diff --git a/Marlin/Configuration_adv.h b/Marlin/Configuration_adv.h index 246664ff2a06..c168240e243d 100644 --- a/Marlin/Configuration_adv.h +++ b/Marlin/Configuration_adv.h @@ -1062,12 +1062,14 @@ * * Zero Vibration (ZV) Input Shaping for X and/or Y movements. * - * This option uses a lot of SRAM for the step buffer, which is proportional - * to the largest step rate possible for any axis. If the build fails due to + * This option uses a lot of SRAM for the step buffer, which is related to the + * largest step rate possible for the shaped axes. If the build fails due to * low SRAM the buffer size may be reduced by setting smaller values for - * DEFAULT_AXIS_STEPS_PER_UNIT and/or DEFAULT_MAX_FEEDRATE. Runtime editing - * of max feedrate (M203) or resonant frequency (M593) may result feedrate - * being capped to prevent buffer overruns. + * DEFAULT_AXIS_STEPS_PER_UNIT and/or DEFAULT_MAX_FEEDRATE. Disabling + * ADAPTIVE_STEP_SMOOTHING and reducing the step rate for non-shaped axes may + * also reduce the buffer sizes. Runtime editing of max feedrate (M203) or + * resonant frequency (M593) may result in input shaping losing effectiveness + * during high speed movements to prevent buffer overruns. * * Tune with M593 D F: * @@ -1077,13 +1079,18 @@ * X<1> Set the given parameters only for the X axis. * Y<1> Set the given parameters only for the Y axis. */ -//#define INPUT_SHAPING -#if ENABLED(INPUT_SHAPING) - #define SHAPING_FREQ_X 40 // (Hz) The dominant resonant frequency of the X axis. - #define SHAPING_FREQ_Y 40 // (Hz) The dominant resonant frequency of the Y axis. - #define SHAPING_ZETA_X 0.3f // Damping ratio of the X axis (range: 0.0 = no damping to 1.0 = critical damping). - #define SHAPING_ZETA_Y 0.3f // Damping ratio of the Y axis (range: 0.0 = no damping to 1.0 = critical damping). - //#define SHAPING_MENU // Add a menu to the LCD to set shaping parameters. +//#define INPUT_SHAPING_X +//#define INPUT_SHAPING_Y +#if EITHER(INPUT_SHAPING_X, INPUT_SHAPING_Y) + #if ENABLED(INPUT_SHAPING_X) + #define SHAPING_FREQ_X 40 // (Hz) The default dominant resonant frequency on the X axis. + #define SHAPING_ZETA_X 0.15f // Damping ratio of the X axis (range: 0.0 = no damping to 1.0 = critical damping). + #endif + #if ENABLED(INPUT_SHAPING_Y) + #define SHAPING_FREQ_Y 40 // (Hz) The default dominant resonant frequency on the Y axis. + #define SHAPING_ZETA_Y 0.15f // Damping ratio of the Y axis (range: 0.0 = no damping to 1.0 = critical damping). + #endif + //#define SHAPING_MENU // Add a menu to the LCD to set shaping parameters. #endif #define AXIS_RELATIVE_MODES { false, false, false, false } diff --git a/Marlin/src/gcode/feature/input_shaping/M593.cpp b/Marlin/src/gcode/feature/input_shaping/M593.cpp index e1e99ca51b7a..040710f3e580 100644 --- a/Marlin/src/gcode/feature/input_shaping/M593.cpp +++ b/Marlin/src/gcode/feature/input_shaping/M593.cpp @@ -22,21 +22,21 @@ #include "../../../inc/MarlinConfig.h" -#if ENABLED(INPUT_SHAPING) +#if HAS_SHAPING #include "../../gcode.h" #include "../../../module/stepper.h" void GcodeSuite::M593_report(const bool forReplay/*=true*/) { report_heading_etc(forReplay, F("Input Shaping")); - #if HAS_SHAPING_X + #if ENABLED(INPUT_SHAPING_X) SERIAL_ECHOLNPGM(" M593 X" " F", stepper.get_shaping_frequency(X_AXIS), " D", stepper.get_shaping_damping_ratio(X_AXIS) ); #endif - #if HAS_SHAPING_Y - TERN_(HAS_SHAPING_X, report_echo_start(forReplay)); + #if ENABLED(INPUT_SHAPING_Y) + TERN_(INPUT_SHAPING_X, report_echo_start(forReplay)); SERIAL_ECHOLNPGM(" M593 Y" " F", stepper.get_shaping_frequency(Y_AXIS), " D", stepper.get_shaping_damping_ratio(Y_AXIS) @@ -55,10 +55,10 @@ void GcodeSuite::M593_report(const bool forReplay/*=true*/) { void GcodeSuite::M593() { if (!parser.seen_any()) return M593_report(); - const bool seen_X = TERN0(HAS_SHAPING_X, parser.seen_test('X')), - seen_Y = TERN0(HAS_SHAPING_Y, parser.seen_test('Y')), - for_X = seen_X || TERN0(HAS_SHAPING_X, (!seen_X && !seen_Y)), - for_Y = seen_Y || TERN0(HAS_SHAPING_Y, (!seen_X && !seen_Y)); + const bool seen_X = TERN0(INPUT_SHAPING_X, parser.seen_test('X')), + seen_Y = TERN0(INPUT_SHAPING_Y, parser.seen_test('Y')), + for_X = seen_X || TERN0(INPUT_SHAPING_X, (!seen_X && !seen_Y)), + for_Y = seen_Y || TERN0(INPUT_SHAPING_Y, (!seen_X && !seen_Y)); if (parser.seen('D')) { const float zeta = parser.value_float(); @@ -72,12 +72,13 @@ void GcodeSuite::M593() { if (parser.seen('F')) { const float freq = parser.value_float(); - if (freq > 0) { + constexpr float max_freq = float(uint32_t(STEPPER_TIMER_RATE) / 2) / shaping_time_t(-2); + if (freq == 0.0f || freq > max_freq) { if (for_X) stepper.set_shaping_frequency(X_AXIS, freq); if (for_Y) stepper.set_shaping_frequency(Y_AXIS, freq); } else - SERIAL_ECHO_MSG("?Frequency (F) must be greater than 0"); + SERIAL_ECHOLNPGM("?Frequency (F) must be greater than ", max_freq, " or 0 to disable"); } } diff --git a/Marlin/src/gcode/gcode.cpp b/Marlin/src/gcode/gcode.cpp index ff066ed67837..bb859d802641 100644 --- a/Marlin/src/gcode/gcode.cpp +++ b/Marlin/src/gcode/gcode.cpp @@ -933,7 +933,7 @@ void GcodeSuite::process_parsed_command(const bool no_ok/*=false*/) { case 575: M575(); break; // M575: Set serial baudrate #endif - #if ENABLED(INPUT_SHAPING) + #if HAS_SHAPING case 593: M593(); break; // M593: Set Input Shaping parameters #endif diff --git a/Marlin/src/gcode/gcode.h b/Marlin/src/gcode/gcode.h index 0ce8ab39025e..5d56e53dd5e0 100644 --- a/Marlin/src/gcode/gcode.h +++ b/Marlin/src/gcode/gcode.h @@ -259,7 +259,7 @@ * M554 - Get or set IP gateway. (Requires enabled Ethernet port) * M569 - Enable stealthChop on an axis. (Requires at least one _DRIVER_TYPE to be TMC2130/2160/2208/2209/5130/5160) * M575 - Change the serial baud rate. (Requires BAUD_RATE_GCODE) - * M593 - Get or set input shaping parameters. (Requires INPUT_SHAPING) + * M593 - Get or set input shaping parameters. (Requires INPUT_SHAPING_[XY]) * M600 - Pause for filament change: "M600 X Y Z E L". (Requires ADVANCED_PAUSE_FEATURE) * M603 - Configure filament change: "M603 T U L". (Requires ADVANCED_PAUSE_FEATURE) * M605 - Set Dual X-Carriage movement mode: "M605 S [X] [R]". (Requires DUAL_X_CARRIAGE) @@ -1081,7 +1081,7 @@ class GcodeSuite { static void M575(); #endif - #if ENABLED(INPUT_SHAPING) + #if HAS_SHAPING static void M593(); static void M593_report(const bool forReplay=true); #endif diff --git a/Marlin/src/inc/Conditionals_adv.h b/Marlin/src/inc/Conditionals_adv.h index d1b7a342d679..367f7f232460 100644 --- a/Marlin/src/inc/Conditionals_adv.h +++ b/Marlin/src/inc/Conditionals_adv.h @@ -1120,15 +1120,11 @@ #endif // Input shaping -#if ENABLED(INPUT_SHAPING) - #if !HAS_Y_AXIS - #undef SHAPING_FREQ_Y - #undef SHAPING_BUFFER_Y - #endif - #ifdef SHAPING_FREQ_X - #define HAS_SHAPING_X 1 - #endif - #ifdef SHAPING_FREQ_Y - #define HAS_SHAPING_Y 1 - #endif +#if !HAS_Y_AXIS + #undef INPUT_SHAPING_Y + #undef SHAPING_FREQ_Y + #undef SHAPING_BUFFER_Y +#endif +#if EITHER(INPUT_SHAPING_X, INPUT_SHAPING_Y) + #define HAS_SHAPING 1 #endif diff --git a/Marlin/src/inc/SanityCheck.h b/Marlin/src/inc/SanityCheck.h index b2e4dc9de0f4..42f1409739ef 100644 --- a/Marlin/src/inc/SanityCheck.h +++ b/Marlin/src/inc/SanityCheck.h @@ -4271,14 +4271,14 @@ static_assert(_PLUS_TEST(4), "HOMING_FEEDRATE_MM_M values must be positive."); #endif // Check requirements for Input Shaping -#if ENABLED(INPUT_SHAPING) && defined(__AVR__) - #if HAS_SHAPING_X +#if HAS_SHAPING && defined(__AVR__) + #if ENABLED(INPUT_SHAPING_X) #if F_CPU > 16000000 static_assert((SHAPING_FREQ_X) * 2 * 0x10000 >= (STEPPER_TIMER_RATE), "SHAPING_FREQ_X is below the minimum (20) for AVR 20MHz."); #else static_assert((SHAPING_FREQ_X) * 2 * 0x10000 >= (STEPPER_TIMER_RATE), "SHAPING_FREQ_X is below the minimum (16) for AVR 16MHz."); #endif - #elif HAS_SHAPING_Y + #elif ENABLED(INPUT_SHAPING_Y) #if F_CPU > 16000000 static_assert((SHAPING_FREQ_Y) * 2 * 0x10000 >= (STEPPER_TIMER_RATE), "SHAPING_FREQ_Y is below the minimum (20) for AVR 20MHz."); #else @@ -4287,12 +4287,8 @@ static_assert(_PLUS_TEST(4), "HOMING_FEEDRATE_MM_M values must be positive."); #endif #endif -#if ENABLED(INPUT_SHAPING) - #if ENABLED(DIRECT_STEPPING) - #error "INPUT_SHAPING cannot currently be used with DIRECT_STEPPING." - #elif ENABLED(LASER_FEATURE) - #error "INPUT_SHAPING cannot currently be used with LASER_FEATURE." - #endif +#if BOTH(HAS_SHAPING, DIRECT_STEPPING) + #error "INPUT_SHAPING_[XY] cannot currently be used with DIRECT_STEPPING." #endif // Misc. Cleanup diff --git a/Marlin/src/lcd/language/language_en.h b/Marlin/src/lcd/language/language_en.h index 2ecf2def1224..45861a825235 100644 --- a/Marlin/src/lcd/language/language_en.h +++ b/Marlin/src/lcd/language/language_en.h @@ -403,10 +403,10 @@ namespace Language_en { LSTR MSG_A_RETRACT = _UxGT("Retract Accel"); LSTR MSG_A_TRAVEL = _UxGT("Travel Accel"); LSTR MSG_INPUT_SHAPING = _UxGT("Input Shaping"); - LSTR MSG_SHAPING_X_FREQ = STR_X _UxGT(" frequency"); - LSTR MSG_SHAPING_Y_FREQ = STR_Y _UxGT(" frequency"); - LSTR MSG_SHAPING_X_ZETA = STR_X _UxGT(" damping"); - LSTR MSG_SHAPING_Y_ZETA = STR_Y _UxGT(" damping"); + LSTR MSG_SHAPING_ENABLE = _UxGT("Enable @ shaping"); + LSTR MSG_SHAPING_DISABLE = _UxGT("Disable @ shaping"); + LSTR MSG_SHAPING_FREQ = _UxGT("@ frequency"); + LSTR MSG_SHAPING_ZETA = _UxGT("@ damping"); LSTR MSG_XY_FREQUENCY_LIMIT = _UxGT("XY Freq Limit"); LSTR MSG_XY_FREQUENCY_FEEDRATE = _UxGT("Min FR Factor"); LSTR MSG_STEPS_PER_MM = _UxGT("Steps/mm"); diff --git a/Marlin/src/lcd/menu/menu_advanced.cpp b/Marlin/src/lcd/menu/menu_advanced.cpp index 9d6d79efd741..875e74e8bb15 100644 --- a/Marlin/src/lcd/menu/menu_advanced.cpp +++ b/Marlin/src/lcd/menu/menu_advanced.cpp @@ -545,24 +545,28 @@ void menu_backlash(); START_MENU(); BACK_ITEM(MSG_ADVANCED_SETTINGS); - // M593 F Frequency - #if HAS_SHAPING_X + // M593 F Frequency and D Damping ratio + #if ENABLED(INPUT_SHAPING_X) editable.decimal = stepper.get_shaping_frequency(X_AXIS); - EDIT_ITEM_FAST(float61, MSG_SHAPING_X_FREQ, &editable.decimal, min_frequency, 200.0f, []{ stepper.set_shaping_frequency(X_AXIS, editable.decimal); }); + if (editable.decimal) { + ACTION_ITEM_N(X_AXIS, MSG_SHAPING_DISABLE, []{ stepper.set_shaping_frequency(X_AXIS, 0.0f); }); + EDIT_ITEM_FAST_N(float61, X_AXIS, MSG_SHAPING_FREQ, &editable.decimal, min_frequency, 200.0f, []{ stepper.set_shaping_frequency(X_AXIS, editable.decimal); }); + editable.decimal = stepper.get_shaping_damping_ratio(X_AXIS); + EDIT_ITEM_FAST_N(float42_52, X_AXIS, MSG_SHAPING_ZETA, &editable.decimal, 0.0f, 1.0f, []{ stepper.set_shaping_damping_ratio(X_AXIS, editable.decimal); }); + } + else + ACTION_ITEM_N(X_AXIS, MSG_SHAPING_ENABLE, []{ stepper.set_shaping_frequency(X_AXIS, SHAPING_FREQ_X); }); #endif - #if HAS_SHAPING_Y + #if ENABLED(INPUT_SHAPING_Y) editable.decimal = stepper.get_shaping_frequency(Y_AXIS); - EDIT_ITEM_FAST(float61, MSG_SHAPING_Y_FREQ, &editable.decimal, min_frequency, 200.0f, []{ stepper.set_shaping_frequency(Y_AXIS, editable.decimal); }); - #endif - - // M593 D Damping ratio - #if HAS_SHAPING_X - editable.decimal = stepper.get_shaping_damping_ratio(X_AXIS); - EDIT_ITEM_FAST(float42_52, MSG_SHAPING_X_ZETA, &editable.decimal, 0.0f, 1.0f, []{ stepper.set_shaping_damping_ratio(X_AXIS, editable.decimal); }); - #endif - #if HAS_SHAPING_Y - editable.decimal = stepper.get_shaping_damping_ratio(Y_AXIS); - EDIT_ITEM_FAST(float42_52, MSG_SHAPING_Y_ZETA, &editable.decimal, 0.0f, 1.0f, []{ stepper.set_shaping_damping_ratio(Y_AXIS, editable.decimal); }); + if (editable.decimal) { + ACTION_ITEM_N(Y_AXIS, MSG_SHAPING_DISABLE, []{ stepper.set_shaping_frequency(Y_AXIS, 0.0f); }); + EDIT_ITEM_FAST_N(float61, Y_AXIS, MSG_SHAPING_FREQ, &editable.decimal, min_frequency, 200.0f, []{ stepper.set_shaping_frequency(Y_AXIS, editable.decimal); }); + editable.decimal = stepper.get_shaping_damping_ratio(Y_AXIS); + EDIT_ITEM_FAST_N(float42_52, Y_AXIS, MSG_SHAPING_ZETA, &editable.decimal, 0.0f, 1.0f, []{ stepper.set_shaping_damping_ratio(Y_AXIS, editable.decimal); }); + } + else + ACTION_ITEM_N(Y_AXIS, MSG_SHAPING_ENABLE, []{ stepper.set_shaping_frequency(Y_AXIS, SHAPING_FREQ_Y); }); #endif END_MENU(); diff --git a/Marlin/src/module/planner.cpp b/Marlin/src/module/planner.cpp index 0128d90f0fb5..ed85045098ba 100644 --- a/Marlin/src/module/planner.cpp +++ b/Marlin/src/module/planner.cpp @@ -1724,6 +1724,13 @@ float Planner::triggered_position_mm(const AxisEnum axis) { return result * mm_per_step[axis]; } +bool Planner::busy() { + return (has_blocks_queued() || cleaning_buffer_counter + || TERN0(EXTERNAL_CLOSED_LOOP_CONTROLLER, CLOSED_LOOP_WAITING()) + || TERN0(HAS_SHAPING, stepper.input_shaping_busy()) + ); +} + void Planner::finish_and_disable() { while (has_blocks_queued() || cleaning_buffer_counter) idle(); stepper.disable_all_steppers(); @@ -2483,14 +2490,6 @@ bool Planner::_populate_block( #endif // XY_FREQUENCY_LIMIT - #if ENABLED(INPUT_SHAPING) - const float top_freq = _MIN(float(0x7FFFFFFFL) - OPTARG(HAS_SHAPING_X, stepper.get_shaping_frequency(X_AXIS)) - OPTARG(HAS_SHAPING_Y, stepper.get_shaping_frequency(Y_AXIS))), - max_factor = (top_freq * float(shaping_dividends - 3) * 2.0f) / block->nominal_rate; - NOMORE(speed_factor, max_factor); - #endif - // Correct the speed if (speed_factor < 1.0f) { current_speed *= speed_factor; diff --git a/Marlin/src/module/planner.h b/Marlin/src/module/planner.h index 32b5a8795bcb..dcfdb1c28e6b 100644 --- a/Marlin/src/module/planner.h +++ b/Marlin/src/module/planner.h @@ -930,11 +930,7 @@ class Planner { static float triggered_position_mm(const AxisEnum axis); // Blocks are queued, or we're running out moves, or the closed loop controller is waiting - static bool busy() { - return (has_blocks_queued() || cleaning_buffer_counter - || TERN0(EXTERNAL_CLOSED_LOOP_CONTROLLER, CLOSED_LOOP_WAITING()) - ); - } + static bool busy(); // Block until all buffered steps are executed / cleaned static void synchronize(); diff --git a/Marlin/src/module/settings.cpp b/Marlin/src/module/settings.cpp index 921b0d91cb2a..4ae4c19922d9 100644 --- a/Marlin/src/module/settings.cpp +++ b/Marlin/src/module/settings.cpp @@ -580,11 +580,11 @@ typedef struct SettingsDataStruct { // // Input Shaping // - #if HAS_SHAPING_X + #if ENABLED(INPUT_SHAPING_X) float shaping_x_frequency, // M593 X F shaping_x_zeta; // M593 X D #endif - #if HAS_SHAPING_Y + #if ENABLED(INPUT_SHAPING_Y) float shaping_y_frequency, // M593 Y F shaping_y_zeta; // M593 Y D #endif @@ -1617,12 +1617,12 @@ void MarlinSettings::postprocess() { // // Input Shaping /// - #if ENABLED(INPUT_SHAPING) - #if HAS_SHAPING_X + #if HAS_SHAPING + #if ENABLED(INPUT_SHAPING_X) EEPROM_WRITE(stepper.get_shaping_frequency(X_AXIS)); EEPROM_WRITE(stepper.get_shaping_damping_ratio(X_AXIS)); #endif - #if HAS_SHAPING_Y + #if ENABLED(INPUT_SHAPING_Y) EEPROM_WRITE(stepper.get_shaping_frequency(Y_AXIS)); EEPROM_WRITE(stepper.get_shaping_damping_ratio(Y_AXIS)); #endif @@ -2602,7 +2602,7 @@ void MarlinSettings::postprocess() { // // Input Shaping // - #if HAS_SHAPING_X + #if ENABLED(INPUT_SHAPING_X) { float _data[2]; EEPROM_READ(_data); @@ -2611,7 +2611,7 @@ void MarlinSettings::postprocess() { } #endif - #if HAS_SHAPING_Y + #if ENABLED(INPUT_SHAPING_Y) { float _data[2]; EEPROM_READ(_data); @@ -3389,12 +3389,12 @@ void MarlinSettings::reset() { // // Input Shaping // - #if ENABLED(INPUT_SHAPING) - #if HAS_SHAPING_X + #if HAS_SHAPING + #if ENABLED(INPUT_SHAPING_X) stepper.set_shaping_frequency(X_AXIS, SHAPING_FREQ_X); stepper.set_shaping_damping_ratio(X_AXIS, SHAPING_ZETA_X); #endif - #if HAS_SHAPING_Y + #if ENABLED(INPUT_SHAPING_Y) stepper.set_shaping_frequency(Y_AXIS, SHAPING_FREQ_Y); stepper.set_shaping_damping_ratio(Y_AXIS, SHAPING_ZETA_Y); #endif @@ -3650,7 +3650,7 @@ void MarlinSettings::reset() { // // Input Shaping // - TERN_(INPUT_SHAPING, gcode.M593_report(forReplay)); + TERN_(HAS_SHAPING, gcode.M593_report(forReplay)); // // Linear Advance diff --git a/Marlin/src/module/stepper.cpp b/Marlin/src/module/stepper.cpp index 6cc40ccecee9..74e761dc6478 100644 --- a/Marlin/src/module/stepper.cpp +++ b/Marlin/src/module/stepper.cpp @@ -232,17 +232,25 @@ uint32_t Stepper::advance_divisor = 0, Stepper::la_advance_steps = 0; #endif -#if ENABLED(INPUT_SHAPING) - shaping_time_t DelayTimeManager::now = 0; - ParamDelayQueue Stepper::shaping_dividend_queue; - DelayQueue Stepper::shaping_queue; - #if HAS_SHAPING_X - shaping_time_t DelayTimeManager::delay_x; - ShapeParams Stepper::shaping_x; +#if HAS_SHAPING + shaping_time_t ShapingQueue::now = 0; + shaping_time_t ShapingQueue::times[shaping_echoes]; + shaping_echo_axis_t ShapingQueue::echo_axes[shaping_echoes]; + uint16_t ShapingQueue::tail = 0; + + #if ENABLED(INPUT_SHAPING_X) + shaping_time_t ShapingQueue::delay_x; + shaping_time_t ShapingQueue::peek_x_val = shaping_time_t(-1); + uint16_t ShapingQueue::head_x = 0; + uint16_t ShapingQueue::_free_count_x = shaping_echoes - 1; + ShapeParams Stepper::shaping_x; #endif - #if HAS_SHAPING_Y - shaping_time_t DelayTimeManager::delay_y; - ShapeParams Stepper::shaping_y; + #if ENABLED(INPUT_SHAPING_Y) + shaping_time_t ShapingQueue::delay_y; + shaping_time_t ShapingQueue::peek_y_val = shaping_time_t(-1); + uint16_t ShapingQueue::head_y = 0; + uint16_t ShapingQueue::_free_count_y = shaping_echoes - 1; + ShapeParams Stepper::shaping_y; #endif #endif @@ -1479,20 +1487,10 @@ void Stepper::isr() { // Enable ISRs to reduce USART processing latency hal.isr_on(); - #if ENABLED(INPUT_SHAPING) - // Speed limiting should ensure the buffers never get full. But if somehow they do, stutter rather than overflow. - if (!nextMainISR) { - TERN_(HAS_SHAPING_X, if (shaping_dividend_queue.free_count_x() == 0) nextMainISR = shaping_dividend_queue.peek_x() + 1); - TERN_(HAS_SHAPING_Y, if (shaping_dividend_queue.free_count_y() == 0) NOLESS(nextMainISR, shaping_dividend_queue.peek_y() + 1)); - TERN_(HAS_SHAPING_X, if (shaping_queue.free_count_x() < steps_per_isr) NOLESS(nextMainISR, shaping_queue.peek_x() + 1)); - TERN_(HAS_SHAPING_Y, if (shaping_queue.free_count_y() < steps_per_isr) NOLESS(nextMainISR, shaping_queue.peek_y() + 1)); - } - #endif + TERN_(HAS_SHAPING, shaping_isr()); // Do Shaper stepping, if needed if (!nextMainISR) pulse_phase_isr(); // 0 = Do coordinated axes Stepper pulses - TERN_(INPUT_SHAPING, shaping_isr()); // Do Shaper stepping, if needed - #if ENABLED(LIN_ADVANCE) if (!nextAdvanceISR) { // 0 = Do Linear Advance E Stepper pulses advance_isr(); @@ -1523,10 +1521,8 @@ void Stepper::isr() { const uint32_t interval = _MIN( uint32_t(HAL_TIMER_TYPE_MAX), // Come back in a very long time nextMainISR // Time until the next Pulse / Block phase - OPTARG(HAS_SHAPING_X, shaping_dividend_queue.peek_x()) // Time until next input shaping dividend change for X - OPTARG(HAS_SHAPING_Y, shaping_dividend_queue.peek_y()) // Time until next input shaping dividend change for Y - OPTARG(HAS_SHAPING_X, shaping_queue.peek_x()) // Time until next input shaping echo for X - OPTARG(HAS_SHAPING_Y, shaping_queue.peek_y()) // Time until next input shaping echo for Y + OPTARG(INPUT_SHAPING_X, ShapingQueue::peek_x()) // Time until next input shaping echo for X + OPTARG(INPUT_SHAPING_Y, ShapingQueue::peek_y()) // Time until next input shaping echo for Y OPTARG(LIN_ADVANCE, nextAdvanceISR) // Come back early for Linear Advance? OPTARG(INTEGRATED_BABYSTEPPING, nextBabystepISR) // Come back early for Babystepping? ); @@ -1539,16 +1535,9 @@ void Stepper::isr() { // nextMainISR -= interval; - - TERN_(INPUT_SHAPING, DelayTimeManager::decrement_delays(interval)); - - #if ENABLED(LIN_ADVANCE) - if (nextAdvanceISR != LA_ADV_NEVER) nextAdvanceISR -= interval; - #endif - - #if ENABLED(INTEGRATED_BABYSTEPPING) - if (nextBabystepISR != BABYSTEP_NEVER) nextBabystepISR -= interval; - #endif + TERN_(HAS_SHAPING, ShapingQueue::decrement_delays(interval)); + TERN_(LIN_ADVANCE, if (nextAdvanceISR != LA_ADV_NEVER) nextAdvanceISR -= interval); + TERN_(INTEGRATED_BABYSTEPPING, if (nextBabystepISR != BABYSTEP_NEVER) nextBabystepISR -= interval); /** * This needs to avoid a race-condition caused by interleaving @@ -1636,11 +1625,16 @@ void Stepper::pulse_phase_isr() { abort_current_block = false; if (current_block) { discard_current_block(); - #if ENABLED(INPUT_SHAPING) - shaping_dividend_queue.purge(); - shaping_queue.purge(); - TERN_(HAS_SHAPING_X, delta_error.x = 0); - TERN_(HAS_SHAPING_Y, delta_error.y = 0); + #if HAS_SHAPING + ShapingQueue::purge(); + #if ENABLED(INPUT_SHAPING_X) + shaping_x.delta_error = 0; + shaping_x.last_block_end_pos = count_position.x; + #endif + #if ENABLED(INPUT_SHAPING_Y) + shaping_y.delta_error = 0; + shaping_y.last_block_end_pos = count_position.y; + #endif #endif } } @@ -1676,31 +1670,48 @@ void Stepper::pulse_phase_isr() { #define PULSE_PREP(AXIS) do{ \ delta_error[_AXIS(AXIS)] += advance_dividend[_AXIS(AXIS)]; \ step_needed[_AXIS(AXIS)] = (delta_error[_AXIS(AXIS)] >= 0); \ - if (step_needed[_AXIS(AXIS)]) { \ - count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \ + if (step_needed[_AXIS(AXIS)]) \ delta_error[_AXIS(AXIS)] -= advance_divisor; \ - } \ }while(0) - #define PULSE_PREP_SHAPING(AXIS, DIVIDEND) do{ \ - delta_error[_AXIS(AXIS)] += (DIVIDEND); \ - if ((MAXDIR(AXIS) && delta_error[_AXIS(AXIS)] <= -0x30000000L) || (MINDIR(AXIS) && delta_error[_AXIS(AXIS)] >= 0x30000000L)) { \ - TBI(last_direction_bits, _AXIS(AXIS)); \ - DIR_WAIT_BEFORE(); \ - SET_STEP_DIR(AXIS); \ - DIR_WAIT_AFTER(); \ - } \ - step_needed[_AXIS(AXIS)] = (MAXDIR(AXIS) && delta_error[_AXIS(AXIS)] >= 0x10000000L) || \ - (MINDIR(AXIS) && delta_error[_AXIS(AXIS)] <= -0x10000000L); \ + // With input shaping, direction changes can happen with almost only + // AWAIT_LOW_PULSE() and DIR_WAIT_BEFORE() between steps. To work around + // the TMC2208 / TMC2225 shutdown bug (#16076), add a half step hysteresis + // in each direction. This results in the position being off by half an + // average half step during travel but correct at the end of each segment. + #if AXIS_DRIVER_TYPE_X(TMC2208) || AXIS_DRIVER_TYPE_X(TMC2208_STANDALONE) + #define HYSTERESIS_X 64 + #else + #define HYSTERESIS_X 0 + #endif + #if AXIS_DRIVER_TYPE_Y(TMC2208) || AXIS_DRIVER_TYPE_Y(TMC2208_STANDALONE) + #define HYSTERESIS_Y 64 + #else + #define HYSTERESIS_Y 0 + #endif + #define _HYSTERESIS(AXIS) HYSTERESIS_##AXIS + #define HYSTERESIS(AXIS) _HYSTERESIS(AXIS) + + #define PULSE_PREP_SHAPING(AXIS, DELTA_ERROR, DIVIDEND) do{ \ if (step_needed[_AXIS(AXIS)]) { \ - count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \ - delta_error[_AXIS(AXIS)] += MAXDIR(AXIS) ? -0x20000000L : 0x20000000L; \ + DELTA_ERROR += (DIVIDEND); \ + if ((MAXDIR(AXIS) && DELTA_ERROR <= -(64 + HYSTERESIS(AXIS))) || (MINDIR(AXIS) && DELTA_ERROR >= (64 + HYSTERESIS(AXIS)))) { \ + { USING_TIMED_PULSE(); START_TIMED_PULSE(); AWAIT_LOW_PULSE(); } \ + TBI(last_direction_bits, _AXIS(AXIS)); \ + DIR_WAIT_BEFORE(); \ + SET_STEP_DIR(AXIS); \ + DIR_WAIT_AFTER(); \ + } \ + step_needed[_AXIS(AXIS)] = DELTA_ERROR <= -(64 + HYSTERESIS(AXIS)) || DELTA_ERROR >= (64 + HYSTERESIS(AXIS)); \ + if (step_needed[_AXIS(AXIS)]) \ + DELTA_ERROR += MAXDIR(AXIS) ? -128 : 128; \ } \ }while(0) // Start an active pulse if needed #define PULSE_START(AXIS) do{ \ if (step_needed[_AXIS(AXIS)]) { \ + count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \ _APPLY_STEP(AXIS, !_INVERT_STEP_PIN(AXIS), 0); \ } \ }while(0) @@ -1819,22 +1830,12 @@ void Stepper::pulse_phase_isr() { #endif // DIRECT_STEPPING if (!is_page) { - TERN_(INPUT_SHAPING, shaping_queue.enqueue()); - // Determine if pulses are needed #if HAS_X_STEP - #if HAS_SHAPING_X - PULSE_PREP_SHAPING(X, advance_dividend.x); - #else - PULSE_PREP(X); - #endif + PULSE_PREP(X); #endif #if HAS_Y_STEP - #if HAS_SHAPING_Y - PULSE_PREP_SHAPING(Y, advance_dividend.y); - #else - PULSE_PREP(Y); - #endif + PULSE_PREP(Y); #endif #if HAS_Z_STEP PULSE_PREP(Z); @@ -1871,6 +1872,24 @@ void Stepper::pulse_phase_isr() { } #endif #endif + + #if HAS_SHAPING + // record an echo if a step is needed in the primary bresenham + const bool x_step = TERN0(INPUT_SHAPING_X, shaping_x.enabled && step_needed[X_AXIS]), + y_step = TERN0(INPUT_SHAPING_Y, shaping_y.enabled && step_needed[Y_AXIS]); + if (x_step || y_step) + ShapingQueue::enqueue(x_step, TERN0(INPUT_SHAPING_X, shaping_x.forward), y_step, TERN0(INPUT_SHAPING_Y, shaping_y.forward)); + + // do the first part of the secondary bresenham + #if ENABLED(INPUT_SHAPING_X) + if (shaping_x.enabled) + PULSE_PREP_SHAPING(X, shaping_x.delta_error, shaping_x.factor1 * (shaping_x.forward ? 1 : -1)); + #endif + #if ENABLED(INPUT_SHAPING_Y) + if (shaping_y.enabled) + PULSE_PREP_SHAPING(Y, shaping_y.delta_error, shaping_y.factor1 * (shaping_y.forward ? 1 : -1)); + #endif + #endif } #if ISR_MULTI_STEPS @@ -1910,7 +1929,10 @@ void Stepper::pulse_phase_isr() { #endif #if ENABLED(MIXING_EXTRUDER) - if (step_needed.e) E_STEP_WRITE(mixer.get_next_stepper(), !INVERT_E_STEP_PIN); + if (step_needed.e) { + count_position[E_AXIS] += count_direction[E_AXIS]; + E_STEP_WRITE(mixer.get_next_stepper(), !INVERT_E_STEP_PIN); + } #elif HAS_E0_STEP PULSE_START(E); #endif @@ -1965,55 +1987,59 @@ void Stepper::pulse_phase_isr() { } while (--events_to_do); } -#if ENABLED(INPUT_SHAPING) +#if HAS_SHAPING void Stepper::shaping_isr() { - xyze_bool_t step_needed{0}; + xy_bool_t step_needed{0}; + + // Clear the echoes that are ready to process. If the buffers are too full and risk overflo, also apply echoes early. + TERN_(INPUT_SHAPING_X, step_needed[X_AXIS] = !ShapingQueue::peek_x() || ShapingQueue::free_count_x() < steps_per_isr); + TERN_(INPUT_SHAPING_Y, step_needed[Y_AXIS] = !ShapingQueue::peek_y() || ShapingQueue::free_count_y() < steps_per_isr); + + if (bool(step_needed)) while (true) { + #if ENABLED(INPUT_SHAPING_X) + if (step_needed[X_AXIS]) { + const bool forward = ShapingQueue::dequeue_x(); + PULSE_PREP_SHAPING(X, shaping_x.delta_error, shaping_x.factor2 * (forward ? 1 : -1)); + PULSE_START(X); + } + #endif - const bool shapex = TERN0(HAS_SHAPING_X, !shaping_queue.peek_x()), - shapey = TERN0(HAS_SHAPING_Y, !shaping_queue.peek_y()); + #if ENABLED(INPUT_SHAPING_Y) + if (step_needed[Y_AXIS]) { + const bool forward = ShapingQueue::dequeue_y(); + PULSE_PREP_SHAPING(Y, shaping_y.delta_error, shaping_y.factor2 * (forward ? 1 : -1)); + PULSE_START(Y); + } + #endif - #if HAS_SHAPING_X - if (!shaping_dividend_queue.peek_x()) shaping_x.dividend = shaping_dividend_queue.dequeue_x(); - #endif - #if HAS_SHAPING_Y - if (!shaping_dividend_queue.peek_y()) shaping_y.dividend = shaping_dividend_queue.dequeue_y(); - #endif + TERN_(I2S_STEPPER_STREAM, i2s_push_sample()); - #if HAS_SHAPING_X - if (shapex) { - shaping_queue.dequeue_x(); - PULSE_PREP_SHAPING(X, shaping_x.dividend); - PULSE_START(X); + USING_TIMED_PULSE(); + if (bool(step_needed)) { + #if ISR_MULTI_STEPS + START_TIMED_PULSE(); + AWAIT_HIGH_PULSE(); + #endif + #if ENABLED(INPUT_SHAPING_X) + PULSE_STOP(X); + #endif + #if ENABLED(INPUT_SHAPING_Y) + PULSE_STOP(Y); + #endif } - #endif - #if HAS_SHAPING_Y - if (shapey) { - shaping_queue.dequeue_y(); - PULSE_PREP_SHAPING(Y, shaping_y.dividend); - PULSE_START(Y); - } - #endif + TERN_(INPUT_SHAPING_X, step_needed[X_AXIS] = !ShapingQueue::peek_x() || ShapingQueue::free_count_x() < steps_per_isr); + TERN_(INPUT_SHAPING_Y, step_needed[Y_AXIS] = !ShapingQueue::peek_y() || ShapingQueue::free_count_y() < steps_per_isr); - TERN_(I2S_STEPPER_STREAM, i2s_push_sample()); + if (!bool(step_needed)) break; - if (shapex || shapey) { - #if ISR_MULTI_STEPS - USING_TIMED_PULSE(); - START_TIMED_PULSE(); - AWAIT_HIGH_PULSE(); - #endif - #if HAS_SHAPING_X - if (shapex) PULSE_STOP(X); - #endif - #if HAS_SHAPING_Y - if (shapey) PULSE_STOP(Y); - #endif + START_TIMED_PULSE(); + AWAIT_LOW_PULSE(); } } -#endif // INPUT_SHAPING +#endif // HAS_SHAPING // Calculate timer interval, with all limits applied. uint32_t Stepper::calc_timer_interval(uint32_t step_rate) { @@ -2462,79 +2488,55 @@ uint32_t Stepper::block_phase_isr() { acceleration_time = deceleration_time = 0; #if ENABLED(ADAPTIVE_STEP_SMOOTHING) - uint8_t oversampling = 0; // Assume no axis smoothing (via oversampling) + oversampling_factor = 0; // Assume no axis smoothing (via oversampling) // Decide if axis smoothing is possible uint32_t max_rate = current_block->nominal_rate; // Get the step event rate while (max_rate < MIN_STEP_ISR_FREQUENCY) { // As long as more ISRs are possible... max_rate <<= 1; // Try to double the rate if (max_rate < MIN_STEP_ISR_FREQUENCY) // Don't exceed the estimated ISR limit - ++oversampling; // Increase the oversampling (used for left-shift) + ++oversampling_factor; // Increase the oversampling (used for left-shift) } - oversampling_factor = oversampling; // For all timer interval calculations - #else - constexpr uint8_t oversampling = 0; #endif // Based on the oversampling factor, do the calculations - step_event_count = current_block->step_event_count << oversampling; + step_event_count = current_block->step_event_count << oversampling_factor; // Initialize Bresenham delta errors to 1/2 - #if HAS_SHAPING_X - const int32_t old_delta_error_x = delta_error.x; - #endif - #if HAS_SHAPING_Y - const int32_t old_delta_error_y = delta_error.y; - #endif delta_error = TERN_(LIN_ADVANCE, la_delta_error =) -int32_t(step_event_count); // Calculate Bresenham dividends and divisors advance_dividend = (current_block->steps << 1).asLong(); advance_divisor = step_event_count << 1; - // for input shaped axes, advance_divisor is replaced with 0x40000000 - // and steps are repeated twice so dividends have to be scaled and halved - // and the dividend is directional, i.e. signed - TERN_(HAS_SHAPING_X, advance_dividend.x = (uint64_t(current_block->steps.x) << 29) / step_event_count); - TERN_(HAS_SHAPING_X, if (TEST(current_block->direction_bits, X_AXIS)) advance_dividend.x *= -1); - TERN_(HAS_SHAPING_X, if (!shaping_queue.empty_x()) SET_BIT_TO(current_block->direction_bits, X_AXIS, TEST(last_direction_bits, X_AXIS))); - TERN_(HAS_SHAPING_Y, advance_dividend.y = (uint64_t(current_block->steps.y) << 29) / step_event_count); - TERN_(HAS_SHAPING_Y, if (TEST(current_block->direction_bits, Y_AXIS)) advance_dividend.y *= -1); - TERN_(HAS_SHAPING_Y, if (!shaping_queue.empty_y()) SET_BIT_TO(current_block->direction_bits, Y_AXIS, TEST(last_direction_bits, Y_AXIS))); - - // The scaling operation above introduces rounding errors which must now be removed. - // For this segment, there will be step_event_count calls to the Bresenham logic and the same number of echoes. - // For each pair of calls to the Bresenham logic, delta_error will increase by advance_dividend modulo 0x20000000 - // so (e.g. for x) delta_error.x will end up changing by (advance_dividend.x * step_event_count) % 0x20000000. - // For a divisor which is a power of 2, modulo is the same as as a bitmask, i.e. - // (advance_dividend.x * step_event_count) & 0x1FFFFFFF. - // This segment's final change in delta_error should actually be zero so we need to increase delta_error by - // 0 - ((advance_dividend.x * step_event_count) & 0x1FFFFFFF) - // And this needs to be adjusted to the range -0x10000000 to 0x10000000. - // Adding and subtracting 0x10000000 inside the outside the modulo achieves this. - TERN_(HAS_SHAPING_X, delta_error.x = old_delta_error_x + 0x10000000L - ((0x10000000L + advance_dividend.x * step_event_count) & 0x1FFFFFFFUL)); - TERN_(HAS_SHAPING_Y, delta_error.y = old_delta_error_y + 0x10000000L - ((0x10000000L + advance_dividend.y * step_event_count) & 0x1FFFFFFFUL)); - - // when there is damping, the signal and its echo have different amplitudes - #if ENABLED(HAS_SHAPING_X) - const int32_t echo_x = shaping_x.factor * (advance_dividend.x >> 7); - #endif - #if ENABLED(HAS_SHAPING_Y) - const int32_t echo_y = shaping_y.factor * (advance_dividend.y >> 7); - #endif - - // plan the change of values for advance_dividend for the input shaping echoes - TERN_(INPUT_SHAPING, shaping_dividend_queue.enqueue(TERN0(HAS_SHAPING_X, echo_x), TERN0(HAS_SHAPING_Y, echo_y))); - - // apply the adjustment to the primary signal - TERN_(HAS_SHAPING_X, advance_dividend.x -= echo_x); - TERN_(HAS_SHAPING_Y, advance_dividend.y -= echo_y); + #if ENABLED(INPUT_SHAPING_X) + if (shaping_x.enabled) { + const int64_t steps = TEST(current_block->direction_bits, X_AXIS) ? -int64_t(current_block->steps.x) : int64_t(current_block->steps.x); + shaping_x.last_block_end_pos += steps; + + // If there are any remaining echos unprocessed, then direction change must + // be delayed and processed in PULSE_PREP_SHAPING. This will cause half a step + // to be missed, which will need recovering and this can be done through shaping_x.remainder. + shaping_x.forward = !TEST(current_block->direction_bits, X_AXIS); + if (!ShapingQueue::empty_x()) SET_BIT_TO(current_block->direction_bits, X_AXIS, TEST(last_direction_bits, X_AXIS)); + } + #endif + + // Y follows the same logic as X (but the comments aren't repeated) + #if ENABLED(INPUT_SHAPING_Y) + if (shaping_y.enabled) { + const int64_t steps = TEST(current_block->direction_bits, Y_AXIS) ? -int64_t(current_block->steps.y) : int64_t(current_block->steps.y); + shaping_y.last_block_end_pos += steps; + shaping_y.forward = !TEST(current_block->direction_bits, Y_AXIS); + if (!ShapingQueue::empty_y()) SET_BIT_TO(current_block->direction_bits, Y_AXIS, TEST(last_direction_bits, Y_AXIS)); + } + #endif // No step events completed so far step_events_completed = 0; // Compute the acceleration and deceleration points - accelerate_until = current_block->accelerate_until << oversampling; - decelerate_after = current_block->decelerate_after << oversampling; + accelerate_until = current_block->accelerate_until << oversampling_factor; + decelerate_after = current_block->decelerate_after << oversampling_factor; TERN_(MIXING_EXTRUDER, mixer.stepper_setup(current_block->b_color)); @@ -2548,7 +2550,7 @@ uint32_t Stepper::block_phase_isr() { #endif if (current_block->la_advance_rate) { // apply LA scaling and discount the effect of frequency scaling - la_dividend = (advance_dividend.e << current_block->la_scaling) << oversampling; + la_dividend = (advance_dividend.e << current_block->la_scaling) << oversampling_factor; } #endif @@ -2974,7 +2976,8 @@ void Stepper::init() { #endif } -#if ENABLED(INPUT_SHAPING) +#if HAS_SHAPING + /** * Calculate a fixed point factor to apply to the signal and its echo * when shaping an axis. @@ -2983,41 +2986,68 @@ void Stepper::init() { // from the damping ratio, get a factor that can be applied to advance_dividend for fixed point maths // for ZV, we use amplitudes 1/(1+K) and K/(1+K) where K = exp(-zeta * M_PI / sqrt(1.0f - zeta * zeta)) // which can be converted to 1:7 fixed point with an excellent fit with a 3rd order polynomial - float shaping_factor; - if (zeta <= 0.0f) shaping_factor = 64.0f; - else if (zeta >= 1.0f) shaping_factor = 0.0f; + float factor2; + if (zeta <= 0.0f) factor2 = 64.0f; + else if (zeta >= 1.0f) factor2 = 0.0f; else { - shaping_factor = 64.44056192 + -99.02008832 * zeta; + factor2 = 64.44056192 + -99.02008832 * zeta; const float zeta2 = zeta * zeta; - shaping_factor += -7.58095488 * zeta2; + factor2 += -7.58095488 * zeta2; const float zeta3 = zeta2 * zeta; - shaping_factor += 43.073216 * zeta3; + factor2 += 43.073216 * zeta3; + factor2 = floor(factor2); } const bool was_on = hal.isr_state(); hal.isr_off(); - TERN_(HAS_SHAPING_X, if (axis == X_AXIS) { shaping_x.factor = floor(shaping_factor); shaping_x.zeta = zeta; }) - TERN_(HAS_SHAPING_Y, if (axis == Y_AXIS) { shaping_y.factor = floor(shaping_factor); shaping_y.zeta = zeta; }) + TERN_(INPUT_SHAPING_X, if (axis == X_AXIS) { shaping_x.factor2 = factor2; shaping_x.factor1 = 128 - factor2; shaping_x.zeta = zeta; }) + TERN_(INPUT_SHAPING_Y, if (axis == Y_AXIS) { shaping_y.factor2 = factor2; shaping_y.factor1 = 128 - factor2; shaping_y.zeta = zeta; }) if (was_on) hal.isr_on(); } float Stepper::get_shaping_damping_ratio(const AxisEnum axis) { - TERN_(HAS_SHAPING_X, if (axis == X_AXIS) return shaping_x.zeta); - TERN_(HAS_SHAPING_Y, if (axis == Y_AXIS) return shaping_y.zeta); + TERN_(INPUT_SHAPING_X, if (axis == X_AXIS) return shaping_x.zeta); + TERN_(INPUT_SHAPING_Y, if (axis == Y_AXIS) return shaping_y.zeta); return -1; } void Stepper::set_shaping_frequency(const AxisEnum axis, const float freq) { - TERN_(HAS_SHAPING_X, if (axis == X_AXIS) { DelayTimeManager::set_delay(axis, float(uint32_t(STEPPER_TIMER_RATE) / 2) / freq); shaping_x.frequency = freq; }) - TERN_(HAS_SHAPING_Y, if (axis == Y_AXIS) { DelayTimeManager::set_delay(axis, float(uint32_t(STEPPER_TIMER_RATE) / 2) / freq); shaping_y.frequency = freq; }) + // enabling or disabling shaping whilst moving can result in lost steps + Planner::synchronize(); + + const bool was_on = hal.isr_state(); + hal.isr_off(); + + const shaping_time_t delay = freq ? float(uint32_t(STEPPER_TIMER_RATE) / 2) / freq : shaping_time_t(-1); + #if ENABLED(INPUT_SHAPING_X) + if (axis == X_AXIS) { + ShapingQueue::set_delay(X_AXIS, delay); + shaping_x.frequency = freq; + shaping_x.enabled = !!freq; + shaping_x.delta_error = 0; + shaping_x.last_block_end_pos = count_position.x; + } + #endif + #if ENABLED(INPUT_SHAPING_Y) + if (axis == Y_AXIS) { + ShapingQueue::set_delay(Y_AXIS, delay); + shaping_y.frequency = freq; + shaping_y.enabled = !!freq; + shaping_y.delta_error = 0; + shaping_y.last_block_end_pos = count_position.y; + } + #endif + + if (was_on) hal.isr_on(); } float Stepper::get_shaping_frequency(const AxisEnum axis) { - TERN_(HAS_SHAPING_X, if (axis == X_AXIS) return shaping_x.frequency); - TERN_(HAS_SHAPING_Y, if (axis == Y_AXIS) return shaping_y.frequency); + TERN_(INPUT_SHAPING_X, if (axis == X_AXIS) return shaping_x.frequency); + TERN_(INPUT_SHAPING_Y, if (axis == Y_AXIS) return shaping_y.frequency); return -1; } -#endif + +#endif // HAS_SHAPING /** * Set the stepper positions directly in steps @@ -3029,6 +3059,13 @@ void Stepper::init() { * derive the current XYZE position later on. */ void Stepper::_set_position(const abce_long_t &spos) { + #if ENABLED(INPUT_SHAPING_X) + const int32_t x_shaping_delta = count_position.x - shaping_x.last_block_end_pos; + #endif + #if ENABLED(INPUT_SHAPING_Y) + const int32_t y_shaping_delta = count_position.y - shaping_y.last_block_end_pos; + #endif + #if ANY(IS_CORE, MARKFORGED_XY, MARKFORGED_YX) #if CORE_IS_XY // corexy positioning @@ -3058,6 +3095,19 @@ void Stepper::_set_position(const abce_long_t &spos) { // default non-h-bot planning count_position = spos; #endif + + #if ENABLED(INPUT_SHAPING_X) + if (shaping_x.enabled) { + count_position.x += x_shaping_delta; + shaping_x.last_block_end_pos = spos.x; + } + #endif + #if ENABLED(INPUT_SHAPING_Y) + if (shaping_y.enabled) { + count_position.y += y_shaping_delta; + shaping_y.last_block_end_pos = spos.y; + } + #endif } /** @@ -3097,6 +3147,8 @@ void Stepper::set_axis_position(const AxisEnum a, const int32_t &v) { #endif count_position[a] = v; + TERN_(INPUT_SHAPING_X, if (a == X_AXIS) shaping_x.last_block_end_pos = v); + TERN_(INPUT_SHAPING_Y, if (a == Y_AXIS) shaping_y.last_block_end_pos = v); #ifdef __AVR__ // Reenable Stepper ISR diff --git a/Marlin/src/module/stepper.h b/Marlin/src/module/stepper.h index 5b634c52e476..f29bb346d1e3 100644 --- a/Marlin/src/module/stepper.h +++ b/Marlin/src/module/stepper.h @@ -75,8 +75,8 @@ */ #define TIMER_READ_ADD_AND_STORE_CYCLES 34UL - // The base ISR takes 792 cycles - #define ISR_BASE_CYCLES 792UL + // The base ISR + #define ISR_BASE_CYCLES 770UL // Linear advance base time is 64 cycles #if ENABLED(LIN_ADVANCE) @@ -92,21 +92,25 @@ #define ISR_S_CURVE_CYCLES 0UL #endif + // Input shaping base time + #if HAS_SHAPING + #define ISR_SHAPING_BASE_CYCLES 180UL + #else + #define ISR_SHAPING_BASE_CYCLES 0UL + #endif + // Stepper Loop base cycles #define ISR_LOOP_BASE_CYCLES 4UL - // To start the step pulse, in the worst case takes - #define ISR_START_STEPPER_CYCLES 13UL - // And each stepper (start + stop pulse) takes in worst case - #define ISR_STEPPER_CYCLES 16UL + #define ISR_STEPPER_CYCLES 100UL #else // Cycles to perform actions in START_TIMED_PULSE #define TIMER_READ_ADD_AND_STORE_CYCLES 13UL - // The base ISR takes 752 cycles - #define ISR_BASE_CYCLES 752UL + // The base ISR + #define ISR_BASE_CYCLES 1000UL // Linear advance base time is 32 cycles #if ENABLED(LIN_ADVANCE) @@ -122,12 +126,16 @@ #define ISR_S_CURVE_CYCLES 0UL #endif + // Input shaping base time + #if HAS_SHAPING + #define ISR_SHAPING_BASE_CYCLES 290UL + #else + #define ISR_SHAPING_BASE_CYCLES 0UL + #endif + // Stepper Loop base cycles #define ISR_LOOP_BASE_CYCLES 32UL - // To start the step pulse, in the worst case takes - #define ISR_START_STEPPER_CYCLES 57UL - // And each stepper (start + stop pulse) takes in worst case #define ISR_STEPPER_CYCLES 88UL @@ -202,8 +210,12 @@ #error "Expected at least one of MINIMUM_STEPPER_PULSE or MAXIMUM_STEPPER_RATE to be defined" #endif -// But the user could be enforcing a minimum time, so the loop time is -#define ISR_LOOP_CYCLES (ISR_LOOP_BASE_CYCLES + _MAX(MIN_STEPPER_PULSE_CYCLES, MIN_ISR_LOOP_CYCLES)) +// The loop takes the base time plus the time for all the bresenham logic for R pulses plus the time +// between pulses for (R-1) pulses. But the user could be enforcing a minimum time so the loop time is: +#define ISR_LOOP_CYCLES(R) ((ISR_LOOP_BASE_CYCLES + MIN_ISR_LOOP_CYCLES + MIN_STEPPER_PULSE_CYCLES) * (R - 1) + _MAX(MIN_ISR_LOOP_CYCLES, MIN_STEPPER_PULSE_CYCLES)) + +// Model input shaping as an extra loop call +#define ISR_SHAPING_LOOP_CYCLES(R) ((TERN0(HAS_SHAPING, ISR_LOOP_BASE_CYCLES) + TERN0(INPUT_SHAPING_X, ISR_X_STEPPER_CYCLES) + TERN0(INPUT_SHAPING_Y, ISR_Y_STEPPER_CYCLES)) * (R) + (MIN_ISR_LOOP_CYCLES) * (R - 1)) // If linear advance is enabled, then it is handled separately #if ENABLED(LIN_ADVANCE) @@ -228,7 +240,7 @@ #endif // Now estimate the total ISR execution time in cycles given a step per ISR multiplier -#define ISR_EXECUTION_CYCLES(R) (((ISR_BASE_CYCLES + ISR_S_CURVE_CYCLES + (ISR_LOOP_CYCLES) * (R) + ISR_LA_BASE_CYCLES + ISR_LA_LOOP_CYCLES)) / (R)) +#define ISR_EXECUTION_CYCLES(R) (((ISR_BASE_CYCLES + ISR_S_CURVE_CYCLES + ISR_SHAPING_BASE_CYCLES + ISR_LOOP_CYCLES(R) + ISR_SHAPING_LOOP_CYCLES(R) + ISR_LA_BASE_CYCLES + ISR_LA_LOOP_CYCLES)) / (R)) // The maximum allowable stepping frequency when doing x128-x1 stepping (in Hz) #define MAX_STEP_ISR_FREQUENCY_128X ((F_CPU) / ISR_EXECUTION_CYCLES(128)) @@ -312,116 +324,142 @@ constexpr ena_mask_t enable_overlap[] = { //static_assert(!any_enable_overlap(), "There is some overlap."); -#if ENABLED(INPUT_SHAPING) - - typedef IF::type shaping_time_t; +#if HAS_SHAPING // These constexpr are used to calculate the shaping queue buffer sizes constexpr xyze_float_t max_feedrate = DEFAULT_MAX_FEEDRATE; constexpr xyze_float_t steps_per_unit = DEFAULT_AXIS_STEPS_PER_UNIT; - constexpr float max_steprate = _MAX(LOGICAL_AXIS_LIST( - max_feedrate.e * steps_per_unit.e, - max_feedrate.x * steps_per_unit.x, - max_feedrate.y * steps_per_unit.y, - max_feedrate.z * steps_per_unit.z, - max_feedrate.i * steps_per_unit.i, - max_feedrate.j * steps_per_unit.j, - max_feedrate.k * steps_per_unit.k, - max_feedrate.u * steps_per_unit.u, - max_feedrate.v * steps_per_unit.v, - max_feedrate.w * steps_per_unit.w - )); - constexpr uint16_t shaping_dividends = max_steprate / _MIN(0x7FFFFFFFL OPTARG(HAS_SHAPING_X, SHAPING_FREQ_X) OPTARG(HAS_SHAPING_Y, SHAPING_FREQ_Y)) / 2 + 3; - constexpr uint16_t shaping_segments = max_steprate / (MIN_STEPS_PER_SEGMENT) / _MIN(0x7FFFFFFFL OPTARG(HAS_SHAPING_X, SHAPING_FREQ_X) OPTARG(HAS_SHAPING_Y, SHAPING_FREQ_Y)) / 2 + 3; - - class DelayTimeManager { - private: - static shaping_time_t now; - #ifdef HAS_SHAPING_X - static shaping_time_t delay_x; - #endif - #ifdef HAS_SHAPING_Y - static shaping_time_t delay_y; - #endif - public: - static void decrement_delays(const shaping_time_t interval) { now += interval; } - static void set_delay(const AxisEnum axis, const shaping_time_t delay) { - TERN_(HAS_SHAPING_X, if (axis == X_AXIS) delay_x = delay); - TERN_(HAS_SHAPING_Y, if (axis == Y_AXIS) delay_y = delay); - } - }; - - template - class DelayQueue : public DelayTimeManager { - protected: - shaping_time_t times[SIZE]; - uint16_t tail = 0 OPTARG(HAS_SHAPING_X, head_x = 0) OPTARG(HAS_SHAPING_Y, head_y = 0); + // MIN_STEP_ISR_FREQUENCY is known at compile time on AVRs and any reduction in SRAM is welcome + #ifdef __AVR__ + constexpr float max_isr_rate = _MAX( + LOGICAL_AXIS_LIST( + max_feedrate.e * steps_per_unit.e, + max_feedrate.x * steps_per_unit.x, + max_feedrate.y * steps_per_unit.y, + max_feedrate.z * steps_per_unit.z, + max_feedrate.i * steps_per_unit.i, + max_feedrate.j * steps_per_unit.j, + max_feedrate.k * steps_per_unit.k, + max_feedrate.u * steps_per_unit.u, + max_feedrate.v * steps_per_unit.v, + max_feedrate.w * steps_per_unit.w + ) + OPTARG(ADAPTIVE_STEP_SMOOTHING, MIN_STEP_ISR_FREQUENCY) + ); + constexpr float max_step_rate = _MIN(max_isr_rate, + TERN0(INPUT_SHAPING_X, max_feedrate.x * steps_per_unit.x) + + TERN0(INPUT_SHAPING_Y, max_feedrate.y * steps_per_unit.y) + ); + #else + constexpr float max_step_rate = TERN0(INPUT_SHAPING_X, max_feedrate.x * steps_per_unit.x) + + TERN0(INPUT_SHAPING_Y, max_feedrate.y * steps_per_unit.y); + #endif + constexpr uint16_t shaping_echoes = max_step_rate / _MIN(0x7FFFFFFFL OPTARG(INPUT_SHAPING_X, SHAPING_FREQ_X) OPTARG(INPUT_SHAPING_Y, SHAPING_FREQ_Y)) / 2 + 3; - public: - void enqueue() { - times[tail] = now; - if (++tail == SIZE) tail = 0; - } - #ifdef HAS_SHAPING_X - shaping_time_t peek_x() { - if (head_x != tail) return times[head_x] + delay_x - now; - else return shaping_time_t(-1); - } - void dequeue_x() { if (++head_x == SIZE) head_x = 0; } - bool empty_x() { return head_x == tail; } - uint16_t free_count_x() { return head_x > tail ? head_x - tail - 1 : head_x + SIZE - tail - 1; } - #endif - #ifdef HAS_SHAPING_Y - shaping_time_t peek_y() { - if (head_y != tail) return times[head_y] + delay_y - now; - else return shaping_time_t(-1); - } - void dequeue_y() { if (++head_y == SIZE) head_y = 0; } - bool empty_y() { return head_y == tail; } - uint16_t free_count_y() { return head_y > tail ? head_y - tail - 1 : head_y + SIZE - tail - 1; } - #endif - void purge() { auto temp = TERN_(HAS_SHAPING_X, head_x) = TERN_(HAS_SHAPING_Y, head_y) = tail; UNUSED(temp);} + typedef IF::type shaping_time_t; + enum shaping_echo_t { ECHO_NONE = 0, ECHO_FWD = 1, ECHO_BWD = 2 }; + struct shaping_echo_axis_t { + #if ENABLED(INPUT_SHAPING_X) + shaping_echo_t x:2; + #endif + #if ENABLED(INPUT_SHAPING_Y) + shaping_echo_t y:2; + #endif }; - class ParamDelayQueue : public DelayQueue { + class ShapingQueue { private: - #ifdef HAS_SHAPING_X - int32_t params_x[shaping_segments]; + static shaping_time_t now; + static shaping_time_t times[shaping_echoes]; + static shaping_echo_axis_t echo_axes[shaping_echoes]; + static uint16_t tail; + + #if ENABLED(INPUT_SHAPING_X) + static shaping_time_t delay_x; // = shaping_time_t(-1) to disable queueing + static shaping_time_t peek_x_val; + static uint16_t head_x; + static uint16_t _free_count_x; #endif - #ifdef HAS_SHAPING_Y - int32_t params_y[shaping_segments]; + #if ENABLED(INPUT_SHAPING_Y) + static shaping_time_t delay_y; // = shaping_time_t(-1) to disable queueing + static shaping_time_t peek_y_val; + static uint16_t head_y; + static uint16_t _free_count_y; #endif public: - void enqueue(const int32_t param_x, const int32_t param_y) { - TERN(HAS_SHAPING_X, params_x[DelayQueue::tail] = param_x, UNUSED(param_x)); - TERN(HAS_SHAPING_Y, params_y[DelayQueue::tail] = param_y, UNUSED(param_y)); - DelayQueue::enqueue(); + static void decrement_delays(const shaping_time_t interval) { + now += interval; + TERN_(INPUT_SHAPING_X, if (peek_x_val != shaping_time_t(-1)) peek_x_val -= interval); + TERN_(INPUT_SHAPING_Y, if (peek_y_val != shaping_time_t(-1)) peek_y_val -= interval); + } + static void set_delay(const AxisEnum axis, const shaping_time_t delay) { + TERN_(INPUT_SHAPING_X, if (axis == X_AXIS) delay_x = delay); + TERN_(INPUT_SHAPING_Y, if (axis == Y_AXIS) delay_y = delay); } - #ifdef HAS_SHAPING_X - const int32_t dequeue_x() { - const int32_t result = params_x[DelayQueue::head_x]; - DelayQueue::dequeue_x(); - return result; + static void enqueue(const bool x_step, const bool x_forward, const bool y_step, const bool y_forward) { + TERN_(INPUT_SHAPING_X, if (head_x == tail && x_step) peek_x_val = delay_x); + TERN_(INPUT_SHAPING_Y, if (head_y == tail && y_step) peek_y_val = delay_y); + times[tail] = now; + TERN_(INPUT_SHAPING_X, echo_axes[tail].x = x_step ? (x_forward ? ECHO_FWD : ECHO_BWD) : ECHO_NONE); + TERN_(INPUT_SHAPING_Y, echo_axes[tail].y = y_step ? (y_forward ? ECHO_FWD : ECHO_BWD) : ECHO_NONE); + if (++tail == shaping_echoes) tail = 0; + TERN_(INPUT_SHAPING_X, _free_count_x--); + TERN_(INPUT_SHAPING_Y, _free_count_y--); + TERN_(INPUT_SHAPING_X, if (echo_axes[head_x].x == ECHO_NONE) dequeue_x()); + TERN_(INPUT_SHAPING_Y, if (echo_axes[head_y].y == ECHO_NONE) dequeue_y()); + } + #if ENABLED(INPUT_SHAPING_X) + static shaping_time_t peek_x() { return peek_x_val; } + static bool dequeue_x() { + bool forward = echo_axes[head_x].x == ECHO_FWD; + do { + _free_count_x++; + if (++head_x == shaping_echoes) head_x = 0; + } while (head_x != tail && echo_axes[head_x].x == ECHO_NONE); + peek_x_val = head_x == tail ? shaping_time_t(-1) : times[head_x] + delay_x - now; + return forward; } + static bool empty_x() { return head_x == tail; } + static uint16_t free_count_x() { return _free_count_x; } #endif - #ifdef HAS_SHAPING_Y - const int32_t dequeue_y() { - const int32_t result = params_y[DelayQueue::head_y]; - DelayQueue::dequeue_y(); - return result; + #if ENABLED(INPUT_SHAPING_Y) + static shaping_time_t peek_y() { return peek_y_val; } + static bool dequeue_y() { + bool forward = echo_axes[head_y].y == ECHO_FWD; + do { + _free_count_y++; + if (++head_y == shaping_echoes) head_y = 0; + } while (head_y != tail && echo_axes[head_y].y == ECHO_NONE); + peek_y_val = head_y == tail ? shaping_time_t(-1) : times[head_y] + delay_y - now; + return forward; } + static bool empty_y() { return head_y == tail; } + static uint16_t free_count_y() { return _free_count_y; } #endif + static void purge() { + const auto st = shaping_time_t(-1); + #if ENABLED(INPUT_SHAPING_X) + head_x = tail; _free_count_x = shaping_echoes - 1; peek_x_val = st; + #endif + #if ENABLED(INPUT_SHAPING_Y) + head_y = tail; _free_count_y = shaping_echoes - 1; peek_y_val = st; + #endif + } }; struct ShapeParams { float frequency; float zeta; - uint8_t factor; - int32_t dividend; + bool enabled; + int16_t delta_error = 0; // delta_error for seconday bresenham mod 128 + uint8_t factor1; + uint8_t factor2; + bool forward; + int32_t last_block_end_pos = 0; }; -#endif // INPUT_SHAPING +#endif // HAS_SHAPING // // Stepper class definition @@ -527,13 +565,11 @@ class Stepper { static bool bezier_2nd_half; // If Bézier curve has been initialized or not #endif - #if ENABLED(INPUT_SHAPING) - static ParamDelayQueue shaping_dividend_queue; - static DelayQueue shaping_queue; - #if HAS_SHAPING_X + #if HAS_SHAPING + #if ENABLED(INPUT_SHAPING_X) static ShapeParams shaping_x; #endif - #if HAS_SHAPING_Y + #if ENABLED(INPUT_SHAPING_Y) static ShapeParams shaping_y; #endif #endif @@ -597,7 +633,7 @@ class Stepper { // The stepper block processing ISR phase static uint32_t block_phase_isr(); - #if ENABLED(INPUT_SHAPING) + #if HAS_SHAPING static void shaping_isr(); #endif @@ -620,6 +656,20 @@ class Stepper { // Check if the given block is busy or not - Must not be called from ISR contexts static bool is_block_busy(const block_t * const block); + #if HAS_SHAPING + // Check whether the stepper is processing any input shaping echoes + static bool input_shaping_busy() { + const bool was_on = hal.isr_state(); + hal.isr_off(); + + const bool result = TERN0(INPUT_SHAPING_X, !ShapingQueue::empty_x()) || TERN0(INPUT_SHAPING_Y, !ShapingQueue::empty_y()); + + if (was_on) hal.isr_on(); + + return result; + } + #endif + // Get the position of a stepper, in steps static int32_t position(const AxisEnum axis); @@ -754,7 +804,7 @@ class Stepper { set_directions(); } - #if ENABLED(INPUT_SHAPING) + #if HAS_SHAPING static void set_shaping_damping_ratio(const AxisEnum axis, const float zeta); static float get_shaping_damping_ratio(const AxisEnum axis); static void set_shaping_frequency(const AxisEnum axis, const float freq); diff --git a/buildroot/tests/mega2560 b/buildroot/tests/mega2560 index 18a6ea88c98b..4167c3e4bfc1 100755 --- a/buildroot/tests/mega2560 +++ b/buildroot/tests/mega2560 @@ -80,9 +80,9 @@ opt_set MOTHERBOARD BOARD_AZTEEG_X3_PRO MIXING_STEPPERS 5 LCD_LANGUAGE ru \ FIL_RUNOUT2_PIN 16 FIL_RUNOUT3_PIN 17 FIL_RUNOUT4_PIN 4 FIL_RUNOUT5_PIN 5 opt_enable MIXING_EXTRUDER GRADIENT_MIX GRADIENT_VTOOL CR10_STOCKDISPLAY \ USE_CONTROLLER_FAN CONTROLLER_FAN_EDITABLE CONTROLLER_FAN_IGNORE_Z \ - FILAMENT_RUNOUT_SENSOR ADVANCED_PAUSE_FEATURE NOZZLE_PARK_FEATURE INPUT_SHAPING + FILAMENT_RUNOUT_SENSOR ADVANCED_PAUSE_FEATURE NOZZLE_PARK_FEATURE INPUT_SHAPING_X INPUT_SHAPING_Y opt_disable DISABLE_INACTIVE_EXTRUDER -exec_test $1 $2 "Azteeg X3 | Mixing Extruder (x5) | Gradient Mix | Greek" "$3" +exec_test $1 $2 "Azteeg X3 | Mixing Extruder (x5) | Gradient Mix | Input Shaping | Greek" "$3" # # Test SPEAKER with BOARD_BQ_ZUM_MEGA_3D and BQ_LCD_SMART_CONTROLLER diff --git a/ini/features.ini b/ini/features.ini index 7c8fd2fd8f33..e376e2757e6e 100644 --- a/ini/features.ini +++ b/ini/features.ini @@ -187,7 +187,7 @@ HAS_DUPLICATION_MODE = src_filter=+ PHOTO_GCODE = src_filter=+ CONTROLLER_FAN_EDITABLE = src_filter=+ -INPUT_SHAPING = src_filter=+ +HAS_SHAPING = src_filter=+ GCODE_MACROS = src_filter=+ GRADIENT_MIX = src_filter=+ HAS_SAVED_POSITIONS = src_filter=+ +