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Puzzling Effects of Monetary VARs
due to invalid identification scheme?

Contractionary monetary policy shocks
• increase prices (’price puzzle’)

• have hump-shaped effect on FX rates (’delayed overshooting’)

• do not affect credit spreads

Main suspected culprit: Recursive (Cholesky) identification
• imposes invalid timing restrictions

Solution: external instruments (Gertler and Karadi, 2015)

• high-frequency futures around FOMC decisions
• no restrictions on contemporaneous shock effects
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Puzzling Effects of Monetary VARs
or due to missing information?

But...
Puzzling VAR results may also be due to Missing Information
• VARs suffer curse of dimensionality

inevitable proliferation of unknown parameters as further variables (or lags) are added

• may lead to nonfundamentalness

⇒ invalidates results, regardless of identification scheme

Solution: enlarge information set
• FAVAR: add factors to observable variables
• DFM: assume all factors are unobservable
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Puzzling Effects of Monetary VARs

My research question: what explains puzzling VAR results?
invalid identification?
or missing information?

Approach: start with basic Cholesky VAR and
apply external instrument identification
expand information set via factors

→ check which puzzles these methods are able to solve

Result: missing information is key
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Empirical Methods
Models

X
N×T

= Λ
N×r

F
r×T

+ e
N×T

and Φ(L)
r×r

F
r×T

= u
r×T

VAR:

N = r = 4: log IP, log CPI, 1-year rate + variable of interest
X = F = Y VAR, e = 0 (all factors perfectly observable)

FAVAR:
N >> r , F =(IP, CPI, 1y rate, F ∗), F ∗: 9 princ. comp.
idiosyncratic (e.g. measurement) errors e

DFM (dynamic factor model):
N >> r > q (dynamic factors), F = F ∗

dataset X covers N = 132 US series from 1973 to 2016 (T = 522)
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Empirical Methods
Identification

reduced-form
u = H

r×r

structural
e

Recursive Cholesky identification: mon. policy shock

increases 1-year rate
has no immediate effect on CPI or IP

External instrument identification:
fed funds future movements around FOMC announcements

due to policy shocks
not any other structural shock
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Results: Output and Prices

Study 50bp increase in 1-year rate (contractionary shock)
Cholesky VAR
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• recursive VAR yields puzzling results
• ext. inst. VAR solves IP puzzle (Gertler and Karadi, AEJ 2015)

→ but CPI response remains muted
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• dynamic factor model yields intuitive results
→ even with Cholesky identification (Forni and Gambetti, JME 2010)

•
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Results: Output and Prices

Study 50bp increase in 1-year rate (contractionary shock)
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• ext. inst. FAVAR yields broadly similar results
→ difference b/w VAR and DFM due to info sets
•
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Results: Corporate Bond Spreads
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• recursive VAR yields puzzling results
• ext. inst. VAR solves most puzzles (Gertler and Karadi, AEJ 2015)
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• DFM and FAVAR find somewhat larger effects
→ largely confirm each other
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Results: Real Exchange Rates
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• recursive VAR yields puzzling results
• ext. inst. VAR as well
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Cholesky VAR
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• DFM and FAVAR yield intuitive results
→ immediate appreciation of US dollar across the board
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Further Results

FAVAR results for different numbers of princ. components
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Black line and shaded area: benchmark results with 9 principal components; red dotted lines:

1-3 princ. comp.; dashed blue lines: 7, 11, 13 princ. comp.

• with too few factors, puzzling VAR results re-emerge
• robust results when increasing number of factors

→ sufficient information is key
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Further Results

DFM results in different identification schemes
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10 20 30

-1

0

1

CPI

10 20 30

-1.5

-1

-0.5

0

One-year rate

10 20 30

-0.5

0

0.5
Excess bond premium

10 20 30

0

0.2

0.4

3m Commerc. paper

10 20 30

-0.1

0

0.1

0.2

0.3

RER: Switzerland

10 20 30

0

5

10

RER: UK

10 20 30

0

5

10

RER: Canada

10 20 30

0

2

4

6

8

Black line and shaded area: benchmark results with recursive Cholesky scheme; blue dashed

lines: external instrument scheme. Figure refers to pre-crisis sample (ending June 2008),

estimates noisier for full sample.

• dynamic factor model results broadly similar
• irrespective of identification scheme

→ Cholesky scheme might not be invalid per se
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Further Results: Euro area

In a joint paper with Lucia Alessi, we show

even with high-frequency instrument, puzzling VAR results :
• IP & CPI expand after contractionary shock
• Stocks & credit spreads barely react (or exhibit wrong sign)

as in Jarocinski & Karadi, ECB WP 2018

using same instrument in factor model yields intuitive results
• solves IP & CPI puzzle
• yields stronger & more rapid asset price effects

See "The Response of Asset Prices to Monetary Policy Shocks: Stronger Than Thought",

Alessi & Kerssenfischer (2018)
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Conclusion

1 Recursive small-scale VARs produce puzzling results

2 External high-frequency instrument solves some puzzles

3 A recursive dynamic factor model solves all puzzles

4 Remaining discrepancies are due to limited info set of VAR

→ ext. inst. FAVAR similar to recursive DFM

⇒ Cholesky scheme not invalid per se, invalid only in
conjunction with small-scale VARs

⇒ Overall comforting news: Two leading empirical advances
(external instruments and DFMs) cross-verify each other
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Thank you for your attention!

Any questions?
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Cholesky DFM: static factors
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Ext. Inst. DFM: static factors
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Cholesky DFM: dynamic factors
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Subsample Analysis: Macro aggregates
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Subsample Analysis: Credit Spreads
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Subsample Analysis: FX rates
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Dynamic Factor Models: the basics
Forni and Gambetti (2010)

variables
N×1

Xt = χt
common

component

+
idio. comp.

et

χt
component

=

loadings
N×r

Λ · Ft
r static
factors

r � N
q structural

VAR(p)

Φ(L) Ft
factors

=

matrix
r×q

G · ut
q reduced-
form shocks

q ≤ r
q structural

ut
reduced-form

=

matrix
q×q

H εt
q structural

shocks

→ Challenge: identify matrix H (or column thereof)
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External instrument identification
Gertler and Karadi (2015)

Rewrite

ut = Hεt = [H1 . . .Hq]

ε1t
...
εqt

 and w.l.g. pick ε1t as the mon.pol. shock

Given an instrumental variable Zt that meets
relevance condition: E(ε1tZt ) = α 6= 0
and exogeneity condition: E(εjtZt ) = 0, j = 2, . . . ,q

we get[
E(u1tZt )
E(u•tZt )

]
= E(utZt ) = E(HεtZt ) = [H1H•]

[
E(ε1tZt )
E(ε•tZt )

]
= H1α

→ In practice: estimate H1 by regressing instrument Zt on
reduced form shocks ut
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Nonfundamentalness in small-scale VARs
VAR models: a quick recap

Yt : economic variables (production, prices, interest rates, ...)
εt : shocks (technology, fiscal and monetary policy, ...)

⇒ Yt = B(L)εt

Intuition: the economy is driven by exogenous structural shocks
and agent’s reaction to them (households, firms, ...)

1 estimate reduced form VAR: A(L)Yt = ut

2 obtain ut and Aj by OLS (equation by equation)

3 apply identification restrictions B0 (Cholesky, signs, long-run, ...)

→ structural shocks εt = B−1
0 ut

→ structural IRFs B(L) = A(L)−1B0
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Nonfundamentalness in small-scale VARs
VAR models: the problem

Assumption (implicit): structural shocks can be recovered using
present and past values of economic time series. But:

Economic agents incorporate large information sets
→ ECB e.g. monitors more variables than just GDP & HICP

VARs typically capture only a few variables

⇒ agent’s information set > econometrician’s information set

⇒ Nonfundamentalness

Intuitively: VAR variables Yt do not contain enough information to
recover structural shocks ut and IRFs B(L)

Technically: structural moving average representation is not
invertible
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Nonfundamentalness⇐⇒ missing information

The problem with VARs:
include only few selected variables
hundreds of other potentially important variables neglected

Economic agents 

VARs 
GDP 

yields 

asset prices 
HICP 

EONIA stocks, bonds, real estate, 
commodities, … 

short/long-term,  
safe/risky, … 

real activity 
GDP, industrial production,  

exports, … 

… 

… 
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Nonfundamentalness⇐⇒ missing information

Basic idea of factor models:
expand the information space (drastically)
usually >100 variables vs. 4-8 in VARs

Economic agents 

Factor 
models 

yields 

asset prices 
stocks, bonds, real estate, 

commodities, … 

short/long-term,  
safe/risky, … 

real activity 
GDP, industrial production,  

exports, … 

… 
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