writes in the execute phase are globally observable before updating the flag “F”. The
“PatternParameter” field is not relevant for this Algorithm.

Figure 193. Flow Chart of Algorithm 1b

< J iterations of write B to X >
Write Pattern P to Address X

< J iterations of write B to X + Y >
Write Pattern (P+1) to Address X + Y

.
< J iterations of write B to X + N*Y >

Write Pattern (P+N) to Address X + N*Y

Read and check Address X
Read and check Address X + Y

Read and check Address X + 2*Y
.
.

Read and check Address X + N*Y

Execute Phase

Verify Phase

self-checking?

Read Address X and writeback to Address Z
Read Address X+Y and writeback to Address Z+Y

Read Address X+2*Y and writeback to Address Z+2*Y
.
.

Read Address X+N*Y and writeback to Address Z+N*Y

Yes No

Repeat Loop for a next X, Z
X_next = X_cu rrent + SetOffset
Z_next = Z_cu rrent + SetOffset

If Pattern Parameter==1, P = P+N+1

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 487
Revision 2.0, Version 1.0

14.3.6 Test Descriptions

14.3.6.1 Application Layer/Transaction Layer Tests

The Transaction Layer Tests implicitly give coverage for Link Layer functionality. Specific
error injection cases for the Link Layer are covered in the RAS section.

14.3.6.1.1 CXL.io Load/Store Test

For CXL.io, this test and associated capabilities are optional but strongly recommended.
This test sets up the device to execute Algorithm 1a, 1b and 2 in succession in order to
stress data path for CXL.io transactions. Configuration details are determined by the
host platform testing the device. Refer to Section 14.16 for the configuration registers
and device capabilities. Each run includes execute/verify phases as described in
Section 14.3.1.

Test Steps:

1. Host software will setup Device for Algorithm 1a: Multiple Write Streaming
2. If the device supports self-checking, enable it
3. Host software decides test run time and runs test for that period of time (The

software details of this are host platform specific, but will be compliant with the
flows mentioned in Section 14.3.1 and follow configurations outlined in
Section 14.16).

4. Setup Device for Algorithm 1b: Multiple Write Streaming with Bogus writes
5. If the device supports self-checking, enable it
6. Host software decides test run time and runs test for that period of time
7. Setup Device for Algorithm 2: Producer Consumer Test
8. Host software decides test run time and runs test for that period of time

Required Device Capability:

Hardware and configuration support for Algorithms 1a, 1b and 2 described in
Section 14.3.1 and Section 14.16. If a device supports self-checking, it must escalate fatal

Figure 194. Execute Phase for Algorithm 2

Write Pattern (P + i) to Address X
Write Pattern (P+i) to Address X+Y

Write Pattern (P+i) to Address X+2*Y
.
.

Write Pattern (P+i) to Address X+N*Y
Write i to Address F (flag)

Execute Phase
Repeat Loop for Next X, I

i_next = i_current + 1
X_next = X_current + SetOffset

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 488
Revision 2.0, Version 1.0

system error if Verify phase fails. Refer to Section 12.2 for specific error escalation
mechanisms. Device is permitted to log failing address, iteration number and/or
expected vs received data.

Pass Criteria:

No data corruptions or system errors reported

Fail Criteria:

Data corruptions or system errors reported

14.3.6.1.2 CXL.cache Coherency Test

This test sets up the Device and Host to execute Algorithm 1a, 1b and 2 in succession
in order to stress data path for CXL.cache transactions. This test should only be run if
the Device and Host support CXL.cache or CXL.cache + CXL.mem protocols.
Configuration details are determined by the host platform testing the device. Refer to
Section 14.16 for the configuration registers and device capabilities. Each run includes
execute/verify phases as described in Section 14.3.1. ATS capabilities of the device can
also be exercised in this test (see “AddressIsVirtual” field in Table 268).

Test Steps:

1. Host software will setup Device and Host for Algorithm 1a: Multiple Write
Streaming. An equivalent version of the algorithm is setup to be executed by Host
software so as to enable false sharing of the cachelines.

2. If the Device supports self-checking, enable it
3. Host software decides test run time and runs test for that period of time (The

software details of this are host platform specific, but will be compliant with the
flows mentioned in Section 14.3.1 and follow configurations outlined in
Section 14.16)

4. Setup Device for Algorithm 1b: Multiple Write Streaming with Bogus writes.
5. If the device supports self-checking, enable it.
6. Host software decides test run time and runs test for that period of time.
7. Setup Device for Algorithm 2: Producer Consumer Test.
8. Host software decides test run time and runs test for that period of time.

Required Device Capabilities:

Hardware and configuration support for Algorithms 1a, 1b and 2 described in
Section 14.3.1 and Section 14.16. If a device supports self-checking, it must escalate fatal
system error if Verify phase fails. Refer to Section 12.2 for specific error escalation
mechanisms. Device is permitted to log failing address, iteration number and/or
expected vs received data.

Pass Criteria:

No data corruptions or system errors reported

Fail Criteria:

Data corruptions or system errors reported

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 489
Revision 2.0, Version 1.0

14.3.6.1.3 CXL Test for Receiving Go_ERR

This test is only applicable for devices that support CXL.cache protocols. This test sets
up the device to execute Algorithm 1a, while mapping one of the sets of the address to
a memory range not accessible by the device. Test system software and configuration
details are determined by the host platform and are system specific.

Test Steps:

1. Configure device for Algorithm 1a, and setup one of the base addresses to be an
address not accessible by the device under test

2. Disable self-checking in the device under test
3. Host software decides test run time and runs test for that period of time

Required Device Capability:

Support for Algorithm 1a

Pass Criteria:

1. No data corruptions or system errors reported
2. No fatal device errors on receiving Go-ERR
3. Inaccessible memory range has not been modified by the device

Fail Criteria:

1. Data corruptions or system errors reported
2. Fatal device errors on receiving Go-ERR
3. Inaccessible memory range modified by the device (Host Error)

14.3.6.1.4 CXL.mem Test

This test sets up the Host and Device to execute Algorithm 1a, 1b and 2 in succession
in order to stress data path for CXL.mem transactions. An equivalent version of the
algorithm is setup to be executed by Host software so as to enable false sharing of the
cachelines. Test system software and configuration details are determined by the host
platform and are system specific.

Test Steps:

1. Map device attached memory to a test memory range accessible by the Host
2. Run equivalent of Algorithm 1a, 1b and 2 on the Host and Device targeting device

attached memory

Required Device Capability:

Support for CXL.mem protocol

Pass Criteria:

No data corruptions or system errors reported

Fail Criteria:

Data corruptions or system errors reported

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 490
Revision 2.0, Version 1.0

14.4 Link Layer Testing

14.4.1 RSVD Field Testing CXL.cache/CXL.mem (Requires Exerciser)

The initial conditions for this test assume that the CXL link is up.

This test-case will check the following conditions:
• Condition1: Proper link initialization occurs, only one Control-INIT.Param is sent

after a valid CRC clean flit is received.
• Condition2: Device ignores RSVD fields

14.4.1.1 Device Test

Test Steps

1. Send Link Layer Control-INIT.Param with all RSVD fields set to 1
2. Wait for Control-INIT.Param from device
3. Wait for Link to reach L0 state and Device is in configured state
4. Check that correctable or uncorrectable errors are not logged

Pass Criteria

• Completes link layer initialization
• Link Initialization follows Condition1
• No errors reported in error fields

14.4.1.2 Host Test

Test Steps

1. Send Link Layer Control-INIT.Param with all RSVD fields set to 1
2. Wait for Link to reach L0 state

Pass Criteria

• Completes link layer initialization

14.4.2 CRC Error Injection RETRY_PHY_REINIT (Protocol Analyzer
Required)

Required Device Capabilities:

• The CXL Host must support Algorithm 1a, and Link Layer Error Injection capabilities
for CXL.Cache

Test Steps:

1. Setup is same as Test 14.3.6.1.2.
2. While test is running, software will repeat the following error injection for at least

MAX_NUM_RETRY times:

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 491
Revision 2.0, Version 1.0

Pass Criteria:

• Same as Test 14.3.6.1.2
• Monitor and Verify that CRC errors are injected (using the Protocol Analyzer), and

that Retries are triggered as a result.
• Five Retry.Frame Flits are sent before REtry.Req and Rety.ACK (protocol analyzer)
• Check that link enters RETRY_PHY_REINIT

Fail Criteria:

• Same as Test 14.3.6.1.2
• Link does not reach RETRY_PHY_REINIT

14.4.3 CRC Error Injection RETRY_ABORT (Protocol Analyzer
Required)

Required Device Capabilities:

• The CXL device must support Algorithm 1a, and Link Layer Error Injection
capabilities for CXL.Cache.

Test Steps:

Setup is same as 15.4.6 Host to Device CRC Error Injection RETRY_PHY_REINIT
1. While test is running, software will repeat the following error injection for at least

(MAX_NUM_RETRY x MAX_NUM_PHY_REINIT) times:

Table 225. Cache CRC Injection Request

Data Object
Byte Offset Length Description Value

0h 8 Standard DOE Request Header

8h 1 Request Code 7, CRC Injection

9h 1 Version 2

0Ah 2 Reserved

0Ch 1 Protocol 2

Num Bits Flipped 1

Num Flits Injected 1

Table 226. Cache CRC Injection Request

Data Object
Byte Offset Length Description Value

0h 8 Standard DOE Request Header

8h 1 Request Code 7, CRC Injection

9h 1 Version 2

0Ah 2 Reserved

0Ch 1 Protocol 2

Num Bits Flipped 1

Num Flits Injected 1

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 492
Revision 2.0, Version 1.0

Pass Criteria:

• Same as Test 14.3.6.1.2
• Monitor and Verify that CRC errors are injected (using the Protocol Analyzer), and

that Retries are triggered as a result.
• Five Retry.Frame Flits are sent before Retry.Req and Retry.ACK (protocol analyzer).
• Link retrains for MAX_NUM_PHY_REINIT number of times and fails to recover.

Fail Criteria:

• Same as Test 14.3.6.1.2
• Link does not reach RETRY_PHY_REINIT.
• Link does not reach RETRY_ABORT.

14.5 ARB/MUX

14.5.1 Reset to Active Transition (Requires Protocol Analyzer)

The initial conditions for this test do not assume that the CXL link is up and device
drivers have been loaded.

Test Steps:

1. With the link in Reset state, Link layer sends a Request to enter Active.
2. ARB/MUX waits to receive indication of Active from Physical Layer.

Pass Criteria:

• ALMP Status sync exchange completes before ALMP Request{Active} sent by Local
ARB/MUX (if applicable).

• Local ARB/MUX sends ALMP Request{Active} to the remote ARB/MUX.
• Validate the first ALMP packet on the initial bring up is from the Downstream Port to

Upstream Port.
• Local ARB/MUX waits for ALMP Status{Active} and ALMP Request{Active} from

remote ARB/MUX.
• Local ARB/MUX sends ALMP Status{Active} in response to Request.
• Once ALMP handshake is complete, link transitions to Active.
• Link successfully enters Active state with no errors.

Fail Criteria:

• Link hangs and does not enter Active state
• Any error occurs before transition to Active

14.5.2 ARB/MUX Multiplexing (Requires Protocol Analyzer)

Test Requirements:

Host generated traffic or device generated traffic and support for Algorithm 1a, 1b or 2.
Analyzer is used to ensure traffic is sent simultaneously on both CXL.io/CXL.cache/
mem

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 493
Revision 2.0, Version 1.0

Test Steps:

1. Bring the link up into multi-protocol mode with CXL.io and CXL.cache and/or
CXL.mem enabled

2. Ensure the arbitration weight is a non-zero value for both interfaces
3. Send continuous traffic on both CXL.io and CXL.cache and/or CXL.mem using

Algorithm 1a, 1b or 2
4. Allow time for traffic transmission while snooping the bus

Pass Criteria:

• Data from both CXL.io and CXL.cache and/or CXL.mem are sent across the link by
the ARB/MUX

Fail Criteria:

• Data on the link is only CXL.io
• Data on the link is only CXL.cache or CXL.mem (cache and mem share a single

protocol ID, see Table 64, “Flex Bus.CXL Protocol IDs” on page 182)

14.5.3 Active to L1.x Transition (If Applicable) (Requires Protocol
Analyzer)

Test Requirements:

Support for ASPM L1

Test Steps:

1. Force the remote and local link layer to send a request to the ARB/MUX for L1.x
state

2. This test should be run separately for each Link Layer independently (to test one
Link Layer’s L1 entry while the other Link Layer is in ACTIVE), as well as both Link
Layers concurrently requesting L1 entry.

Pass Criteria:

• UP ARB/MUX sends ALMP Request{L1.x}
• DP ARB/MUX sends ALMP Status{L1.x} in response
• Once ALMP Status is received by local ARB/MUX, L1.x is entered
• State transition doesn’t occur until ALMP handshake is completed
• LogPHY enters L1 ONLY after both Link Layers enter L1 (applies to multi-protocol

mode only)

Fail Criteria:

• Error in ALMP handshake
• Protocol layer packets sent after ALMP L1.x handshake is complete (Requires

Protocol Analyzer)
• State transition occurs before ALMP handshake completed

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 494
Revision 2.0, Version 1.0

14.5.4 L1.x State Resolution (If Applicable) (Requires Protocol
Analyzer)

Test Requirements:

Support for ASPM L1

Test Steps:

1. Force the remote and local link layer to send a request to the ARB/MUX for
different L1.x states.

Pass Criteria:

• UP ARB/MUX sends ALMP Request{L1.x} according to what the link layer requested
• DP ARB/MUX sends ALMP Status{L1.y} response. The state in the Status ALMP is

the more shallow L1.y state.
• Once ALMP Status is received by local ARB/MUX, L1.y is entered
• State transition doesn’t occur until ALMP handshake is completed
• LogPHY enters L1 ONLY after both protocols enter L1 (applies to multi-protocol

mode only)

Fail Criteria:

• Error in ALMP handshake
• Protocol layer packets sent after ALMP L1.x handshake is complete (Requires

Protocol Analyzer)
• State transition occurs before ALMP handshake completed

14.5.5 Active to L2 Transition (Requires Protocol Analyzer)

Test Steps:

1. Force the remote and local link layer to send a request to the ARB/MUX for L2 state

Pass Criteria:

• UP ARB/MUX sends ALMP Request{L2} to the remote vLSM
• DP ARB/MUX waits for ALMP Status{L2} from the remote vLSM
• Once ALMP Status is received by local ARB/MUX, L2 is entered
• If there are multiple link layers, repeat the above steps for all link layers
• Physical link enters L2
• vLSM and physical link state transitions don’t occur until ALMP handshake is

completed

Fail Criteria:

• Error in ALMP handshake
• Protocol layer packets sent after ALMP L2 handshake is complete (Requires Protocol

Analyzer)
• State transition occurs before ALMP handshake completed

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 495
Revision 2.0, Version 1.0

14.5.6 L1 to Active Transition (If Applicable)

Test Requirements:

Support for ASPM L1

Test Steps:

1. Bring the link into L1 State
2. Force the link layer to send a request to the ARB/MUX to exit L1

Pass Criteria:

• Local ARB/MUX sends L1 exit notification to the Physical Layer
• Link exits L1
• Link enters L0 correctly
• Status synchronization handshake completes before request to enter L0

Fail Criteria:

• State transition does not occur

14.5.7 Reset Entry

Test Steps:

1. Initiate warm reset flow

Pass Criteria:

• Link sees hot reset and transitions to Detect state

Fail Criteria:

• Link does not enter Detect

14.5.8 Entry into L0 Synchronization (Requires Protocol Analyzer)

Test Steps:

1. Put the link into Retrain state
2. After exit from Retrain, check Status ALMPs to synchronize interfaces across the

link

Pass Criteria:

• State contained in the Status ALMP is the same state the link was in before entry to
retrain

Fail Criteria:

• No Status ALMPs sent after exit from Retrain
• State in Status ALMPs different from the state that the link was in before the link

went into Retrain
• Other communication occurred on the link after Retrain before the Status ALMP

handshake for synchronization completed

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 496
Revision 2.0, Version 1.0

14.5.9 ARB/MUX Tests Requiring Injection Capabilities

The tests in this section are optional but strongly recommended. The test configuration
control registers for the tests in this section are implementation specific.

14.5.9.1 ARB/MUX Bypass (Requires Protocol Analyzer)

Test Requirements:

Device capability to force a request ALMP for any state

Test Steps:

1. Put the Link into PCIe only mode
2. Trigger entry to Retrain State
3. Snoop the bus and check for ALMPs

Pass Criteria:

• No ALMPs generated by the ARB/MUX

Fail Criteria:

• ALMP seen on the bus when checked

14.5.9.2 PM State Request Rejection (Requires Protocol Analyzer)

Test Requirements:

Host capability to put the host into a state where it will reject any PM request ALMP

Test Steps:

1. Upstream port sends PM state Request ALMP
2. Wait for an ALMP Request for entry to a PM State
3. Downstream Port rejects the request by not responding to the Request ALMP
4. After a certain time (determined by the test), the Upstream Port aborts PM

transition on its end and sends transactions to the Downstream Port.

Pass Criteria:

• Upstream Port continues operation despite no Status received and initiates an
Active Request

Fail Criteria:

• Any system error

14.5.9.3 Unexpected Status ALMP

Test Requirements:

Device Capability to force the ARB/MUX to send a Status ALMP at any time

Test Steps:

1. While link is in Active, force the ARB/MUX to send a Status ALMP without first
receiving a Request ALMP

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 497
Revision 2.0, Version 1.0

Pass Criteria:

• Link enters Retrain without any errors reported

Fail Criteria:

• No error on the link and normal operation continues OR
• System errors are observed

14.5.9.4 ALMP Error

Test Requirements:

Device capability that allows the device to inject errors into a flit

Test Steps:

1. Inject a single bit error into the lower 16 bytes of a 528-bit flit
2. Send data across the link
3. ARB/MUX detects error and enters Retrain
4. Repeat Steps 1-3 with a double bit error

Pass Criteria:

• Error is logged
• Link enters retrain

Fail Criteria:

• No error detected

14.5.9.5 Recovery Re-entry

Test Requirements:

Device capability that allows the device to ignore ALMP State Requests

Test Steps:

1. Place the link into Active state
2. Request link to go to Retrain State
3. Prevent the Local ARB/MUX from entering Retrain
4. Remote ARB/MUX enters Retrain state
5. Remote ARB/MUX exits Retrain state and sends ALMP Status{Active} to

synchronize
6. Local ARB/MUX receives Status ALMP for synchronization but does not send
7. Local ARB/MUX triggers re-entry to Retrain

Pass Criteria:

• Link successfully enters Retrain on re-entry attempt

Fail Criteria:

• Link continues operation without proper synchronization

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 498
Revision 2.0, Version 1.0

14.6 Physical Layer

14.6.1 Protocol ID Checks (Requires Protocol Analyzer)

Test Steps:

1. Bring the link up to the Active state
2. Send one or more flits from the CXL.io interface, check for correct Protocol ID
3. If applicable, send one or more flits from the CXL.cache and/or CXL.mem interface,

check for correct Protocol ID
4. Send one or more flits from the ARB/MUX, check for correct Protocol ID

Pass Criteria:

• All Protocol IDs are correct

Fail Criteria:

• Errors during test
• No communication

14.6.2 NULL Flit (Requires Protocol Analyzer)

Test Steps:

1. Bring the link up to the Active state
2. Delay flits from the Link Layer
3. Check for NULL flits from the Physical Layer
4. Check that NULL flits have correct Protocol ID

Pass Criteria:

• NULL flits seen on the bus when Link Layer delayed
• NULL flits have correct Protocol ID
• NULL flits contain all zero data

Fail Criteria:

• No NULL flits sent from Physical Layer
• Errors logged during tests in the CXL DVSEC Port Status Register

14.6.3 EDS Token (Requires Protocol Analyzer)

Test Steps:

1. Bring the link up to the Active state
2. Send a flit with an implied EDS token, check the following:

Pass Criteria:

• A flit with an implied EDS token is the last flit in the data block
• Next Block after a flit with an implied EDS token is an ordered set
• OS block follows the data block that contains a flit with implied EDS token

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 499
Revision 2.0, Version 1.0

Fail Criteria:

• Errors logged during test

14.6.4 Correctable Protocol ID Error

This test is optional but strongly recommended.

Test Requirements:

Requires Protocol Analyzer

Test Steps:

1. Bring the link up to the Active state
2. Create a correctable Protocol ID framing error by injecting an error into one 8-bit

encoding group of the Protocol ID such that the new 8b encoding is invalid.
3. Check that an error was logged and normal processing continues

Pass Criteria:

• Error correctly logged in DVSEC Flex Bus Port Status register
• Correct 8-bit encoding group used for normal operation

Fail Criteria:

• No error logged
• Flit with error dropped
• Error causes retrain
• Normal operation does not resume after error

14.6.5 Uncorrectable Protocol ID Error

This test is optional but strongly recommended.

Test Requirements:

Requires Protocol Analyzer

Test Steps:

1. Bring the link up to the Active state
2. Create a uncorrectable framing error by injecting an error into both 8-bit encoding

groups of the Protocol ID such that both 8b encodings are invalid.
3. Check that an error was logged and flit is dropped
4. Link goes into Retrain

Pass Criteria:

• Error correctly logged in DVSEC Flex Bus Port Status Register
• Link enters Retrain

Fail Criteria:

• No error logged in DVSEC Flex Bus Port Status Register

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 500
Revision 2.0, Version 1.0

14.6.6 Unexpected Protocol ID

This test is optional but strongly recommended.

Test Requirements:

Requires Protocol Analyzer

Test Steps:

1. Bring the link up to the Active state
2. Send a flit with an unexpected protocol ID
3. Check that an error is logged and the flit is dropped
4. Link goes into Retrain

Pass Criteria:

• Error correctly logged in DVSEC Flex Bus Port Status Register
• Link Enters Retrain

Fail Criteria:

• No Error logged in DVSEC Flex Bus Port Status Register

14.6.7 Sync Header Bypass (Requires Protocol Analyzer) (If
Applicable)

Test Requirements:

Support for Sync Header Bypass

Test Steps:

1. Negotiate for sync header bypass during PCIe alternate mode negotiation
2. Link trains to 2.5GT/s speed
3. Transition to each of the device supported speeds - 8GT/s, 16 GT/s, 32GT/s
4. Check for Sync Headers

Pass Criteria:

• No Sync Headers observed after 8GT/s transition

Fail Criteria:

• Link training not complete
• Sync headers are observed at 8GT/s speed or higher
• All conditions specified in Table 70 are not met while no Sync Headers are observed

14.6.8 Link Speed Advertisement (Requires Protocol Analyzer)

Test Steps:

1. Enter CXL link training at 2.5GT/s
2. Check speed advertisement before alternate protocol negotiations have completed,

i.e., LTSSM enters Configuration.Idle with LinkUp=0 at 2.5GT/s

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 501
Revision 2.0, Version 1.0

Pass Criteria:

• Advertised CXL speed is 32GT/s until Configuration.Complete state is exited.

Fail Criteria:

• Speed advertisement is not 32GT/s

14.6.9 Recovery.Idle/Config.Idle Transition to L0 (Requires Protocol
Analyzer)

Test Steps:

1. Bring the link up in CXL mode to the Config.Idle or Recovery.Idle state
2. Wait for NULL flit to be received by DUT
3. Check that DUT sends NULL flits after receiving NULL flits

Pass Criteria:

• LTSSM transitions to L0 after 8 NULL flits are sent and at least 4 NULL flits are
received

Fail Criteria:

• LTSSM stays in IDLE
• LTSSM transitions before the exchange of NULL flits is completed

14.6.10 Drift Buffer (If Applicable)

Test Requirements:

Support Drift Buffer

Test Steps:

1. Enable the Drift buffer

Pass Criteria:

• Drift buffer is logged in the Flex Bus DVSEC

Fail Criteria:

• No log in the Flex Bus DVSEC

14.6.11 SKP OS Scheduling/Alternation (Requires Protocol Analyzer) (If
Applicable)

Test Requirements:

Support Sync Header Bypass

Test Steps:

1. Bring the link up in CXL mode with sync header bypass enabled
2. Check for SKP OS

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 502
Revision 2.0, Version 1.0

Pass Criteria:

• Physical Layer schedules SKP OS every 340 data blocks
• Control SKP OS and regular SKP OS alternate at 16GT/s or higher speed
• Regular SKP OS used only at 8GT/s

Fail Criteria:

• No SKP OS observed
• SKP OS observed at interval other than 340 data blocks

14.6.12 SKP OS Exiting the Data Stream (Requires Protocol Analyzer)
(If Applicable)

Test Requirements:

Support Sync Header Bypass

Test Steps:

1. Bring the link up in CXL mode with sync header bypass enabled
2. Exit Active mode

Pass Criteria:

• Physical Layer replaces SKP OS with EIOS or EIEOS

Fail Criteria:

• SKP OS not replaced by Physical Layer

14.6.13 Link Speed Degradation - CXL Mode

Test Steps:

1. Train the CXL link up to the highest speed possible (At least 16GT/s)
2. Degrade the link down to a lower CXL mode speed

Pass Criteria:

• Link degrades to slower speed without going through mode negotiation

Fail Criteria:

• Link leaves CXL mode

14.6.14 Link Speed Degradation Below 8GT/s

Test Steps:

1. Train the CXL link up to the highest speed possible (At least 8GT/s)
2. Degrade the link down to a speed below CXL mode operation
3. Link goes to detect state

Pass Criteria:

• Link degrades to slower speed

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 503
Revision 2.0, Version 1.0

• Link enter Detect

Fail Criteria:

• Link stays in CXL mode
• Link does not change speed

14.6.15 Uncorrectable Mismatched Protocol ID Error

This test is optional but strongly recommended.

Test Requirements:

Protocol ID error perception in the Device Log PHY (Device can forcibly react as though
there was an error even if the protocol ID is correct)

Test Steps:

1. Bring the link up to the Active state
2. Create an uncorrectable Protocol ID framing error by injecting a flit such that both

8-bit encoding groups of the Protocol ID are valid but mismatching
3. Check that an error was logged and flit is dropped
4. Link goes into Retrain

Pass Criteria:

• Error correctly logged in DVSEC Flex Bus Port Status Register
• Link enters Retrain

Fail Criteria:

• No error logged
• Error corrected

14.6.16 Link Initialization Resolution

Refer to Section 14.2.1 for the list of configurations used by this test.

Test Steps:

1. For the Device Under Test (DUT), setup the system as described in the
“Configurations to test” column of the following table.

2. Optional: In each of the configurations, if there are retimer preset in the path,
ensure that Bit 12 and Bit 14 (in Symbols 12-14) of the Modified TS1/TS2 Ordered
Set are asserted (as applicable). In addition, ensure that Sync Header Bypass
capable/enable is set.

3. Negotiate for CXL during PCIe alternate mode negotiation

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 504
Revision 2.0, Version 1.0

Pass Criteria:

• For a given type of DUT (column 1), all Verify Conditions in the above table are met
• For cases where it is expected that the link initializes to CXL 2.0 mode,

CXL2p0_Enabled is set in the DVSEC Flex Bus Port Status register

Fail Criteria:

• For a given type of DUT (column 1), any of the Verify Conditions in the above table
are not met

• For cases where it is expected that the link initializes to CXL 2.0 mode,
CXL2p0_Enabled is not set in the DVSEC Flex Bus Port Status register

14.6.17 Hot Add Link Initialization Resolution

Refer to section 14.2.1 for the list of configurations used by this test.

Test Steps:

1. Setup the system as described in the “Configurations to test” column of the
following table.

2. Attempt to Hot Add the device under test (DUT) in CXL mode in each configuration.

Table 227. Link Initialization Resolution Table

DUT Upstream
Component

Downstream
Component Configurations to test Verify

Switch - CXL 2.0
capable Host - CXL 2.0 capable DUT SHSW Link Initializes to L0 in

CXL 2.0 mode

Switch - CXL 2.0
capable Host - CXL 1.1 capable DUT SHSW Link doesn't initialize to

L0 in CXL Mode

Switch - CXL 2.0
capable DUT Endpoint - CXL 2.0

capable SHSW Link Initializes to L0 in
CXL 2.0 mode

Switch - CXL 2.0
capable DUT Endpoint - CXL 1.1

capable SHSW Link Initializes to L0 in
CXL 1.1 mode

Host - CXL 2.0
capable DUT Switch - CXL 2.0

capable SHSW Link Initializes to L0 in
CXL 2.0 mode

Host - CXL 2.0
capable DUT Endpoint - CXL 2.0

capable SHDA Link Initializes to L0 in
CXL 2.0 mode

Host - CXL 2.0
capable DUT Endpoint - CXL 1.1

capable SHDA Link Initializes to L0 in
CXL 1.1 mode

Endpoint - CXL 2.0
capable Host - CXL 2.0 capable DUT SHDA Link Initializes to L0 in

CXL 2.0 mode

Endpoint - CXL 2.0
capable

Switch - CXL 2.0
capable DUT SHSW Link Initializes to L0 in

CXL 2.0 mode

Endpoint - CXL 2.0
capable Host - CXL 1.1 capable DUT SHDA Link initializes to L0 in

CXL 1.1 Mode

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 505
Revision 2.0, Version 1.0

Pass Criteria:

• For a given type of DUT (column 1), all Verify Conditions in the above table are met
• For cases where it is expected that the link initializes to CXL 2.0 mode,

CXL2p0_Enabled is set in the DVSEC Flex Bus Port Status register

Fail Criteria:

• For a given type of DUT (column 1), any of the Verify Conditions in the above table
are not met

• For cases where it is expected that the link initializes to CXL 2.0 mode,
CXL2p0_Enabled is not set in the DVSEC Flex Bus Port Status register

14.6.18 Tests Requiring Injection Capabilities

The tests in this section are optional but strongly recommended. The test configuration
control registers for the tests in this section are implementation specific.

14.6.18.1 TLP Ends On Flit Boundary (Requires Protocol Analyzer)

Test Steps:

1. Bring the link up to the Active state
2. CXL.io sends a TLP that ends on a flit boundary
3. Check that next flit sent by link layer contains IDLE tokens, EDB or more data

Pass Criteria:

• TLP that ends on flit boundary not processed until subsequent flit is transmitted
• IDLE tokens, EDB or more data observed after TLP that ends on flit boundary

Fail Criteria:

• Errors logged

Table 228. Hot Add Link Initialization Resolution Table

DUT Upstream
Component

Downstream
Component Configurations to test Verify

Switch - CXL 2.0
capable

Host - CXL 2.0
capable DUT SHSW Hot Add - Link Initializes to

L0 in CXL 2.0 mode

Switch - CXL 2.0
capable DUT Endpoint - CXL 2.0

capable SHSW Hot Add - Link Initializes to
L0 in CXL 2.0 mode

Switch - CXL 2.0
capable DUT Endpoint - CXL 1.1

capable SHSW Link doesn't initialize to L0
in CXL Mode for Hot Add

Host - CXL 2.0
capable DUT Switch - CXL 2.0

capable SHSW Hot Add - Link Initializes to
L0 in CXL 2.0 mode

Host - CXL 2.0
capable DUT Endpoint - CXL 2.0

capable SHDA Hot Add - Link Initializes to
L0 in CXL 2.0 mode

Host - CXL 2.0
capable DUT Endpoint - CXL 1.1

capable SHDA Link doesn't initialize to L0
in CXL Mode for Hot Add

Endpoint - CXL 2.0
capable

Host - CXL 2.0
capable DUT SHDA Hot Add - Link Initializes to

L0 in CXL 2.0 mode

Endpoint - CXL 2.0
capable

Switch - CXL 2.0
capable DUT SHSW Hot Add - Link Initializes to

L0 in CXL 2.0 mode

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 506
Revision 2.0, Version 1.0

• No IDLE, EDB or data observed after TLP flit

14.6.18.2 Failed CXL Mode Link Up

Test Steps:

1. Negotiate for CXL during PCIe alternate mode negotiation
2. Hold the link at 2.5GT/s
3. Link transitions back to detect

Pass Criteria:

• Link transitions back to detect after not able to reach 8GT/s speed
• Link training does not complete

Fail Criteria:

• Link does not transition to detect

14.7 Switch Tests

Assumptions:

The minimum configuration for a switch that is not FM managed is defined as one
Virtual CXL Switch (VCS) with Up-Stream port (USP) and two or more Down-Stream
Ports (DSP).

The minimum configuration for a managed switch is defined as two VCS; each VCS with
one USP and two or more DSPs.

Figure 195. Minimum Configurations for Switch Compliance Testing

PPB

vPPB vPPB

DVSEC

Root Port
To Host

EP
Device

EP
Device

VCS 0

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 507
Revision 2.0, Version 1.0

Known good Host devices are required to support managed hot plug and managed
removal of devices.

All connectors used in these tests must support hotplug sideband signals.

A switch that is not FM managed should have all ports bound to a VCS. It cannot
support unbound ports and MLDs because there is no managing function to control LD
bindings.

An FM-managed switch should have at least two VCSs configured for these test
purposes, so that interactions between hosts on different VCSs can be monitored.
Devices may be connected to unbound ports for a managed switch (i.e., an unallocated
resource). Unbound ports may be bound to any VCS at any time. The switch is
managed by a Fabric Manager of the vendor’s choice and supports MLD devices.

A known good Endpoint should support hot plug and should have passed previous tests
in a direct attached system.

14.7.1 Initialization Tests

14.7.1.1 VCS initial Configuration

Overview:

This is a fixed configuration test. All ports should be configured and allocated at boot-
time without any interaction from a fabric manager device. This test may be used for a
switch that has the ability for bindings to be pre-configured and immediately accessible
to the attached host after power-up. This test is only suitable for SLD devices, as MLD
devices require management to determine which LDs to bind to each VCS.

Test Steps:

1. An switch that is not FM managed shall have all port bindings defined to be active
at power-up.

2. An FM-managed Switch should be configured so that at least one port is bound to a
VCS on power up.

3. At least one SLD component shall be attached to a port.
4. Power on or initialize the system (host, switch and EP device).

Figure 195. Minimum Configurations for Switch Compliance Testing

PPB

vPPB vPPB

DVSEC PPB

vPPB vPPB

DVSEC

Root Port
to

Host.0

Root Port
to

Host.1

VCS 1VCS 0

Virtual to
Physical
Binding

Fabric
Manager

FM
Endpoint

EP
Device

MLD
Device

EP
Device

PPB

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 508
Revision 2.0, Version 1.0

Pass Criteria:

• Devices attached to bound ports are identified by the host at initialization without
any external intervention by a Fabric Manager, if any.

Fail Criteria:

• Devices attached to bound ports are not identified by the host on initialization.

14.7.2 Reset Propagation

14.7.2.1 Host PERST# Propagation

Overview:

If a switch receives a USP PERST# then only devices or SLDs bound to the VCS for that
USP shall be reset. No other VCS and no other ports shall be reset. For an MLD
component, only LDs bound to the VCS that received the USP PERST# shall be reset.
LDs bound to another VCS shall be unaffected and continue to operate normally.

14.7.2.1.1 Host PERST# Propagation to an SLD Component

Test Steps:

1. One or more SLD is bound to a VCS
2. Assert PERST# from the Host to the USP of the VCS

Pass Criteria:

• Switch propagates reset to all SLDs connected to the VCS
• All SLDs bound to the VCS go through a link down and the host unloads the

associated device drivers
• Hosts and all devices bound to any other VCS shall continue to be connected,

bound and no reset events occur.

Fail Criteria:

• One or more SLDs bound to the VCS under test fails to go through a link down
• Hosts or SLDs bound to any other VCS are reset.

14.7.2.1.2 Host PERST# Propagation to an MLD Port

Test Setup:

1. Switch with a minimum of two VCS connected to respective Hosts
2. An MLD with at least one LD bound to each VCS (i.e., at least two bound LDs)
3. Optionally, SLDs may also be attached to each VCS

Test Steps

1. Host.0 asserts USP PERST#
2. Reset is propagated to all VCS.0 vPPBs

Pass Criteria:

• Host.0 processes a link down for each LD bound to VCS.0 and unloads the
associated device drivers

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 509
Revision 2.0, Version 1.0

• All SLDs connected to VCS.0 go through a link down and Host.0 unloads the
associated device drivers

• MLD remains link up
• Other hosts do not receive a Link down for any LDs connected to them.

Fail Criteria:

• Host.0 does not process a link down for the LDs and SLDs bound to VCS.0
• Any other host processes a link down for LDs of the shared MLD
• MLD goes through a link down

14.7.2.2 LTSSM Hot Reset

Overview:

If a switch USP port receives a LTSSM Hot Reset then the USP vPPB shall propagate a
reset to all vPPBs for that VCS. No other vPPBs shall be reset.

14.7.2.2.1 LTSSM Hot Reset Propagation to SLD Devices

Test Steps:

1. One or more SLDs are bound to a VCS
2. Initiate LTSSM Hot Reset from the Host to switch.

Pass Criteria:

• Switch propagates hot reset to all SLDs connected to the VCS and their links go
down

• Hosts and devices bound to any other VCS must not receive the reset.

Fail Criteria:

• Switch fails to send a hot reset to any SLDs connected to the VCS
• Hosts or devices bound to any other VCS are reset.

14.7.2.2.2 LTSSM Hot Reset Propagation to an MLD component.

Test Setup:

1. Switch with a minimum of two VCS connected to respective Hosts
2. An MLD with at least one LD bound to each VCS (i.e., at least two bound LDs)
3. Optionally, SLDs may also be attached to each VCS

Test Steps

1. Host.0 asserts LTSSM Hot Reset to the switch. The USP propagates a reset to all
vPPBs associated with VCS.0

Pass Criteria:

• Host.0 processes a link down for all LDs and SLDs bound to VCS.0
• Host.1 does not receive a Link down for any LDs bound to VCS.1

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 510
Revision 2.0, Version 1.0

Fail Criteria:

• MLD port goes through a link down
• Host.1 processes a link down for LDs of the shared MLD
• Host.0 does not process a link down for any LD or SLD bound to VCS.0

14.7.2.3 Secondary Bus Reset (SBR) Propagation

14.7.2.3.1 Secondary Bus Reset (SBR) Propagation to All Ports of a VCS with SLD
Components

Test Steps:

1. One or more SLD is bound to a VCS
2. The Host sets the SBR bit in the Bridge Control Register of the USP vPPB

Pass Criteria:

• Switch sends a hot reset to all SLDs connected to the VCS and their links go down
• The Host processes a link down for all SLDs bound to the VCS and unloads the

associated device drivers

Fail Criteria:

• Switch fails to send a hot reset to any SLD connected to the VCS
• The Host fails to unload an associated device driver for a device connected to the

VCS

14.7.2.3.2 Secondary Bus Reset (SBR) Propagation to All Ports of a VCS Including an
MLD Component

Test Setup:

1. Switch with a minimum of two VCS connected to respective Hosts
2. An MLD with at least one LD bound to each VCS (i.e., at least two bound LDs)
3. Optionally, SLDs may also be attached to each VCS

Test Steps:

1. Host.0 sets the SBR bit in the Bridge Control Register associated with the USP vPPB
of the VCS under test

Pass Criteria:

• Host.0 processes a link down for the LDs and SLDs bound to VCS.0 and unloads the
associated device drivers

• MLD port remains link up
• Other Hosts sharing the MLD are unaffected.

Fail Criteria:

• MLD port goes through a link down
• Any other host processes a link down
• Host.0 does not process a link down for any LDs bound to VCS.0
• Host.0 does not process a link down for any SLDs connected to VCS.0

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 511
Revision 2.0, Version 1.0

14.7.2.3.3 Secondary Bus Reset (SBR) Propagation to One Specific Downstream Port
(SLD)

Overview:

A single port of the VCS to be reset. The switch sends a hot reset to the SLD connected
to the vPPB to be reset and the link goes down

Test Steps:

1. The vPPB under test is connected to a SLD component
2. The Host sets the SBR bit in the Bridge Control Register of the vPPB to be reset

Pass Criteria:

• Host processes a link down for the vPPB under test and unloads the device driver
• All other ports in the VCS remain unaffected

Fail Criteria:

• The port under test does not go link down
• Any other port goes link down

14.7.2.3.4 Secondary Bus Reset (SBR) Propagation to One Specific Shared Downstream
Port (MLD)

Test Setup:

1. Switch with a minimum of two VCS connected to respective Hosts
2. Each VCS is bound to an LD each from the MLD component

Test Steps:

1. For the VCS under test, the Host sets the SBR bit in the Bridge Control Register of
the vPPB bound to the LD

Pass Criteria:

• Host processes a link down for the vPPB under test and unloads the device driver
• MLD port remains link up
• Other Hosts sharing the MLD are unaffected.

Fail Criteria:

• Host processes a link down for vPPB not under test
• Host does not process a link down for the vPPB under test
• Any switch port goes through a link down

14.7.3 Managed Hot Plug - Adding a New Endpoint Device

Overview:

This test is for adding a device to a switch and subsequently hot adding it to a host.

For an unmanaged switch the new device is hot added to the host by default.

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 512
Revision 2.0, Version 1.0

For a managed switch the process requires the Fabric Manager to identify the device
then:

a. For an SLD, bind the device to a host
b. For an MLD bind one or more LDs to at least one host

14.7.3.1 Managed Add of an SLD Component to a VCS

Test Setup:

1. Host has completed enumeration and loaded drivers for all attached devices.

Test Steps:

1. Perform a managed add of the SLD component to the port under test.
2. For an unmanaged switch the port is already bound to a VCS.
3. For a managed switch the FM must bind the port to a VCS.

Pass Criteria:

• Host enumerates the added device and loads the driver successfully

Fail Criteria:

• Host is unable to enumerate and fails to load the device driver for the added device

14.7.3.2 Managed Add of an MLD Component to an Unbound Port (Unallocated
Resource)

The Switch reports PPB related events to the Fabric Manager using the FM API. At the
time of publication there are no defined Fabric Manager reporting requirements to an
end user, and so parts of this test may only be observable through vendor unique
reporting.

Test Setup:

1. Host enumeration is complete and successful for all devices prior to this test
2. Switch port supports MLD and is unbound (i.e., not bound to a VCS)

Test Steps:

1. Perform a managed add of the MLD to the port under test.

Pass Criteria:

• Fabric Manager identifies device but does not bind it to any host.
• No host is affected by the addition of the device to an unbound port
• No host identifies the added device.
• No interrupts are sent to hosts, and the system operates normally

Fail Criteria:

• A host identifies the new device

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 513
Revision 2.0, Version 1.0

14.7.3.3 Managed Add of an MLD Component to an SLD Port

This test exercises the behavior of an MLD component when plugged into an SLD port.
If the MLD capability is not common to both sides, an MLD operates as an SLD
component.

Test Setup:

1. The port under test is configured as an SLD port
2. Host enumeration is complete and successful for all devices prior to this test

Test Steps:

1. Perform a managed add of the MLD component to the port under test

Pass Criteria:

• Host enumerates the added device and loads the driver successfully
• MLD component operates as an SLD (i.e. MLD capable but MLD is not enabled) and

presents its full memory capacity to the host (i.e. does not divide into multiple LDs)

Fail Criteria:

• Host does not identify the new device
• Host does not identify the full memory capacity of the new device

14.7.4 Managed Hot Plug-Removing an Endpoint Device

14.7.4.1 Managed Removal of an SLD Component from a VCS

Test Setup:

1. Host enumeration is complete and successful for all devices prior to this test

Test Steps:

1. Perform a managed remove of the SLD component from the port under test.

Pass Criteria:

• Host recognizes the device removal and unloads the associated device driver

Fail Criteria:

• Host does not unload the device driver

14.7.4.2 Managed Removal of a MLD Component from a Switch

Test Setup:

1. Host enumeration is complete and successful for all devices prior to this test
2. The MLD must have one or more LDs bound to the host

Test Steps:

1. Perform a managed remove of the MLD component from the port under test.
2. Fabric Manager unbinds LDs from the vPPBs of the VCS

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 514
Revision 2.0, Version 1.0

Pass Criteria:

• Host recognizes that the LD has been removed and unloads the associated device
driver.

Fail Criteria:

• Host does not recognize removal of the LD

14.7.4.3 Removal of a Device from an Unbound Port

Test Setup:

1. Host enumeration is complete and successful for all devices prior to this test
2. Device is to be removed from an unbound port (i.e., not bound to any VCS)

Test Steps:

1. Perform a managed remove of the device from the port under test.

Pass Criteria:

• Fabric Manager identifies that device has been removed.
• No host is affected by the removal of the device from an unbound port
• No interrupts are sent to hosts, and the system operates normally

Fail Criteria:

• A host is affected by the removal of the device

14.7.5 Bind/Unbind Operations

Overview:

This test is only applicable to Managed switches. This test requires a fabric manager to
bind or unbind devices while the endpoint device remain connected to the port.

The Switch reports PPB related events to the Fabric Manager using the FM API. At the
time of publication there are no defined Fabric Manager reporting requirements to the
end user, so parts of this test may only be observable through vendor unique reporting.

14.7.5.1 Binding Unallocated Resources to Hosts

Overview:

This test takes an unallocated resource and binds it to a host.

14.7.5.1.1 Bind a SLD to a vPPB in a FM Managed Switch

Test Setup:

1. A SLD component is connected to a Switch port that is not bound to a VCS.
2. The Fabric Manager has identified the SLD.

Test Steps:

1. Bind the SLD to a vPPB of the Host

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 515
Revision 2.0, Version 1.0

Pass Criteria:

• Host recognizes the hot added SLD and enumerates it successfully
• The Fabric Manager indicates that the SLD has been bound to the correct VCS

Fail Criteria:

• Host does not process the managed add of the SLD successfully
• The Fabric Manager does not indicate a successful bind operation

14.7.5.1.2 Bind LDs to Two Different VCSs

Test Setup:

1. An MLD component is connected to the Switch and the Fabric Manager has
identified the MLD

2. The MLD has two or more LDs that are not bound to any hosts

Test Steps:

1. Bind one or more LDs to VCS 0; and
2. Bind one or more LDs to VCS 1.

Pass Criteria:

• Both Hosts recognize the hot added LDs and enumerate them both successfully
• The Fabric Manager indicates that the LDs have been bound to the correct VCS

Fail Criteria:

• One or both Hosts fail to recognize, enumerate and load drivers for the hot add LDs
• The Fabric Manager indicates that one or more of the LDs are not bound to the

correct VCSs.

14.7.5.2 Unbinding Resources from Hosts without Removing the Endpoint
Devices

Overview:

This test takes an allocated resource and unbinds it from a host. The resource remains
available, but unallocated after a successful unbind operation.

14.7.5.2.1 Unbind an SLD from a VCS

Test Setup:

1. An SLD component is bound to the vPPB of a VCS in an FM managed Switch.
2. The associated Host loads the device driver for the SLD

Test Steps:

1. The FM Unbinds the SLD from the vPPB of the VCS.

Pass Criteria:

• Host recognizes the hot removal of the SLD and unloads the device driver
successfully

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 516
Revision 2.0, Version 1.0

• Fabric Manager indicates that the SLD is present but has been unbound from the
VCS

• The SLD remains linked up

Fail Criteria:

• Host does not process the managed removal of the SLD successfully
• Fabric Manager does not indicate a successful unbind operation
• The SLD link goes down

14.7.5.2.2 Unbind LDs from Two Host VCSs

Test Setup:

1. An MLD component is connected to the Switch and the Fabric Manager has
identified the MLD.

2. The MLD component has LDs bound to two or more Host VCSs

Test Steps:

1. The FM Unbinds the LDs from the vPPBs of the Host VCSs.

Pass Criteria:

• All Hosts recognize the managed removal of the LDs and unload the device drivers
successfully

• Fabric Manager indicates that the LDs are present but have been unbound from the
VCSs

• The MLD remains linked up and all other LDs are unaffected

Fail Criteria:

• On or more Hosts do not process the managed removal of the LDs successfully
• Fabric Manager status does not indicate a successful unbind operation
• Other LDs in the MLD are impacted.

14.7.6 Error Injection

A Jammer, Exerciser or analyzer is required for many of these tests. Errors are injected
into the Downstream Port of the switch. The error status registers in the associated
vPPB should reflect the injected error.

14.7.6.1 AER Error Injection

Overview:

An MLD port has to ensure that the vPPB associated with each LD that is bound is
notified of errors that are not vPPB specific.

14.7.6.1.1 AER Uncorrectable Error Injection for MLD Ports

Test Equipment:

• This test requires an Exerciser if the MLD component is not capable of error
injection

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 517
Revision 2.0, Version 1.0

Test Setup:

1. vPPB of VCS.0 and vPPB of VCS.1 is each bound to LDs from the same MLD
component.

Test Steps:

1. Inject a CXL.io unmasked uncorrectable error into the MLD port of the Switch. The
injected error should be categorized as ‘supported per vPPB’ per the Section 7.2.7,
“MLD Advanced Error Reporting Extended Capability”.

Pass Criteria:

• The Uncorrectable Error status register for the vPPBs that are bound to the LDs
should reflect the appropriate error indicator bit

• The Uncorrectable Error status register for the FM owned PPB should reflect the
appropriate error indicator bit

Fail Criteria:

• PPB or vPPB AER Uncorrectable Error status does not reflect the appropriate error
indicator bit

14.7.6.1.2 AER Correctable Error Injection for MLD Ports

Test Equipment:

• This test requires an Exerciser if the MLD component is not capable of error
injection

Test Setup:

1. vPPB of VCS.0 and vPPB of VCS.1 is each bound to LDs from the same MLD
component

Test Steps:

1. Inject a CXL.io correctable error into the MLD port of the Switch. The injected error
should be categorized as ‘supported per vPPB’ per Section 7.2.7, “MLD Advanced
Error Reporting Extended Capability”.

Pass Criteria:

• The Correctable Error status register for the vPPBs that are bound to the LDs
should reflect the appropriate error indicator bit

• The Correctable Error status register for the FM owned PPB should reflect the
appropriate error indicator bit

Fail Criteria:

• PPB or vPPB AER Correctable Error status does not reflect the appropriate error
indicator bit

14.7.6.1.3 AER Uncorrectable Error Injection for SLD Ports

Test Equipment:

• This test requires an Exerciser if the SLD component is not capable of error
injection

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 518
Revision 2.0, Version 1.0

Test Setup:

1. Host enumeration is complete and successful for all devices prior to this test

Test Steps:

1. Inject a CXL.io unmasked uncorrectable error into the SLD port under test

Pass Criteria:

• The Uncorrectable Error status register for the vPPB that is bound to the SLD
should reflect the appropriate error indicator bit

Fail Criteria:

• The vPPB AER status does not reflect the appropriate error indicator bit

14.7.6.1.4 AER Correctable Error Injection for SLD Ports

Test Equipment:

• This test requires an Exerciser if the SLD component is not capable of error
injection

Test Setup:

1. Host enumeration is complete and successful for all devices prior to this test

Test Steps:

1. Inject a CXL.io correctable error into the SLD port under test

Pass Criteria:

• The Correctable Error status register for the vPPB that is bound to the SLD should
reflect the appropriate error indicator bit

Fail Criteria:

• The vPPB AER status does not reflect the appropriate error indicator bit

14.8 Configuration Register Tests
Configuration space register cover the registers defined in Chapter 8.0, “Control and
Status Registers”. These tests are run on the device under test, and require no
additional hardware to complete. Tests must be run with Root/Administrator privileges.
Test makes the assumption that there is one and only one CXL device in the system,
and it is the DUT. This test section has granularity down to the CXL Device.

Please reference section 14.2.1 for topology definitions referenced in this section.

14.8.1 Device Presence

Test Steps:

1. If device to be tested is a CXL 2.0 switch
a. Read the PCI Device hierarchy and filter for PCIe Upstream/Downstream Port of

a switch.
b. Locate the PCIe Upstream/Downstream Port with PCI Express DVSEC Capability

with VID of 1E98h and type of 0 (PCIe DVSEC for CXL device).

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 519
Revision 2.0, Version 1.0

c. Save the PCIe device location for further tests. This will be referred to in
subsequent tests as DUT.

2. If the device to be tested is an 2.0 endpoint
a. Read the PCI Device hierarchy and filter for PCIe Endpoint Devices
b. Locate the PCIe Endpoint device with PCI Express DVSEC Capability with VID of

1E98h and type of 0 (PCIe DVSEC for CXL device).
c. Save the PCIe device location for further tests. This will be referred to in

subsequent tests as DUT.
3. If the device to be tested is an 2.0 root port

a. Read the PCI Device hierarchy and filter for PCIe Root Port Devices
b. Locate the PCIe Root Port device with PCI Express DVSEC Capability with VID of

1E98h and type of 0 (PCIe DVSEC for CXL device).
c. Save the PCIe device location for further tests. This will be referred to in

subsequent tests as DUT.

Pass Criteria:

• One PCIe device with CXL PCI Express DVSEC Capability found.

Fail Criteria:

• PCIe device with CXL PCI Express DVSEC Capability not found

14.8.2 CXL Device Capabilities

Test Steps:

1. Read configuration space for DUT.
2. Initialize variables with value 0.
3. Search for PCIe DVSEC for CXL Device

a. Read the configuration space for DUT. Search for a PCI Express DVSEC with VID
of 1E98h and type of 0h.

b. Save this location as CXL_DEVICE_DVSEC_BASE
4. Search for Non-CXL Function Map DVSEC.

a. Read the configuration space for DUT. Search for a PCI Express DVSEC with VID
of 1E98h and type of 2h.

b. If found, save this location as NON_CXL_FUNCTION_DVSEC_BASE
5. Search for CXL 2.0 Extensions DVSEC for Ports.

a. Read the configuration space for DUT. Search for a PCI Express DVSEC with VID
of 1E98h and type of 3h.

b. If found, save this location as CXL_20_EXTENSION_DVSEC_BASE
6. Search for GPF DVSEC for CXL Port.

a. Read the configuration space for DUT. Search for a PCI Express DVSEC with VID
of 1E98h and type of 4h.

b. If found, save this location as CXL_GPF_PORT_DVSEC_BASE
7. Search for GPF DVSEC for CXL Device.

a. Read the configuration space for DUT. Search for a PCI Express DVSEC with VID
of 1E98h and type of 5h.

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 520
Revision 2.0, Version 1.0

b. If found, save this location as CXL_GPF_DEVICE_DVSEC_BASE
8. Search for PCIe DVSEC for Flex Bus Port.

a. Read the configuration space for DUT. Search for a PCI Express DVSEC with VID
of 1E98h and type of 7h.

b. If found, save this location as CXL_FLEXBUS_DVSEC_BASE
9. Search for Register Locator DVSEC.

a. Read the configuration space for DUT. Search for a PCI Express DVSEC with VID
of 1E98h and type of 8h.

b. If found, save this location as CXL_REGISTER_DVSEC_BASE
10. Search for MLD DVSEC.

a. Read the configuration space for DUT. Search for a PCI Express DVSEC with VID
of 1E98h and type of 9h.

b. If found, save this location as CXL_MLD_DVSEC_BASE
11. Search for Advanced Error Reporting Capability.

a. If found, save this location as AER_BASE
12. Verify:

Variable Condition
CXL_DEVICE_DVSEC_BASE != 0 Always
CXL_20_EXTENSION_DVSEC_BASE != 0 Device is Root Port, Upstream, or Downstream port of a switch
CXL_GPF_PORT_DVSEC_BASE != 0 Device is Root Port or Downstream Port of a switch
CXL_GPF_DEVICE_DVSEC_OFFSET!= 0 Device is CXL.mem and supports GPF
CXL_FLEXBUS_DVSEC_BASE != 0 Always
CXL_REGISTER_DVSEC_BASE != 0 Always
CXL_MLD_DVSEC_BASE != 0 Device is MLD

AER_BASE != 0 Always

Pass Criteria:

• Test 14.8.1 Passed
• Verify Conditions met

Fail Criteria:

• Verify Conditions Failed

14.8.3 DOE Capabilities

Test Conditions:

• DOE is implemented

Test Steps:

1. Read the Configuration space for DUT.
2. Loop until end of configuration space capabilities are found.

a. Search for DOE mailbox.
i. Read the configuration space for DUT. Search for a PCI Express Extended

Capability with type of 2Eh.

b. If found, Issue DOE Discovery repeatedly until response contains Vendor ID =
0xFFFF to get the list of supported Object Protocols for this mailbox.

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 521
Revision 2.0, Version 1.0

c. If a response contains Vendor ID = 1E98h and Data Object Protocol = 0h
i. Save Mailbox location as CXL_COMPLIANCE_DOE_MAILBOX

d. If a response contains Vendor ID = 1E98h and Data Object Protocol = 2h
i. Save Mailbox location as CXL_CDAT_DOE_MAILBOX

3. Verify:

a. CXL_ERROR_DOE_MAILBOX contains only one valid Data Object Protocol

Pass Criteria:

• Test 14.8.2 Passed
• Verify Conditions Met

Fail Criteria:

• Verify Conditions Failed

14.8.4 DVSEC Control Structure

Test Steps:

1. Read the Configuration space for DUT. CXL_DEVICE_DVSEC_BASE + Offset 4h,
Length 4 bytes.

2. Decode this into:
Bits Variable

 15:0 VID
19:16 REV
31:20 LEN

3. Verify:
VariableValue Condition
VID = 1E98h Always
REV = 1 Always
LEN = 38h Always

4. Read the Configuration space for DUT, CXL_DEVICE_DVSEC_BASE + Offset 8h,
Length 2 bytes,

5. 5. Decode this into:
Bits Variable
15:0 ID

6. 6. Verify:
Variable Value Condition
ID = 0 Always

Pass Criteria:

• Test 14.8.2 Passed
• Verify Conditions Met

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 522
Revision 2.0, Version 1.0

Fail Criteria:

• Verify Conditions Failed

14.8.5 DVSEC CXL Capability

Test Steps:

1. Read Configuration Space for DUT, CXL_DEVICE_DVSEC_BASE + Offset 0Ah, length
2

2. Decode this into:
Bits Variable
0:0 Cache_Capable
1:1 IO_Capable
2:2 Mem_Capable
3:3 Mem_HW_Init_Mode
5:4 HDM_Count
6:6 Cache write back and invalidate capable
7:7 CXL_RESET Capable
10:8 CXL_RESET Timeout
14:14 Viral Capable
15:15 PM Init completion reporting capable

3. Verify:
Variable Value Condition
IO_Capable = b1 Always
HDM_Count != b11 Always
HDM_Count != b00 Mem_Capable = 1
HDM_Count = b00 Mem_Capable = 0
CXL_RESET_Timeout !> 100b CXL_RESET_Capable = 1

4. Verify:
Variable Value Condition
R1 = R2 CONFIG_LOCK = 1
R1 !=R2 CONFIG_LOCK = 0

Pass Criteria:

• Test 14.8.4 Passed
• Verify Conditions Met

Fail Criteria:

• Verify Conditions Failed

14.8.6 DVSEC CXL Control

Test Steps:

1. Read the Configuration space for DUT, CXL_DEVICE_DVSEC_BASE + Offset 0Ch,
Length 2.

2. Decode this into:
Bits Variable

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 523
Revision 2.0, Version 1.0

0:0 Cache_Enable
1:1 IO_Enable
2:2 Mem_Enable
7:3 Cache_SF_Coverage
10:8 Cache_SF_Granularity
11:11 Cache_Clean_Eviction
14:14 Viral_Enable

3. Verify:
Variable Value Condition
IO_Enable == b1 Always
Cache_SF_Granularity != b111 Always

Pass Criteria:

• Test 14.8.4 Passed
• Verify Conditions Met

Fail Criteria:

• Verify Conditions Failed

14.8.7 DVSEC CXL Lock

Test Steps:

1. Read Configuration Space for DUT, CXL_DEVICE_DVSEC_BASE + Offset 14h, length
2

2. Decode this into:
Bits Variable
0:0 CONFIG_LOCK

3. Read Configuration Space for DUT Based on the following:
List of Config Lock Registers

Note: These are only locked by Config Lock (#ref). There are other registers that are marked
as RWL but no lock bit is mentioned.

DVSEC CXL Control (Offset 0Ch)
Bits Variable
0:0 Cache_Enable
2:2 Mem_Enable
7:3 Cache_SF_Coverage
10:8 Cache_SF_Granularity
11 Cache_Clean_Eviction
14 Viral_Enable

DVSEC CXL Range 1 Base High (Offset 20h)
Bits Variable
31:0 Memory_Base_High

DVSEC CXL Range 1 Base Low (Offset 24h)
Bits Variable

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 524
Revision 2.0, Version 1.0

31:28 Memory_Base_Low

DVSEC CXL Range 2 Base High (Offset 30h)
Bits Variable
31:0 Memory_Base_High

4. Record all read values for each variable in to the ‘Read Value List’ – R1
5. Write Configuration for all registers listed above in the ‘List of Config Lock

Registers’ with inverted values
6. Record all read values for each variable in to the ‘Read Value List’ – R2
7. Verify:

Variable Value Condition
R1 = R2 CONFIG_LOCK = 1
R1 != R2 CONFIG_LOCK = 0

Pass Criteria:

• Test 15.6.4 Passed
• Verify Conditions Met

Fail Criteria:

• Verify Conditions Failed

14.8.8 DVSEC CXL Capability2

Test Steps:

1. Read the Configuration space for DUT, CXL_DEVICE_DVSEC_BASE + Offset 16h,
Length 2.

2. Decode this into:
Bits Variable
3:0 Cache Size Unit
15:8 Cache Size

3. Verify:
Variable Value Condition
Cache Size Unit = 0h Cache Capable = b0
Cache Size Unit != 0h Cache Capable = b1
Cache Size Unit !> 2h Always

Pass Criteria:

• Test 14.8.4
• Verify Conditions Met

Fail Criteria:

• Verify Conditions Failed

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 525
Revision 2.0, Version 1.0

14.8.9 Non-CXL Function Map DVSEC

Test Steps:

1. Read the Configuration space for DUT. NON_CXL_FUNCTION_DVSEC_BASE +
Offset 4h, Length 4 bytes.

2. Decode this into:
Bits Variable
15:0 DVSEC VID
19:16 REV
31:20 LEN

3. Verify:
Variable Value Condition
DVSEC VID = 1E98h Always
REV = 0 Always
LEN = 2Ch Always

4. Read the Configuration space for DUT, Offset 8h, Length 2 bytes,
5. Decode this into:

Bits Variable
15:0 ID

6. Verify:
Variable Value Condition
ID = 02h Always

Pass Criteria:

• Test 14.8.2 Passed
• Verify Conditions Met

Fail Criteria:

• Verify Conditions Failed

14.8.10 CXL2.0 Extensions DVSEC for Ports Header

Test Conditions:
• DUT is Root port, Upstream or Downstream port of a switch

Test Steps:

1. Read the Configuration space for DUT. CXL_20_EXTENSION_DVSEC_BASE + Offset
04h, Length 4 bytes.

2. Decode this into:
Bits Variable
15:0 VID
19:16 REV
31:20 LEN

3. Verify:
Variable Value Condition

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 526
Revision 2.0, Version 1.0

VID = 1E98h Always
REV = 0 Always
LEN = 28h Always

4. Read the Configuration space for DUT, CXL_20_EXTENSION_DVSEC_BASE + Offset
08h, Length 2 bytes,

5. Decode this into:
Bits Variable
15:0 ID

6. Verify:
Variable Value Condition
ID = 03h Always

Pass Criteria:

• Test 14.8.2 Passed
• Verify Conditions met

Fail Criteria:

• Verify Conditions Failed

14.8.11 Port Control Override

Test Conditions:
• DUT is Root port, Upstream or Downstream port of a switch

Test Steps:

1. Read the Configuration space for DUT. CXL_20_EXTENSION_DVSEC_BASE + Offset
0Ch, length 4 bytes.

2. Verify:
Bits Value
0:0 0b
1:1 0b

3. Verify:
a. For Ports Operating in PCIe or CXL 1.1 mode

i. Verify that SBR functionality of PORT is as defined in PCIe Specification
ii. Verify that Link Disable Functionality follows PCIe Specification

b. For Ports Operating in CXL 2.0 mode
i. Verify that writing to SBR bit in Bridge Control register of this Port has no

effect
ii. Verify that writing to Link Disable bit in Link Control register of this Port has

no effect
4. Store '1' into Bit 0 at Offset 0x0C
5. Verify:

a. For Ports Operating in PCIe or CXL 1.1 mode, verify that SBR functionality of
PORT is as defined in PCIe Specification

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 527
Revision 2.0, Version 1.0

b. For Ports Operating in CXL 2.0 mode, verify that writing to SBR bit in Bridge
Control register of this Port results in hot reset being generated by the Port

6. Store '0' into Bit 0 at Offset 0x0C
7. Store '1' into Bit 1 at Offset 0x0C
8. Verify:

a. For Ports Operating in PCIe or CXL 1.1 mode, verify that Link Disable
functionality of PORT is as defined in PCIe Specification

b. For Ports Operating in CXL 2.0 mode, verify that writing to Link Disable bit in
Link Control register of this Port results in being able to disable and re-enable
the link by the Port

Pass Criteria:

• Test 14.8.10 Passed
• Verify Conditions met

Fail Criteria:

• Verify Conditions Failed

14.8.12 GPF DVSEC Port Capability

Test Conditions:
• DUT is a root port or a Downstream Port of a switch

Test Steps:

1. Read the Configuration space for DUT, CXL_GPF_PORT_DVSEC_BASE + Offset 04h,
Length 4.

2. Decode this info
Bits Variable
15:0 DVSEC Vendor ID
19:16 DVSEC Revision
31:20 DVSEC Length

3. Verify:
Variable Value Condition
DVSEC Vendor ID 1E98h Always
DVSEC Revision 0h Always
DVSEC Length 1 0h Always

4. Read the Configuration space for DUT, CXL_GPF_PORT_DVSEC_BASE + Offset 08h,
Length 2.

5. Decode this info
Bits Variable
15:0 DVSEC ID

6. Verify:
Variable Value Condition
DVSEC ID 04h Always

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 528
Revision 2.0, Version 1.0

Pass Criteria:

• Test 14.8.2 Passed
• Verify Conditions Met

Fail Criteria:

• Verify Conditions Failed

14.8.13 GPF Port Phase1 Control

Test Conditions:
• DUT is a root port or a Downstream Port of a switch

Test Steps:

1. Read the Configuration space for DUT, CXL_GPF_PORT_DVSEC_BASE + Offset 0Ch,
Length 2.

2. Decode this info
Bits Variable
11:8 Port GPF Phase 1 Timeout Scale

3. Verify:
Variable Value Condition
Port GPF Phase 1 Timeout Scale < 1000b Always

Pass Criteria:

• Test 14.8.12 Passed
• Verify Conditions Met

Fail Criteria:

• Verify Conditions Failed

14.8.14 GPF Port Phase2 Control

Test Conditions:
• DUT is a root port or a Downstream Port of a switch

Test Steps:

1. Read the Configuration space for DUT, CXL_GPF_PORT_DVSEC_BASE + Offset 0Eh,
Length 2.

2. Decode this info
Bits Variable
11:8 Port GPF Phase 2 Timeout Scale

3. Verify:
Variable Value Condition
Port GPF Phase 2 Timeout Scale < 1000b Always

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 529
Revision 2.0, Version 1.0

Pass Criteria:

• Test 14.8.12 Passed
• Verify Conditions Met

Fail Criteria:

• Verify Conditions Failed

14.8.15 GPF DVSEC Device Capability

Test Conditions:

• Device supports CXL.mem and GPF capable.

Test Steps:

1. Read the Configuration space for DUT, CXL_GPF_DEVICE_DVSEC_BASE + Offset
04h, Length 4.

2. Decode this info
Bits Variable
15:0 DVSEC Vendor ID
19:16 DVSEC Revision
31:20 DVSEC Length

3. Verify:
Variable Value Condition
DVSEC Vendor ID 1E98h Always
DVSEC Revision 0h Always
DVSEC Length 10h Always

4. Read the Configuration space for DUT, CXL_GPF_DEVICE_DVSEC_BASE + Offset
08h, Length 2.

5. Decode this info
Bits Variable
15:0 DVSEC ID

6. Verify:
Variable Value Condition
DVSEC ID 05h Always

Pass Criteria:

• Test 14.8.2 Passed
• Verify Conditions Met

Fail Criteria:

• Verify Conditions Failed

14.8.16 GPF Device Phase2 Duration

Test Conditions:

• Device supports CXL.mem and GPF capable.

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 530
Revision 2.0, Version 1.0

Test Steps:

1. Read the Configuration space for DUT, CXL_GPF_DEVICE_DVSEC_BASE + Offset
0Ah, Length 2.

2. Decode this info
Bits Variable
11:8 Device GPF Phase 2 Timeout Scale

3. Verify:
Variable Value Condition
Device GPF Phase 2 Timeout Scale < 1000b Always

Pass Criteria:

• Test 14.8.15 Passed
• Verify Conditions Met

Fail Criteria:

• Verify Conditions Failed

14.8.17 GPF Device Phase1 Duration

Test Conditions:

• Device supports CXL.mem and GPF capable.

Test Steps:

1. Read the Configuration space for DUT, CXL_GPF_DEVICE_DVSEC_BASE + Offset
0Ch, Length 2.

2. Decode this info
Bits Variable
11:8 Device GPF Phase 1 Timeout Scale

3. Verify:
Variable Value Condition
Device GPF Phase 1 Timeout Scale < 1000b Always

Pass Criteria:

• Test 14.8.15 Passed
• Verify Conditions Met

Fail Criteria:

• Verify Conditions Failed

14.8.18 Flex Bus Port DVSEC Capability Header

Test Steps:

1. Read the Configuration space for DUT, CXL_FLEXBUS_DVSEC_BASE + Offset 04h,
Length 4 bytes.

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 531
Revision 2.0, Version 1.0

2. Decode this into:
Bits Variable
15:0 VID
19:16 REV
31:20 LEN

3. Verify:
Variable Value Condition
VID = 1E98h Always
REV = 01h Always
LEN = 14h Always

4. Read CXL_FLEXBUS_DVSEC_BASE + Offset 08h, Length 2 bytes,
5. Decode this into:

Bits Variable
15:0 ID

6. Verify:
Variable Value Condition
ID = 07h Always

Pass Criteria:

• Test 14.8.2 Passed
• Verify Conditions met

Fail Criteria:

• Verify Conditions Failed

14.8.19 DVSEC Flex Bus Port Capability

Test Steps:

1. Read the Configuration space for DUT, CXL_FLEXBUS_DVSEC_BASE + Offset 0Ah,
Length 2.

2. Decode this into:
Bits Variable
0:0 Cache_Capable
1:1 IO_Capable
2:2 Mem_Capable
5:5 CXL2p0_Capable
6:6 CL_MLD_Capable

3. Verify:
Variable Value Condition
IO_Capable = 1b Always
CXL2p0_Capable = 1b Always

Pass Criteria:

• Test 14.8.2 Passed

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 532
Revision 2.0, Version 1.0

• Verify Conditions Met

Fail Criteria:

• Verify Conditions Failed

14.8.20 Register Locator

Test Steps:

1. Read the Configuration space for DUT. CXL_REGISTER_DVSEC_BASE + Offset 04h,
Length 4 bytes.

2. Decode this into:
Bits Variable
15:0 VID
19:16 REV
31:20 LEN

3. Verify:
Variable Value Condition
VID =1E98h Always
REV =0 Always
LEN =24h Always

4. Read the Configuration space for DUT, CXL_REGISTER_DVSEC_BASE + Offset 08h,
Length 2 bytes,

5. Decode this into:
Bits Variable
15:0 ID

6. Verify:
Variable Value Condition
ID =08h Always

Pass Criteria:

• Test 14.8.2 Passed
• Verify Conditions met

Fail Criteria:

• Verify Conditions Failed

14.8.21 MLD DVSEC Capability Header

Test Conditions:
• Device is MLD capable

Test Steps:

1. Read the Configuration space for DUT. CXL_MLD_DVSEC_BASE + Offset 04h,
Length 4 bytes.

2. Decode this into:
Bits Variable
15:0 VID

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 533
Revision 2.0, Version 1.0

19:16 REV
31:20 LEN

3. Verify:
Variable Value Condition
VID =1E98h Always
REV =0 Always
LEN =10h Always

4. Read the Configuration space for DUT, Offset 0x08, Length 2 bytes,
5. Decode this into:

Bits Variable
15:0 ID

6. Verify:
Variable Value Condition
ID =09h Always

Pass Criteria:

• Test 14.8.2 Device Present passed
• Verify Conditions met

Fail Criteria:

• Verify Conditions Failed

14.8.22 MLD DVSEC Number of LD Supported

Test Conditions:
• Device is MLD capable

Test Steps:

1. Read the Configuration space for DUT, CXL_MLD_DVSEC_BASE + Offset 0Ah,
Length 2.

2. Decode this into:
Bits Variable
15:0 Number_LDs_Supported

3. Verify:
Variable Value Condition
Number_LDs_Supported ≤16 Always
Number_LDs_Supported != 0 Always

Pass Criteria:

• Test 14.8.21 Passed
• Verify Conditions Met

Fail Criteria:

• Verify Conditions Failed

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 534
Revision 2.0, Version 1.0

14.8.23 Table Access DOE

Test Conditions:
• Device supports Table Access DOE

Test Steps:

1. For the following steps, use the DOE mailbox at CXL_CDAT_DOE_MAILBOX
2. Issue DOE Read Entry

Offset Length Value
0 2 1E98h
2 1 2h
4 2 3h
8 1 0h
9 1 0h
0Ah 2 0h

3. Read Response and Decode this into
Offset Length Variable
08h 1 Table_Access_Response_Code
09h 1 Table_Type

4. Verify:
Variable Value Condition
Table_Access_Response_Code = 0 Always
Table_Type = 0 Always

Pass Criteria:

• Test 14.8.3 Passed
• Verify Conditions Met

Fail Criteria:

• Verify Conditions Failed

14.8.24 PCI Header - Class Code Register

Test Conditions:

• DUT is CXL Memory device

Test Steps:

1. Read the Configuration space for DUT, offset 09h, Length 4
2. Decode this into:

Bits Variable
7:0 Programming Interface (PI)
15:8 Sub Class Code (SCC)
23:16 Base Class Code (BCC)

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 535
Revision 2.0, Version 1.0

3. Verify
Variable Value Condition
Programming Interface (PI) 10h Always
Sub Class Code (SCC) 02h Always
Base Class Code (BCC) 05h Always

Pass Criteria:

• Verify Conditions Met

Failed Criteria

Verify Conditions Failed

14.9 Reset and Initialization Tests

14.9.1 Warm Reset Test

DUT must be in D3 state with context flushed

Test Steps:

1. Host issues CXL PM VDM, Reset Prep (ResetType= Warm Reset; PrepType=General
Prep)

2. Host waits for CXL device to respond with CXL PM VDM ResetPrepAck

Pass Criteria:

• DUT responds with an ACK

Fail Criteria:

• DUT fails to respond to ACK

14.9.2 Cold Reset Test

DUT must be in D3 state with context flushed

Test Steps:

1. Host issues CXL PM VDM, Reset Prep (ResetType= Warm Reset; PrepType=General
Prep)

2. Host waits for CXL device to respond with CXL PM VDM ResetPrepAck

Pass Criteria:

• DUT responds with an ACK

Fail Criteria:

• DUT fails to respond to ACK

14.9.3 Sleep State Test

DUT must be in D3 state with context flushed

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 536
Revision 2.0, Version 1.0

Test Steps:

1. Host issues CXL PM VDM, Reset Prep (ResetType= S3; PrepType=General Prep)
2. Host waits for CXL device to respond with CXL PM VDM ResetPrepAck

Pass Criteria:

• DUT responds with an ACK

Fail Criteria:

• DUT fails to respond to ACK

14.9.4 Function Level Reset Test

Necessary Conditions:

• Device supports Function Level Reset.

Function Level Reset has the requirement that the CXL device maintain Cache
Coherency. This test is accomplished by running the Application Layer tests as
described in Section 14.3.6.1, and issuing a Function level reset in the middle of it.

Required Device Capability

Hardware configuration support for Algorithm 1a described in Section 14.3.1. If the
device supports self-checking it must escalate a fatal system error. Device is permitted
to log failing information.

Test Steps:

1. Determine test run time T based on the amount of time available or allocated for
this testing.

2. Host software sets up Cache Coherency test for Algorithm 1a: Multiple Write
Streaming

3. If the devices supports self-checking, enable it.
4. At a time between 1/3 and 2/3 of T and with at least 200 ms of test time

remaining, Host initiates Host initiates FLR by writing to the Initiate Function Level
Reset bit.

Pass Criteria:

• System does not elevate a fatal system error, and no errors are logged

Fail Criteria:

• System error reported, Logged failures exist.

14.9.5 Flex Bus Range Setup Time

Necessary Conditions:

• Device is CXL.mem capable
• Ability to monitor the device reset

Test Steps:

1. Reset the system, Monitor Reset until clear

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 537
Revision 2.0, Version 1.0

2. Wait for 1 second
3. Read Configuration Space for DUT, Offset 0x1C Length 4
4. Decode this into:

Bits Variable
0:0 Memory_Info_Valid
1:1 Memory_Active

5. Verify:
Variable Value Condition
Memory_Info_Valid =1
Memory_Active =1 Mem_HW_Init_Mode = 1

Pass Criteria:

• Test 14.8.2 Passed
• Verify Conditions Met

Fail Criteria:

• Verify Conditions Failed

14.9.6 FLR Memory

This test ensures that FLR does not affect data in device attached memory.

Necessary Conditions:

• Device is CXL.mem capable

Test Steps:

1. Write a known pattern to a known location within HDM
2. Host performs a FLR as defined in steps of Section 14.9.4.
3. Host Reads HDM memory location
4. Verify: that read data matches previously written data.

Pass Criteria:

• HDM retains information following FLR

Fail Criteria:

• HDM memory is reset.

14.9.7 CXL_Reset Test

Necessary Conditions:

• CXL Reset Capable bit in the DVSEC CXL Capability register is set.

Test Steps:

1. Determine test run time T1 from DVSEC CXL Capability CXL Reset Timeout register.

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 538
Revision 2.0, Version 1.0

2. Read and record value of following ROS register for step 6.

Error Capabilities and Control Register (Offset 14h)
Bits Variable
3:0 First Error pointer

Header Log Registers (Offset 18h)
Bits Variable
511:0 Header Log

Note: Contents of registers may or may or may not be ‘0’

3. Set following RWS registers to settings as per list and record written values for step
6
RWS Registers and settings:
Uncorrectable Error Mask Register (Offset 04h)

Bits Variable Settings
12:0 Error Mask registers Set to 1FFFFh
15:15 CXL_IDE_Tx_Mask Set to 1
16:16 CXL_IDE_Rx_Mask Set to 1

Uncorrectable Error Severity Register (Offset 08h)
Bits Variable Settings
12:0 Error Severity registers Set to 1FFFFh
15:15 CXL_IDE_Tx_Severity Set to 1
16:16 CXL_IDE_Rx_Severity Set to 1

Correctable Error Mask Register (Offset 10h)
Bits Variable Settings
6:0 Error Mask Registers Set to 0

Error Capabilities and Control Register (Offset 14h)
Bits Variable Settings
13:13 Poison_Enabled Set to 1b

CXL Link Layer Capability Register (Offset 00h)
Bits Variable Settings
3:0 CXL Link version Supported Set to 0x2
15:8 LLR Wrap Value Supported Set to 0xFF

Note: Intention is to set register to non-zero value

CXL Link Layer Control and Status Register (Offset 08h)
Bits Variable Settings
1:1 Link_Init_Stall Set to 1b
2:2 LL_Crx_Stall Set to 1b

CXL Link Layer Rx Credit Control Register (Offset 10h)
Bits Variable Settings

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 539
Revision 2.0, Version 1.0

9:0 Cache Req Credits Set to 3FFh
19:10 Cache Rsp Credits Set to 3FFh
29:20 Cache Data Credits Set to 3FFh
39:30 Mem Req _Rsp Credits Set to 3FFh
49:40 Mem Data Credits Set to 3FFh

CXL Link Layer Ack Timer Control Register (Offset 28h)
Bits Variable Settings
7:0 Ack_Force_Threshold Set to FFh
17:8 Ackor CRD Flush Retimer Set to 1FFh

CXL Link Layer Defeature Register (Offset 30h)
Bits Variable Settings
0:0 MHD Disable Set to 1b

4. Set Initiate CXL Reset =1 in DVSEC CXL Control2 register
5. Wait for time T1.
6. Verify

a. Confirm DVSEC Flex Bus Status2 CXL Reset complete is set.
b. ROS register values before and after CXL reset are matching.
c. RWS registers values before and after CXL reset are matching.

Pass Criteria:

• Verify Conditions Met

Fail Criteria:

• Verify Conditions Failed

14.9.8 Global Persistent Flush (GPF) (Requires Protocol Analyzer)

14.9.8.1 Host and Switch Test

Necessary Conditions:

• Device is CXL.cache or CXL.mem capable
• Ability to monitor the link

Test Steps:

1. Bring system to operating state
2. Initiate Shut Down process
3. Verify:

a. System sends CXL GPF PM VDM Phase 1 request
b. After receipt of response message from Device,
c. System sends CXL GPF PM VDM Phase 2 request
d. After receipt of response message Link transitions to lowest possible power state

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 540
Revision 2.0, Version 1.0

Pass Criteria:

• Verify that required CXL GPF PM VDM Phase 1 request is sent
• Verify that required CXL GPF PM VDM Phase 2 request is sent after phase 1

response
• Verify Link enters lowest possible power state

Fail Criteria:

• Verify Conditions Failed

14.9.8.2 Device Test

Necessary Conditions:

• Device is CXL.cache or CXL.mem capable
• Ability to monitor the link

Test Steps:

1. Ensure link between system and device is in initialized state
2. Initiate Shut Down process
3. Verify:

a. No cache transactions are initiated by device after CXL GPF PM VDM
b. Verify GPF Response message sent by Device in Phase 1
c. Verify GPF Response message sent by Device in Phase 2

Pass Criteria:

• Ensure no cache transactions are initiated after CXL GPF PM VDM in Phase 1
• Verify Device sends Response Message in Phase 1
• Check response message fields are correct
• Verify Device sends Response Message in Phase 2
• Verify Link enters lowest possible power state

Fail Criteria:

• Verify Conditions Failed

14.9.9 Hot-Plug Test

Necessary Conditions:

• Device supports Hot-Plug

Test Steps:

1. Bring system to operating state
2. Initiate Hot-Plug remove
3. Verify:

a. Hot-Plug remove process completed
4. Remove and reinsert device

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 541
Revision 2.0, Version 1.0

5. Initiate Hot-Plug add
6. Verify:

a. Hot-Plug add process completed

Pass Criteria:

• Verify Conditions Met

Fail Criteria:

• Verify Conditions Failed

14.10 Power Management Tests

14.10.1 Pkg-C Entry (Device Test)

This test case is optional if the device does not support generating PMReq() with
memory LTR reporting.

The initial conditions for this test assume that Power management and Credit
Initialization has completed, that the CXL link is up.

This test case will check the following conditions:
• Check that the device initiates PkgC entry, and reports appropriate LTR.
• Check all PMReq() fields adhere to the CXL 2.0 Spec.

Device Test Steps:

1. Host or Test Equipment maintains the link in an idle state, no CXl.cache/CXL.mem
requests are initiated by either Host/Test Equipment or the Device Under Test.

2. Host or Test equipment waits for Link to enter CXL L1 Idle State.
3. Optionally a Protocol Analyzer is used to inspect that the link enters the L1 state,

and that the PMReq.Req is sent from the Device, and the Host replies with
PMReq.Rsp and PMReq.Go

Pass Criteria:

• Link enters L1

Fail Criteria:

• Test fails if the Link enters L1 but PMReq.Req is missing
• Test fails if LTR values in the PMReq.Req are invalid

14.10.2 Pkg-C Entry Reject (Device Test) (Requires Exerciser)

This test case is optional if the device does not support generating PMReq() with
memory LTR reporting.

The initial conditions for this test assume that Power management and Credit
Initialization has completed, that the CXL link is up.

This test case will check the following conditions:
• Check that the device initiates PkgC entry, and reports appropriate LTR.
• Check all PMReq() fields adhere to the CXL 2.0 Spec.

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 542
Revision 2.0, Version 1.0

• Check that the Device under Test does not enter low power state when Exercises
responds with Low LTR (processor busy condition)

Device Test Steps:

1. Host or Test Equipment maintains the link in an idle state, no CXl.cache/CXL.mem
requests are initiated by either Host/Test Equipment or the Device Under Test.

2. Exerciser waits for the PMReq.Req from Device
3. Exerciser sends PMReq.Rsp advertising Low LTR indicating processor is busy

Pass Criteria:

• Link does not enter L1

Fail Criteria:

• Test fails if the Device requests L1 entry
• Test fails if LTR values in the PMReq.Req are invalid

14.10.3 Pkg-C Entry (Host Test)

The initial conditions for this test assume that Power management and Credit
Initialization has completed, that the CXL link is up.

This test case will check the following conditions:
• Check that the Host sends PMReq.Rsp when device initiates PkgC entry, and that it

reports appropriate LTR.
• Check all PMReq.Rsp() and PMReq.Go() fields adhere to the CXL 2.0 Spec.

Host Test Steps:

1. Host and Device maintain the link in an idle state, no CXl.cache/CXL.mem requests
are initiated by either Host or the Device.

2. Test waits for Link to enter CXL L1 Idle State. If CXL L1 state is not entered this test
can be skipped.

3. Optionally a Protocol Analyzer is used to inspect that the link enters the L1 state,
and that the PMReq.Req is sent from the Device, and the Host replies with
PMReq.Rsp and PMReq.Go

Pass Criteria:

• Link enters L1

Fail Criteria:

• Test fails if the Device sends PMReq.Req but Host fails to respond with PMReq.Rsp
and PMReq.Go

• Test fails if LTR values in the PMReq.Rsp are invalid

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 543
Revision 2.0, Version 1.0

14.11 Security

14.11.1 Component Measurement and Authentication

14.11.1.1 DOE CMA Instance

Prerequisites:

• DOE CMA supported by at least one Function

Mode:

• CXL.io

Topology:

• SHDA
• SHSW
• SHSW-FM

Test Steps:

1. Scan every function and read DOE CMA instances

Pass Criteria:

1. Each DOE CMA instance supports only DOE Discovery data object protocol, and
CMA data object protocol

Fail Conditions:

1. DOE discovery not supported
2. CMA data object not supported

14.11.1.2 FLR While Processing DOE CMA Request

Prerequisites:

• DOE CMA supported by at least one Function

Mode:

• CXL.io

Topology:

• SHDA
• SHSW
• SHSW-FM

Test Steps:

1. Send DOE CMA request
2. Perform FLR reset to associated function (This should cancel the DOE request)
3. Attempt to read DOE CMA response

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 544
Revision 2.0, Version 1.0

Pass Criteria:

1. Target Function responds that is not indicating a DOE CMA response is available
(The request should be canceled from the FLR)

Fail Conditions:

1. Original DOE CMA request results in a response returned by DOE CMA target
function after FLR

14.11.1.3 OOB CMA While in Fundamental Reset

Prerequisites:

• OOB CMA supported, platform or slot supports asserting Fundamental Reset
(PE_Reset) under host software control. Note: Known Good Host support for
PE_Reset shall be either on a per slot basis under Host software control or hold all
in PE_Reset during POST.

Mode:

• CXL.io
• OOB

Topology:

• SHDA
• SHSW
• SHSW-FM

Test Steps:

1. Assert fundamental reset on device
2. Perform authentication over OOB CMA

Pass Criteria:

1. Device successfully authenticates while device held in reset

Fail Conditions:

14.11.1.4 OOB CMA While Function gets FLR

Prerequisites:

• OOB CMA supported
• Function 0 supports FLR

Mode:

• CXL.io
• OOB

Topology:

• SHDA

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 545
Revision 2.0, Version 1.0

• SHSW
• SHSW-FM

Test Steps:

1. Clear Authenticated state over OOB with Get_Version request
2. Host Issues FLR to function 0 (beginning a loop: issue a single FLR with a delay

until the FLR completes. Repeat.)
a. In parallel with FLR loop, begin authentication with OOB (long Challenge

Sequence beginning with Get_Version and calling required intermediate
functions ending with Challenge)

3. Host continues FLR (exit loop of FLRs once Authentication succeeds)
a. In parallel with FLR, Verify Challenge Authentication Succeeds over OOB.

Pass Criteria:

1. Authentication completes successfully with FLR on device Function 0 during OOB
authentication.

Fail Conditions:

1. OOB Authentication fails at any point using full authentication/negotiation
sequence.

14.11.1.5 OOB CMA During Conventional Reset

Prerequisites:

• OOB CMA supported. Host issues Link_Disable on root port of device to create the
Conventional Reset condition.

Mode:

• CXL.io
• OOB

Topology:

• SHDA
• SHSW
• SHSW-FM

Test Steps:

1. Host issues Link_Disable on root port for device
2. Perform authentication over OOB CMA (long sequence beginning with Get_Version,

followed by intermediate requests as required and finishing with Challenge)
3. Host enables Link on root port for device

Pass Criteria:

1. Device successfully authenticates over OOB while devices Link is in disabled state.

Fail Conditions:

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 546
Revision 2.0, Version 1.0

14.11.2 Link Integrity and Data Encryption CXL.io IDE

Details for setting up authenticate link Key Exchange is still work in process as per
SPDM 1.1 ECNs against PCI-E protocol which will extend into CXL.io protocol.

Use protocol analyzer to verify that link traffic is encrypted. Test is informational only if
Protocol analyzer is not available.

Link IDE tests are based on configuring IDE in a specific configuration, and then
running a compliance test algorithm specified in section Chapter 14.0, “CXL.io Load/
Store Test”.

14.11.2.1 CXL.io Link IDE Streams Functional

Prerequisites:

Mode:

• CXL.io

Topology:

• SHDA
• SHSW
• SHSW-FM

Test Steps:

1. Establish Link IDE Streams on all links between Host and DUT
a. Disable aggregation
b. Disable PRCR

2. Start compliance test algorithm for CXL.io as defined above.

Pass Criteria:

1. Self-checking compliance test reports no errors
2. CXL link remains up
3. No errors reported in AER or IDE Status registers

Fail Conditions:

14.11.2.2 CXL.io Link IDE Streams Aggregation

Prerequisites:

• Aggregation Supported bit Set for both ports of each Link IDE Stream

Mode:

• CXL.io

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 547
Revision 2.0, Version 1.0

Topology:

• SHDA
• SHSW
• SHSW-FM

Test Steps:

1. Establish Link IDE Streams on all links between Host and DUT
a. Enable aggregation
b. Disable PRCR

2. Start compliance test algorithm for CXL.io as defined above.
3. Cycle through the following Tx aggregation modes:

a. NPR/PR/CPL all set to 01b (up to 2);
b. NPR/PR/CPL all set to 10b (up to 4);
c. NPR/PR/CPL all set to 11b (up to 8);
d. NPR=01b, PR=10b, CPL=11b.

Pass Criteria:

1. Self-checking compliance test reports no errors
2. CXL link remains up
3. No errors reported in AER or IDE Status registers

Fail Conditions:

14.11.2.3 CXL.io Link IDE Streams PCRC

Prerequisites:

• PCRC Supported bit Set for both ports of each Link IDE Stream

Mode:

• CXL.io

Topology:

• SHDA
• SHSW
• SHSW-FM

Test Steps:

1. Establish Link IDE Streams on all links between Host and DUT
a. Disable aggregation
b. Enable PRCR

2. Start compliance test algorithm for CXL.io as defined above.

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 548
Revision 2.0, Version 1.0

Pass Criteria:

1. Self-checking compliance test reports no errors
2. CXL link remains up
3. No errors reported in AER or IDE Status registers

Fail Conditions:

14.11.2.4 CXL.io Selective IDE Stream Functional

Prerequisites:

• DOE CMA support

Mode:

• CXL.io

Topology:

• SHDA
• SHSW
• SHSW-FM

Test Steps:

1. Establish Selective IDE Streams on all links between Host and DUT
a. Disable aggregation
b. Disable PRCR

2. Start compliance test algorithm for CXL.io as defined above.

Pass Criteria:

1. Self-checking compliance test reports no errors
2. CXL link remains up
3. No errors reported in AER or IDE Status registers

Fail Conditions:

14.11.2.5 CXL.io Selective IDE Streams Aggregation

Prerequisites:

• DOE CMA support
• Aggregation Support bit set for both ports of the Selective IDE stream.

Mode:

• CXL.io

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 549
Revision 2.0, Version 1.0

Topology:

• SHDA
• SHSW
• SHSW-FM

Test Steps:

1. Establish Selective IDE Streams on all links between Host and DUT
a. Enable aggregation
b. Disable PRCR

2. Start compliance test algorithm for CXL.io as defined above.
3. Cycle through the following Tx aggregation modes:

a. NPR/PR/CPL all set to 01b (up to 2);
b. NPR/PR/CPL all set to 10b (up to 4);
c. NPR/PR/CPL all set to 11b (up to 8);
d. NPR=01b, PR=10b, CPL=11b.

Pass Criteria:

1. Self-checking compliance test reports no errors
2. CXL link remains up
3. No errors reported in AER or IDE Status registers

Fail Conditions:

14.11.2.6 CXL.io Selective IDE Streams PCRC

Prerequisites:

• DOE CMA support
• Aggregation Support bit set for both ports of the Selective IDE stream.

Mode:

• CXL.io

Topology:

• SHDA
• SHSW
• SHSW-FM

Test Steps:

1. Establish Selective IDE Streams on all links between Host and DUT
a. Disable aggregation
b. Enable PRCR

2. Start compliance test algorithm for CXL.io as defined above.

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 550
Revision 2.0, Version 1.0

Pass Criteria:

1. Self-checking compliance test reports no errors
2. CXL link remains up
3. No errors reported in AER or IDE Status registers

Fail Conditions:

14.11.3 CXL.Cache/MEM IDE

14.11.3.1 Data Encryption – Decryption and Integrity Testing with Containment
Mode for MAC Generation and Checking

Prerequisites:

• Host & Device are CXL Cache/Mem Capable and enabled.
• CXL IDE Capability should be supported and enabled.
• Keys are established.

Test Steps:

1. Enable the containment mode of MAC generation via “CXL Link Encryption
Configuration Registers (Section 8.2.5, “CXL.cache and CXL.mem Registers”)

2. Host Software should program setup device and host for algorithm 1a/1b/2 to
initiate traffic. Refer to Section 14.3.6.1.2, “CXL.cache Coherency Test”

3. Self-checking for validity of data.
4. Host software will control the test execution and duration of the test.

Pass:

• No Failure reported via “IDE Status Register (Section 8.2.5.14.3, “CXL IDE Status
(Offset 08h)”)” or “CXL IDE Error Status register (Section 8.2.5.14.4, “CXL IDE
Error Status (Offset 0ch)”)”

Fail:

• IDE reported failures.

14.11.3.2 Data Encryption – Decryption and Integrity Testing with Skid Mode for
MAC Generation and Checking

Prerequisites:

• Skid mode of operation must be enabled.

Test Steps:

1. Enable the skid mode of MAC generation via “CXL Link Encryption Configuration
Registers”

2. Host Software should program setup device and host for algorithm 1a/1b/2 to
initiate traffic. Refer to Section 14.3.6.1.2, “CXL.cache Coherency Test”

3. Self-checking for validity of data.
4. Host software will control the test execution and duration of the test.

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 551
Revision 2.0, Version 1.0

Pass:

• No Failure reported via “IDE Status Register(Section 8.2.5.14.3, “CXL IDE Status
(Offset 08h)”)” or “CXL IDE Error Status register (Section 8.2.5.14.4, “CXL IDE
Error Status (Offset 0ch)”)”

Fail:

• IDE reported failures.

14.11.3.3 Key Refresh

Test Steps:

1. Setup encrypted link between host and device.
2. Host software program setup device for algorithm 1a/1b/2 to initiate traffic

(Section 14.3.6.1, “Application Layer/Transaction Layer Tests”)
3. Enable Self-testing for validity of data.
4. Host software control the test execution & duration of test.
5. Set up new keys and initiate IDE.Start LLCRD Flit
6. Initiate next set of traffic via repeat of steps 1, 2, and 3.

Pass:

1. No Failure reported via “IDE Status Register(Section 8.2.5.14.3, “CXL IDE Status
(Offset 08h)”)” or “CXL IDE Error Status register (Section 8.2.5.14.4, “CXL IDE
Error Status (Offset 0ch)”)”

Fail:

1. IDE reported failures.

14.11.3.4 Early MAC Termination

Test Steps:

1. Host Software setup host and device to initiate number of protocol flits in the
current MAC_Epoch is less than Aggregation_Flit_Count via algorithm 1a/1b/
2.Section 14.3.6.1.2, “CXL.cache Coherency Test” and Section 14.3.6.1.4,
“CXL.mem Test”

2. Device will send a Truncated MAC LLCTRL Flit.
3. Device should send “TruncationDelay” number of IDE.idle Flits.
4. Host software control the test execution & duration of test.

Pass:

1. No “Truncated MAC flit check error” error reported in “CXL IDE Error Status register
(Section 8.2.5.14.4, “CXL IDE Error Status (Offset 0ch)”)

2. Configured number of IDLE Flits observed.

Fail:

1. Error lodged in “CXL IDE Error Status register (Section 8.2.5.14.4, “CXL IDE Error
Status (Offset 0ch)”)”

2. Configured number of IDE.idle LLCTRL Flits not observed.

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 552
Revision 2.0, Version 1.0

14.11.3.5 Error Handling

14.11.3.5.1 Invalid keys (Host and Device Keys Are Not Synced)

Test Steps:

1. Setup device side for invalid key.
2. Host Software setup device to initiate traffic via algorithm 1a/1b/2. (Section

14.3.6.1, “Application Layer/Transaction Layer Tests”)

Pass:

• “Integrity Failure” Error reported in “CXL IDE Error Status register (Section
8.2.5.14.4, “CXL IDE Error Status (Offset 0ch)”)”

Fail:

• No error reported in “CXL IDE Error Status register (Section 8.2.5.14.4, “CXL IDE
Error Status (Offset 0ch)”)”

14.11.3.5.2 MAC Header Insertion Errors

MAC for previous Epoch not received in first 5 flits of MAC Epoch.

Test Steps:

1. Write Compliance mode DOE with the “Inject MAC Delay” with following:

2. Host Software setup device to initiate traffic via algorithm 1a/1b/2. (Section
14.3.6.1, “Application Layer/Transaction Layer Tests”)

Pass:

• MAC Header received when not expected error reported in “CXL IDE Error Status
register (Section 8.2.5.14.4, “CXL IDE Error Status (Offset 0ch)”)”

Fail:

• Error not lodged in IDE Error status Register.

Table 229. MAC Header Insertion Setup

Data Object
Byte Offset Length Description Value

0h 8 Standard DOE Request Header

8h 1 Request Code Bh, Delay MAC

9h 1 Version

0Ah 2 Reserved

0Ch 1 1=Enable 0=disable 1

0Dh 1 Mode 0 = CXL.io, 1 = CXL.cache, 2 =
clx.mem 1/2

0Eh 1 Delay, Number of flits to delay MAC.
6+ = error condition 2

0Fh 1 Count, Number of times to inject MAC
delay 2

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 553
Revision 2.0, Version 1.0

14.11.3.5.3 No MAC Inserted in MAC Epoch

Test Steps:

1. Write Compliance mode DOE with the “Inject Unexpected MAC” with following:

2. Host Software setup device to initiate traffic via algorithm 1a/1b/2. (Section
14.3.6.1, “Application Layer/Transaction Layer Tests”)

Pass:

• “Integrity Failure” error reported in “CXL IDE Error Status register (Section
8.2.5.14.4, “CXL IDE Error Status (Offset 0ch)”)”

Fail:

• Error not lodged in IDE Error status Register.

14.11.4 Certificate Format/Certificate Chain

Certificate requirements for this test are drawn from the following external documents:
SPDM 1.1, CMA ECN, PCIE-IDE ECN

Test Steps:

1. Receiver sends GET_DIGESTS to UUT
2. Receiver verifies that UUT responds with DIGESTS response
3. Receiver records which Certificate Chains are populated and performs the following

for each populated slot:
a. Receiver sends a series of GET_CERTIFICATE requests to read the entire

certificate chain
b. Receiver verifies that the UUT provides a CERTIFICATE response to each request

4. Test Software parses Certificate Chain and verifies:
a. Certificate Version (should be version 2 or 3)
b. Serial Number
c. CA Distinguished Name
d. Subject Name
e. Certificate Validity Dates

Table 230. MAC Inserted in MAC Epoch Setup

Data Object
Byte Offset Length Description Value

0h 8 Standard DOE Request Header

8h 1 Request Code Ch, Unexpected MAC

9h 1 Version

0Ah 2 Reserved

0Ch 1 0 = disable, 1 = insert message, 2 =
delete message 2

0Dh 1 Mode: 0 = CXL.io,
1 = XL.cache, 2 = CXL.mem 1/2

0Eh 1 Count 2

0Fh 1 frequency 2

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 554
Revision 2.0, Version 1.0

f. Subject Public key info
g. Subject Alternate Name (if implemented)
h. All Certificates use X509v3 format
i. All Certificates use DER / ANS.1
j. All Certificates use ECDSA / NIST P256
k. All certificates use SHA 256 or SHA 385
l. Leaf nodes do not exceed MaxLeafCertSize
m. Intermediate nodes do not exceed MaxIntermediateCertSize
n. Textual ASN.1 objects contained in certs use UTF8String and do not exceed 64

bytes
o. Common names appear in every certificate
p. Common names use format “CXL:<vid><pid>” with VID in uppercase HEX
q. If VID and/or PID appear they are consistent within a cert chain
r. Organization name appears in Root Certificate in human readable format

14.11.5 Security RAS

Make these tests pointers back to current RAS tests. Pass criteria needs a comment that
the link remains in a secure state.

CRC injections should work without a Protocol Analyzer, since it has been added as an
injection hook to the Compliance DOE.

14.11.5.1 CXL.io Poison Inject from Device

Required Device Capabilities:

• The CXL device must support Algorithm 1a, and Link Layer Error Injection
Capabilities.

Test Steps:

1. Setup device for Multiple Write streaming:
a. Write a pattern {64{8’hFF}} to cache aligned address A1
b. Write a Compliance mode DOE to inject poison

c. Write Compliance mode DOE with the following request:

Table 231. IO Poison Injection Request

Data Object
Byte Offset Length Description Value

0h 8 Standard DOE Request Header

8h 1 Request Code 6, Poison Injection

9h 1 Version 2

0Ah 2 Reserved

0Ch 1 Protocol 0

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 555
Revision 2.0, Version 1.0

Pass Criteria:

• Receiver (Host) logs poisoned received error.
• CXL.io IDE link state remains secured.

14.11.5.2 CXL.cache Poison Inject from Device

Required Device Capabilities:

• The CXL device must support Algorithm 1a, and Link Layer Error Injection
Capabilities.

Test Steps:

1. Setup device for Multiple Write streaming:
a. Write a pattern {64{8’hFF}} to cache aligned address A1
b. Write a Compliance mode DOE to inject poison

Table 232. Multi-Write Streaming Request

Data Object
Byte Offset Length Description Value

0h 8 Standard DOE Request Header

8h 1 Request Code 3, Multiple Write Streaming

9h 1 Version 2

0Ah Reserved

0Ch 1 Protocol 1

0Dh 1 Virtual Address 0

0Eh 1 Self-checking 0

0Fh 1 Verify Read Semantics 0

10h 1 Num Increments 0

11h 1 Num Sets 0

12h 1 Num Loops 1

13h Reserved

14h 8 Start Address A1

1Ch 8 Write Address 0

24h 8 WriteBackAddress A2 (Must be distinct from
A1)

2Ch 8 Byte Mask 0xFFFFFFFFFFFFFFFF

34h 4 Address Increment = 0

38h 4 Set Offset 0

3Ch 4 Pattern “P” 0xAA

40h 4 Increment Pattern “B” 0

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 556
Revision 2.0, Version 1.0

c. Write Compliance mode DOE with the following request:

Pass Criteria:

• Receiver (Host) logs poisoned received error.
• CXL.io IDE link state remains secured.

Table 233. Cache Poison Injection Request

Data Object
Byte Offset Length Description Value

0h 8 Standard DOE Request Header

8h 1 Request Code 6, Poison Injection

9h 1 Version 2

0Ah 2 Reserved

0Ch 1 Protocol 0

Table 234. Multi-Write Streaming Request

Data Object
Byte Offset Length Description Value

0h 8 Standard DOE Request Header

8h 1 Request Code 3, Multiple Write Streaming

9h 1 Version 2

0Ah Reserved

0Ch 1 Protocol 2

0Dh 1 Virtual Address 0

0Eh 1 Self-checking 0

0Fh 1 Verify Read Semantics 0

10h 1 Num Increments 0

11h 1 Num Sets 0

12h 1 Num Loops 1

13h Reserved

14h 8 Start Address A1

1Ch 8 Write Address 0

24h 8 WriteBackAddress A2 (Must be distinct from
A1)

2Ch 8 Byte Mask 0xFFFFFFFFFFFFFFFF

34h 4 Address Increment = 0

38h 4 Set Offset 0

3Ch 4 Pattern “P” 0xAA

40h 4 Increment Pattern “B” 0

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 557
Revision 2.0, Version 1.0

14.11.5.3 CXL.cache CRC Inject from Device

Required Device Capabilities:

• The CXL device must support Algorithm 1a, and Link Layer Error Injection
Capabilities.

Test Steps:

1. Setup device for Multiple Write streaming:
a. Write a pattern {64{8’hFF}} to cache aligned address A1
b. Write a Compliance mode DOE to inject CRC errors

c. Write Compliance mode DOE with the following request:

Table 235. Cache CRC Injection Request

Data Object
Byte Offset Length Description Value

0h 8 Standard DOE Request Header

8h 1 Request Code 7, CRC Injection

9h 1 Version 2

0Ah 2 Reserved

0Ch 1 Protocol 2

Num Bits Flipped 1

Num Flits Injected 1

Table 236. Multi-Write Streaming Request

Data Object
Byte Offset Length Description Value

0h 8 Standard DOE Request Header

8h 1 Request Code 3, Multiple Write Streaming

9h 1 Version 2

0Ah Reserved

0Ch 1 Protocol 2

0Dh 1 Virtual Address 0

0Eh 1 Self-checking 0

0Fh 1 Verify Read Semantics 0

10h 1 Num Increments 0

11h 1 Num Sets 0

12h 1 Num Loops 1

13h Reserved

14h 8 Start Address A1

1Ch 8 Write Address 0

24h 8 WriteBackAddress A2 (Must be distinct from
A1)

2Ch 8 Byte Mask 0xFFFFFFFFFFFFFFFF

34h 4 Address Increment = 0

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 558
Revision 2.0, Version 1.0

Pass Criteria:

• Receiver (Host) logs poisoned received error.
• CXL.cacheI DE link state remains secured.

14.11.5.4 CXL.mem Poison Injection

Required Device Capabilities:

• The CXL device must support Algorithm 1a, and Link Layer Error Injection
Capabilities.

Test Steps:

1. Setup device for Multiple Write streaming:
a. Write a pattern {64{8’hFF}} to cache aligned address A1
b. Write a Compliance mode DOE to inject poison

c. Write Compliance mode DOE with the following request:

38h 4 Set Offset 0

3Ch 4 Pattern “P” 0xAA

40h 4 Increment Pattern “B” 0

Table 236. Multi-Write Streaming Request

Data Object
Byte Offset Length Description Value

Table 237. Mem-Poison Injection Request

Data Object
Byte Offset Length Description Value

0h 8 Standard DOE Request Header

8h 1 Request Code 6, Poison Injection

9h 1 Version 2

0Ah 2 Reserved

0Ch 1 Protocol 3

Table 238. Multi-Write Streaming Request

Data Object
Byte Offset Length Description Value

0h 8 Standard DOE Request Header

8h 1 Request Code 3, Multiple Write Streaming

9h 1 Version 2

0Ah Reserved

0Ch 1 Protocol 3

0Dh 1 Virtual Address 0

0Eh 1 Self-checking 0

0Fh 1 Verify Read Semantics 0

10h 1 Num Increments 0

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 559
Revision 2.0, Version 1.0

Pass Criteria:

• Receiver (Host) logs poisoned received error.
• CXL.cacheIDE link state remains secured.

14.11.5.5 CXL.mem CRC Injection

Required Device Capabilities:

• The CXL device must support Algorithm 1a, and Link Layer Error Injection
Capabilities.

Test Steps:

1. Setup device for Multiple Write streaming:
a. Write a pattern {64{8’hFF}} to cache aligned address A1
b. Write a Compliance mode DOE to inject CRC errors

c. Write Compliance mode DOE with the following request:

11h 1 Num Sets 0

12h 1 Num Loops 1

13h Reserved

14h 8 Start Address A1

1Ch 8 Write Address 0

24h 8 WriteBackAddress A2 (Must be distinct from
A1)

2Ch 8 Byte Mask 0xFFFFFFFFFFFFFFFF

34h 4 Address Increment = 0

38h 4 Set Offset 0

3Ch 4 Pattern “P” 0xAA

40h 4 Increment Pattern “B” 0

Table 238. Multi-Write Streaming Request

Data Object
Byte Offset Length Description Value

Table 239. MEM CRC Injection Request

Data Object
Byte Offset Length Description Value

0h 8 Standard DOE Request Header

8h 1 Request Code 7, CRC Injection

9h 1 Version 2

0Ah 2 Reserved

0Ch 1 Protocol 3

Num Bits Flipped 1

Num Flits Injected 1

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 560
Revision 2.0, Version 1.0

Pass Criteria:

• Receiver (Host) logs poisoned received error.
• CXL.cacheI DE link state remains secured.

14.11.5.6 Flow Control Injection

Required Device Capabilities:

• The CXL device must support Algorithm 1a, and Link Layer Error Injection
Capabilities.

Test Steps:

1. Setup device for Multiple Write streaming:
a. Write a pattern {64{8’hFF}} to cache aligned address A1
b. Write a Compliance mode DOE to inject poison

Table 240. Multi-Write Streaming Request

Data Object
Byte Offset Length Description Value

0h 8 Standard DOE Request Header

8h 1 Request Code 3, Multiple Write Streaming

9h 1 Version 2

0Ah Reserved

0Ch 1 Protocol 3

0Dh 1 Virtual Address 0

0Eh 1 Self-checking 0

0Fh 1 Verify Read Semantics 0

10h 1 Num Increments 0

11h 1 Num Sets 0

12h 1 Num Loops 1

13h Reserved

14h 8 Start Address A1

1Ch 8 Write Address 0

24h 8 WriteBackAddress A2 (Must be distinct from
A1)

2Ch 8 Byte Mask 0xFFFFFFFFFFFFFFFF

34h 4 Address Increment = 0

38h 4 Set Offset 0

3Ch 4 Pattern “P” 0xAA

40h 4 Increment Pattern “B” 0

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 561
Revision 2.0, Version 1.0

c. Write Compliance mode DOE with the following request:

Pass Criteria:

• Receiver (Host) logs poisoned received error.
• CXL.io IDE link state remains secured.

Table 241. Flow Control Injection Request

Data Object
Byte Offset Length Description Value

0h 8 Standard DOE Request Header

8h 1 Request Code 8, Flow Control Injection

9h 1 Version 2

0Ah 2 Reserved

0Ch 1 Protocol 0

Table 242. Multi-Write Streaming Request

Data Object
Byte Offset Length Description Value

0h 8 Standard DOE Request Header

8h 1 Request Code 3, Multiple Write Streaming

9h 1 Version 2

0Ah Reserved

0Ch 1 Protocol 1

0Dh 1 Virtual Address 0

0Eh 1 Self-checking 0

0Fh 1 Verify Read Semantics 0

10h 1 Num Increments 0

11h 1 Num Sets 0

12h 1 Num Loops 1

13h Reserved

14h 8 Start Address A1

1Ch 8 Write Address 0

24h 8 WriteBackAddress A2 (Must be distinct from
A1)

2Ch 8 Byte Mask 0xFFFFFFFFFFFFFFFF

34h 4 Address Increment = 0

38h 4 Set Offset 0

3Ch 4 Pattern “P” 0xAA

40h 4 Increment Pattern “B” 0

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 562
Revision 2.0, Version 1.0

14.11.5.7 Unexpected Completion Injection

Required Device Capabilities:

• The CXL device must support Algorithm 1a, and Link Layer Error Injection
Capabilities.

Test Steps:

1. Setup device for Multiple Write streaming:
a. Write a pattern {64{8’hFF}} to cache aligned address A1
b. Write a Compliance mode DOE to inject an unexpected completion error

c. Write Compliance mode DOE with the following request:

Table 243. Unexpected Completion Injection Request

Data Object
Byte Offset Length Description Value

0h 8 Standard DOE Request Header

8h 1 Request Code Ah, Unexpected Completion
Injection

9h 1 Version 2

0Ah 2 Reserved

0Ch 1 Protocol 0

Table 244. Multi-Write Streaming Request

Data Object
Byte Offset Length Description Value

0h 8 Standard DOE Request Header

8h 1 Request Code 3, Multiple Write Streaming

9h 1 Version 2

0Ah Reserved

0Ch 1 Protocol 1

0Dh 1 Virtual Address 0

0Eh 1 Self-checking 0

0Fh 1 Verify Read Semantics 0

10h 1 Num Increments 0

11h 1 Num Sets 0

12h 1 Num Loops 1

13h Reserved

14h 8 Start Address A1

1Ch 8 Write Address 0

24h 8 WriteBackAddress A2 (Must be distinct from
A1)

2Ch 8 Byte Mask 0xFFFFFFFFFFFFFFFF

34h 4 Address Increment = 0

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 563
Revision 2.0, Version 1.0

Pass Criteria:

• Receiver (Host) logs poisoned received error.
• CXL.io IDE link state remains secured.

14.11.5.8 Completion Timeout Injection

Required Device Capabilities:

• The CXL device must support Algorithm 1a, and Link Layer Error Injection
Capabilities.

Test Steps:

1. Setup device for Multiple Write streaming:
a. Write a pattern {64{8’hFF}} to cache aligned address A1
b. Write a Compliance mode DOE to inject an unexpected completion error

c. Write Compliance mode DOE with the following request:

38h 4 Set Offset 0

3Ch 4 Pattern “P” 0xAA

40h 4 Increment Pattern “B” 0

Table 244. Multi-Write Streaming Request

Data Object
Byte Offset Length Description Value

Table 245. Completion Timeout Injection Request

Data Object
Byte Offset Length Description Value

0h 8 Standard DOE Request Header

8h 1 Request Code Bh, Completion Timeout
Injection

9h 1 Version 2

0Ah 2 Reserved

0Ch 1 Protocol 0

Table 246. Multi-Write Streaming Request

Data Object
Byte Offset Length Description Value

0h 8 Standard DOE Request Header

8h 1 Request Code 3, Multiple Write Streaming

9h 1 Version 2

0Ah Reserved

0Ch 1 Protocol 1

0Dh 1 Virtual Address 0

0Eh 1 Self-checking 0

0Fh 1 Verify Read Semantics 0

10h 1 Num Increments 0

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 564
Revision 2.0, Version 1.0

14.11.5.9 Memory Error Injection and Logging

Required Device Capabilities:

• The CXL device must support Algorithm 1a, and Link Layer Error Injection
Capabilities.

• The CXL Type 2 or Type 3 device must support Memory Logging and Reporting.
• The CXL device must support Error Injection for Memory Logging and Reporting.

Test Steps:

1. Setup device for Multiple Write streaming:
a. Write a pattern {64{8’hFF}} to cache aligned address A1
b. Write a Compliance mode DOE to inject poison

c. Write Compliance mode DOE with the following request:

11h 1 Num Sets 0

12h 1 Num Loops 1

13h Reserved

14h 8 Start Address A1

1Ch 8 Write Address 0

24h 8 WriteBackAddress A2 (Must be distinct from
A1)

2Ch 8 Byte Mask 0xFFFFFFFFFFFFFFFF

34h 4 Address Increment = 0

38h 4 Set Offset 0

3Ch 4 Pattern “P” 0xAA

40h 4 Increment Pattern “B” 0

Table 246. Multi-Write Streaming Request

Data Object
Byte Offset Length Description Value

Table 247. Poison Injection Request

Data Object
Byte Offset Length Description Value

0h 8 Standard DOE Request Header

8h 1 Request Code 6, Poison Injection

9h 1 Version 2

0Ah 2 Reserved

0Ch 1 Protocol 3

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 565
Revision 2.0, Version 1.0

Pass Criteria:

• Receiver (Host) logs error into DOE and is signaled to Host
• CXL.cacheIDE link state remains secured.

14.11.5.10 CXL.io Viral Inject from Device

Required Device Capabilities:

• The CXL device must support Algorithm 1a, and Link Layer Error Injection
Capabilities.

Test Steps:

1. Setup device for Multiple Write streaming:
a. Write a pattern {64{8’hFF}} to cache aligned address A1
b. Write a Compliance mode DOE to inject poison viral
c. Write Compliance mode DOE with the following request:

Table 248. Multi-Write Streaming Request

Data Object
Byte Offset Length Description Value

0h 8 Standard DOE Request Header

8h 1 Request Code 3, Multiple Write Streaming

9h 1 Version 2

0Ah Reserved

0Ch 1 Protocol 3

0Dh 1 Virtual Address 0

0Eh 1 Self-checking 0

0Fh 1 Verify Read Semantics 0

10h 1 Num Increments 0

11h 1 Num Sets 0

12h 1 Num Loops 1

13h Reserved

14h 8 Start Address A1

1Ch 8 Write Address 0

24h 8 WriteBackAddress A2 (Must be distinct from
A1)

2Ch 8 Byte Mask 0xFFFFFFFFFFFFFFFF

34h 4 Address Increment = 0

38h 4 Set Offset 0

3Ch 4 Pattern “P” 0xAA

40h 4 Increment Pattern “B” 0

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 566
Revision 2.0, Version 1.0

Pass Criteria:

• Receiver (Host) logs poisoned received error.
• CXL.io IDE link state remains secured.

14.11.5.11 CXL.cache Viral inject from device

Required Device Capabilities:

• The CXL device must support Algorithm 1a, and Link Layer Error Injection
Capabilities

Table 249. IO viral Injection Request

Data Object
Byte Offset Length Description Value

0h 8 Standard DOE Request Header

8h 1 Request Code 0C Viral Injection

9h 1 Version 2

0Ah 2 Reserved

0Ch 1 Protocol 0

Table 250. Multi-Write Streaming Request

Data Object
Byte Offset Length Description Value

0h 8 Standard DOE Request Header

8h 1 Request Code 3, Multiple Write Streaming

9h 1 Version 2

0Ah Reserved

0Ch 1 Protocol 1 cxl.io

0Dh 1 Virtual Address 0

0Eh 1 Self-checking 0

0Fh 1 Verify Read Semantics 0

10h 1 Num Increments 0

11h 1 Num Sets 0

12h 1 Num Loops 1

13h Reserved

14h 8 Start Address A1

1Ch 8 Write Address 0

24h 8 WriteBackAddress A2 (Must be distinct from A1)

2Ch 8 Byte Mask 0xFFFFFFFFFFFFFFFF

34h 4 Address Increment = 0

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 567
Revision 2.0, Version 1.0

Test Steps:

1. Setup device for Multiple Write streaming:
a. Write a pattern {64{8’hFF}} to cache aligned address A1
b. Write a Compliance mode DOE to inject poison viral
c. Write Compliance mode DOE with the following request:

Pass Criteria:

• Receiver (Host) logs poisoned received error.
• CXL.cache IDE link state remains secured.

Table 251. Cache viral Injection Request

Data Object
Byte Offset Length Description Value

0h 8 Standard DOE Request Header

8h 1 Request Code 0C Viral Injection

9h 1 Version 2

0Ah 2 Reserved

0Ch 1 Protocol 2 cxl.cache.

Table 252. Multi-Write Streaming Request

Data Object
Byte Offset Length Description Value

0h 8 Standard DOE Request Header

8h 1 Request Code 3, Multiple Write Streaming

9h 1 Version 2

0Ah Reserved

0Ch 1 Protocol 2 cxl.cache

0Dh 1 Virtual Address 0

0Eh 1 Self-checking 0

0Fh 1 Verify Read Semantics 0

10h 1 Num Increments 0

11h 1 Num Sets 0

12h 1 Num Loops 1

13h Reserved

14h 8 Start Address A1

1Ch 8 Write Address 0

24h 8 WriteBackAddress A2 (Must be distinct from A1)

2Ch 8 Byte Mask 0xFFFFFFFFFFFFFFFF

34h 4 Address Increment = 0

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 568
Revision 2.0, Version 1.0

14.11.6 Security Protocol and Data Model

14.11.6.1 SPDM Get_Version

Prerequisites:

SPDM 1.0 or higher, DOE for CMA (should include DOE Discovery Data object protocol
and the CMA data object protocol). CMA over MCTP/SMBus for out of band validation
should function while device is held in fundamental reset. A fundamental link reset shall
not impact CMA connection over out of band. Compliance Software must keep track of
all transactions (per SPDM spec Table 21a: Request ordering and message transcript
computation rules for M1/M2) to complete Challenge request after sequence of test
assertions are completed.

Modes:

• CXL.io
• OOB CMA

Topology:

• SHDA
• SHSW
• SHSW-FM

Test Steps:

1. Issue Get_Version over SPDM to target device over DOE/CMA using HOST
capabilities for SPDM version 1.0.

2. Optional OOB: issue Discovery command to gather version information over out of
band

3. Validate Version response matches capabilities of HOST and meets minimum 1.0
requirements

4. Optional OOB: valid JSON file returned from Discovery command for version
5. Optional: Repeat for next version of SPDM if Responder version response includes

version higher than 1.0 and Requester supports same version. Higher version then
used throughout SPDM remaining test assertions.

Pass Criteria:

• Shall return a Version response Over DOE interface (transfer performed from Host
over DOE/SPDM following CMA interface). Responder answers with Version Request
ResponseCode = 0x04 containing 0x10, 0x11 or 0x12. A valid version of 1.0, or
higher 1.1 shall be return in Version response. Optional OOB: JSON file shall
contain a version of 1.0 or higher for SPDM for target device.

Fail Criteria:

• ErrorCode=ResponseNotReady or 100ms timeout. CXL Compliance test suite
should error/timeout after 100ms if no Version response received. If version is not
1.0 or higher and matching a version on the HOST, test fails.

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 569
Revision 2.0, Version 1.0

14.11.6.2 SPDM Get_Capabilities

Prerequisites:

• Test steps must directly follow successful Get_Version test assertion following
SPDM protocol.

Modes:

• CXL.io
• OOB CMA

Topology:

• SHDA
• SHSW
• SHSW-FM

Test Steps:

1. Issue Get_Capabilities over SPDM to target device over DOE/CMA using HOST
capabilities for SPDM version 1.0 or higher as negotiated in Get_Version test
assertion.

2. Optional OOB: Issue Discovery command to gather capabilities information over
out of band. Skip this step if performed in Get_Version test assertion as JSON
should be same.

3. Validate Capabilities response matches capabilities of HOST and meets minimum
1.0 requirements.

4. Record Flags for device capabilities and capture CTExponent for use in timeout of
Challenge response and Measurement timeout.

5. Validate CTExponent value within range for CMA Spec Device. CT time should be
less than 2^23 us

6. Optional OOB: validate JSON file returned from Discovery command for
capabilities. Capabilities should match those of inband.

Pass Criteria:

• Valid Capabilities response received containing RequestResponseCode = 0x61 for
Capabilities and valid Flags (CACHE_CAP, CERT_CAP, CHAL_CAP, MEAS_CAP,
MEAS_FRESH_CAP). Flags returned determine if optional capability test assertions
apply. If CERT_CAP not set then SPDM based test assertions end after Negotiate
Algorithms and there is no Certificate test supported. Valid value for CTExponent
should be populated in Capabilities response. CTExponent Value must be less than
23. MEAS_CAP: Confirm Measurement capabilities of the Responder. If responder
returns:
— 00b: The Responder does not support MEASUREMENTS capabilities. (The

Measurement Test Assertion does not apply)
— 01b: The Responder supports MEASUREMENTS but cannot perform signature

generation (only the Measurement with Signature test assertion does not
apply).

— 10b: The Responder supports MEASUREMENTS and can generate signatures.
(All Measurements Test Assertions apply)

— If MEAS_FRESH_CAP is set then fresh measurements expected on each
Measurement request and delays may be observed by Compliance Software)

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 570
Revision 2.0, Version 1.0

Fail Criteria:

• ErrorCode=ResponsNotReady or 100ms timeout (CXL Compliance test suite should
error/timeout after 100ms if no response to Get_Version received). Invalid Flags or
no value for CTExponent. CTExponent larger than 23.

14.11.6.3 SPDM Negotiate_Algorithms

Prerequisites:

Test must directly follow successful Get_Capabilities test assertion following SPDM
protocol.

Modes:

• CXL.io
• OOB CMA

Topology:

• SHDA
• SHSW
• SHSW-FM

Test Steps

1. Requester sends Negotiate_Algorithms including algorithms supported by the host
for MeasurementHashAlgo and BaseAsymSel.

2. Responder sends Algorithms response.

Note: This response is the “negotiated state” for the Requester/Responder pair until a new
Get_Version request is sent to “clear the state”.)
3. Validate Algorithms Response.

Pass Criteria:

• Valid Algorithm response received containing RequestResponseCode = 0x63 for
Algorithms

• Valid fields required:
— MeasurementSpecificationSel (bit selected should match Requester),
— MeasurementHashAlgo (Value of zero if measurements not supported. If

measurements supported, only one bit set representing the algorithm. Valid
algorithms are: TPM_ALG_SHA_256, TPM_ALG_SHA_384, TPM_ALG_SHA_512,
TPM_ALG_SHA3_256, TPM_ALG_SHA3_384, TPM_ALG_SHA3_512

— Expected to support based CXL spec algorithm TPM_ALG_SHA_256 at a
minimum. PCI SIG CMA requires TPM_ALG_SHA_256 and TPM_ALG_SHA_384

• If Challenge supported, these fields are valid:
— BaseAsymSel, BaseHashSel, ExtAsymSelCount, ExtHashSelCount

• One of the following Bits must be selected BaseAsymAlgo for signature verification:
— TPM_ALG_RSASSA_3072, TPM_ALG_ECDSA_ECC_NIST_P256,

TPM_ALG_ECDSA_ECC_NIST_P384. If challenge is not supported this field
should be 0. Extended Algorithms will not be used in compliance testing.

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 571
Revision 2.0, Version 1.0

Fail Criteria:

• ErrorCode=ResponsNotReady or timeout (CXL Compliance test suite should error/
timeout after 100ms if no response to Get_Version received). If Measurement
supported, if no algorithm selected then test fails. If Challenge supported, one bit
in the BaseAsymAlgo should be set. Responder should match 1 algorithm capability
with Requester. If MEAS_CAP, CERT_CAP, and CHAL_CAP are not supported then
SPDM tests stop. If some options supported then some tests may continue.

14.11.6.4 SPDM Get_Digests

Prerequisites:

• CERT_CAP=1. Must directly follow Negotiate_Alorithms test assertion. Assumes no
cached copy of Digest or Cert available to Requester.

Modes:

• CXL.io

Topology:

• SHDA
• SHSW
• SHSW-FM

Test Steps:

1. Requester sends Get_Digests.
2. Responder sends Digests.
3. Requester saves the content provided by Digest for future use. (Save copy shall be

known as cached Digest.)
4. If Responder replies with Busy. Requester should repeat starting with step 1.

Pass Criteria:

• Param2 of Digests sent by Responder shall contain a valid Slot Mask denoting
number of cert chain entries in the Digest.

Fail Criteria:

• Failure to return Digests or Timeout. If Responder always replies with Busy, test
fails.

14.11.6.5 SPDM Get Cert

Prerequisites:

• CERT_CAP=1. Directly follows Get_Digests test assertion. If device supports CMA it
must support Certificates on Slot 0 with DOE Function 0 and from OOB.

Mode:

• CXL.io
• OOB

Topologies:

• SHDA

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 572
Revision 2.0, Version 1.0

• SHSW
• SHSW-FM

Test Steps:

1. Requester requests Get_certificate with Param1 with value of 0 for slot 0 for DOE of
function 0. Use offset 0x0 and length 0xFFFF to return back entire certificate.

2. Response returns Cert over DOE
3. Request Slot 0 Cert over OOB method.
4. Host returns Cert over OOB
5. Verify Slot 0 Cert matches between inband and out of band.
6. Requester shall save the public key of the leaf certificate to be used to decode

Digests in future test assertions
7. Use Certificate and Certificate Authority (CA)
8. verification content from Cert Format/Cert Chain Test Assertion. Required fields on

certificate to be validated:

Pass Criteria:

• Same as Section 14.11.4, “Certificate Format/Certificate Chain”

Fail Criteria:

• Certificate with validity value invalid. Required fields missing. Malformed format for
Subject Alternative Name. Key verification failure. Mismatch between inband and
out of band.

14.11.6.6 SPDM CHALLENGE

Prerequisites:

• CERT_CAP=1, CHAL_CAP=1 must both be supported. Test will issue a warning if
both methods are not supported.

• Must follow test assertion sequence up to this point with GET_VERSION,
GET_CAPABILITY, NEGOTIATE_ALGORITHMS, GET_DIGESTS, GET_CERTIFICATE all
successful prior to CHALLENGE. If CERT_CAP=0, GET_VERSION, GET_CAPABILITY,
NEGOTIATE_ALGORITHMS, CHALLENGE is valid sequence. Compliance Software
must keep track of all transactions per SPDM spec (Table 21a — Request ordering
and message transcript computation rules for M1/M2) to complete Challenge
request.

Modes:

• CXL.io
• OOB CMA

Topology:

• SHDA
• SHSW
• SHSW-FM

Test Steps:

1. Requester sends Challenge using Param1=Slot0, Param2=

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 573
Revision 2.0, Version 1.0

a. 0x0 if MEAS_CAP = 0 (No Measurement Summary Hash),
b. 0x1 = TCB Component Measurement Hash (if device only supports this

Measurement),
c. 0xFF = All measurements Hash (if device supports multiple measurements).
d. Nonce sent must be random value

2. Requester starts a timer to track CT timeout using CTExponent in earlier test
assertion for Capabilities.

3. Responder returns Challenge_Auth response before CT timeout or returns a
ResponseNotReady with expect delay time.
a. If ResponseNotReady occurs, Responder must wait CT time + RTT (Round Trip

Time) before issuing RespondIfReady. CT time should be less than 2^23 us
4. Record Nonce Value returned by Responder in table for final log report. Value

should not match the Nonce sent by requester. Compliance Software Nonce/Token
Table should contain all Nonce and Token entries for all test assertions performed
on device.

5. Validate Signature of Challenge_Auth response
6. Repeat steps 1-4
7. Validate Challenge_Auth response contains unique Nonce Value and valid Signature

validated per SPDM spec. Compare Nonce Value returned by Responder to value in
first Step 4 and validate not incremented value and numbers appear random.

Pass Criteria:

• Valid Challenge_Auth responded and/or valid use of delay with ResponseNotReady
before successfully answering with Challenge_Auth. Responder should be able to
decode and approve Challenge_Auth as containing valid signature based on all prior
transactions. Verify of Challenge_Auth performed using public key of Cert Slot 0
along with hash of transactions and signature using the negotiated algorithms in
earlier Test Assertions.

Fail Criteria:

• Challenge_Auth not ready by responder prior to expiration of CT+ RTT time and no
ResponseNotReady sent by Responder. Failure of verify step for Challenge_Auth
contents. Nonce Value not unique. CT time longer than 2^23 us

14.11.6.7 SPDM Get_Measurements Count

Prerequisites:

• SPDM 1.0 or higher, DOE, CMA. MEAS_CAP = 01b or 10b. Test assertion is valid
after successful Get Version, Get capabilities, Negotiate Algorithms,
Get_Digest_Get_Cert, Challenge. Note that issuing Get_Measurements resets the
“transcript” to NULL.

Mode:

• CXL.io
• OOB

Topologies:

• SHDA
• SHSW

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 574
Revision 2.0, Version 1.0

• SHSW-FM

Test Steps:

1. Responder sends Get Measurements response code 0xE0 with Param2 value of
0x00 to request count of measurements supported by device.

2. Responder returns Measurement response code 0x60 with a count of supported
Measurements in Param1.

3. Optional: compare result with OOB Measurement count

Pass Criteria:

• Responder sends valid Measurements response containing count.
ResponseNotReady response/delay permitted.

Fail Criteria:

• Responder fails to respond before timeout or sends invalid response.

14.11.6.8 SPDM Get_Measurements All

Prerequisites:

• SPDM 1.0 or higher, DOE, CMA, MEAS_CAP=1.
• If MEAS_FRESH_CAP=1, measurements expected to be fresh on each

Measurement request.

Mode:

• CXL.io
• OOB

Topologies:

• SHDA
• SHSW
• SHSW-FM

Test Steps:

1. Requester Issues Get_Measurement requester response code 0xE0 with Param2
value of 0xFF. If device is capable of signatures, request should be with signature.

2. Responder returns Measurement response code 0x60 with all measurements
returned. Signature included if requested. Signature should be valid and nonce
returned must be random and recorded into compliance Software table of values.
ResponseNotReady delay permitted within timeout range. Any occurrence of
ResponseNotReady should record token value into table in Compliance Software to
verify random value.

3. Number of Measurement blocks shall match count in
4. previous test assertion.
5. Repeat 1-4 and compare measurements match between Measurement responses.
6. OOB step if supported: QueryMeasurements using OOB script and compare out of

band measurement values with inband values.

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 575
Revision 2.0, Version 1.0

Pass Criteria:

• Message delay with ResponseNotReady permitted. Measurements match between
repeated responses.

Fail Criteria:

• Invalid Message response or failure to respond within timeout. Mismatch between
measurements.

14.11.6.9 SPDM Get_Measurements Repeat with Signature

Prerequisites:

• SPDM 1.0 or higher, DOE, CMA, MEAS_CAP=01b or 10b. If MEAS_FRESH_CAP is set
then additional steps could apply. If capable of signature then Signature required.)

• For Signature, device must support CHAL_CAP, CERT_CAP. Golden Host must
support CMA required BasAsymAlgo for signature verification:
TPM_ALG_RSASSA_3072, TPM_ALG_ECDSA_ECC_NIST_P256,
TPM_ALG_ECDSA_ECC_NIST_P384. PCI SIG CMA requires TPM_ALG_SHA_256 and
TPM_ALG_SHA_384 for MeasurementHashAlgo

Mode:

• CXL.io
• OOB

Topologies:

• SHDA
• SHSW
• SHSW-FM

Test Steps:

1. Requester sends Get_Measurement (first measurement as supported by earlier test
assertions for count and measurements and index to increment with each repeat of
this step). Request should be with signature on last count of measurement if device
supports signature. If device supports fresh measurements, measurements are
expected to be fresh with each response. Both Request/Responder keep track of
messages for validation of signature throughout Get_Measurement/Measurement
for each measurement in count. On last Measurement, Requester issues
Get_Measurement with signature. Responder may issue ResponseNotReady.
a. If ResponseNotReady observed, validate fields in ReponseNotReady including

Delay time value and token. Calculate time required (See ResponseNotReady
test assertion). Record token value in table for final report. Token should be
random value.

b. Requester should Respond_if_ready based on timeout value. Respondifready
should include same token sent by responder in ResponseNotReady.

2. Capture Nonce Value from Measurement response if signature requested. Store in a
table for logging in final report. Value should not be a counter or increment.

3. Capture measurement value and compare against earlier Measurement response.
Value should not change after measurement.

4. Validate signature is signature required for last measurement. This step requires
requester/responder to keep track of all measurement messages requested until
measurement requesting signature at which time the transcript state will be
cleared.

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 576
Revision 2.0, Version 1.0

5. Repeat - Requester sends Get_Measurement if additional measurements exist with
last request including signature.

6. Repeat Measurements request 10 times (for devices that have 1 measurement
index, this is 10 responses, for devices that have 5 measurement blocks this is
5*10 = 50 measurement responses).

7. If OOB supported, Compare Measurement with OOB

Pass Criteria:

• Nonce Value unique and random each time Measurement response with signature
received. Value does not increment. Valid Measurement shall be returned and
should match earlier requests for same measurement index. ResponseNotReady if
required shall include a random token value (should not be same as any nonce
values). Requester should expect Measurement response or another response not
ready if not ready by time of expiry. Measurements are indexed blocks. During
measurement requests for each index, requester/responder shall keep track of
messages and use those in signature generation/calculation. Any SPDM message
sent between measurement requests clears this calculation. Requester successfully
decodes valid message with signature. Measurement values should be requested
for each value supported based on response to Get_Measurement initial request
with index list. ResponseNotReady permitted if responder approaching CT +RTT
before Measurement response is ready. Delay in response is permitted and should
meet timeout estimated in ResponseNotReady. If ResponseNotReady, occurs Token
Value should be validated to be unique compared to any occurrences during
compliance testing.

Fail Criteria:

• Timeout without a ResponseNotReady or Get_Measurements. Signature Failure.
Failure to return measurement/index requested. Nonce Value is a counter or none
Random number. Timeout (CT+RTT) occurs with no ResponseNotReady. Timeout
after ResponseNotReady of WT+RTT. Measurement mismatch between responses of
same index or mismatch with OOB. Token Value not random in ResponseNotReady.

14.11.6.10 SPDM Challenge Sequences

Prerequisites:

• SPDM 1.0 or higher, DOE, CMA

Note: No reset in between these test sequences.
• Requester sends Challenge using Param1=Slot0, Param2=

— 0x0 if MEAS_CAP = 0 (No Measurement Summary Hash),
— 0x1 = TCB Component Measurement Hash (if device only supports this

Measurement),
— 0xFF = All measurements Hash (if device supports multiple measurements).

Note: Successful Challenge clears the transcript as does Get_Digests, Get_Version and
Get_Measurements. Delays in response that generate Response_not_Ready and
Respond_if_ready messages should follow SPDM spec rules for transcripts regarding
occurrences of these messages.

Mode:

• CXL.io

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 577
Revision 2.0, Version 1.0

Topologies:

• SHDA
• SHSW
• SHSW-FM

Test Steps:

1. Requester initiates Sequence 1 and Responder answers each step (Sequence 1:
GET_VERSION, GET_CAPABILITY, NEGOTIATE_ALGORITHMS, GET_DIGESTS,
GET_CERTIFICATE, CHALLENGE.)

2. Challenge_Auth should pass validation.
3. Requester issues CHALLENGE.
4. Challenge_Auth should again pass validation.
5. Requester initiates Sequence 2 and Responder answers each step. Requester uses

Slot 0 for Get_Certificate (Sequence 2: GET_VERSION, GET_CAPABILITY,
NEGOTIATE_ALGORITHMS, GET_CERTIFICATE (“guess” slot 0 certificate),
CHALLENGE)

6. Challenge_Auth should again pass validation.
7. Requester issues Get_Digests.
8. Responder returns Digests.
9. Requester initiates Sequence 3 and Responder answers each step. (Sequence 3:

GET_VERSION, GET_CAPABILITY, NEGOTIATE_ALGORITHMS, GET_DIGESTS,
CHALLENGE)

10. Challenge_Auth should again pass validation.
11. Requester issues Get_Digests.
12. Responder returns Digests.
13. Requester issues Challenge.
14. Responder returns Challenge_Auth.
15. Challenge_Auth should pass validation.
16. Requester initiates Sequence 4 and Responder answers each step. (Sequence 4:

GET_VERSION, GET_CAPABILITY, NEGOTIATE_ALGORITHMS, CHALLENGE).
17. Challenge_Auth should pass validation.
18. Requester initiates Sequence 5 and Responder answers each step. (Sequence 5:

GET_DIGESTS, GET_CERTIFICATE, CHALLENGE.

Pass Criteria:

• Responder may issue Respond_if_ready during any Challenge request,
Get_Certificate or Get_Measurement. A delayed response can occur if responder
responds with Response_not_ready (CXL Compliance test suite should error/
timeout after CT +RTT time for Challenge response). CT is crypto timeout and is
calculated time required by responder and sent during Get_Capabilities. CT timeout
applies to Get Measurement with signature or Challenge. Requester must keep
track of any timeout as described in other test assertions for SPDM.

• Each sequence results in Valid Challenge response.
• Requester shall successfully verify fields in each Challenge Auth
• ErrorCode=RequestResync is permitted by responder should responder lose track

of transactions. If RequestResync occurs, requester should send Get_Version to re-
establish state restart test assertion at Step 1. RequestResync is not a failure. Test

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 578
Revision 2.0, Version 1.0

should log a warning if this occurs at same point in each sequence or repeatedly
before completing all steps.

Fail Criteria:

• Any failure to respond to Challenge if the sequence is supported by capabilities in a
FAIL.

• If CT +RTT timeout occurs and no Response_not_ready is sent by responder, test
fails.

• Any Invalid Response (For example, Challenge fails verify, or Digest content fails
verify)

14.11.6.11 SPDM ErrorCode Unsupported Request

Prerequisites:

• SPDM 1.0 or higher, DOE, CMA

Mode:

• CXL.io

Topology:

• SHDA
• SHSW
• SHSW-FM

Test Steps:

1. Requester generates any SPDM message with Request Response Code not listed as
valid in spec. Invalid values include the following reserved values in SPDM 1.0:
0x80, 0x85 - 0xDF, 0xE2, 0xE4 - 0xFD

Pass Criteria:

• Responder generated error code response with unsupported request(07h).

Fail Criteria:

• No error response from responder or response to request with any other response
that is not error unsupported request.

14.11.6.12 SPDM Major Version Invalid

Required Capabilities/Dependencies:

• SPDM 1.0 or higher, DOE, CMA

Mode:

• CXL.io

Topology:

• SHDA
• SHSW
• SHSW-FM

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 579
Revision 2.0, Version 1.0

Test Steps:

1. Requester generates Get_Version but uses 0x30 in version field

Pass Criteria:

• Responder generated error code response with MajorVersionMismatch(41h).

Fail Criteria:

• No error response from responder or response to request with any other response
that is not error MajorVersionMismatch.

14.11.6.13 SPDM ErrorCode Unexpected Request

Required Capabilities/Dependencies:

• SPDM 1.0 or higher, DOE, CMA

Mode:

• CXL.io

Topology:

• SHDA
• SHSW
• SHSW-FM

Test Steps:

1. Requester generates Get_Version
2. Requester generates Challenge

Pass Criteria:

• Responder generates Error Code response with UnexpectedRequest(04h).

Fail Criteria:

• No error response from responder or response to request with any other response
that is not error unsupported request.

14.12 Reliability, Availability, and Serviceability
RAS Testing is dependent on being able to inject and correctly detect the injected
errors. For this testing, it is required that the host and device support error injection
capabilities.

Certain Device/Host capabilities of error injection are required to enable the RAS tests.
First, the required capabilities and configurations are provided. Then, the actual test
procedures are laid out. Since these capabilities may only be firmware accessible,
currently these are implementation specific. However, future revisions of this
specification may define these under an additional capability structure.

The following register describes the required functionalities. All the registers that have
a “RWL” attribute should be locked when DVSEC Test Lock is 1’b1.

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 580
Revision 2.0, Version 1.0

Table 253. Register 1: CXL.cache/CXL.mem LinkLayerErrorInjection

Bit Attribute Description

0 RWL

CachePoisonInjectionStart: Software writes 0x1 to this bit to trigger a single poison injection on a
CXL.cache message in the Tx direction. Hardware must override the poison field in the data header slot of
the corresponding message (D2H if device, H2D if Host). This bit is required only if CXL.cache protocol is
supported.

1 RO-V

CachePoisonInjectionBusy: Hardware loads 1’b1 to this bit when the Start bit is written. Hardware
must clear this bit to indicate that it has indeed finished poisoning a packet. Software is permitted to poll
on this bit to find out when hardware has finished poison injection. This bit is required only if CXL.cache
protocol is supported.

2 RWL
MemPoisonInjectionStart: Software writes 0x1 to this bit to trigger a single poison injection on a
CXL.mem message in the Tx direction. Hardware must override the poison field in the data header slot of
the corresponding. This bit is required only if CXL.mem protocol is supported.

3 RO-V

MemPoisonInjectionBusy: Hardware loads 1’b1 to this bit when the Start bit is written. Hardware must
clear this bit to indicate that it has indeed finished poisoning a packet. Software is permitted to poll on
this bit to find out when hardware has finished poison injection. This bit is required only if CXL.mem
protocol is supported.

4 RWL
IOPoisonInjectionStart: Software writes 0x1 to this bit to trigger a single poison injection on a CXL.io
message in the Tx direction. Hardware must override the poison field in the data header slot of the
corresponding message.

5 RO-V
IOPoisonInjectionBusy: Hardware loads 1’b1 to this bit when the Start bit is written. Hardware must
clear this bit to indicate that it has indeed finished poisoning a packet. Software is permitted to poll on
this bit to find out when hardware has finished poison injection.

7:6 RWL

CacheMemCRCInjection: Software writes to these bits to trigger CRC error injections. The number of
CRC bits flipped is given as follows:
2’b00 – Disable. No CRC errors are injected
2’b01 – Single bit flipped in the CRC field for “n” subsequent Tx flits, where n is the value in
CacheMemCRCInjectionCount.
2’b10 – 2 bits flipped in the CRC field for “n” subsequent Tx flits, where n is the value in
CacheMemCRCInjectionCount.
2’b11 – 3 bits flipped in the CRC field for “n” subsequent Tx flits, where n is the value in
CacheMemCRCInjectionCount.
The specific bit positions that are flipped are implementation specific.
This field is required if any of CXL.cache or CXL.mem protocols are supported.

9:8 RWL

CacheMemCRCInjectionCount: Software writes to these bits to program the number of CRC injections.
This field must be programmed by software before OR at the same time as CacheMemCRCInjection field.
The number of flits where CRC bits are flipped is given as follows:
2’b00 – Disable. No CRC errors are injected
2’b01 – CRC injection is only for 1 flit. CacheMemCRCInjectionBusy bit is cleared after 1 injection.
2’b10 – CRC injection is for 2 flits in succession. CacheMemCRCInjectionBusy bit is cleared after 2
injections.
2’b11 – CRC injection is for 3 flits in succession. CacheMemCRCInjectionBusy bit is cleared after 3
injections.
This field is required if any of CXL.cache or CXL.mem protocols are supported.

10 RO-V

CacheMemCRCInjectionBusy: Hardware loads 1’b1 to this bit when the Start bit is written. Hardware
must clear this bit to indicate that it has indeed finished CRC injections. Software is permitted to poll on
this bit to find out when hardware has finished CRC injection. This bit is required if any of CXL.cache or
CXL.mem protocols are supported.

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 581
Revision 2.0, Version 1.0

14.12.1 RAS Configuration

14.12.1.1 AER Support

CXL spec calls out for errors to be reported via PCI AER mechanism. AER is listed as an
optional Extended Capability.

Test Steps:

1. Read through each Extended Capability (EC) Structure for the Endpoint, and locate
EC structure for type.

Pass Criteria:

• AER Extended Capability Structure exists.

Fail Criteria:

• AER Extended Capability Structure does not exist.

Table 254. Register 2: CXL.io LinkLayer Error injection

Bit Attribute Description

0 RWL
IOPoisonInjectionStart: Software writes 0x1 to this bit to trigger a single poison injection on a CXL.io
message in the Tx direction. Hardware must override the poison field in the data header slot of the
corresponding message.

1 RO-V
IOPoisonInjectionBusy: Hardware loads 1’b1 to this bit when the Start bit is written. Hardware must
clear this bit to indicate that it has indeed finished poisoning a packet. Software is permitted to poll on
this bit to find out when hardware has finished poison injection.

2 RWL FlowControErrorInjection: Software writes 0x1 to this bit to trigger a Flow Control error on CXL.io only.
Hardware must override the Flow Control DLLP.

3 RO-V
FlowControlInjectionBusy: Hardware loads 1’b1 to this bit when the Start bit is written. Hardware
must clear this bit to indicate that it has indeed finished Flow Control error injections. Software is
permitted to poll on this bit to find out when hardware has finished Flow Control error injection.

Table 255. Register 3: Flex Bus LogPHY Error injections

Bit Attribute Description

0 RWL
CorrectableProtocolIDErrorInjection: Software writes 0x1 to this bit to trigger a correctable protocol
ID error on any CXL flit issued by the FlexBus LogPHY. Hardware must override the Protocol ID field in the
flit.

1 RWL
UncorrectableProtocolIDErrorInjection: Software writes 0x1 to this bit to trigger an uncorrectable
protocol ID error on any CXL flit issued by the FlexBus LogPHY. Hardware must override the Protocol ID
field in the flit.

2 RWL
UnexpectedProtocolIDErrorInjection: Software writes 0x1 to this bit to trigger an unexpected
protocol ID error on any CXL flit issued by the FlexBus LogPHY. Hardware must override the Protocol ID
field in the flit.

3 RO-V

ProtocolIDInjectionBusy: Hardware loads 1’b1 to this bit when the Start bit is written. Hardware must
clear this bit to indicate that it has indeed finished Protocol ID error injections. Software is permitted to
poll on this bit to find out when hardware has finished Protocol ID error injection. Software should only
program one of the bits between correctable, uncorrectable and unexpected protocol ID error injection
bits.

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 582
Revision 2.0, Version 1.0

14.12.1.2 CXL.io Poison Injection from Device to Host

Test Steps:

1. Write a pre-determined pattern to Cacheline aligned Address A1 (example pattern
– all 1s – {64{8’hFF}}).

2. Setup CXL.io device for Algorithm 1a (multiple write streaming) with the following
parameters
a. StartAddress1::StartAddress1 = A1
b. WriteBackAddress1::WriteBackAddress1 = A2 (separate location from A1)
c. AddressIncrement::AddressIncrement = 0x0
d. Pattern1::Pattern1 = 0xAA [this can be any pattern that is different from the

values programmed in step 1]
e. ByteMask::ByteMask = 0xFFFFFFFFFFFFFFFF (write to all bytes)
f. ByteMask::PatternSize = 0x1 (use only 1 byte of Pattern1)
g. AlgorithmConfiguration::SelfChecking = 0x0
h. AlgorithmConfiguration::NumberOfAddrIncrements = 0x0
i. AlgorithmConfiguration::NumberOfSets = 0x0
j. AlgorithmConfiguration::NumberOfLoops = 0x1
k. AlgorithmConfiguration::AddressIsVirtual = 0x0 (use physical address for this

test)
l. AlgorithmConfiguration::Protocol = 0x1

3. Setup Poison Injection from CXL.io device
a. LinkLayerErrorInjection::IOPoisonInjectionStart = 0x1

4. Start the Algorithm. AlgorithmConfiguration::Algorithm = 0x1

Required Device Capabilities:
• The CXL device must support Algorithm 1a, and Link Layer Error Injection

capabilities for CXL.io.

Pass Criteria:

• Receiver logs poisoned received error.
• Test software is permitted to read address A1 to observe written pattern.

Fail Criteria:

• Receiver does not log poison received error.

14.12.1.3 CXL.cache Poison Injection

14.12.1.3.1 Device to Host Poison Injection

Test Steps:

1. Write a pre-determined pattern to Cacheline aligned Address A1 (example pattern
– all 1s – {64{8’hFF}}). A1 should belong to Host attached memory.

2. Setup CXL.cache device for Algorithm 1a (multiple write streaming) with the
following parameters
a. StartAddress1::StartAddress1 = A1

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 583
Revision 2.0, Version 1.0

b. WriteBackAddress1::WriteBackAddress1 = A2 (separate location from A1)
c. AddressIncrement::AddressIncrement = 0x0
d. Pattern1::Pattern1 = 0xAA [this can be any pattern that is different from the

values programmed in step 1]
e. ByteMask::ByteMask = 0xFFFFFFFFFFFFFFFF (write to all bytes)
f. ByteMask::PatternSize = 0x1 (use only 1 byte of Pattern1)
g. AlgorithmConfiguration::SelfChecking = 0x0
h. AlgorithmConfiguration::NumberOfAddrIncrements = 0x0
i. AlgorithmConfiguration::NumberOfSets = 0x0
j. AlgorithmConfiguration::NumberOfLoops = 0x1
k. AlgorithmConfiguration::AddressIsVirtual = 0x0 (use physical address for this

test)
l. AlgorithmConfiguration::WriteSemanticsCache = 0x7
m. AlgorithmConfiguration::ExecuteReadSemanticsCache = 0x4
n. AlgorithmConfiguration::Protocol = 0x1

3. Setup Poison Injection from CXL.cache device
a. LinkLayerErrorInjection::CachePoisonInjectionStart = 0x1

4. Start the Algorithm. AlgorithmConfiguration::Algorithm = 0x1

Required Device Capabilities:
• The CXL device must support Algorithm 1a, and Link Layer Error Injection

capabilities for CXL.Cache

Pass Criteria:

• Receiver (Host) logs poisoned received error.
• Test software is permitted to read address A1 to observe written pattern

Fail Criteria:

• Receiver does not log poison received error.

14.12.1.3.2 Host to Device Poison Injection

This test aims to ensure that if a CXL.cache device receives poison for data received
from the Host, it returns the poison indication in the write-back phase. Receiver on the
CXL device must also log and escalate poison received error.

Test Steps:

1. Write a pre-determined pattern to Cacheline aligned Address A1 (example pattern
– all 1s – {64{8’hFF}}). A1 should belong to Host attached memory.

2. Setup CXL.Cache device for Algorithm 1a with the following parameters
a. StartAddress1::StartAddress1 = A1 [A1 should map to host attached memory]
b. WriteBackAddress1::WriteBackAddress1 = A2 (separate location from A1)
c. AddressIncrement::AddressIncrement = 0x0
d. Pattern1::Pattern1 = 0xAA [this can be any pattern that is different from the

values programmed in step 1]
e. ByteMask::ByteMask = 0x1 (write to single byte, so that device has to read)

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 584
Revision 2.0, Version 1.0

f. ByteMask::PatternSize = 0x1 (use only 1 byte of Pattern1)
g. AlgorithmConfiguration::SelfChecking = 0x0
h. AlgorithmConfiguration::NumberOfAddrIncrements = 0x0
i. AlgorithmConfiguration::NumberOfSets = 0x0
j. AlgorithmConfiguration::NumberOfLoops = 0x1
k. AlgorithmConfiguration::AddressIsVirtual = 0x0 (use physical address for this

test)
l. AlgorithmConfiguration::WriteSemanticsCache = 0x2 (use DirtyEvict)
m. AlgorithmConfiguration::ExecuteReadSemanticsCache = 0x0 (use RdOwn, so

device reads from host)
n. AlgorithmConfiguration::Protocol = 0x1

3. Setup Poison injection on the Host CXL.cache Link Layer (through Link Layer Error
Injection register)

4. AlgorithmConfiguration::Algorithm = 0x1 (start the test)
5. Read Address A1 from the Host and check if it matches the pattern {64{8’hFF}} or

{63{8’hFF},8’hAA}

Required Device Capabilities:
• The CXL device must support Algorithm 1a with DirtyEvict and RdOwn semantics

Pass Criteria:

• Receiver (Device) logs poisoned received error.
• Test software is permitted to read address A1 to observe written pattern

Fail Criteria:

• Receiver does not log poison received error.

14.12.1.4 CXL.cache CRC Injection (Protocol Analyzer Required)

14.12.1.4.1 Device to Host CRC injection

Test Steps:

1. Setup is same as Test 14.3.6.1.2.
2. While test is running, software will periodically perform the following steps to

Device registers
a. Write LinkLayerErrorInjection::CacheMemCRCInjectionCount = 0x3
b. Write LinkLayerErrorInjection::CacheMemCRCInjection = 0x2
c. Poll on LinkLayerErrorInjection::CacheMemCRCInjectionBusy
— If 0, Write LinkLayerErrorInjection::CacheMemCRCInjection = 0x0
— Write LinkLayerErrorInjection::CacheMemCRCInjection = 0x2
— Return to (c) to Poll

Required Device Capabilities:

• The CXL device must support Algorithm 1a, and Link Layer Error Injection
capabilities for CXL.Cache

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 585
Revision 2.0, Version 1.0

Pass Criteria:

• Same as Test 14.3.6.1.2
• Monitor and Verify that CRC errors are injected (using the Protocol Analyzer), and

that Retries are triggered as a result.

Fail Criteria:

• Same as Test 14.3.6.1.2

14.12.1.4.2 Host to Device CRC injection

Test Steps:

1. Setup is same as Test 14.3.6.1.2.
2. While test is running, software will periodically perform the following steps to Host

registers
a. Write LinkLayerErrorInjection::CacheMemCRCInjectionCount = 0x3
b. Write LinkLayerErrorInjection::CacheMemCRCInjection = 0x2
c. Poll on LinkLayerErrorInjection::CacheMemCRCInjectionBusy
— If 0, Write LinkLayerErrorInjection::CacheMemCRCInjection = 0x0
— Write LinkLayerErrorInjection::CacheMemCRCInjection = 0x2
— Return to (c)

Required Device Capabilities:

• The CXL device must support Algorithm 1a

Pass Criteria:

• Same as Test 14.3.6.1.2
• Monitor and Verify that CRC errors are injected (using the Protocol Analyzer), and

that Retries are triggered as a result.

Fail Criteria:

• Same as Test 14.3.6.1.2

14.12.1.5 CXL.mem Poison Injection

This test is only applicable if a device supports CXL.mem

14.12.1.5.1 Host to Device Poison Injection

Test Steps:

1. Write {64{8’hFF}} to address B1 from Host. B1 must belong to Device Attached
memory.

2. Setup Host Link Layer for poison injection
a. LinkLayerErrorInjection::MemPoisonInjectionStart = 0x1

3. Write {64{8’hAA}} to address B1 from Host

Required Device Capabilities:
• Device should be CXL.mem capable

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 586
Revision 2.0, Version 1.0

Pass Criteria:

• Receiver (Device) logs poisoned received error.
• Test software is permitted to read address B1 to observe written pattern

Fail Criteria:

• Receiver does not log poison received error.

14.12.1.6 CXL.mem CRC Injection (Protocol Analyzer Required)

14.12.1.6.1 Host to Device CRC injection

Test Steps:

1. Write {64{8’hFF}} to address B1 from Host (B1 must belong to Device Attached
memory)

2. Setup Host Link Layer for CRC injection
a. Write LinkLayerErrorInjection::CacheMemCRCInjectionCount = 0x1
b. Write LinkLayerErrorInjection::CacheMemCRCInjection = 0x2

3. Write {64{8’hAA}} to address B1 from Host
4. Read address B1 from Host, and compare to {64{8’hAA}}

Required Device Capabilities:
• Device should support CXL.mem

Pass Criteria:

• Read data == {64{8’hAA}}
• CRC error and Retry observed on Link (Protocol Analyzer used for observation)

Fail Criteria:

• Read data != {64{8’hAA}}

14.12.1.7 Flow Control Injection

This is an optional but strongly recommended test only applicable for CXL.io

14.12.1.7.1 Device to Host Flow Control injection

Test Steps:

1. Setup is same as Test 14.3.6.1.1.
2. While test is running, software will periodically perform the following steps to

Device registers
a. Write LinkLayerErrorInjection::FlowControlInjection = 0x1
b. Poll on LinkLayerErrorInjection::FlowControlInjectionBusy
— If 0, Write LinkLayerErrorInjection::FlowControlInjection = 0x0
— Write LinkLayerErrorInjection::FlowControlInjection = 0x2
— Return to (c) to Poll

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 587
Revision 2.0, Version 1.0

Required Device Capabilities:

• The CXL device must support Algorithm 1a, and Link Layer Error Injection
capabilities

Pass Criteria:

• Same as Test 14.3.6.1.1

Fail Criteria:

• Same as Test 14.3.6.1.1

14.12.1.7.2 Host to Device Flow Control injection

Test Steps:

1. Setup is same as Test 14.3.6.1.1.
2. While test is running, software will periodically perform the following steps to Host

registers
a. Write LinkLayerErrorInjection::FlowControlInjection = 0x1
b. Poll on LinkLayerErrorInjection::FlowControlInjectionBusy
— If 0, Write LinkLayerErrorInjection::FlowControlInjection = 0x0
— Write LinkLayerErrorInjection::FlowControlInjection = 0x2
— Return to (c) to Poll

Required Device Capabilities:

• The CXL device must support Algorithm 1a

Pass Criteria:

• Same as Test 14.3.6.1.1

Fail Criteria:

• Same as Test 14.3.6.1.1

14.12.1.8 Unexpected Completion Injection

This is an optional but strongly recommended test that is only applicable for CXL.io

14.12.1.8.1 Device to Host Unexpected Completion injection

Test Steps:

1. Setup is same as Test 14.3.6.1.1, except that Self-checking should be disabled.
2. While test is running, software will periodically perform the following steps to

Device registers
a. Write DeviceErrorInjection::UnexpectedCompletionInjection = 0x1

Required Device Capabilities:
• The CXL device must support Algorithm 1a, and Device Error Injection capabilities

Pass Criteria:

• Unexpected completion error logged

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 588
Revision 2.0, Version 1.0

Fail Criteria:

• No errors logged

14.12.1.9 Completion Timeout

This is an optional but strongly recommended test. It is only applicable for CXL.io

14.12.1.9.1 Device to Host Completion Timeout

Test Steps:

1. Setup is same as Test 14.3.6.1.1.
2. While test is running, perform the following to Device registers

a. Write DeviceErrorInjection::CompleterTimeoutInjection = 0x1

Required Device Capabilities:

• The CXL device must support Algorithm 1a, and Device Error Injection capabilities

Pass Criteria:

• Completion timeout logged and escalated to error manager

Fail Criteria:

• No errors logged and data corruption seen

14.13 Memory Mapped Registers

14.13.1 CXL Capability Header

Test Steps:

1. The base address for these registers is at offset 4k from the Register Base Low and
Register Base High found in the Register Locator DVSEC.

2. Read Offset 0, Length 4.
3. Decode this into:

Bits Variable
15:0 CXL_Capability_ID
19:16 CXL_Capability_Version
23:20 CXL_Cache_Mem_Version
31:24 Array_Size

4. Save the Array_Size to be used for finding the remaining capability headers in the
subsequent tests

5. Verify:
Variable Value Condition
CXL_Capability_ID 01h Always
CXL_Capability_Version 01h Always
CXL_Cache_Mem_Version 01h Always

Pass Criteria:

• Test 15.6.2 Passed

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 589
Revision 2.0, Version 1.0

• Verify Conditions Met

Fail Criteria:

• Verify Conditions Failed

14.13.2 CXL RAS Capability Header

Test Steps:

1. Find this capability by reading all the elements within the Array_Size
2. Read this element (1 DWORD)
3. Decode this into:

Bits Variable
15:0 CXL_Capability_ID
19:16 CXL_Capability_Version
31:20 CXL_RAS_Capability_Pointer

4. Save CXL_RAS_Capability_Pointer which is used in subsequent tests
5. Verify:

Variable Value Condition
CXL_Capability_ID 02h Always
CXL_Capability_Version 01h Always

Pass Criteria:

• Verify Conditions Met

Fail Criteria:

• Verify Conditions Failed

14.13.3 CXL Security Capability Header

Test Steps:

1. Find this capability by reading all the elements within the Array_Size
2. Read this element (1 DWORD)
3. Decode this into:

Bits Variable
15:0 CXL_Capability_ID
19:16 CXL_Capability_Version
31:20 CXL_Security_Capability_Pointer

4. Save CXL_Security_Capability_Pointer which is used in subsequent tests
5. Verify:

Variable Value Condition
CXL_Capability_ID 03h Always
CXL_Capability_Version 01h Always

Pass Criteria:

• Verify Conditions Met

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 590
Revision 2.0, Version 1.0

Fail Criteria:

• Verify Conditions Failed

14.13.4 CXL Link Capability Header

Test Steps:

1. Find this capability by reading all the elements within the Array_Size
2. Read this element (1 DWORD)
3. Decode this into:

Bits Variable
15:0 CXL_Capability_ID
19:16 CXL_Capability_Version
31:20 CXL_Link_Capability_Pointer

4. Save CXL_Link_Capability_Pointer which is used in subsequent tests
5. Verify:

Variable Value Condition
CXL_Capability_ID 04h Always
CXL_Capability_Version 02h Always

Pass Criteria:

• Verify Conditions Met

Fail Criteria:

• Verify Conditions Failed

14.13.5 CXL HDM Capability Header

Test Steps:

1. Find this capability by reading all the elements within the Array_Size
2. Read this element (1 DWORD)
3. Decode this into:

Bits Variable
15:0 CXL_Capability_ID
19:16 CXL_Capability_Version
31:20 CXL_HDM_Interleave_Capability_Pointer

4. Save CXL_HDM_Interleave_Capability_Pointer which is used in subsequent tests
5. Verify:

Variable Value Condition
CXL_Capability_ID 05h Always
CXL_Capability_Version 01h Always

Pass Criteria:

• Verify Conditions Met

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 591
Revision 2.0, Version 1.0

Fail Criteria:

• Verify Conditions Failed

14.13.6 CXL Extended Security Capability Header

Test Steps:

1. Find this capability by reading all the elements within the Array_Size
2. Read this element (1 DWORD)
3. Decode this into:

Bits Variable
15:0 CXL_Capability_ID
19:16 CXL_Capability_Version
31:20 CXL_Extended_Security_Capability_Pointer

4. Save CXL_Extended_Security_Capability_Pointer which is used in subsequent tests
5. Verify:

Variable Value Condition
CXL_Capability_ID 06h Always
CXL_Capability_Version 01h Always

Pass Criteria:

• Verify Conditions Met

Fail Criteria:

• Verify Conditions Failed

14.13.7 CXL IDE Capability Header

Test Steps:

1. Find this capability by reading all the elements within the Array_Size
2. Read this element (1 DWORD)
3. Decode this into:

Bits Variable
15:0 CXL_Capability_ID
19:16 CXL_Capability_Version
31:20 CXL_IDE_Capability_Pointer

4. Save CXL_IDE_Capability_Pointer which is used in subsequent tests
5. Verify:

Variable Value Condition
CXL_Capability_ID 07h Always
CXL_Capability_Version 01h Always

Pass Criteria:

• Verify Conditions Met

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 592
Revision 2.0, Version 1.0

Fail Criteria:

• Verify Conditions Failed

14.13.8 CXL HDM Decoder Capability Register

Test Conditions:

• HDM Decoder Capability Implemented

Test Steps:

1. Read register, CXL_HDM_Interleave_Capability_Pointer + Offset 00h, Length 2
bytes,

2. Decode this into:
Bits Variable
3:0 Decoder_Count
7:4 Target_Count

3. Verify:
Variable Value Condition
Decoder_Count <6 Always
Target_Count <9 Always

Pass Criteria:

• 14.13.5 Device Present passed
• Verify Conditions met

Fail Criteria:

• Verify Conditions Failed

14.13.9 CXL HDM Decoder Commit

Test Conditions:

• HDM Decoder Capability Implemented

Test Steps:

1. Program an address range in the Decoder[m+1].Base and Decoder[m+1].Size
register such that
a. Decoder[m+1].Base >= (Decoder[m].Base+Decoder[m].Size) and
b. Decoder[m+1].Base <= Decoder[m+1].Base+Decoder[m+1].Size

2. Program distinct Target Port Identifiers for Interleave Way=0 through 2**IW -1
(Not applicable to Devices)

3. Set the Commit bit in the Decoder[m+1].Control register

Pass Criteria:

• The Committed bit in the Decoder[m+1].Control register gets set
• The Error Not Committed bit in the Decoder[m+1].Control register does not get set

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 593
Revision 2.0, Version 1.0

Fail Criteria:

• The Committed bit in the Decoder[m+1].Control register does not get set within 10
ms

• The Error Not Committed bit in the Decoder[m+1].Control register gets set

14.13.10 CXL HDM Decoder Zero Size Commit

Test Conditions:

• HDM Decoder Capability Implemented

Test Steps:

1. Program 0 in the Decoder[m].Size register
2. Set the Commit bit in the Decoder[m].Control register

Pass Criteria:

• The Committed bit in the Decoder[m+1].Control register gets set
• The Error Not Committed bit in the Decoder[m+1].Control register does not get set

Fail Criteria:

• The Committed bit in the Decoder[m+1].Control register does not get set within 10
ms

• The Error Not Committed bit in the Decoder[m+1].Control register gets set

14.13.11 CXL Snoop Filter Capability Structure

Test Steps:

1. Find this capability by reading all the elements within the Array_Size
2. Read this element (1 DWORD)
3. Decode this into:

Bits Variable
15:0 CXL_Capability_ID
19:16 CXL_Capability_Version
31:20 Snoop_Filter_Capability_Pointer

4. Save CXL Snoop Filter Capability which is used in subsequent tests
5. Verify

Variable Value Condition
CXL_Capablity_ID = 08h Always
CXL_Capability_Version = 01h Always

Pass Criteria:

• Verify Conditions Met

Fail Criteria:

• Verify Conditions Failed

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 594
Revision 2.0, Version 1.0

14.13.12 CXL Device Capabilities Array Register

This test aims to find all the CXL Device Capability Headers in addition to the verify
conditions below.

Test Steps:

1. The base address for this register is obtained from the Register Locator DVSEC.
2. Read Offset 0x0, Length 8 bytes.
3. Decode this into:

Bits Variable
15:0 CXL_Capability_ID
19:16 CXL_Capability_Version
47:32 Capabilities_Count

4. Verify:
Variable Value Condition
CXL_Capablity_ID = 0x0 Always
CXL_Capability_Version = 0x1 Always

5. For N, where N ranges from 1 through Capabilities_Count
6. Find each Capability Header Element by reading 2 bytes at offset N*10h
7. Decode it into:

Bits Variable
15:0 CXL_Capability_ID_Arr[N]

8. If CXL_Capability_ID_Arr[N] == 0x1, save offset N*10h as
Device_Status_Registers_Capabilities_Header_Base

9. If CXL_Capability_ID_Arr[N] == 0x2, save offset N*10h as
Primary_Mailbox_Registers_Capabilities_Header_Base

10. If CXL_Capability_ID_Arr[N] == 0x3, save offset N*10h as
Secondary_Mailbox_Registers_Capabilities_Header_Base

11. If CXL_Capability_ID_Arr[N] == 0x4000, save offset N*10h as
Memory_Device_Registers_Capabilities_Header_Base

Pass Criteria:

• Verify Conditions Met

Fail Criteria:

• Verify Conditions Failed

14.13.13 Device Status Registers Capabilities Header Register

Test Steps:

1. Read offset Devcie_Status_Registers_Capabilities_Header_Base, Length 4 bytes.
Device_Status_Registers_Capabilities_Header_Base is obtained in test Section
14.13.11, “CXL Snoop Filter Capability Structure”.

2. Decode this into:
Bits Variable
15:0 CXL_Capability_ID

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 595
Revision 2.0, Version 1.0

19:16 CXL_Capability_Version
3. Verify:

Variable Value Condition
CXL_Capablity_ID = 0x1 Always
CXL_Capability_Version = 0x1 Always

Pass Criteria:

• Verify Conditions Met

Fail Criteria:

• Verify Conditions Failed

14.13.14 Primary Mailbox Registers Capabilities Header Register

Test Steps:

1. Read offset Primary_Mailbox_Registers_Capabilities_Header_Base Length 4 bytes.
Primary_Mailbox_Registers_Capabilities_Header_Base is obtained in test Section
14.13.11, “CXL Snoop Filter Capability Structure”

2. Decode this into:
Bits Variable
15:0 CXL_Capability_ID
19:16 CXL_Capability_Version

3. Verify:
Variable Value Condition
CXL_Capablity_ID = 0x2 Always
CXL_Capability_Version = 0x1 Always

Pass Criteria:

• Verify Conditions Met

Fail Criteria:

• Verify Conditions Failed

14.13.15 Secondary Mailbox Registers Capabilities Header Register

Test Steps:

1. Read offset Secondary_Mailbox_Registers_Capabilities_Header_Base, Length 4
bytes. Secondary_Mailbox_Registers_Capabilities_Header_Base is obtained in test
Section 14.13.11, “CXL Snoop Filter Capability Structure”.

2. Decode this into:
Bits Variable
15:0 CXL_Capability_ID
19:16 CXL_Capability_Version

3. Verify:
Variable Value Condition
CXL_Capablity_ID = 0x3 Always
CXL_Capability_Version = 0x1 Always

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 596
Revision 2.0, Version 1.0

Pass Criteria:

• Verify Conditions Met

Fail Criteria:

• Verify Conditions Failed

14.13.16 Memory Device Registers Capabilities Header Register

Test Steps:

1. Read offset Memory_Device_Registers_Capabilities_Header_Base, Length 4 bytes.
Memory_Device_Registers_Capabilities_Header_Base is obtained in test.

2. Find the CXL Device Capability Header Register as described in Section 14.13.11,
“CXL Snoop Filter Capability Structure”, step 5, Length 4.

3. Decode this into:
Bits Variable
15:0 CXL_Capability_ID
19:16 CXL_Capability_Version

4. Verify:
Variable Value Condition
CXL_Capablity_ID = 0x4000 Always
CXL_Capability_Version = 0x1 Always

Pass Criteria:

• Verify Conditions Met

Fail Criteria:

• Verify Conditions Failed

14.14 Memory Device Tests
This section covers tests applicable to devices supporting CXL.mem protocol

14.14.1 DVSEC CXL Range 1 Size Low Registers

Test Conditions:

• Not applicable to FM owned LD.
• Device is CXL.mem capable

Test Steps:

1. Read Configuration Space for DUT, CXL_DEVICE_DVSEC_BASE + Offset 1Ch, Length
2.

2. Decode this into:
Bits Variable
7:5 Memory_Class
10:8 Desired_Interleave

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 597
Revision 2.0, Version 1.0

3. Verify:
Variable Value Condition
Memory_Class = 0hor 1h Always
Desired_Interleave = 0h, 1h or 2h Always

Pass Criteria:

• Test 14.8.4 Passed
• Verify Conditions Met

Fail Criteria:

• Verify Conditions Failed

14.14.2 DVSEC CXL Range 2 Size Low Registers

Test Conditions:

• Not applicable to FM owned LD
• Device is CXL.mem capable
• HDM_Count =10b

Inputs:

Type Volatile or Non-Volatile
Class Memory or Storage

Test Steps:

1. Read Configuration Space for DUT, CXL_DEVICE_DVSEC_BASE + Offset 2Ch, Length
2.

2. Decode this into:
Bits Variable
4:2 Media_Type
7:5 Media_Class
10:8 Desired_Interleave

3. Verify:
Variable Value Condition
Media_Type = oh, 1h or 7h Always
Media_Class = 0h, 1h Always
Desired_Interleave = 0h, 1h or 2h Always

Pass Criteria:

• Test 14.8.4 Passed
• Verify Conditions Met

Fail Criteria:

• Verify Conditions Failed

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 598
Revision 2.0, Version 1.0

14.15 Sticky Register Tests
This section covers tests applicable to registers that are sticky through a reset.

14.15.1 Sticky Register Test

Test Steps:

1. Read and record value of following ROS registers for step 5:

Error Capabilities and Control Register (Offset 14h)
Bits Variable
3:0 First Error pointer

Header Log Registers (Offset 18h)
Bits Variable
511:0 Header Log

Note: Contents of registers may or may or may not be ‘0’
2. Set following RWS registers to settings as per list and record written values for step

5.
RWS Registers and settings:

Uncorrectable Error Mask Register (Offset 04h)
Bits Variable Settings
12:0 Error Mask registers Set to 1FFFh
15:15 CXL_IDE_Tx_Mask Set to 1
16:16 CXL_IDE_Rx_Mask Set to 1

Uncorrectable Error Severity Register (Offset 08h)
Bits Variable Settings
12:0 Error Severity registers Set to 1FFFh
15:15 CXL_IDE_Tx_Severity Set to 1
16:16 CXL_IDE_Rx_Severity Set to 1

Correctable Error Mask Register (Offset 10h)
Bits Variable Settings
6:0 Error Mask Registers Set to 0

Error Capabilities and Control Register (Offset 14h)
Bits Variable Settings
13:13 Poison_Enabled Set to 1b

CXL Link Layer Capability Register (Offset 00h)
Bits Variable Settings
3:0 CXL Link version Supported Set to 0x2
15:8 LLR Wrap Value Supported Set to 0xFF

Note: Intention is to set register to non-zero value

CXL Link Layer Control and Status Register (Offset 08h)

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 599
Revision 2.0, Version 1.0

Bits Variable Settings
1:1 Link_Init_Stall Set to 1b
2:2 LL_Crx_Stall Set to 1b

CXL Link Layer Rx Credit Control Register (Offset 10h)
Bits Variable Settings
9:0 Cache Req Credits Set to 3FFh
19:10 Cache Rsp Credits Set to 3FFh
29:20 Cache Data Credits Set to 3FFh
39:30 Mem Req _Rsp Credits Set to 3FFh
49:40 Mem Data Credits Set to 3FFh

CXL Link Layer Ack Timer Control Register (Offset 28h)
Bits Variable Settings
7:0 Ack_Force_Threshold Set to FFh
17:8 Ackor CRD Flush Retimer Set to 1FFh

CXL Link Layer Defeature Register (Offset 30h)
Bits Variable Settings
0:0 MDH Disable Set to 1b

3. Issue link Hot Reset.
4. Wait for link to train back to CXL.
5. Verify:

a. ROS register values before and after link reset are matching.
b. RWS registers values before and after reset are matching.

Pass Criteria:

• Test 15.6.2 Passed
• Verify Conditions Met

Fail Criteria:

• Verify Conditions Failed

14.16 Device Capability and Test Configuration Control
Implementations are expected to provision for an additional address decode to enable
programming the Configuration registers described in this section.

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 600
Revision 2.0, Version 1.0

14.16.1 CXL Device Test Capability Advertisement

To advertise Test capabilities, the standard DVSEC register fields should be set as
below:

Figure 196. PCIe DVSEC for Test Capability

PCI Express Extended Capability Header

01531

00h

16

Designated Vendor-specific Header 1 04h

Designated Vendor-specific Header 2DVSEC CXL Test Lock

DVSEC CXL Test Capability 1

DVSEC CXL Test Capability 2Reserved

DVSEC CXL Test Configuration Base Low

DVSEC CXLTest Configuration Base High

08h

0Ch

10h

14h

18h

Table 256. DVSEC Registers

Register Bit Location Field Value

Designated Vendor-Specific Header 1 (offset 04h) 15:0 DVSEC Vendor ID 1E98h

Designated Vendor-Specific Header 1 (offset 04h) 19:16 DVSEC Revision 0h

Designated Vendor-Specific Header 1 (offset 04h) 31:20 DVSEC Length 22h

Designated Vendor-Specific Header 2 (offset 08h) 15:0 DVSEC ID 0Ah

Table 257. DVSEC CXL Test Lock (offset 0Ah)

Bit Attribute Description

0 RWO TestLock: Software writes 1’b1 to lock the relevant test configuration registers

15:1 N/A Reserved

Table 258. DVSEC CXL Test Capability1 (offset 0Ch) (Sheet 1 of 2)

Bit Attribute Description

0 RO SelfChecking: Set to 1 if Device supports Self Checking

1 RO Algorithm1a: Set to 1 if Device supports hardware for test Algorithm 1a

2 RO Algorithm1b: Set to 1 if Device supports hardware for test Algorithm 1b

3 RO Algorithm2: Set to 1 if Device supports hardware for test Algorithm 2

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 601
Revision 2.0, Version 1.0

4 RO RdCurr: Set to 1 if Device supports CXL.cache and RdCurr opcodes as requester.

5 RO RdOwn: Set to 1 if Device supports CXL.cache and RdOwn opcodes as requester.

6 RO RdShared: Set to 1 if Device supports CXL.cache and RdShared opcodes as requester.

7 RO RdAny: Set to 1 if Device supports CXL.cache and RdAny opcodes as requester.

8 RO RdOwnNoData: Set to 1 if Device supports CXL.cache and RdOwnNoData opcodes as requester.

9 RO ItoMWr: Set to 1 if Device supports CXL.cache and ItoMWr opcodes as requester.

10 RO MemWr: Set to 1 if Device supports CXL.cache and MemWr opcodes as requester.

11 RO CLFlush: Set to 1 if Device supports CXL.cache and CLFlush opcodes as requester.

12 RO CleanEvict: Set to 1 if Device supports CXL.cache and CleanEvict opcodes as requester.

13 RO DirtyEvict: Set to 1 if Device supports CXL.cache and DirtyEvict opcodes as requester.

14 RO CleanEvictNoData: Set to 1 if Device supports CXL.cache and CleanEvictNoData opcodes as requester.

15 RO WOWrInv: Set to 1 if Device supports CXL.cache and WOWrInv opcodes as requester.

16 RO WOWrInvF: Set to 1 if Device supports CXL.cache and WOWrInvF opcodes as requester.

17 RO WrInv: Set to 1 if Device supports CXL.cache and WrInv opcodes as requester.

18 RO CacheFlushed: Set to 1 if Device supports CXL.cache and CacheFlushed opcodes as requester.

19 RO UnexpectedCompletion: Device supports sending an unexpected completion on CXL.io

20 RO CompletionTimeoutInjection: Device supports dropping a read in the completion timeout scenario

23:21 N/A Reserved

31:24 RO ConfigurationSize: Size in Bytes of Test configuration control registers.

Table 259. Device CXL Test Capability2 (Offset 10h)

Bit Attribute Description

13:0 RO CacheSize: Cache size supported by the device.

15:14 RO

CacheSizeUnits: Units of advertised cache size in CacheSize field
2’b00: Bytes
2’b01: Kilobytes (KB)
2’b10: Megabytes (MB)
Reserved.

Table 260. DVSEC CXL Test Configuration Base Low (Offset 14h)

Bit Attribute Description

0 RO MemorySpaceIndicator: The test configuration registers are in memory space. Device must hardwire
this to 1’b0

2:1 RO

Type:
2’b00: Base register is 32-bit wide and can be mapped anywhere in the 32-bit address space.
2’b01: Reserved
2’b10: Base register is 64-bit wide and can be mapped anywhere in the 64-bit address space.
2’b11: Reserved

3 RO Reserved: Device must hardwire this bit to 1’b0

31:4 RW BaseLow: bits [31:4] of the base address where the test configuration registers exist.

Table 258. DVSEC CXL Test Capability1 (offset 0Ch) (Sheet 2 of 2)

Bit Attribute Description

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 602
Revision 2.0, Version 1.0

14.16.2 Device Capabilities to Support the Test Algorithms

This section lays out the configuration registers required in the application layer of the
device that enable execute/verify/debug of the above Algorithms. These registers are
memory mapped and the base is given by the capability structure defined in previous
sections. Default value of all register bits must be 0. All the registers that have a “RWL”
attribute should be locked when DVSEC Test Lock is 1’b1.

Table 261. DVSEC CXL Test Configuration Base High (Offset 18h)

Bit Attribute Description

31:0 RW BaseHigh: Bits [63:32] of the base address where the test configuration registers exist.

Table 262. Register 1: StartAddress1 (Offset 00h)

Bit Attribute Description

63:0 RW
StartAddress1: Indicates the start address “X1” of the corresponding set in Algorithms 1a,1b, and 2. This
could be Host attached memory, device attached memory (if applicable), or an invalid address to test Go-
Err support.

Table 263. Register 2: WriteBackAddress1 (Offset 08h)

Bit Attribute Description

63:0 RW
WriteBackAddress1: Indicates the start address “Z1” of the corresponding set in Algorithms 1a and 1b.
This register is only used if device is NOT self-checking, or if self-checking is disabled on the device. This
address should map to Host attached memory.

Table 264. Register 3: Increment (Offset 10h)

Bit Attribute Description

31:0 RW
AddressIncrement: Indicates the increment for address “Y” in Algorithms 1a,1b and 2. The value in this
register should be left shifted by 6 bits before using as address increment. Example, a value of 1’b1
implies increment granularity of 7’b1000000 (cacheline increments)

63:32 RW
SetOffset: Indicates the set offset increment for address “X” and “Z” in Algorithms 1a,1b and 2. The
value in this register should be left shifted by 6 bits before using as address increment. Example, a value
of 1’b1 implies increment granularity of 7’b1000000 (cacheline increments)

Table 265. Register 4: Pattern (Offset 18h)

Bit Attribute Description

31:0 RW Pattern1: Indicates the pattern “P” as defined in Algorithms 1a,1b, and 2.

63:32 RW Pattern2: Indicates the pattern “B” as defined in Algorithm 1b.

Table 266. Register 5: ByteMask (Offset 20h)

Bit Attribute Description

63:0 RW ByteMask: 1 bit per byte of the cacheline to indicate which bytes of the cacheline are modified by the
device in Algorithms 1a, 1b and 2. This will be programmed consistently with the StartAddress1 register.

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 603
Revision 2.0, Version 1.0

Table 267. Register 6: PatternConfiguration (Offset 28h)

Bit Attribute Description

2:0 RW

PatternSize: Defines what size (in bytes) of “P” or “B” to use starting from least significant byte. As an
example, if this is programmed to 3’b011, only the lower 3 bytes of “P” and “B” registers will be used as
the pattern. This will be programmed consistently with the ByteMask field, for example, in the given
example, the ByteMask would always be in sets of three consecutive bytes.

3 RW
PatternParameter: If this field is programmed to 1’b1, device hardware must continue to use the
incremented value of patterns (P+N+1) as the base pattern of the next set iteration. If this field is
programmed to 1’b0, device hardware must use the original pattern “P” for every new set iteration.

63:4 N/A Reserved

Table 268. Register 7: AlgorithmConfiguration (Offset 30h) (Sheet 1 of 2)

Bit Attribute Description

2:0 RWL

Algorithm:
3’b000 – Disabled – serves as a way to stop test.
3’b001 – Algorithm 1a: Multiple Write Streaming
3’b010 – Algorithm 1b: Multiple Write Streaming with Bogus writes
3’b100 – Algorithm 2: Producer Consumer Test
Rest are reserved.
Implementation Notes:
Software will setup all of the other registers (address, patterns, byte-masks etc.) before it writes to this
field to start the test. A value of 3’b001, 3’b010, 3’b100 in this field starts the corresponding Algorithm on
the device from iteration 0, set 0.
No action must be taken by device hardware if a reserved value is programmed.

While a test is running, software can write to this field to stop the test. If this happens, device must
gracefully complete the current execute and verification loop and then stop the hardware from issuing any
more requests to the Host. If software subsequently programs it to any of the other valid values, device
hardware must execute the corresponding Algorithm from a fresh loop (iteration 0 on set 0).

3 RW
SelfChecking:
1’b0 – device is not going to perform self-checking.
1’b1 – Device is going to perform self-checking in the Verify phase for Algorithms 1 and 2.

7:4 RW Reserved

15:8 RW NumberOfAddrIncrements: Sets the value of “N” for all 3 Algorithms. A value of 0 implies only the first
write (base address) is going to be issued by device.

23:16 RW

NumberOfSets: A value of 0 implies that only the first write is going to be issued by the device. If both
NumberOfAddIncrements and NumberOfSets is zero, only a single transaction (to the base address)
should be issued by the device [NumberOfLoops should be set to 1 for this case].
For Algorithm 1a and 1b:
 Bits 19:16 gives the number of sets.
 Bits 23:20 give the number of bogus writes “J” in Algorithm 1b.
For Algorithm 2:
 Bits 23:16 gives the number of iterations “i”

31:24 RW NumberOfLoops: If set to 0, device continues looping across address and set increments indefinitely.
Otherwise, it indicates the number of loops to run through for address and set increments.

32 RW AddressIsVirtual: If set to 1, indicates that all programmed addresses are virtual and need to be
translated by the device (via ATS). Useful for testing virtualization/device TLBs

35:33 RW

Protocol:
3’b000 - PCIe mode
3’b001 - CXL.io only
3’b010 - CXL.cache only
3’b100 - CXL.cache and CXL.io [support is optional and device is free to interleave writes at iteration or
set granularity]

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 604
Revision 2.0, Version 1.0

39:36 RW

WriteSemanticsCache: Only applicable when Protocol==3’b010 or 3’b100. In the encodings below,
dirty writes can mean evictions or flush depending on device behavior.
4’b0000 - Dirty Writes use ItoMWr, Clean Writes use CleanEvict [Clean writes will occur if PatternSize==0]
4’b0001 - Dirty Writes use MemWr, Clean Writes use CleanEvictNoData
4’b0010 - Dirty Writes use DirtyEvict
4’b0011 - Dirty Writes use WOWrInv
4’b0100 - Dirty Writes use WOWrInvF [only programmed by test software if Device is expected to own/
modify the full cacheline]
4’b0101 - Dirty Writes use WrInv
4’b0110 - Dirty Writes use ClFlush
4’b0111 - Dirty Writes/Clean Writes can use any of CXL.cache supported opcodes. Device implementation
specific.
All other encodings are reserved; and device hardware should not take any actions if this has been
programmed to a reserved value.

40 RWL

FlushCache:
Test software can program this value at runtime to trigger a cache flush from Device and issue CacheFlush
opcode. Execute/Verify loops must stop after completing the current loop and CacheFlushed has been
issued, until software changes this value back to 1’b0 – after which, device hardware should resume
execute/verify loops from the next iteration/set [it must remember the iteration and set value where
execution stopped].

43:41 RW

ExecuteReadSemanticsCache: Only applicable when Protocol==3’b010 or 3’b100.
3’b000: Ownership reads use RdOwn
3’b001: Ownership reads use RdAny
3’b010: Ownership reads use RdOwnNoData [only programmed by test software if device is expected to
modify the entire cacheline]
3’b100: Device can use any of the CXL.cache supported opcodes
All other encodings are reserved, and should not start execute/verify loops if programmed.

46:44 RW

VerifyReadSemanticsCache: Read opcodes used when device is in Verify phase.
3’b000: RdCurr
3’b001: RdShared
3’b010: RdOwn
3’b100: RdAny
All other encodings are reserved, and should not start execute/verify loops if programmed.

63:47 N/A Reserved

Table 269. Register 8: DeviceErrorInjection (Offset 38h)

Bit Attribute Description

0 RWL
UnexpectedCompletionInjection:
Software writes 0x1 to this bit to trigger a completion injection on a message in the Tx direction.
Hardware must inject an unexpected completion by sending the same completion twice.

1 RO-V
UnexpectedCompletionInjectionBusy: Hardware loads 1’b1 to this bit when the Start bit is written.
Hardware must clear this bit to indicate that it has indeed finished error injections. Software is permitted
to poll on this bit to find out when hardware has finished error injection.

2 RWL CompleterTimeout Software writes 0x1 to this bit to trigger a completer timeout injection on a message
in the Tx direction. Hardware must suppress the transmission of completion packet.

3 RO-V
CompleterTimeoutInjectionBusy: Hardware loads 1’b1 to this bit when the Start bit is written.
Hardware must clear this bit to indicate that it has indeed finished error injections. Software is permitted
to poll on this bit to find out when hardware has finished error injection.

31:4 N/A Reserved

Table 268. Register 7: AlgorithmConfiguration (Offset 30h) (Sheet 2 of 2)

Bit Attribute Description

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 605
Revision 2.0, Version 1.0

14.16.3 Debug Capabilities in Device

14.16.3.1 Error Logging

The following capabilities in a device are strongly recommended to support ease of
verification and compliance testing.

A device that supports self-checking must include an error status and header log
register with the following fields:

14.16.3.2 Event Monitors

It is strongly recommended that a device advertise at least 2 event monitors, which
can be used to count device-defined events. An event monitor consists of two 64 bit
registers:

a. An event controller: EventCtrl
b. An event counter: EventCount

The usage model is for software to program EventCtrl to count an event of interest, and
then read the EventCount to determine how many times the event has occurred. At a
minimum, a device must implement the ClockTicks event. When the ClockTicks event is
selected via the event controller, the event counter will increment every clock cycle,
based on the application layer’s clock. Further suggested events may be published in
the future. Examples of other events that a device may choose to implement are:

a. Number of times a particular opcode is sent or received
b. Number of retries or CRC errors
c. Number of credit returns sent or received
d. Device-specific events that may help visibility on the platform or with statistical

computation of performance

Below are the formats of the EventCtrl and EventCount registers.

Table 270. Register 9: ErrorLog1 (Offset 40h)

Bit Attribute Description

31:0 RW ExpectedPattern: Expected data pattern as per device hardware.

63:32 RW ObservedPattern: Observed data pattern as per device hardware.

Table 271. Register 10: ErrorLog2 (Offset 48h)

Bit Attribute Description

31:0 RW ExpectedPattern: Expected data pattern as per device hardware.

63:32 RW ObservedPattern: Observed data pattern as per device hardware.

Table 272. Register 11: ErrorLog3 (Offset 50h)

Bit Attribute Description

7:0 RW ByteOffset: First byte offset within the cacheline where the data mismatch was observed.

15:8 RW LoopNum: Loop number where data mismatch was observed.

16 RW1C ErrorStatus: Set to 1 by device if data miscompare was observed

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 606
Revision 2.0, Version 1.0

14.16.4 Compliance Mode DOE (Optional)

Device 0, Function 0, of a CXL device must support the DOE mailbox for the compliance
modes to be controlled through it. The Vendor ID must be set to the CXL Vendor ID to
indicate that this Object type is defined by the CXL specification. The Data Object Type
must be set to 0h to advertise that this is a Compliance Mode type of data object.

Table 273. Register 12: EventCtrl (Offset 60h)

Bit Attribute Description

7:0 RW EventSelect: Field to select which of the available events should be counted in the paired EventCount
register.

15:8 RW

SubEventSelect: Field to select which sub-conditions of an event should be counted in the paired
EventCount register. This field is a bit-mask, where each bit represents a different condition. The
EventCount should increment if any of the selected sub-conditions occurs.
For example, an event might be “transactions received”, with three sub-conditions of “read”, “write”,
and “completion”.

16 N/A Reserved

17 RW Reset: When set to 1, the paired EventCount register will be cleared to 0. Writing a 0 to this bit has no
effect.

18 RW
EdgeDetect: When this bit is 0, the counter will increment in each cycle that the event has occurred.
When set to 1, the counter will increment when a 0 to 1 transition (i.e., rising edge) is detect.

63:19 N/A Reserved

Table 274. Register 13: EventCount (Offset 68h)

Bit Attribute Description

63:0 RO
EventCount: Hardware load register which is updated with a running count of the occurrences of the
event programmed in the EventCtrl register. It is monotonically increasing, unless software explicitly
writes it to a lower value or writes to the “Reset” field of the paired EventCtrl register.

Table 275. Compliance Mode – Data Object Header

Field Bit Location Value

Vendor ID 15:0 1E98h

Data Object Type 23:16 0h

Table 276. Compliance Mode Return Values

Value Description

0x00000000 Success

0x00000001 Not Authorized

0x00000002 Unknown Failure

0x00000003 Unsupported injection function

0x00000004 Internal Error

0x00000005 Target busy

0x00000006 Target Not Initialized

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 607
Revision 2.0, Version 1.0

14.16.4.1 Compliance Mode Capability

Request and response pair for determining the compliance capabilities of the device

14.16.4.2 Compliance Mode Status

Shows which compliance mode capabilities are enabled or in use.

Table 277. Compliance Mode Availability Request

Data Object Byte Offset Length Description

0h 8 Standard DOE Request Header

8h 1 Request Code = 0, Query Capabilities

9h 1 Version of Capability requested

0Ah 2 Reserved

Table 278. Compliance Mode Availability Response

Data Object Byte Offset Length Description

0h 8 Standard DOE Request Header

8h 1 Response Code = 0, Query Capabilities

9h 1 Version of Capability Returned

0Ah 1 Length of Capability Package

0Bh 1 Status: See table 192 for error codes

0CH 8 Available Compliance Capabilities bitmask

014h 8 Enabled Compliance Capabilities bitmask

Table 279. Compliance Mode Status

Data Object Byte Offset Length Description

0h 8 Standard DOE Request Header

8h 1 Request Code = 1, Query Status

9h 1 Version of Capability requested

0Ah 2 Reserved

Table 280. Compliance Mode Status Response

Data Object Byte Offset Length Description

0h 8 Standard DOE Header

8h 1 Response Code = 1, Query Capabilities

9h 1 Version of Capability Returned

0Ah 1 Length of Capability Package

0Bh 4 Capability bitfield

0Eh 2 Cache Size

10h 1 Cache Size Units

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 608
Revision 2.0, Version 1.0

14.16.4.3 Compliance Mode Halt All

14.16.4.4 Compliance Mode Multiple Write Streaming

Table 281. Compliance Mode Halt All

Data Object Byte Offset Length Description

0h 8 Standard DOE Request Header

8h 1 Request Code = 2, Halt All

9h 1 Version of Capability requested

0Ah 2 Reserved

Table 282. Compliance Mode Halt All Response

Data Object Byte Offset Length Description

0h 8 Standard DOE Request Header

8h 1 Response Code = 2, Halt All

9h 1 Version of Capability Returned

0Ah 1 Length of Capability Package

0Bh 1 Status: See table 192 for error codes

Table 283. Enable Multiple Write Streaming Algorithm on the Device

Data Object Byte Offset Length Description

0h 8 Standard DOE Request Header

8h 1 Request Code = 3, Multiple Write Streaming

9h 1 Version

0Ah 2 Reserved

0Ch 1 Protocol

0Dh 1 Virtual Address

0Eh 1 Self-checking

0Fh 1 Verify Read Semantics

10h 1 Num Increments

11h 1 Num Sets

12h 1 Num Loops

13h 1 Reserved

14h 8 Start Address

1Ch 8 Write Address

24h 8 Writeback Address

2Ch 8 Byte Mask

34h 4 Address Increment

38h 4 Set Offset

3Ch 4 Pattern “P”

40h 4 Increment Pattern “B”

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 609
Revision 2.0, Version 1.0

14.16.4.5 Compliance Mode Producer Consumer

Table 284. Compliance Mode Multiple Write Streaming Response

Data Object Byte Offset Length Description

0h 8 Standard DOE Request Header

8h 1 Response Code = 3, Multiple Write Streaming

9h 1 Version of Capability Returned

0Ah 1 Length of Capability Package

0Bh 1 Status: See table 192 for error codes

Table 285. Enable Producer Consumer Algorithm on the Device

Data Object Byte Offset Length Description

0h 8 Standard DOE Request Header

8h 1 Request Code = 4, Producer Consumer

9h 1 Version

0Ah 2 Reserved

0Ch 1 Protocol

0Dh 1 Num Increments

0Eh 1 Num Sets

0Fh 1 Num Loops

10h 1 Write Semantics

11h 3 Reserved

14h 8 Start Address

1Ch 8 Byte Mask

24h 4 Address Increment

28h 4 Set Offset

2Ch 4 Pattern

Table 286. Compliance Mode Producer Consumer Response

Data Object Byte Offset Length Description

0h 8 Standard DOE Request Header

8h 1 Response Code = 4, Producer Consumer

9h 1 Version of Capability Returned

0Ah 1 Length of Capability Package

0Bh 1 Status: See table 192 for error codes

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 610
Revision 2.0, Version 1.0

14.16.4.6 Bogus Writes

14.16.4.7 Inject Poison

Table 287. Enable Bogus Writes Injection into Compliance Mode Write Stream Algorithms

Data Object Byte Offset Length Description

0h 8 Standard DOE Request Header

8h 1 Request Code = 5, Bogus Writes

9h 1 Version

0Ah 2 Reserved

0Ch 1 Bogus Writes Count

0Dh 1 Reserved

0Eh 4 Bogus Write Pattern

Table 288. Inject Bogus Writes Response

Data Object Byte Offset Length Description

0h 8 Standard DOE Request Header

8h 1 Response Code = 5, Bogus Writes

9h 1 Version of Capability Returned

0Ah 1 Length of Capability Package

0Bh 1 Status: See table 192 for error codes

Table 289. Enable Poison Injection into

Data Object Byte Offset Length Description

0h 8 Standard DOE Request Header

8h 1 Request Code = 6, Poison Injection

9h 1 Version

0Ah 2 Reserved

0Ch 1 Protocol 0=io, 1 = cache, 2= mem

Table 290. Poison Injection Response

Data Object Byte Offset Length Description

0h 8 Standard DOE Request Header

8h 1 Response Code = 6, Poison Injection

9h 1 Version of Capability Returned

0Ah 1 Length of Capability Package

0Bh 1 Status: See table 192 for error codes

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 611
Revision 2.0, Version 1.0

14.16.4.8 Inject CRC

14.16.4.9 Inject Flow Control

Table 291. Enable CRC Error into Traffic

Data Object Byte Offset Length Description

0h 8 Standard DOE Request Header

8h 1 Request Code = 7, Poison Injection

9h 1 Version

0Ah 2 Reserved

0Ch 1 Num Bits Flipped

0Dh 1 Num Flits Injected

Table 292. CRC Injection Response

Data Object Byte Offset Length Description

0h 8 Standard DOE Request Header

8h 1 Response Code = 7, CRC Injection

9h 1 Version of Capability Returned

0Ah 1 Length of Capability Package

0Bh 1 Status: See table 192 for error codes

Table 293. Enable Flow Control injection

Data Object Byte Offset Length Description

0h 8 Standard DOE Request Header

8h 1 Request Code = 8, Poison Injection

9h 1 Version

0Ah 2 Reserved

0Ch 1 Inject Flow Control

Table 294. Flow Control Injection Response

Data Object Byte Offset Length Description

0h 8 Standard DOE Request Header

8h 1 Response Code = 8, Bogus Writes

9h 1 Version of Capability Returned

0Ah 1 Length of Capability Package

0Bh 1 Status: See table 192 for error codes

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 612
Revision 2.0, Version 1.0

14.16.4.10 Toggle Cache Flush

14.16.4.11 Inject MAC Delay

Delay MAC on IDE secure link until it no longer meets spec, flit 6+

Table 295. Enable Cache Flush Injection

Data Object Byte Offset Length Description

0h 8 Standard DOE Request Header

8h 1 Request Code = 9, Cache Flush

9h 1 Version

0Ah 2 Reserved

0Ch 1 0 Cache Flush Disabled, 1 Cache Flush enabled

Table 296. Cache Flush Injection Response

Data Object Byte Offset Length Description

0h 8 Standard DOE Request Header

8h 1 Response Code = 09h Cache Flush

9h 1 Version of Capability Returned

0Ah 1 Length of Capability Package

0Bh 1 Status: See table 192 for error codes

Table 297. MAC Delay Injection

Data Object Byte Offset Length Description

0h 8 Standard DOE Request Header

8h 1 Request Code = 0Ah, Delay MAC

9h 1 Version

0Ah 2 Reserved

0Ch 1 1 = enable MAC Delap, 0 = disable

0Dh 1 Mode: 0 = CXL.io, 1 = CXL.cachemem

0Eh 1 Delay: Number of flits to delay MAC. 6+ = error condition

Table 298. MAC Delay Response

Data Object Byte Offset Length Description

0h 8 Standard DOE Request Header

8h 1 Response Code = 0Ah, MAC delay injection

9h 1 Version of Capability Returned

0Ah 1 Length of Capability Package

0Bh 1 Status: 0 = success, see table y for other error codes

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 613
Revision 2.0, Version 1.0

14.16.4.12 Insert Unexpected MAC

Insert an unexpected MAC on a non-IDE secured channel

14.16.4.13 Inject Viral

Table 299. Unexpected MAC Injection

Data Object Byte Offset Length Description

0h 8 Standard DOE Request Header

8h 1 Request Code = 0Bh, Unexpected MAC injection

9h 1 Version

0Ah 2 Reserved

0Ch 1 0 = disable, 1 = insert message, 2 = delete message

0Dh 1 Mode: 0 = CXL.io, 1 = CXL.cachemem

Table 300. Unexpected MAC Injection Response

Data Object Byte Offset Length Description

0h 8 Standard DOE Request Header

8h 1 Response Code = 0Bh, Unexpected MAC injection

9h 1 Version of Capability Returned

0Ah 1 Length of Capability Package

Table 301. Enable Viral Injection

Data Object Byte Offset Length Description

0h 8 Standard DOE Request Header

8h 1 Request Code = 0Ch, Inject Viral

9h 1 Version

0Ah 2 Reserved

0Ch 1 Protocol: 0 = clx.io, 1 = clx.cache, 2 = cxl.mem

Table 302. Flow Control Injection Response

Data Object Byte Offset Length Description

0h 8 Standard DOE Request Header

8h 1 Response Code = 0Ch, Inject Viral

9h 1 Version of Capability Returned

0Ah 1 Length of Capability Package

0Bh 1 Status: 0 = success, see table y for other error codes

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 614
Revision 2.0, Version 1.0

14.16.4.14 Inject ALMP in Any State

Insert an ALMP in ARBMUX regardless of state

14.16.4.15 Ignore Received ALMP

Ignore the next ALMPs received

Table 303. Inject ALMP Request

Data Object Byte Offset Length Description

0h 8 Standard DOE Request Header

8h 1 Request Code = 0Dh, Inject ALMP in any state

9h 1 Version

0Ah 2 Reserved

0Ch 1 0 = disable, 1 = insert ALMP

0Dh-0Fh Reserved

Table 304. Inject ALMP Response

Data Object Byte Offset Length Description

0h 8 Standard DOE Request Header

 8h 1 Response Code = 0Dh, Inject ALMP in any state

9h 1 Version of Capability Returned

0Ah-0Fh Reserved

Table 305. Ignore Received ALMP Request

Data Object Byte Offset Length Description

0h 8 Standard DOE Request Header

8h 1 Request Code = 0Eh, Ignore received ALMPs

9h 1 Version

0Ah 2 Reserved

0Ch 1 0 = disable, 1 = ignore ALMPs

0Dh-0Fh Reserved

Table 306. Ignore Received ALMP Response

Data Object Byte Offset Length Description

0h 8 Standard DOE Request Header

 8h 1 Response Code = 0Eh, Ignore received ALMPs

9h 1 Version of Capability Returned

0Ah-0Fh Reserved

Ev
al

ua
tio

n
C

op
y

CXL Compliance Testing

 Compute Express Link Specification
October 26, 2020 615
Revision 2.0, Version 1.0

14.16.4.16 Inject Bit Error in Flit

Inject a single bit error into the lower 16 bytes of a 528-bit flit.

§ §

Table 307. Inject Bit Error in Flit Request

Data Object Byte Offset Length Description

0h 8 Standard DOE Request Header

8h 1 Request Code = 0Fh, Inject Bit Error in Flit

9h 1 Version

0Ah 2 Reserved

0Ch 1 0 = disable/ no action taken, 1 = Inject single Bit error in
next 528 Flit

0Dh-0Fh Reserved

Table 308. Inject Bit Error in Flit Response

Data Object Byte Offset Length Description

0h 8 Standard DOE Request Header

 8h 1 Response Code = 0Fh, Inject Bit Error in Flit

9h 1 Version of Capability Returned

0Ah-0Fh Reserved

Ev
al

ua
tio

n
C

op
y

Taxonomy

 Compute Express Link Specification
October 26, 2020 616
Revision 2.0, Version 1.0

Appendix A Taxonomy

A.1 Accelerator Usage Taxonomy

Table 309. Accelerator Usage Taxonomy (Sheet 1 of 2)

Accelerator Type Description Challenges &
Opportunities CXL Support

Producer-Consumer
Accelerators that don’t
execute against
“Memory”
without special
requirements

Work on data streams or
large contiguous data
objects.
Little interaction with host
Standard P/C ordering
model works well.

Efficient work submission
Efficient exchange of meta-
data (flow control)

Basic PCIe + AiA
CXL.io

Producer-Consumer Plus
Accelerators that don’t
execute against
“Memory”
with special
requirements

Same as above, but…
P/C ordering model doesn’t
work well
Need special data operations
such as atomics

Device Coherency can be
used to implement varied
ordering models and special
data operations

CXL.cache on CXL w/
baseline snoop filter
support
CXL.io
CXL.cache

Software Assisted SVM
Memory
Accelerators that
execute against
“Memory” with software
supportable data
management

Local memory is often
needed for bandwidth or
latency predictability
Little interaction with the
host
Data management easily
implemented in software,
e.g., few and simple data
buffers

Host software should be
able to interact directly with
accelerator memory (SVM,
Google)
Reduce copies, replication,
pinning
Optimizing coherency
impact on performance is a
challenge
Software can provide best
optimization of coherency
impact

CXL Bias model with
software managed
bias.
CXL.io
CXL.cache
CXL.mem

Ev
al

ua
tio

n
C

op
y

Taxonomy

 Compute Express Link Specification
October 26, 2020 617
Revision 2.0, Version 1.0

A.2 Bias Model Flow Example – From CPU
• Start with pages in Device Bias

— Pages guaranteed not to be cached in host cache hierarchy
• Software allocates pages from device memory

— Software pushes operands to allocated pages from peer CPU core:
— Software uses, e.g., OpenCL API to flip operand pages to Host Bias
— No data copies or cache flushes required
— Host CPUs generate operand data in target pages – data ends up in some

arbitrary location in the host cache hierarchy.
• Device uses operands to generate results

— Software uses, e.g., OpenCL API to flip operand pages back to Device Bias
— API call causes work descriptor submission to device; descriptor asks the

device to flush operand pages from host cache.
— Cache flush executed using RdOwnNoData on CXL CXL.cache protocol.
— When Device Bias flip is complete, software submits work to the accelerator
— Accelerator executes with no host related coherency overhead
— Accelerator dumps data to results pages.

Autonomous SVM
Memory
Accelerators that
execute against
“Memory” where
software supported data
management is
impractical

Local memory often needed
for bandwidth or latency
predictability
Interaction with the host is
common
Data movement very
difficult to manage in
software, e.g., sparse data
structures, pointer based
data structures, etc.

Host software should be
able to interact directly with
accelerator memory (SVM)
Reduce copies, replication,
pinning
Optimizing coherency
impact on performance is a
challenge
Cannot count on software
for bias management

CXL Bias model with
hardware managed
bias.
CXL.io
CXL.cache
CXL.mem

Giant Cache
Accelerators that
execute against
“Memory”
where local memory and
caching is required.

Local memory needed for
bandwidth or latency
predictability
Data footprint is larger than
local memory
Interaction with the host is
common
Data must be cycled through
accelerator memory in small
blocks
Data movement very
difficult to manage in
software

Accelerator memory needs
to work like a cache (not
SVM/system memory)
Ideally cache misses
detected in hardware, but
cache replacements can be
managed in software

CXL.cache on CXL w/
“Enhanced
Directory” snoop
filter support
CXL.io
CXL.cache

Disaggregated Memory
Controller
Typically for memory
controllers with remote
persistent memory,
which may be in 2LM or
App Direct mode

PCIe semantics needed for
device enumeration, driver
support and device
management
Most operational flows rely
on being able to
communicate directly with a
Home Device or Near
Memory Controller on the
Host

Device needs high
bandwidth and low latency
path from memory
controller to Home Device in
the CPU

CXL.mem on CXL
CXL.io
CXL.mem

Table 309. Accelerator Usage Taxonomy (Sheet 2 of 2)

Accelerator Type Description Challenges &
Opportunities CXL Support

Ev
al

ua
tio

n
C

op
y

Taxonomy

 Compute Express Link Specification
October 26, 2020 618
Revision 2.0, Version 1.0

• Software pulls results from the allocated pages:
— Software uses, e.g., OpenCL API to flip results pages to Host Bias.
— This action causes some bias state to be changed but does not cause any

coherency or cache flushing actions.
— Host CPUs can access, cache and share results data as needed.

• Software releases the allocated pages.

Here are some example of OpenCL calls where bias flip can be performed.

OpenCL defines Coarse-grained buffer Shared Virtual Memory model. Under that
model, memory consistency is guaranteed only at explicit synchronization points and
these points provide an opportunity to perform bias flip.

• clEnqueueSVMMap provides host access to this buffer. Software may flip the bias
from Device bias to Host bias during this call.

• clEnqueueSVMUnmap revokes host access to this buffer. At this point, an OpenCL
implementation for a CXL device could flip the bias from Host bias to Device bias.

There are other calls where CPU and Device share OpenCL buffer objects. SW could flip
bias during those calls.

A.3 CPU Support for Bias Modes
There are two envisaged models of support that the CPU would provide for Bias Modes.
These are described below.

A.3.1 Remote Snoop Filter

• Remote socket owned lines belonging to accelerator attached memory are tracked
by a Remote SF located in the C-CHA. Remote SF does not track lines belonging to
Host memory. The above obviates the need for directory in device memory. Please
note this is only possible in host bias mode since in device bias mode, local/remote
sockets can’t cache lines belonging to device memory.

• Local socket owned lines belonging to accelerator attached memory will be tracked
by local SF in the C-CHA. Please note this is only possible in host bias mode since in
device bias mode, local/remote sockets can’t cache lines belonging to device
memory.

• Device owned lines belonging to accelerator attached memory (in host bias mode)
will NOT be tracked by local SF in the C-CHA. These will be tracked by the Device
Coherency Engine (DCOH) using a device specific mechanism (device SF). In
device bias mode, SF in the C-CHA does not even see the requests.

• Device owned lines belonging to host memory (in either mode) WILL be tracked by
local SF in the C-CHA. This may cause the device to receive snoops through CXL
(CXL.cache) for such lines.

A.3.2 Directory in Accelerator Attached Memory

• Remote socket owned lines belonging to device memory are tracked by directory in
device memory. C-CHA may choose to do OSB for some cases.

Ev
al

ua
tio

n
C

op
y

Taxonomy

 Compute Express Link Specification
October 26, 2020 619
Revision 2.0, Version 1.0

• Local socket owned lines belonging to device memory will be tracked by local SF in
the C-CHA. For access by device, local socket owned lines belonging to device
memory will also update directory.

• Device owned lines belonging to device memory will NOT be tracked by local SF in
the C-CHA. These will be tracked by the Device Coherency Engine (DCOH) using a
device specific mechanism (device SF).

• Device owned lines belonging to host memory (in either mode) WILL be tracked by
local SF in the C-CHA. This may cause the device to receive snoops through CXL
(CXL.cache) for such lines.

• Bias Table is located in stolen memory in the device memory and is accessed
through the DCOH.

A.4 Giant Cache Model
For problems whose datasets exceed the size of device attached memory, the memory
attached to the accelerator really wants to be a cache, not memory:

• Typically the full dataset will live in processor attached memory.
• Subsets of this larger data set are cycled through the accelerator memory as the

computation proceeds.
• For such use cases, caching is the right solution:

— Accelerator memory is not mapped into system address map – data set is built
up in host memory

— Single page table entry per page in data set – no page table manipulation as
pages are cycled through accelerator memory

— Copies of data can be created under driver and/or hardware control with no OS
intervention

Critical issues with a Giant Cache:
• Cache is too big for tracking in the Host on-die snoop filter
• Snoop latency for a Giant Cache is likely to be much higher than standard on-die

cache snoop latency.

Figure 197. Profile D - Giant Cache Model

Ev
al

ua
tio

n
C

op
y

Taxonomy

 Compute Express Link Specification
October 26, 2020 620
Revision 2.0, Version 1.0

CXL recommended solution:
• Implements snoop filter in processor’s coherency directory (stored in DRAM ECC

bits) which essentially becomes a highly scalable snoop filter
• Minimizes impact to processor operations unrelated to accelerators
• Allows accelerator to access data over CXL.cache as a caching Device.
• Provides support on CXL.cache to allow an accelerator to explicitly request

directory snoop filtering for giant cache.
• Processor infrastructure differentiates between low latency and high latency

requester types
• Support for simultaneous use of a small, low latency cache, associated with the on-

die snoop filter, will come for free.

§ §

Ev
al

ua
tio

n
C

op
y

Protocol Tables for Memory

 Compute Express Link Specification
October 26, 2020 621
Revision 2.0, Version 1.0

Appendix B Protocol Tables for Memory

To formalize the protocol expectations of the Memory Protocol, this appendix captures
the allowed request encodings, states, and responses in the host and device. We
explicitly separate Type 2 devices (which include CXL.cache protocol) and Type 3
devices which are simple memory expansion.

“Y(1)” in legal column indicates the row in the table is also defined in other tables
within the CXL spec and existed in CXL1.1 specification.

This section uses field name abbreviations to fit into the table format captured in
Table 310.

B.1 Type 2 Requests
Table 311 defines Type 2 Device messages on the request channel of CXL.mem
protocol. Table 312 additionally defines the Forward flows which apply for Type 2
devices accessing device attached memory.

Table 310. Field Encoding Abbreviations

Field Name Encoding Name Abbreviation Notes

MetaField Meta0-State MS0

MetaValue Not Applicable NA
Used when MetaValue is undefined and should
never be consumed which is when MetaField is
set to No-Op

Bias State UnChanged UC Used to indicate the device should not change
bias state.

Ev
al

ua
tio

n
C

op
y

Compute Express Link Specification
October 26, 2020 622
Revision 2.0, Version 1.0

Protocol Tables for Memory

Table 311. Type 2 Memory Request

Legal

Host Request Device Response Final Device State

Description
M2S Req Meta

Field
Meta
Value Snp Type S2M NDR S2M DRS Meta

Field
Meta
Value

Device
Cache

Bias
State

Y(1)

MemRd

MS0

A

SnpInv Cmp-E

MemData

<any> <any> I A The Host wants an exclusive copy of the line

N SnpData

N SnpCur

N No-Op

N

S

SnpInv

Y(1)
SnpData

Cmp-S <any> <any> S S The Host requesting a shared copy of the line, but Rsp types
allow device to return S or E state to host. Cmp-E response is
not recommended because device did not request this state.Y(1) Cmp-E <any> <any> I A

N SnpCur

N No-Op

Y

I

SnpInv Cmp <any> <any> I UC The Host requesting a non-cacheable but current value of the
line and forcing device to flush its cache.

SnpData

Y SnpCur Cmp <any> <any> <any> UC The Host requesting a non-cacheable but current value of the
line leaving data in the device’s cache.

N No-Op

Y(1)

No-Op NA

SnpInv Cmp <any> <any> I UC
The Host wants to read line without changing state expected in
the host cache and the device should invalidate the line from its
cache.

SnpData

Y(1) SnpCur Cmp <any> <any> <any> UC The Host wants a current value of the line without changing the
state expected in the host cache.

Y No-Op Cmp <any> <any> <any> UC

Host wants a the value of the memory location without
snooping the device cache and without changing cache state
expected in the host cache. A use case for this would be if the
host includes E or S-state without data so it is requesting data
only and doesn’t want to change cache state and because it
has E or S state it can know that the device cache does not
need to be snooped.

Ev
al

ua
tio

n
C

op
y

Compute Express Link Specification
October 26, 2020 623
Revision 2.0, Version 1.0

Protocol Tables for Memory

Y(1)

MemInv/
MemInvNT

MS0

A

SnpInv Cmp-E

<none>

<any> <any> I A The Host wants ownership of the line without data

N SnpData

N SnpCur

N No-Op

N

S

SnpInv

Y SnpData Cmp-S <any> <any> S or I S The Host wants the device to degrade to S in its caches, wants
the shared state for the cacheline (without data).

N SnpCur

N No-Op

Y(1)

I

SnpInv Cmp <any> <any> I I The Host wants the device to invalidate the line from its
caches.

N SnpData

N SnpCur

N No-Op

Y

No-Op NA

SnpInv Cmp <any> <any> I UC The Host wants the device to invalidate the line from its caches

N SnpData

N SnpCur

N No-Op

N

MemRdData NA NA

SnpInv

MemData

Y(1)

SnpData

Cmp-E MS0 I or A I A

The Host wants a cacheable copy in either exclusive or shared
state

Y(1) Cmp-S MS0 S I or S S

Y Cmp-E
No-Op NA

I A

Y Cmp-S I or S S

N SnpCur

N No-Op

N

MemSpecRd

MS0 <all> <all>

N

No-Op NA

Snp*

Y No-Op <none> <none> <none> <none> UC UC

Speculative memory read. Demand read following this with the
same address will be merged in the device. No completion is
expected for this transaction. Completion is returned with
demand read

Table 311. Type 2 Memory Request

Legal

Host Request Device Response Final Device State

Description
M2S Req Meta

Field
Meta
Value Snp Type S2M NDR S2M DRS Meta

Field
Meta
Value

Device
Cache

Bias
State

Ev
al

ua
tio

n
C

op
y

Compute Express Link Specification
October 26, 2020 624
Revision 2.0, Version 1.0

Protocol Tables for Memory

B.1.1 Forward Flows for Type 2 Devices

Table 312 shows the flows that can generate Mem*Fwd messages from CXL.cache requests. These flows are trigger when device issues
a D2H Request to an address that is mapped with its own CXL.mem address region. This region referred to as Device-Attached-
Memory.

Sub-
Table

MemRdFwd
See-Table 312

MemWrFwd

Table 311. Type 2 Memory Request

Legal

Host Request Device Response Final Device State

Description
M2S Req Meta

Field
Meta
Value Snp Type S2M NDR S2M DRS Meta

Field
Meta
Value

Device
Cache

Bias
State

Table 312. Type 2 Request Forward Sub-Table

Legal

Device
Request Host Response on M2S Req Final Device State

Description

D2H Req M2S Req Meta Field Meta
Value

Snp
Type

Device
Cache

Bias
State

Y

RdCurr MemRdFwd
MS0

A

No-Op I

A
Host should not change cache state as a result of RdCurr and it would indicate in MemRdFwd
the current state of the host.Y S S

Y I I

N <all> Snp*

N No-Op NA <all>

N

RdShared MemRdFwd
MS0

A

No-OpY S
S

S
Host must be in shared or Invalid only.

Y I I

N <all> Snp*

N No-Op NA <all>

N

RdAny MemRdFwd
MS0

A

No-OpY S S S
Host must be in shared or Invalid.

Y I E I

N <all> Snp*

N No-Op NA <all>

Ev
al

ua
tio

n
C

op
y

Compute Express Link Specification
October 26, 2020 625
Revision 2.0, Version 1.0

Protocol Tables for Memory

N

RdOwn/
RdOwnNoDat
a

MemRdFwd
MS0

A

No-OpN S

Y I E I Host must be in Invalid.

N <all> Snp*

N No-Op NA <all>

N

CLFlush MemRdFwd
MS0

A

No-OpN S

Y I I S Host must indicate invalid, but device must assume S-state is possible in host as part of the
CLFlush definition.

N <all> Snp*

N No-Op NA <all>

N

WOWrInv/
WOWrInvF MemWrFwd

MS0

A

No-OpN S

Y I NC I Host must be in Invalid.

N <all> Snp*

N No-Op NA <all>

N

CleanEvict/
DirtyEvict/
CleanEvictNo
Data

<all> <all> <all> Messages are not sent to host for device attached memory

N

ItoMWr/
MemWr/
WrInv/
CacheFlushed

<all> <all> <all> Standard CXL.cache flows are used for these requests

Table 312. Type 2 Request Forward Sub-Table

Legal

Device
Request Host Response on M2S Req Final Device State

Description

D2H Req M2S Req Meta Field Meta
Value

Snp
Type

Device
Cache

Bias
State

Ev
al

ua
tio

n
C

op
y

Compute Express Link Specification
October 26, 2020 626
Revision 2.0, Version 1.0

Protocol Tables for Memory

B.2 Type 3 Requests
Type 3 devices are simple memory expansion. The result is that requests from the host do not need to indicate No-Op type and the can
also make arbitrary use of Meta Value field to store 2-bit encodings that device should not interpret. Table 313 captures the flows for
these devices.

Table 313. Type 3 Memory Request

Legal

Host Request Device Response Dev
State

Description

M2S Req Meta
Field

Meta
Value

Snp
Type

S2M
NDR S2M DRS Meta

Field
Meta
Value

Meta
State

N <all> <all> <all> Snp* SNo-Op encodings never sent to Type 3 devices

Y
MemRd

MS0
<any 2-
bit
value>

No-Op

<none> MemData <any> <any>

<Meta
Value
sent>

Read that is requesting MetaState updates to new value

Y No-Op NA UC Read that does not expect MetaState update.

Y
MemInv/
MemInvNT

MS0
<any 2-
bit
value> Cmp <none> <any> <any>

<Meta
Value
sent>

Host wants to read MetaState and update it.

Y No-Op NA UC Host wants to read MetaState but does not want to update
it.

N

MemRdData

MS0

Y

No-Op NA No-Op <none> MemData

MS0 I or A A Used for implicit directory state updates in Type 3 devices.
This is the only case Type 3 devices decode MetaValue.Y MS0 S S

Y No-Op NA NA Used for devices that do not store metavalue or if metavalue
is corrupted.

N

MemSpecRd

MS0 <all> <all>

N

No-Op NA

Snp*

Y No-Op <none> <none> <none> <none> UC

Speculative memory read. Demand read following this with
the same address will be merged in the device. No
completion is expected for this transaction. Completion is
returned with demand read

N MemRdFwd
Messages not used for Type 3 devices.

N MemWrFwd

Ev
al

ua
tio

n
C

op
y

Compute Express Link Specification
October 26, 2020 627
Revision 2.0, Version 1.0

Protocol Tables for Memory

B.3 Type 2 RwD
Table 314 captures the Request with Data (RwD) flows for Type 2 devices.

Table 314. Type 2 Memory RwD

Legal

Host Request Device Response Dev State

Description
M2S RwD Meta

Field
Meta
Value Snp Type S2M NDR S2M DRS Meta

Field
Meta
Value

Dev
Cache

Bias
State

N

MemWr/
MemWrPtl

MS0

A
Snp*

<none>

SNo-Op encodings never sent with A-state because host must
have exclusive copy.

Y(1) No-Op Cmp No-Op NA I A The Host wants to update memory and keep an exclusive copy
of the line

N
S

Snp*

Y No-Op Cmp No-Op NA I S The Host wants to update memory and keep a shared copy of
the line

Y(1)

I

SnpInv Cmp No-Op NA I I

The Host wants to write the line back to memory and does not
retain a cacheable copy. In addition, the Host did not get
ownership of the line before doing this write and needs the
device to invalidate its caches before doing the write back to
memory.

N SnpData No use case.

N SnpCur

Y(1) No-Op Cmp No-Op NA I I
The host wants to update memory and will end with host
caches in I-state. Use is for Dirty (M-state) Cache Evictions in
host.

N <all> <all> Cmp MS0 <all> <any> <any> Device Never returns MetaState for a write.

N No-Op NA <all> Host must always define MetaValue for writes.

Ev
al

ua
tio

n
C

op
y

Compute Express Link Specification
October 26, 2020 628
Revision 2.0, Version 1.0

Protocol Tables for Memory

B.4 Type 3 RwD
Table 315 captures the Request with Data (RwD) flows for Type 3 devices.

§ §

Table 315. Type 3 Memory RwD

Legal

Host Request Device Response Dev
State

Description

M2S RwD Meta
Field

Meta
Value

Snp
Type

S2M
NDR S2M DRS Meta

Field
Meta
Value

Meta
State

N

MemWr/
MemWrPtl

MS0
<any 2-
bit
value>

Snp*

<none>

SNo-Op encodings never sent to Type 3 devices

Y No-Op Cmp No-Op NA
<meta
Value
Sent>

The Host wants to update memory. Host sets a meta-value.
Device optionally stores that value.

N No-Op Cmp MS0 <any> Host never needs MetaState returned from a write.

N No-Op NA <all> Host always sends MS0 to avoid need for Read-modify-write
in the device for meta-value.

	Compute Express Link
	Contents
	Figures
	Tables
	Revision History
	1.0 Introduction
	1.1 Audience
	1.2 Terminology / Acronyms
	1.3 Reference Documents
	1.4 Motivation and Overview
	1.4.1 Compute Express Link
	1.4.2 Flex Bus

	1.5 Flex Bus Link Features
	1.6 Flex Bus Layering Overview
	1.7 Document Scope

	2.0 Compute Express Link System Architecture
	2.1 Type 1 CXL Device
	2.2 Type 2 CXL Device
	2.2.1 Bias Based Coherency Model
	2.2.1.1 Host Bias
	2.2.1.2 Device Bias
	2.2.1.3 Mode Management
	2.2.1.4 Software Assisted Bias Mode Management
	2.2.1.5 Hardware Autonomous Bias Mode Management

	2.3 Type 3 CXL Device
	2.4 Multi Logical Device
	2.4.1 LD-ID for CXL.io and CXL.mem
	2.4.1.1 LD-ID for CXL.mem
	2.4.1.2 LD-ID for CXL.io

	2.4.2 Pooled Memory Device Configuration Registers

	2.5 CXL Device Scaling

	3.0 Compute Express Link Transaction Layer
	3.1 CXL.io
	3.1.1 CXL.io Endpoint
	3.1.2 CXL Power Management VDM Format
	3.1.2.1 Credit and PM Initialization

	3.1.3 CXL Error VDM Format
	3.1.4 Optional PCIe Features Required for CXL
	3.1.5 Error Propagation
	3.1.6 Memory Type Indication on ATS
	3.1.7 Deferrable Writes

	3.2 CXL.cache
	3.2.1 Overview
	3.2.2 CXL.cache Channel Description
	3.2.2.1 Channel Ordering
	3.2.2.2 Channel Crediting

	3.2.3 CXL.cache Wire Description
	3.2.3.1 D2H Request
	3.2.3.2 D2H Response
	3.2.3.3 D2H Data
	3.2.3.4 H2D Request
	3.2.3.5 H2D Response
	3.2.3.6 H2D Data

	3.2.4 CXL.cache Transaction Description
	3.2.4.1 Device to Host Requests
	3.2.4.2 Device to Host Response
	3.2.4.3 Host to Device Requests
	3.2.4.4 Host to Device Response

	3.2.5 Cacheability Details and Request Restrictions
	3.2.5.1 GO-M Responses
	3.2.5.2 Device/Host Snoop-GO-Data Assumptions
	3.2.5.3 Device/Host Snoop/WritePull Assumptions
	3.2.5.4 Snoop Responses and Data Transfer on CXL.cache Evicts
	3.2.5.5 Multiple Snoops to the Same Address
	3.2.5.6 Multiple Reads to the Same Cache Line
	3.2.5.7 Multiple Evicts to the Same Cache Line
	3.2.5.8 Multiple Write Requests to the Same Cache Line
	3.2.5.9 Normal Global Observation (GO)
	3.2.5.10 Relaxed Global Observation (FastGO)
	3.2.5.11 Evict to Device-Attached Memory
	3.2.5.12 Memory Type on CXL.cache
	3.2.5.13 General Assumptions
	3.2.5.14 Buried Cache State Rules

	3.3 CXL.mem
	3.3.1 Introduction
	3.3.2 QoS Telemetry for Memory
	3.3.2.1 QoS Telemetry Overview
	3.3.2.2 Reference Model for Host Support of QoS Telemetry
	3.3.2.3 Memory Device Support for QoS Telemetry

	3.3.3 M2S Request (Req)
	3.3.4 M2S Request with Data (RwD)
	3.3.5 S2M No Data Response (NDR)
	3.3.6 S2M Data Response (DRS)
	3.3.7 Forward Progress and Ordering Rules

	3.4 Transaction Ordering Summary
	3.5 Transaction Flows to Device-Attached Memory
	3.5.1 Flows for Type 1 and Type 2 Devices
	3.5.1.1 Notes and Assumptions
	3.5.1.2 Requests from Host
	3.5.1.3 Requests from Device in Host and Device Bias

	3.5.2 Type 2 and Type 3 Memory Flows
	3.5.2.1 Speculative Memory Read

	3.6 Flows for Type 3 Devices

	4.0 Compute Express Link Link Layers
	4.1 CXL.io Link Layer
	4.2 CXL.mem and CXL.cache Common Link Layer
	4.2.1 Introduction
	4.2.2 High-Level CXL.cache/CXL.mem Flit Overview
	4.2.3 Slot Format Definition
	4.2.3.1 H2D and M2S Formats
	4.2.3.2 D2H and S2M Formats

	4.2.4 Link Layer Registers
	4.2.5 Flit Packing Rules
	4.2.6 Link Layer Control Flit
	4.2.7 Link Layer Initialization
	4.2.8 CXL.cache/CXL.mem Link Layer Retry
	4.2.8.1 LLR Variables
	4.2.8.2 LLCRD Forcing
	4.2.8.3 LLR Control Flits
	4.2.8.4 RETRY Framing Sequences
	4.2.8.5 LLR State Machines
	4.2.8.6 Interaction with Physical Layer Reinitialization
	4.2.8.7 CXL.cache/CXL.mem Flit CRC

	4.2.9 Poison and Viral
	4.2.9.1 Viral

	5.0 Compute Express Link ARB/MUX
	5.1 Virtual LSM States
	5.1.1 Additional Rules for Local vLSM Transitions
	5.1.2 Rules for Virtual LSM State Transitions Across Link
	5.1.2.1 General Rules
	5.1.2.2 Entry to Active Exchange Protocol
	5.1.2.3 Status Synchronization Protocol
	5.1.2.4 State Request ALMP
	5.1.2.5 State Status ALMP
	5.1.2.6 Unexpected ALMPs

	5.1.3 Applications of the vLSM State Transition Rules
	5.1.3.1 Initial Link Training
	5.1.3.2 Status Exchange Snapshot Example
	5.1.3.3 L1 Abort Example

	5.2 ARB/MUX Link Management Packets
	5.2.1 ARB/MUX Bypass Feature

	5.3 Arbitration and Data Multiplexing/Demultiplexing

	6.0 Flex Bus Physical Layer
	6.1 Overview
	6.2 Flex Bus.CXL Framing and Packet Layout
	6.2.1 Ordered Set Blocks and Data Blocks
	6.2.2 Protocol ID[15:0]
	6.2.3 x16 Packet Layout
	6.2.4 x8 Packet Layout
	6.2.5 x4 Packet Layout
	6.2.6 x2 Packet Layout
	6.2.7 x1 Packet Layout
	6.2.8 Special Case: CXL.io -- When a TLP Ends on a Flit Boundary
	6.2.9 Framing Errors

	6.3 Link Training
	6.3.1 PCIe vs Flex Bus.CXL Mode Selection
	6.3.1.1 Hardware Autonomous Mode Negotiation
	6.3.1.2 CXL 2.0 Versus CXL 1.1 Negotiation
	6.3.1.3 Flex Bus.CXL Negotiation with Maximum Supported Link Speed of 8GT/s or 16GT/s
	6.3.1.4 Link Width Degradation and Speed Downgrade

	6.4 Recovery.Idle and Config.Idle Transitions to L0
	6.5 L1 Abort Scenario
	6.6 Exit from Recovery
	6.7 Retimers and Low Latency Mode
	6.7.1 SKP Ordered Set Frequency and L1/Recovery Entry

	7.0 Switching
	7.1 Overview
	7.1.1 Single VCS Switch
	7.1.2 Multiple VCS Switch
	7.1.3 Multiple VCS Switch with MLD Ports

	7.2 Switch Configuration and Composition
	7.2.1 CXL Switch Initialization Options
	7.2.1.1 Static Initialization
	7.2.1.2 Fabric Manager Boots First
	7.2.1.3 Fabric Manager and Host Boot Simultaneously

	7.2.2 Sideband Signal Operation
	7.2.3 Binding and Unbinding
	7.2.3.1 Binding and Unbinding of a Single Logical Device Port
	7.2.3.2 Binding and Unbinding of a Pooled Device

	7.2.4 PPB and vPPB Behavior for MLD Ports
	7.2.4.1 MLD Type 1 Configuration Space Header
	7.2.4.2 MLD PCI-Compatible Configuration Registers
	7.2.4.3 MLD PCI Express Capability Structure
	7.2.4.4 MLD PPB Secondary PCI Express Capability Structure
	7.2.4.5 MLD Physical Layer 16.0 GT/s Extended Capability
	7.2.4.6 MLD Physical Layer 32.0 GT/s Extended Capability
	7.2.4.7 MLD Lane Margining at the Receiver Extended Capability

	7.2.5 MLD ACS Extended Capability
	7.2.6 MLD PCIe Extended Capabilities
	7.2.7 MLD Advanced Error Reporting Extended Capability
	7.2.8 MLD DPC Extended Capability

	7.3 CXL.io, CXL.cache/CXL.mem Decode and Forwarding
	7.3.1 CXL.io
	7.3.1.1 CXL.io Decode
	7.3.1.2 CXL 1.1 Support

	7.3.2 CXL.cache
	7.3.3 CXL.mem
	7.3.3.1 CXL.mem Request Decode
	7.3.3.2 CXL.mem Response Decode
	7.3.3.3 QoS Message Aggregation

	7.3.4 FM Owned PPB CXL Handling

	7.4 CXL Switch PM
	7.4.1 CXL Switch ASPM L1
	7.4.2 CXL Switch PCI-PM and L2
	7.4.3 CXL Switch Message Management

	7.5 CXL Switch RAS
	7.6 Fabric Manager Application Programming Interface
	7.6.1 CXL Fabric Management
	7.6.2 Fabric Management Model
	7.6.3 FM Command Transport Protocol
	7.6.4 CXL Switch Management
	7.6.4.1 Initial Configuration
	7.6.4.2 Dynamic Configuration
	7.6.4.3 MLD Port Management

	7.6.5 MLD Component Management
	7.6.6 Management Requirements for System Operations
	7.6.6.1 Initial System Discovery
	7.6.6.2 CXL Switch Discovery
	7.6.6.3 MLD and Switch MLD Port Management
	7.6.6.4 Event Notifications
	7.6.6.5 Binding Ports and LDs on a Switch
	7.6.6.6 Unbinding Ports and LDs on a Switch
	7.6.6.7 Hot-Add and Managed Hot-Removal of Devices
	7.6.6.8 Surprise Removal of Devices

	7.6.7 Fabric Management Application Programming Interface
	7.6.7.1 Switch Event Notifications Command Set
	7.6.7.2 Virtual Switch Command Set
	7.6.7.3 Unbind vPPB (Opcode 5202h)
	7.6.7.4 MLD Port Command Set
	7.6.7.5 MLD Component Command Set

	7.6.8 Fabric Management Event Records
	7.6.8.1 Physical Switch Event Records
	7.6.8.2 Virtual CXL Switch Event Records
	7.6.8.3 MLD Port Event Records

	8.0 Control and Status Registers
	8.1 Configuration Space Registers
	8.1.1 PCI Express Designated Vendor-Specific Extended Capability (DVSEC) ID Assignment
	8.1.2 CXL Data Object Exchange (DOE) Type Assignment
	8.1.3 PCIe DVSEC for CXL Device
	8.1.3.1 DVSEC CXL Capability (Offset 0Ah)
	8.1.3.2 DVSEC CXL Control (Offset 0Ch)
	8.1.3.3 DVSEC CXL Status (Offset 0Eh)
	8.1.3.4 DVSEC CXL Control2 (Offset 10h)
	8.1.3.5 DVSEC CXL Status2 (Offset 12h)
	8.1.3.6 DVSEC CXL Lock (Offset 14h)
	8.1.3.7 DVSEC CXL Capability2 (Offset 16h)
	8.1.3.8 DVSEC CXL Range registers

	8.1.4 Non-CXL Function Map DVSEC
	8.1.4.1 Non-CXL Function Map Register 0 (Offset 0Ch)
	8.1.4.2 Non-CXL Function Map Register 1 (Offset 10h)
	8.1.4.3 Non-CXL Function Map Register 2 (Offset 14h)
	8.1.4.4 Non-CXL Function Map Register 3(Offset 18h)
	8.1.4.5 Non-CXL Function Map Register 4 (Offset 1Ch)
	8.1.4.6 Non-CXL Function Map Register 5 (Offset 20h)
	8.1.4.7 Non-CXL Function Map Register 6 (Offset 24h)
	8.1.4.8 Non-CXL Function Map Register 7(Offset 28h)

	8.1.5 CXL 2.0 Extensions DVSEC for Ports
	8.1.5.1 CXL Port Extension Status (Offset 0Ah)
	8.1.5.2 Port Control Extensions (Offset 0Ch)
	8.1.5.3 Alternate Bus Base (Offset 0E h)
	8.1.5.4 Alternate Bus Limit (Offset 0Fh)
	8.1.5.5 Alternate Memory Base (Offset 10h)
	8.1.5.6 Alternate Memory Limit (Offset 12h)
	8.1.5.7 Alternate Prefetchable Memory Base (Offset 14h)
	8.1.5.8 Alternate Prefetchable Memory Limit (Offset 16h)
	8.1.5.9 Alternate Memory Prefetchable Base High (Offset 18h)
	8.1.5.10 Alternate Prefetchable Memory Limit High (Offset 1Ch)
	8.1.5.11 CXL RCRB Base (Offset 20h)
	8.1.5.12 CXL RCRB Base High (Offset 24h)

	8.1.6 GPF DVSEC for CXL Port
	8.1.6.1 GPF Phase 1 Control (Offset 0Ch)
	8.1.6.2 GPF Phase 2 Control (Offset 0Eh)

	8.1.7 GPF DVSEC for CXL Device
	8.1.7.1 GPF Phase 2 Duration (Offset 0Ah)
	8.1.7.2 GPF Phase 2 Power (Offset 0Ch)

	8.1.8 PCIe DVSEC for Flex Bus Port
	8.1.9 Register Locator DVSEC
	8.1.9.1 Register Offset Low (Offset Varies)
	8.1.9.2 Register Offset High (Offset Varies)

	8.1.10 MLD DVSEC
	8.1.10.1 Number of LD Supported (Offset 0Ah)
	8.1.10.2 LD-ID Hot Reset Vector (Offset 0Ch)

	8.1.11 Table Access DOE
	8.1.11.1 Read Entry

	8.1.12 Memory Device Configuration Space Layout
	8.1.12.1 PCI Header - Class Code Register (Offset 09h)
	8.1.12.2 Memory Device PCIe Capabilities and Extended Capabilities

	8.2 Memory Mapped Registers
	8.2.1 CXL 1.1 Upstream and Downstream Port Registers
	8.2.1.1 CXL 1.1 Downstream Port RCRB
	8.2.1.2 CXL 1.1 Upstream Port RCRB
	8.2.1.3 Flex Bus Port DVSEC

	8.2.2 CXL 1.1 Upstream and Downstream Port Subsystem Component Registers
	8.2.3 CXL 2.0 Component Registers
	8.2.4 Component Register Layout and Definition
	8.2.5 CXL.cache and CXL.mem Registers
	8.2.5.1 CXL Capability Header Register (Offset 0x0)
	8.2.5.2 CXL RAS Capability Header (Offset: Varies)
	8.2.5.3 CXL Security Capability Header (Offset: Varies)
	8.2.5.4 CXL Link Capability Header (Offset:Varies)
	8.2.5.5 CXL HDM Decoder Capability Header (Offset: Varies)
	8.2.5.6 CXL Extended Security Capability Header (Offset: Varies)
	8.2.5.7 CXL IDE Capability Header (Offset: Varies)
	8.2.5.8 CXL Snoop Filter Capability Header (Offset: Varies)
	8.2.5.9 CXL RAS Capability Structure
	8.2.5.10 CXL Security Capability Structure
	8.2.5.11 CXL Link Capability Structure
	8.2.5.12 CXL HDM Decoder Capability Structure
	8.2.5.13 CXL Extended Security Capability Structure
	8.2.5.14 CXL IDE Capability Structure
	8.2.5.15 CXL Snoop Filter Capability Structure

	8.2.6 CXL ARB/MUX Registers
	8.2.6.1 ARB/MUX Arbitration Control Register for CXL.io (Offset 0x180)
	8.2.6.2 ARB/MUX Arbitration Control Register for CXL.cache and CXL.mem (Offset 0x1C0)

	8.2.7 BAR Virtualization ACL Register Block
	8.2.7.1 BAR Virtualization ACL Size Register (Offset 00h)

	8.2.8 CXL Device Register Interface
	8.2.8.1 CXL Device Capabilities Array Register (Offset 00h)
	8.2.8.2 CXL Device Capability Header Register (Offset Varies)
	8.2.8.3 Device Status Registers (Offset Varies)
	8.2.8.4 Mailbox Registers (Offset Varies)
	8.2.8.5 Memory Device Registers

	8.2.9 CXL Device Command Interface
	8.2.9.1 Events
	8.2.9.2 Firmware Update
	8.2.9.3 Timestamp
	8.2.9.4 Logs
	8.2.9.5 Memory Device Commands
	8.2.9.6 FM API Commands

	9.0 Reset, Initialization, Configuration and Manageability
	9.1 Compute Express Link Boot and Reset Overview
	9.1.1 General
	9.1.2 Comparing CXL and PCIe Behavior
	9.1.2.1 Switch Behavior

	9.2 Compute Express Link Device Boot Flow
	9.3 Compute Express Link System Reset Entry Flow
	9.4 Compute Express Link Device Sleep State Entry Flow
	9.5 Function Level Reset (FLR)
	9.6 Cache Management
	9.7 CXL Reset
	9.7.1 Effect on the Contents of the Volatile HDM
	9.7.2 Software Actions

	9.8 Global Persistent Flush (GPF)
	9.8.1 Host and Switch Responsibilities
	9.8.2 Device Responsibilities
	9.8.3 Energy Budgeting

	9.9 Hot-Plug
	9.10 Software Enumeration
	9.11 CXL 1.1 Hierarchy
	9.11.1 PCIe Software View of the CXL 1.1 Hierarchy
	9.11.2 System Firmware View of CXL 1.1 Hierarchy
	9.11.3 OS View of CXL 1.1 Hierarchy
	9.11.4 CXL 1.1 Hierarchy System Firmware Enumeration Flow
	9.11.5 CXL 1.1 device discovery
	9.11.6 CXL 1.1 Devices with Multiple Flex Bus Links
	9.11.6.1 Single CPU Topology
	9.11.6.2 Multiple CPU Topology

	9.12 CXL 2.0 Enumeration
	9.12.1 CXL 2.0 Root Ports
	9.12.2 CXL 2.0 Virtual Hierarchy
	9.12.3 Enumerating CXL 2.0 Capable Downstream Ports
	9.12.4 CXL 1.1 Device Connected to CXL 2.0 Capable Downstream Port
	9.12.5 CXL 2.0 Host/Switches with CXL 1.1 Devices - Example
	9.12.6 Mapping of Link and Protocol Registers in CXL 2.0 VH

	9.13 Software View of HDM
	9.13.1 Memory Interleaving
	9.13.2 The CXL Memory Device Label Storage Area
	9.13.2.1 Overall LSA Layout
	9.13.2.2 Label Index Blocks
	9.13.2.3 Common Label Properties
	9.13.2.4 Region Labels
	9.13.2.5 Namespace Labels
	9.13.2.6 Vendor Specific Labels

	9.14 CXL OS Firmware Interface Extensions
	9.14.1 CXL Early Discovery Table (CEDT)
	9.14.1.1 CEDT Header
	9.14.1.2 CXL Host Bridge Structure (CHBS)

	9.14.2 CXL _OSC
	9.14.2.1 Rules for Evaluating _OSC

	9.15 Manageability Model for CXL Devices

	10.0 Power Management
	10.1 Statement of Requirements
	10.2 Policy-Based Runtime Control - Idle Power - Protocol Flow
	10.2.1 General
	10.2.2 Package-Level Idle (C-state) Entry and Exit Coordination
	10.2.2.1 PMReq Message Generation and Processing Rules

	10.2.3 PkgC Entry Flows
	10.2.4 PkgC Exit Flows
	10.2.5 Compute Express Link Physical Layer Power Management States

	10.3 Compute Express Link Power Management
	10.3.1 Compute Express Link PM Entry Phase 1
	10.3.2 Compute Express Link PM Entry Phase 2
	10.3.3 Compute Express Link PM Entry Phase 3
	10.3.4 Compute Express Link Exit from ASPM L1

	10.4 CXL.io Link Power Management
	10.4.1 CXL.io ASPM Phase L1 Entry
	10.4.2 CXL.io ASPM Phase 2 Entry
	10.4.3 CXL.io ASPM Phase 3 Entry

	10.5 CXL.cache + CXL.mem Link Power Management

	11.0 Security
	11.1 CXL IDE
	11.1.1 Scope
	11.1.2 CXL.io IDE
	11.1.3 CXL.cachemem IDE High Level Overview
	11.1.4 CXL.cachemem IDE Architecture
	11.1.5 Encrypted PCRC
	11.1.6 CXL.cachemem IDE Cryptographic Keys and IV
	11.1.7 CXL.cachemem IDE Modes
	11.1.7.1 Discovery of Integrity Modes and Settings
	11.1.7.2 Negotiation of Operating Mode and Settings

	11.1.8 Rules for MAC Aggregation
	11.1.9 Early MAC Termination
	11.1.10 Handshake to Trigger the Use of Keys
	11.1.11 Error Handling
	11.1.12 Switch Support

	12.0 Reliability, Availability and Serviceability
	12.1 Supported RAS Features
	12.2 CXL Error Handling
	12.2.1 Protocol and Link Layer Error Reporting
	12.2.1.1 CXL 1.1 Downstream Port (DP) Detected Errors
	12.2.1.2 CXL 1.1 Upstream Port (UP) Detected Errors
	12.2.1.3 CXL 1.1 RCiEP Detected Errors

	12.2.2 CXL 2.0 Root Ports, Downstream Switch Ports, and Upstream Switch Ports
	12.2.3 CXL Device Error Handling
	12.2.3.1 CXL.mem and CXL.cache Errors
	12.2.3.2 Memory Error Logging and Signaling Enhancements
	12.2.3.3 CXL Device Error Handling Flows

	12.3 CXL Link Down Handling
	12.4 CXL Viral Handling
	12.4.1 Switch Considerations
	12.4.2 Device Considerations

	12.5 CXL Error Injection

	13.0 Performance Considerations
	14.0 CXL Compliance Testing
	14.1 Applicable Devices Under Test (DUTs)
	14.2 Starting Configuration/Topology (Common for All Tests)
	14.2.1 Test Topologies
	14.2.1.1 Single Host, Direct Attached SLD EP (SHDA)
	14.2.1.2 Single Host, Switch Attached SLD EP (SHSW)
	14.2.1.3 Single Host, Fabric Managed, Switch Attached SLD EP (SHSW-FM)
	14.2.1.4 Dual Host, Fabric Managed, Switch Attached SLD EP (DHSW-FM)
	14.2.1.5 Dual Host, Fabric Managed, Switch Attached MLD EP (DHSW-FM-MLD)

	14.3 CXL.cache and CXL.io Application Layer/Transaction Layer Testing
	14.3.1 General Testing Overview
	14.3.2 Algorithms
	14.3.3 Algorithm 1a: Multiple Write Streaming
	14.3.4 Algorithm 1b: Multiple Write Streaming with Bogus Writes
	14.3.5 Algorithm 2: Producer Consumer Test
	14.3.6 Test Descriptions
	14.3.6.1 Application Layer/Transaction Layer Tests

	14.4 Link Layer Testing
	14.4.1 RSVD Field Testing CXL.cache/CXL.mem (Requires Exerciser)
	14.4.1.1 Device Test
	14.4.1.2 Host Test

	14.4.2 CRC Error Injection RETRY_PHY_REINIT (Protocol Analyzer Required)
	14.4.3 CRC Error Injection RETRY_ABORT (Protocol Analyzer Required)

	14.5 ARB/MUX
	14.5.1 Reset to Active Transition (Requires Protocol Analyzer)
	14.5.2 ARB/MUX Multiplexing (Requires Protocol Analyzer)
	14.5.3 Active to L1.x Transition (If Applicable) (Requires Protocol Analyzer)
	14.5.4 L1.x State Resolution (If Applicable) (Requires Protocol Analyzer)
	14.5.5 Active to L2 Transition (Requires Protocol Analyzer)
	14.5.6 L1 to Active Transition (If Applicable)
	14.5.7 Reset Entry
	14.5.8 Entry into L0 Synchronization (Requires Protocol Analyzer)
	14.5.9 ARB/MUX Tests Requiring Injection Capabilities
	14.5.9.1 ARB/MUX Bypass (Requires Protocol Analyzer)
	14.5.9.2 PM State Request Rejection (Requires Protocol Analyzer)
	14.5.9.3 Unexpected Status ALMP
	14.5.9.4 ALMP Error
	14.5.9.5 Recovery Re-entry

	14.6 Physical Layer
	14.6.1 Protocol ID Checks (Requires Protocol Analyzer)
	14.6.2 NULL Flit (Requires Protocol Analyzer)
	14.6.3 EDS Token (Requires Protocol Analyzer)
	14.6.4 Correctable Protocol ID Error
	14.6.5 Uncorrectable Protocol ID Error
	14.6.6 Unexpected Protocol ID
	14.6.7 Sync Header Bypass (Requires Protocol Analyzer) (If Applicable)
	14.6.8 Link Speed Advertisement (Requires Protocol Analyzer)
	14.6.9 Recovery.Idle/Config.Idle Transition to L0 (Requires Protocol Analyzer)
	14.6.10 Drift Buffer (If Applicable)
	14.6.11 SKP OS Scheduling/Alternation (Requires Protocol Analyzer) (If Applicable)
	14.6.12 SKP OS Exiting the Data Stream (Requires Protocol Analyzer) (If Applicable)
	14.6.13 Link Speed Degradation - CXL Mode
	14.6.14 Link Speed Degradation Below 8GT/s
	14.6.15 Uncorrectable Mismatched Protocol ID Error
	14.6.16 Link Initialization Resolution
	14.6.17 Hot Add Link Initialization Resolution
	14.6.18 Tests Requiring Injection Capabilities
	14.6.18.1 TLP Ends On Flit Boundary (Requires Protocol Analyzer)
	14.6.18.2 Failed CXL Mode Link Up

	14.7 Switch Tests
	14.7.1 Initialization Tests
	14.7.1.1 VCS initial Configuration

	14.7.2 Reset Propagation
	14.7.2.1 Host PERST# Propagation
	14.7.2.2 LTSSM Hot Reset
	14.7.2.3 Secondary Bus Reset (SBR) Propagation

	14.7.3 Managed Hot Plug - Adding a New Endpoint Device
	14.7.3.1 Managed Add of an SLD Component to a VCS
	14.7.3.2 Managed Add of an MLD Component to an Unbound Port (Unallocated Resource)
	14.7.3.3 Managed Add of an MLD Component to an SLD Port

	14.7.4 Managed Hot Plug-Removing an Endpoint Device
	14.7.4.1 Managed Removal of an SLD Component from a VCS
	14.7.4.2 Managed Removal of a MLD Component from a Switch
	14.7.4.3 Removal of a Device from an Unbound Port

	14.7.5 Bind/Unbind Operations
	14.7.5.1 Binding Unallocated Resources to Hosts
	14.7.5.2 Unbinding Resources from Hosts without Removing the Endpoint Devices

	14.7.6 Error Injection
	14.7.6.1 AER Error Injection

	14.8 Configuration Register Tests
	14.8.1 Device Presence
	14.8.2 CXL Device Capabilities
	14.8.3 DOE Capabilities
	14.8.4 DVSEC Control Structure
	14.8.5 DVSEC CXL Capability
	14.8.6 DVSEC CXL Control
	14.8.7 DVSEC CXL Lock
	14.8.8 DVSEC CXL Capability2
	14.8.9 Non-CXL Function Map DVSEC
	14.8.10 CXL2.0 Extensions DVSEC for Ports Header
	14.8.11 Port Control Override
	14.8.12 GPF DVSEC Port Capability
	14.8.13 GPF Port Phase1 Control
	14.8.14 GPF Port Phase2 Control
	14.8.15 GPF DVSEC Device Capability
	14.8.16 GPF Device Phase2 Duration
	14.8.17 GPF Device Phase1 Duration
	14.8.18 Flex Bus Port DVSEC Capability Header
	14.8.19 DVSEC Flex Bus Port Capability
	14.8.20 Register Locator
	14.8.21 MLD DVSEC Capability Header
	14.8.22 MLD DVSEC Number of LD Supported
	14.8.23 Table Access DOE
	14.8.24 PCI Header - Class Code Register

	14.9 Reset and Initialization Tests
	14.9.1 Warm Reset Test
	14.9.2 Cold Reset Test
	14.9.3 Sleep State Test
	14.9.4 Function Level Reset Test
	14.9.5 Flex Bus Range Setup Time
	14.9.6 FLR Memory
	14.9.7 CXL_Reset Test
	14.9.8 Global Persistent Flush (GPF) (Requires Protocol Analyzer)
	14.9.8.1 Host and Switch Test
	14.9.8.2 Device Test

	14.9.9 Hot-Plug Test

	14.10 Power Management Tests
	14.10.1 Pkg-C Entry (Device Test)
	14.10.2 Pkg-C Entry Reject (Device Test) (Requires Exerciser)
	14.10.3 Pkg-C Entry (Host Test)

	14.11 Security
	14.11.1 Component Measurement and Authentication
	14.11.1.1 DOE CMA Instance
	14.11.1.2 FLR While Processing DOE CMA Request
	14.11.1.3 OOB CMA While in Fundamental Reset
	14.11.1.4 OOB CMA While Function gets FLR
	14.11.1.5 OOB CMA During Conventional Reset

	14.11.2 Link Integrity and Data Encryption CXL.io IDE
	14.11.2.1 CXL.io Link IDE Streams Functional
	14.11.2.2 CXL.io Link IDE Streams Aggregation
	14.11.2.3 CXL.io Link IDE Streams PCRC
	14.11.2.4 CXL.io Selective IDE Stream Functional
	14.11.2.5 CXL.io Selective IDE Streams Aggregation
	14.11.2.6 CXL.io Selective IDE Streams PCRC

	14.11.3 CXL.Cache/MEM IDE
	14.11.3.1 Data Encryption – Decryption and Integrity Testing with Containment Mode for MAC Generation and Checking
	14.11.3.2 Data Encryption – Decryption and Integrity Testing with Skid Mode for MAC Generation and Checking
	14.11.3.3 Key Refresh
	14.11.3.4 Early MAC Termination
	14.11.3.5 Error Handling

	14.11.4 Certificate Format/Certificate Chain
	14.11.5 Security RAS
	14.11.5.1 CXL.io Poison Inject from Device
	14.11.5.2 CXL.cache Poison Inject from Device
	14.11.5.3 CXL.cache CRC Inject from Device
	14.11.5.4 CXL.mem Poison Injection
	14.11.5.5 CXL.mem CRC Injection
	14.11.5.6 Flow Control Injection
	14.11.5.7 Unexpected Completion Injection
	14.11.5.8 Completion Timeout Injection
	14.11.5.9 Memory Error Injection and Logging
	14.11.5.10 CXL.io Viral Inject from Device
	14.11.5.11 CXL.cache Viral inject from device

	14.11.6 Security Protocol and Data Model
	14.11.6.1 SPDM Get_Version
	14.11.6.2 SPDM Get_Capabilities
	14.11.6.3 SPDM Negotiate_Algorithms
	14.11.6.4 SPDM Get_Digests
	14.11.6.5 SPDM Get Cert
	14.11.6.6 SPDM CHALLENGE
	14.11.6.7 SPDM Get_Measurements Count
	14.11.6.8 SPDM Get_Measurements All
	14.11.6.9 SPDM Get_Measurements Repeat with Signature
	14.11.6.10 SPDM Challenge Sequences
	14.11.6.11 SPDM ErrorCode Unsupported Request
	14.11.6.12 SPDM Major Version Invalid
	14.11.6.13 SPDM ErrorCode Unexpected Request

	14.12 Reliability, Availability, and Serviceability
	14.12.1 RAS Configuration
	14.12.1.1 AER Support
	14.12.1.2 CXL.io Poison Injection from Device to Host
	14.12.1.3 CXL.cache Poison Injection
	14.12.1.4 CXL.cache CRC Injection (Protocol Analyzer Required)
	14.12.1.5 CXL.mem Poison Injection
	14.12.1.6 CXL.mem CRC Injection (Protocol Analyzer Required)
	14.12.1.7 Flow Control Injection
	14.12.1.8 Unexpected Completion Injection
	14.12.1.9 Completion Timeout

	14.13 Memory Mapped Registers
	14.13.1 CXL Capability Header
	14.13.2 CXL RAS Capability Header
	14.13.3 CXL Security Capability Header
	14.13.4 CXL Link Capability Header
	14.13.5 CXL HDM Capability Header
	14.13.6 CXL Extended Security Capability Header
	14.13.7 CXL IDE Capability Header
	14.13.8 CXL HDM Decoder Capability Register
	14.13.9 CXL HDM Decoder Commit
	14.13.10 CXL HDM Decoder Zero Size Commit
	14.13.11 CXL Snoop Filter Capability Structure
	14.13.12 CXL Device Capabilities Array Register
	14.13.13 Device Status Registers Capabilities Header Register
	14.13.14 Primary Mailbox Registers Capabilities Header Register
	14.13.15 Secondary Mailbox Registers Capabilities Header Register
	14.13.16 Memory Device Registers Capabilities Header Register

	14.14 Memory Device Tests
	14.14.1 DVSEC CXL Range 1 Size Low Registers
	14.14.2 DVSEC CXL Range 2 Size Low Registers

	14.15 Sticky Register Tests
	14.15.1 Sticky Register Test

	14.16 Device Capability and Test Configuration Control
	14.16.1 CXL Device Test Capability Advertisement
	14.16.2 Device Capabilities to Support the Test Algorithms
	14.16.3 Debug Capabilities in Device
	14.16.3.1 Error Logging
	14.16.3.2 Event Monitors

	14.16.4 Compliance Mode DOE (Optional)
	14.16.4.1 Compliance Mode Capability
	14.16.4.2 Compliance Mode Status
	14.16.4.3 Compliance Mode Halt All
	14.16.4.4 Compliance Mode Multiple Write Streaming
	14.16.4.5 Compliance Mode Producer Consumer
	14.16.4.6 Bogus Writes
	14.16.4.7 Inject Poison
	14.16.4.8 Inject CRC
	14.16.4.9 Inject Flow Control
	14.16.4.10 Toggle Cache Flush
	14.16.4.11 Inject MAC Delay
	14.16.4.12 Insert Unexpected MAC
	14.16.4.13 Inject Viral
	14.16.4.14 Inject ALMP in Any State
	14.16.4.15 Ignore Received ALMP
	14.16.4.16 Inject Bit Error in Flit

	Appendix A Taxonomy
	A.1 Accelerator Usage Taxonomy
	A.2 Bias Model Flow Example – From CPU
	A.3 CPU Support for Bias Modes
	A.4 Giant Cache Model

	Appendix B Protocol Tables for Memory
	B.1 Type 2 Requests
	B.2 Type 3 Requests
	B.3 Type 2 RwD
	B.4 Type 3 RwD

