The Puzzling Effects of Monetary Policy in VARs:

Invalid Identification or Missing Information?

Mark Kerssenfischer¹

¹Deutsche Bundesbank

August 2018

The views expressed in this paper do not necessarily reflect those of the Deutsche Bundesbank.

due to invalid identification scheme?

Motivation

Contractionary monetary policy shocks

- increase prices ('price puzzle')
- have hump-shaped effect on FX rates ('delayed overshooting')
- do not affect credit spreads

imposes invalid timing restrictions

due to invalid identification scheme?

Motivation

Method

Results

Conclus

Dobusto

110003111

Detail

Dynamic Facto Model Identification

Contractionary monetary policy shocks

- increase prices ('price puzzle')
- have hump-shaped effect on FX rates ('delayed overshooting')
- do not affect credit spreads

Main suspected culprit: Recursive (Cholesky) identification

imposes invalid timing restrictions

Solution: external instruments (Gertler and Karadi, 2015

- high-frequency futures around FOMC decisions
- no restrictions on contemporaneous shock effects

due to invalid identification scheme?

Motivation

Empirio

Results

Conclus

Dobusto

Tiobastin

Dynamic Facti Model

Identification Nonfundamenta ness

Contractionary monetary policy shocks

- increase prices ('price puzzle')
- have hump-shaped effect on FX rates ('delayed overshooting')
- do not affect credit spreads

Main suspected culprit: Recursive (Cholesky) identification

• imposes invalid timing restrictions

Solution: external instruments (Gertler and Karadi, 2015)

- high-frequency futures around FOMC decisions
- no restrictions on contemporaneous shock effects

or due to missing information?

Motivation

Method

ricoun

Corrolasi

Robustne

Detail

Dynamic Factor Model Identification Nonfundamentalness

But...

Puzzling VAR results may also be due to Missing Information

- VARs suffer curse of dimensionality
 inevitable proliferation of unknown parameters as further variables (or lags) are added
- may lead to nonfundamentalness
- ⇒ invalidates results, regardless of identification scheme

- FAVAR: add factors to observable variables
- DFM: assume all factors are unobservable

or due to missing information?

Motivation

Method

Result

Conclusi

Pobuetne

Details

Dynamic Fact Model

Identification Nonfundamenta ness

But...

Puzzling VAR results may also be due to **Missing Information**

- VARs suffer curse of dimensionality
 inevitable proliferation of unknown parameters as further variables (or lags) are added
- may lead to nonfundamentalness
- ⇒ invalidates results, regardless of identification scheme

- FAVAR: add factors to observable variables
- DFM: assume all factors are unobservable

or due to missing information?

Motivation

Method

Result

Conclus

Robustn

Dynamic Fact Model

Identification Nonfundamenta ness

But...

Puzzling VAR results may also be due to **Missing Information**

- VARs suffer curse of dimensionality
 inevitable proliferation of unknown parameters as further variables (or lags) are added
- may lead to nonfundamentalness
- ⇒ invalidates results, regardless of identification scheme

- FAVAR: add factors to observable variables
- DFM: assume all factors are unobservable

or due to missing information?

Motivation

Methods

Robustne

Details

Dynamic Factor

Model

Identification

But...

Puzzling VAR results may also be due to **Missing Information**

- VARs suffer curse of dimensionality
 inevitable proliferation of unknown parameters as further variables (or lags) are added
- may lead to nonfundamentalness
- ⇒ invalidates results, regardless of identification scheme

- FAVAR: add factors to observable variables
- DFM: assume all factors are unobservable

Motivation

Method

Resul

Conclusi

Robustne

Detail

Dynamic Facto Model

Identification Nonfundamenta ness My research question: what explains puzzling VAR results?

- invalid identification?
- or missing information?

Approach: start with basic Cholesky VAR and

- apply external instrument identification
- expand information set via factors
- → check which puzzles these methods are able to solve

Result: missing information is key

Motivation

Method

Resul

Conclusio

Robustne

Dynamic Factor
Model

Model Identification Nonfundamenta ness My research question: what explains puzzling VAR results?

- invalid identification?
- or missing information?

Approach: start with basic Cholesky VAR and

- apply external instrument identification
- expand information set via factors
- ightarrow check which puzzles these methods are able to solve

Result: missing information is key

Motivation

Method

Result

001101001

Robustne

Details

Dynamic Fact

Model
Identification
Nonfundamenta

My research question: what explains puzzling VAR results?

- invalid identification?
- or missing information?

Approach: start with basic Cholesky VAR and

- apply external instrument identification
- expand information set via factors
- \rightarrow check which puzzles these methods are able to solve

Result: missing information is key

Models

Empirical Methods

 $N \times T$ $N \times r$ $r \times T$ $N \times T$

 $X = \Lambda F + e$ and $\Phi(L) F = u$ $r \times r \quad r \times T \qquad r \times T$

- N = r = 4: log IP, log CPI, 1-year rate + variable of interest
- $X = F = Y^{\text{VAR}}$, e = 0 (all factors perfectly observable)

- N >> r, $F = (IP, CPI, 1y rate, <math>F^*)$, F^* : 9 princ. comp.
- idiosyncratic (e.g. measurement) errors e

•
$$N >> r > q$$
 (dynamic factors), $F = F^*$

Models

Empirical Methods

 $N \times T$ $N \times r$ $r \times T$ $N \times T$

 $X = \Lambda F + e$ and $\Phi(L) F = u$ $r \times r \quad r \times T \qquad r \times T$

VAR:

- N = r = 4: log IP, log CPI, 1-year rate + variable of interest
- $X = F = Y^{\text{VAR}}$, e = 0 (all factors perfectly observable)

- N >> r, $F = (IP, CPI, 1v rate, F^*)$, F^* : 9 princ, comp.
- idiosyncratic (e.g. measurement) errors e

•
$$N >> r > q$$
 (dynamic factors), $F = F^*$

Models

Motivation

Empirical

Methods

Conclus

Debuston

Details

Dynamic F

Model Pac

Identification Nonfundamenta

$$X = \bigwedge_{N \times T} F + e$$
 and $\Phi(L) F = u$

VAR:

- N = r = 4: log IP, log CPI, 1-year rate + variable of interest
- $X = F = Y^{VAR}$, e = 0 (all factors perfectly observable)

FAVAR:

- N >> r, $F = (IP, CPI, 1y rate, <math>F^*)$, F^* : 9 princ. comp.
- idiosyncratic (e.g. measurement) errors e

DFM (dynamic factor model):

•
$$N >> r > q$$
 (dynamic factors), $F = F^*$

dataset X covers N = 132 US series from 1973 to 2016 (T = 522)

Models

Motivation

Empirical Methods

Resul

Conclusi

Robustne

. . .

Dynamic Fa

Model

Identification Nonfundamenta ness

$$X = \bigwedge_{N \times T} F + e$$
 and $\Phi(L) F = u$

VAR:

- N = r = 4: log IP, log CPI, 1-year rate + variable of interest
- $X = F = Y^{VAR}$, e = 0 (all factors perfectly observable)

FAVAR:

- N >> r, $F = (IP, CPI, 1y rate, <math>F^*)$, F^* : 9 princ. comp.
- idiosyncratic (e.g. measurement) errors e

DFM (dynamic factor model):

• N >> r > q (dynamic factors), $F = F^*$

Models

Motivation

Empirical Methods

Result

Conclusi

Robustne

Date 1

Dynamic Fa

Identification Nonfundamenta

$$X = \bigwedge_{N \times T} F + e$$
 and $\Phi(L) F = u$

VAR:

- N = r = 4: log IP, log CPI, 1-year rate + variable of interest
- $X = F = Y^{\text{VAR}}$, e = 0 (all factors perfectly observable)

FAVAR:

- N >> r, $F = (IP, CPI, 1y rate, <math>F^*)$, F^* : 9 princ. comp.
- idiosyncratic (e.g. measurement) errors e

DFM (dynamic factor model):

• N >> r > q (dynamic factors), $F = F^*$

dataset X covers N = 132 US series from 1973 to 2016 (T = 522)

Identification

Motivation

Empirical Methods

Dogulto

Conclus

Debustes

Tiobustile

Detail

Model
Identification
Nonfundamental

reduced-form structural u = H e

Recursive Cholesky identification: mon. policy shock

- increases 1-year rate
- has no immediate effect on CPI or IP

External instrument identification:

fed funds future movements around FOMC announcements

- due to policy shocks
- not any other structural shock

Identification

Motivatio

Empirical Methods

Resul

Conclusi

Dobustos

Dota

Model Pacti

Identification

Nonfundament

reduced-form structural
$$u = H e$$

Recursive Cholesky identification: mon. policy shock

- increases 1-year rate
- has no immediate effect on CPI or IP

External instrument identification:

fed funds future movements around FOMC announcements

- due to policy shocks
- not any other structural shock

Identification

Motivatio

Empirical Methods

Resul

Conclusio

Robustne

_

Dynamic Facto Model

Nonfundament ness u = H e structural

Recursive Cholesky identification: mon. policy shock

- increases 1-year rate
- has no immediate effect on CPI or IP

External instrument identification:

fed funds future movements around FOMC announcements

- due to policy shocks
- not any other structural shock

Results: Output and Prices

Motivation

Results

Conclusio

Robustne

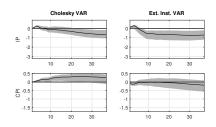
Details

Dynamic Factor

Model

Identification
Nonfundamenta

Study 50bp increase in 1-year rate (contractionary shock)

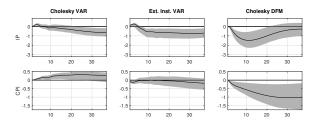


- recursive VAR yields puzzling results
- ext. inst. VAR solves IP puzzle (Gertler and Karadi, AEJ 2015)
- → but CPI response remains muted

Results: Output and Prices

Results

Study 50bp increase in 1-year rate (contractionary shock)



- dynamic factor model yields intuitive results
- → even with Cholesky identification (Forni and Gambetti, JME 2010)

Results: Output and Prices

Motivation

Results

Conclusio

Robustne

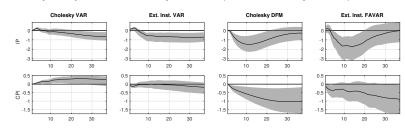
Details

Dynamic Fac

Model

Identification
Nonfundamenta

Study 50bp increase in 1-year rate (contractionary shock)



- ext. inst. FAVAR yields broadly similar results
- → difference b/w VAR and DFM due to info sets

Results: Corporate Bond Spreads

Motivation

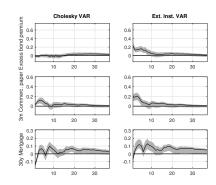
Empirical Methods

Results

Conclusio

Robustne

Dynamic Factor Model Identification Nonfundamental



- · recursive VAR yields puzzling results
- ext. inst. VAR solves most puzzles (Gertler and Karadi, AEJ 2015)

Results: Corporate Bond Spreads

Motivation

Danish

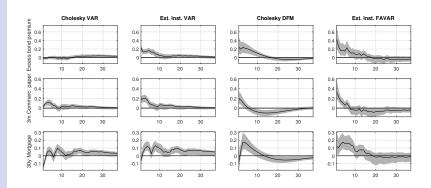
Results

Conclusion

Robustne

. . .

Details
Dynamic Factor
Model
Identification



- DFM and FAVAR find somewhat larger effects
- → largely confirm each other

Results: Real Exchange Rates

Motivation

_

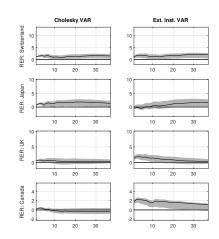
Results

Conclusio

Robustne

Dynamic Fa

Identification Nonfundamenta ness



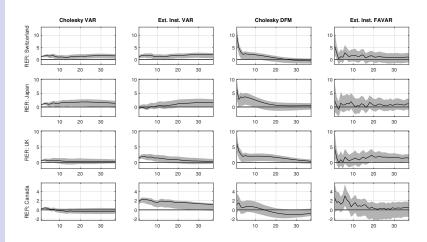
- recursive VAR yields puzzling results
- ext. inst. VAR as well

Results: Real Exchange Rates

Robustne

Detelle

Dynamic Factor Model Identification Nonfundamenta



- DFM and FAVAR yield intuitive results
- $\,\rightarrow\,$ immediate appreciation of US dollar across the board

Motivation

Method

Results

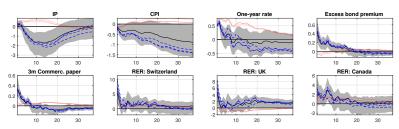
Conclusio

Robustne

Details

Dynamic Factor Model Identification Nonfundamenta

FAVAR results for different numbers of princ. components

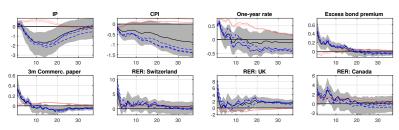


Black line and shaded area: benchmark results with 9 principal components; red dotted lines: 1-3 princ. comp.; dashed blue lines: 7, 11, 13 princ. comp.

- with too few factors, puzzling VAR results re-emerge
- robust results when increasing number of factors
- ightarrow sufficient information is key

Results

FAVAR results for different numbers of princ. components



Black line and shaded area: benchmark results with 9 principal components; red dotted lines: 1-3 princ. comp.; dashed blue lines: 7, 11, 13 princ. comp.

- with too few factors, puzzling VAR results re-emerge
- robust results when increasing number of factors

Motivation Empirical

Results

Conclusio

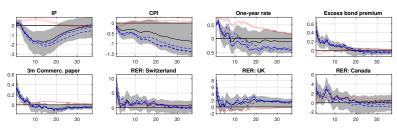
Robustne

Details

Dynamic Fact
Model

Identification

FAVAR results for different numbers of princ. components

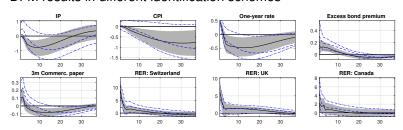


Black line and shaded area: benchmark results with 9 principal components; red dotted lines: 1-3 princ. comp.; dashed blue lines: 7, 11, 13 princ. comp.

- with too few factors, puzzling VAR results re-emerge
- robust results when increasing number of factors
- → sufficient information is key

Results

DFM results in different identification schemes



Black line and shaded area: benchmark results with recursive Cholesky scheme; blue dashed lines: external instrument scheme. Figure refers to pre-crisis sample (ending June 2008), estimates noisier for full sample.

Motivation

Empirica Methods

Results

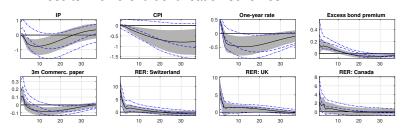
Conclusio

Robustne

Dotaile

Dynamic Factor Model Identification Nonfundamenta

DFM results in different identification schemes



Black line and shaded area: benchmark results with recursive Cholesky scheme; blue dashed lines: external instrument scheme. Figure refers to pre-crisis sample (ending June 2008), estimates noisier for full sample.

- dynamic factor model results broadly similar
- irrespective of identification scheme
- → Cholesky scheme might not be invalid per se

Motivation

Empirica Methods

Results

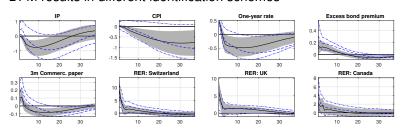
Conclusio

Robustne

Details

Dynamic Factor Model Identification Nonfundamental ness

DFM results in different identification schemes



Black line and shaded area: benchmark results with recursive Cholesky scheme; blue dashed lines: external instrument scheme. Figure refers to pre-crisis sample (ending June 2008), estimates noisier for full sample.

- dynamic factor model results broadly similar
- irrespective of identification scheme
- → Cholesky scheme might not be invalid per se

Further Results: Euro area

Motivation

wouvation

Results

Conclusi

Dobustos

Dynamic Fact

Identification
Nonfundamenta

In a joint paper with Lucia Alessi, we show

- even with high-frequency instrument, puzzling VAR results :
 - IP & CPI expand after contractionary shock
 - Stocks & credit spreads barely react (or exhibit wrong sign) as in Jarocinski & Karadi, ECB WP 2018
- using same instrument in factor model yields intuitive results
 - solves IP & CPI puzzle
 - yields stronger & more rapid asset price effects

See "The Response of Asset Prices to Monetary Policy Shocks: Stronger Than Thought", Alessi & Kerssenfischer (2018)

Further Results: Euro area

Motivation

Methods

Results

Corrolasio

Robustne

Details

Model Lacto

Identification Nonfundamenta ness

In a joint paper with Lucia Alessi, we show

- even with high-frequency instrument, puzzling VAR results :
 - IP & CPI expand after contractionary shock
 - Stocks & credit spreads barely react (or exhibit wrong sign) as in Jarocinski & Karadi, ECB WP 2018
- using same instrument in factor model yields intuitive results
 - solves IP & CPI puzzle
 - yields stronger & more rapid asset price effects

See "The Response of Asset Prices to Monetary Policy Shocks: Stronger Than Thought", Alessi & Kerssenfischer (2018)

Further Results: Euro area

Motivation

Metho

Results

Hobusine

Details

Identification
Nonfundamenta

In a joint paper with Lucia Alessi, we show

- even with high-frequency instrument, puzzling VAR results :
 - IP & CPI expand after contractionary shock
 - Stocks & credit spreads barely react (or exhibit wrong sign) as in Jarocinski & Karadi, ECB WP 2018
- using same instrument in factor model yields intuitive results
 - solves IP & CPI puzzle
 - yields stronger & more rapid asset price effects

See "The Response of Asset Prices to Monetary Policy Shocks: Stronger Than Thought", Alessi & Kerssenfischer (2018)

Conclusion

Motivation

EmpiricaMethods

Result

Conclusion

Date of the

Hobustne

Dynamic Factor Model Identification Nonfundamental

- Recursive small-scale VARs produce puzzling results
- External high-frequency instrument solves some puzzles
- A recursive dynamic factor model solves all puzzles
- Remaining discrepancies are due to limited info set of VAR
- → ext. inst. FAVAR similar to recursive DFM
- ⇒ Cholesky scheme not invalid per se, invalid only in conjunction with small-scale VARs
- Overall comforting news: Two leading empirical advances (external instruments and DFMs) cross-verify each other

- Recursive small-scale VARs produce puzzling results
- External high-frequency instrument solves some puzzles

- Recursive small-scale VARs produce puzzling results
- External high-frequency instrument solves some puzzles
- A recursive dynamic factor model solves all puzzles

- Recursive small-scale VARs produce puzzling results
- External high-frequency instrument solves some puzzles
- A recursive dynamic factor model solves all puzzles
- Remaining discrepancies are due to limited info set of VAR
- → ext. inst. FAVAR similar to recursive DFM.

- Recursive small-scale VARs produce puzzling results.
- External high-frequency instrument solves some puzzles
- A recursive dynamic factor model solves all puzzles
- Remaining discrepancies are due to limited info set of VAR
- → ext. inst. FAVAR similar to recursive DFM.
- ⇒ Cholesky scheme not invalid per se, invalid only in conjunction with small-scale VARs

- Recursive small-scale VARs produce puzzling results.
- External high-frequency instrument solves some puzzles
- A recursive dynamic factor model solves all puzzles
- Remaining discrepancies are due to limited info set of VAR
- → ext. inst. FAVAR similar to recursive DFM.
- ⇒ Cholesky scheme not invalid per se, invalid only in conjunction with small-scale VARs
- ⇒ Overall comforting news: Two leading empirical advances (external instruments and DFMs) cross-verify each other

Motivation

Methods

riesuits

Conclusion

Robustnes

Details

Model Pactor

Identification

Nonfundamen

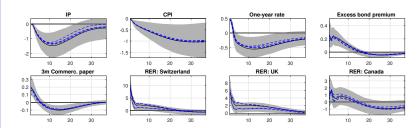
Thank you for your attention!

Any questions?

Cholesky DFM: static factors

Robustness

Model

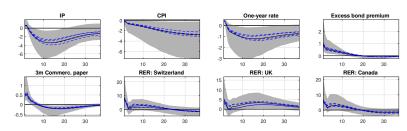


- black/shaded: r = 16 (benchmark)
- blue: $r = \{14, 15, 17, 18\}$

Ext. Inst. DFM: static factors

Robustness

Model



- black/shaded: r = 16 (benchmark)
- blue: $r = \{14, 15, 17, 18\}$

Cholesky DFM: dynamic factors

Motivation

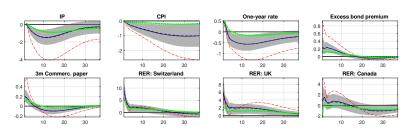
iviotivatioi

_

Conclusio

Robustness

Dynamic Factor Model Identification



- black/shaded: q = 4 (benchmark)
- red: *q* = 3
- blue: *q* = 5
- green: *q* = 6

Ext. Inst. DFM: dynamic factors

Motivation

_ .. .

Regulto

Conclusio

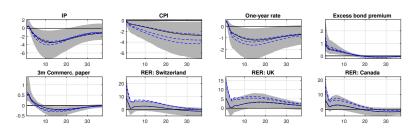
Robustness

Details

Dynamic Fact

Model

Model Identification Nonfundamentalness



- black/shaded: q = 4 (benchmark)
- blue: $q = \{3, 5, 6\}$

Subsample Analysis: Macro aggregates

Motivation

_ .

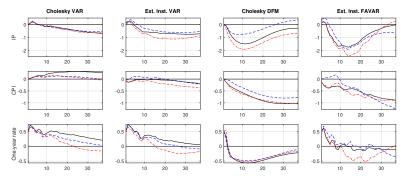
Result

Conclusio

Robustness

Details

Model Identification Nonfundamental ness



- black: 1973m4-2016m9 (benchmark)
- blue: 1973m4-2008m6 (pre-crisis)
- red: 1979m7-2012m6 (Gertler and Karadi, AEJ 2015)

Subsample Analysis: Credit Spreads

Motivation

Method

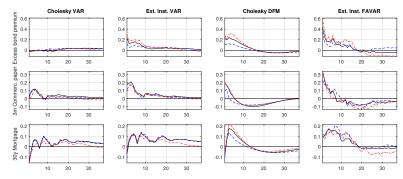
Results

Conclusio

Robustness

Details Dynamic

Model Identification Nonfundamentalness



- black: 1973m4-2016m9 (benchmark)
- blue: 1973m4-2008m6 (pre-crisis)
- red: 1979m7-2012m6 (Gertler and Karadi, AEJ 2015)

Subsample Analysis: FX rates

Empirical Methods

Result

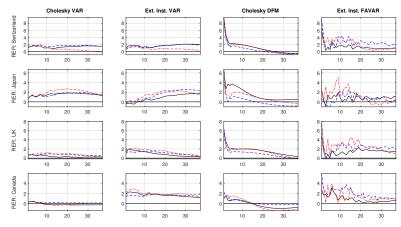
Conclusio

Robustness

. . .

Dynamic Fact Model

Identification Nonfundament ness



- black: 1973m4-2016m9 (benchmark)
- blue: 1973m4-2008m6 (pre-crisis)
- red: 1979m7-2012m6 (Gertler and Karadi, AEJ 2015)

idio. comp.

Forni and Gambetti (2010)

Dynamic Factor

Model

component

variables N×1

Forni and Gambetti (2010)

Dynamic Factor

Model

variables
$$_{N imes 1}^{\text{variables}}$$
 idio. comp. $X_t = \chi_t + e_t$ $_{\text{common component}}^{\text{common component}}$ $\chi_t = \Lambda \cdot F_t$ $_{r ext{ static factors}}^{\text{component}}$

Forni and Gambetti (2010)

Dynamic Factor Model

variables
$$N \times 1$$
 idio. comp. $X_t = \chi_t + e_t$ e_t $common component$ $component$ com

VAR
$$(p)$$
 matrix $r \times q$ $\Phi(L)$ $F_t = G \cdot \underbrace{u_t}_{q \text{ reduced-form shocks}} q \le r$

Forni and Gambetti (2010)

Motivation

Method

Result

Conclus

Robustne

Detail

Dynamic Factor Model

Nonfundamenta

variables Nx1 idio. comp.
$$X_t = \chi_t + e_t$$
 common component
$$\chi_t = \Lambda \cdot F_t$$
 $r \leqslant N$ $r \ll N$

$$\Phi(L) \ F_t = G \ \cdot \ \underbrace{u_t}_{q \ \text{reduced-form shocks}} q \le r$$

$$u_t = H$$
 ϵ_t q structural shocks

Forni and Gambetti (2010)

Motivation

Methods

Result

Conclus

Robustne

Detail

Dynamic Factor Model

Nonfundamenta

variables
$$N \times 1$$
 idio. comp. $X_t = \chi_t + e_t$ e_t e_t $\chi_t = \Lambda \cdot F_t$ $\chi_t = \Lambda \cdot F_t$ $r \leqslant N$

$$VAR(p)$$
 $matrix \\ r imes q$ $\Phi(L)$ $F_t = G \cdot \underbrace{u_t}_{q \text{ reduced-form shocks}} q imes r$

$$u_t = H$$
 ϵ_t
 $q \text{ structural shocks}$

→ Challenge: identify matrix *H* (or column thereof)

Gertler and Karadi (2015)

Motivation

Motivatio

....

Resul

Conclus

Robustne

Dyna

Model

Identification

Nonfundamen

Rewrite

$$u_t = H\epsilon_t = [H_1 \dots H_q] \begin{pmatrix} \epsilon_{1t} \\ \vdots \\ \epsilon_{qt} \end{pmatrix}$$

and w.l.g. pick ϵ_{1t} as the mon.pol. shock

Given an instrumental variable Z_t that meets

- relevance condition: $E(\epsilon_{1t}Z_t) = \alpha \neq 0$
- and exogeneity condition: $E(\epsilon_{jt}Z_t) = 0, j = 2, \dots, q$

we get

$$\begin{bmatrix} E(u_{1t}Z_t) \\ E(u_{\bullet t}Z_t) \end{bmatrix} = E(u_tZ_t) = E(H\epsilon_tZ_t) = [H_1H_{\bullet}] \begin{bmatrix} E(\epsilon_{1t}Z_t) \\ E(\epsilon_{\bullet t}Z_t) \end{bmatrix} = \mathbf{H}_1\alpha$$

 \rightarrow In practice: estimate H_1 by regressing instrument Z_t on reduced form shocks u_t

Gertler and Karadi (2015)

Motivation

Method

Resul

Conclusi

Robustna

Duna

Model

Identification

Nonfundame

Rewrite

$$u_t = H\epsilon_t = [H_1 \dots H_q] \begin{pmatrix} \epsilon_{1t} \\ \vdots \\ \epsilon_{qt} \end{pmatrix}$$

and w.l.g. pick ϵ_{1t} as the mon.pol. shock

Given an instrumental variable Z_t that meets

- relevance condition: $E(\epsilon_{1t}Z_t) = \alpha \neq 0$
- and exogeneity condition: $E(\epsilon_{it}Z_t) = 0, j = 2, ..., q$

we get

$$\begin{bmatrix} E(u_{1t}Z_t) \\ E(u_{\bullet t}Z_t) \end{bmatrix} = E(u_tZ_t) = E(H\epsilon_tZ_t) = [H_1H_{\bullet}] \begin{bmatrix} E(\epsilon_{1t}Z_t) \\ E(\epsilon_{\bullet t}Z_t) \end{bmatrix} = H_1\alpha$$

 \rightarrow In practice: estimate H_1 by regressing instrument Z_t on reduced form shocks u_t

Gertler and Karadi (2015)

Identification

Rewrite

$$u_t = H\epsilon_t = [H_1 \dots H_q] egin{pmatrix} \epsilon_{1t} \ dots \ \epsilon_{qt} \end{pmatrix}$$
 and w.l.g. pick ϵ_{1t} as the mon.pol. shock

Given an instrumental variable Z_t that meets

- relevance condition: $E(\epsilon_{1t}Z_t) = \alpha \neq 0$
- and exogeneity condition: $E(\epsilon_{it}Z_t) = 0, j = 2, \dots, q$

we get

$$\begin{bmatrix} E(u_{1t}Z_t) \\ E(u_{\bullet t}Z_t) \end{bmatrix} = E(u_tZ_t) = E(H\epsilon_tZ_t) = [H_1H_{\bullet}] \begin{bmatrix} E(\epsilon_{1t}Z_t) \\ E(\epsilon_{\bullet t}Z_t) \end{bmatrix} = H_1\alpha$$

Gertler and Karadi (2015)

Identification

Rewrite

$$u_t = H\epsilon_t = [H_1 \dots H_q] \begin{pmatrix} \epsilon_{1t} \\ \vdots \\ \epsilon_{qt} \end{pmatrix}$$
 and w.l.g. pick ϵ_{1t} as the mon.pol. shock

Given an instrumental variable Z_t that meets

- relevance condition: $E(\epsilon_{1t}Z_t) = \alpha \neq 0$
- and exogeneity condition: $E(\epsilon_{it}Z_t) = 0, j = 2, \dots, q$

we get

$$\begin{bmatrix} E(u_{1t}Z_t) \\ E(u_{\bullet t}Z_t) \end{bmatrix} = E(u_tZ_t) = E(H\epsilon_tZ_t) = [H_1H_{\bullet}] \begin{bmatrix} E(\epsilon_{1t}Z_t) \\ E(\epsilon_{\bullet t}Z_t) \end{bmatrix} = H_1\alpha$$

 \rightarrow In practice: estimate H_1 by regressing instrument Z_t on reduced form shocks u+

VAR models: a quick recap

Motivation

Empirica Methods

Results

Corrolasi

Robustne

Detail

Dynamic Facto Model

Identification

Nonfundamentalness Y_t : economic variables (production, prices, interest rates, ...)

 ϵ_t : Shocks (technology, fiscal and monetary policy, ...)

$$\Rightarrow Y_t = B(L)\epsilon_t$$

<u>Intuition</u>: the economy is driven by exogenous <u>structural shocks</u> and <u>agent's reaction to them</u> (households, firms, ...)

- estimate reduced form VAR: $A(L)Y_t = u_t$
- obtain u_t and A_i by OLS (equation by equation)
- \bigcirc apply identification restrictions B_0 (Cholesky, signs, long-run, ...)
- \rightarrow structural shocks $\epsilon_t = B_0^{-1} u_t$
- \rightarrow structural IRFs $B(L) = \tilde{A}(L)^{-1}B_0$

VAR models: a quick recap

Motivation

Method

Conclusi

Dobustos

.

Detail

ynamic Facto lodel

Nonfundamentalness *Y_t*: economic variables (production, prices, interest rates, ...)

 ϵ_t : Shocks (technology, fiscal and monetary policy, ...)

$$\Rightarrow Y_t = B(L)\epsilon_t$$

<u>Intuition</u>: the economy is driven by exogenous <u>structural shocks</u> and <u>agent's reaction</u> to them (households, firms, ...)

- estimate reduced form VAR: $A(L)Y_t = u_t$
- \bigcirc obtain u_t and A_i by OLS (equation by equation)
- \bigcirc apply identification restrictions B_0 (Cholesky, signs, long-run, ...)
- \rightarrow structural shocks $\epsilon_t = B_0^{-1} u_t$
- \rightarrow structural IRFs $B(L) = \mathring{A}(L)^{-1}B_0$

VAR models: a quick recap

Motivation

Result

Conclusi

Robustne

Details

Dynamic Facto Model

Nonfundamentalness

- Y_t : economic variables (production, prices, interest rates, ...)
- ϵ_t : Shocks (technology, fiscal and monetary policy, ...)

$$\Rightarrow Y_t = B(L)\epsilon_t$$

<u>Intuition</u>: the economy is driven by exogenous <u>structural shocks</u> and <u>agent's reaction</u> to them (households, firms, ...)

- estimate reduced form VAR: $A(L)Y_t = u_t$
- **2** obtain u_t and A_i by OLS (equation by equation)
- **apply identification restrictions** B_0 (Cholesky, signs, long-run, ...)
- \rightarrow structural shocks $\epsilon_t = B_0^{-1} u_t$
- \rightarrow structural IRFs $B(L) = A(L)^{-1}B_0$

VAR models: the problem

Motivation

iviotivatio

Pocul

Conclusion

Date of the

Dynamic Fa

Model

Nonfundamentalness <u>Assumption</u> (implicit): structural shocks can be recovered using present and past values of economic time series. But:

- Economic agents incorporate large information sets
 - ightarrow ECB e.g. monitors more variables than just GDP & HICP
- VARs typically capture only a few variables
- \Rightarrow agent's information set > econometrician's information set

⇒ Nonfundamentalness

<u>Intuitively</u>: VAR variables Y_t do not contain enough information to recover structural shocks u_t and IRFs B(L)

<u>Technically</u>: structural moving average representation is not invertible

VAR models: the problem

Motivation

Results

_ .

Robustne

Details

Dynamic Facti
Model

Nonfundamentalness <u>Assumption</u> (implicit): structural shocks can be recovered using present and past values of economic time series. But:

- Economic agents incorporate large information sets
 - ightarrow ECB e.g. monitors more variables than just GDP & HICP
- VARs typically capture only a few variables
- ⇒ agent's information set > econometrician's information set

⇒ Nonfundamentalness

<u>Intuitively</u>: VAR variables Y_t do not contain enough information to recover structural shocks u_t and IRFs B(L)

<u>Technically</u>: structural moving average representation is not invertible

VAR models: the problem

Motivatio

Result

Conclusio

Robustne

Details

Dynamic Facto Model

Nonfundamentalness <u>Assumption</u> (implicit): structural shocks can be recovered using present and past values of economic time series. But:

- Economic agents incorporate large information sets
 - ightarrow ECB e.g. monitors more variables than just GDP & HICP
- VARs typically capture only a few variables
- ⇒ agent's information set > econometrician's information set

⇒ Nonfundamentalness

<u>Intuitively</u>: VAR variables Y_t do not contain enough information to recover structural shocks u_t and IRFs B(L)

<u>Technically</u>: structural moving average representation is not invertible

Nonfundamentalness ←⇒ missing information

Nonfundamental-

The problem with VARs:

include only few selected variables

hundreds of other potentially important variables neglected

Economic agents real activity GDP, industrial production, **VARs** exports.... **GDP** asset prices **FONIA** stocks, bonds, real estate. HICP commodities.... vields short/long-term, safe/risky, ...

イロト イ団ト イヨト イヨト ヨー 夕久へ

Nonfundamentalness ←⇒ missing information

Nonfundamental-

Basic idea of factor models:

expand the information space (drastically)

usually >100 variables vs. 4-8 in VARs

Economic agents real activity GDP, industrial production. exports.... Factor asset prices stocks, bonds, real estate. models commodities, ... vields short/long-term safe/risky, ...

