
Stereo Visual Odometry

Marthinus J. (Marno) Nel

MSAI 495 – Introduction to Computer Vision

May 31, 2023

1

Table of contents

Table of contents... 1
1. Personal views about the field... 2
2. Project description.. 4
3. Pipeline design.. 5
4. Results and analysis... 14
5. Future work.. 17
6. Course feedback and suggestions.. 18
References... 19

2

1. Personal views about the field

Computer vision is a multidisciplinary field that focuses on developing algorithms and techniques

to enable computers to extract meaningful information from visual data. This interdisciplinary field draws

upon concepts from computer science, mathematics, image processing, and artificial intelligence to tackle

a wide range of applications. It encompasses various fundamental concepts and methods such as binary

image processing, region segmentation, edge detection, motion analysis, geometry, stereo vision, and

more. These techniques form the foundation of computer vision and are essential for tasks like image

analysis, object recognition, tracking, and visual odometry.

Arguably the most fundamental goal of computer vision is to enable computers to perceive and

understand the visual world as good as a human or even exceed human capabilities. This involves

fundamental techniques such as feature extraction, and pattern recognition in means of edges, shapes,

textures, etc. This can then be used to infer higher-level information about the image or video.

Recently Convolutional neural networks (CNNs) have revolutionized the computer vision field

with a large increase in overall performance, and increase in capabilities. These networks require large

labeled datasets, they are expensive to train, and they are generally not generalizable. CNN models

automatically extract intricate features and enable end-to-end learning without manual feature

engineering.

Traditional computer vision techniques require less data, less training time and can be developed

at a fraction of the cost than CNNs and are mathematically proven. Thus traditional techniques should be

used except if CNNs give remarkably better performance.

Computer vision still faces challenges in real-world variations like occlusions, lighting, and

viewpoint changes. Robustness and reliability of computer vision systems is crucial, especially in

safety-critical applications.

3

In this course, I have gained foundational knowledge of the core principles in computer vision

and was introduced to advanced topics. I learned basic binary image analysis and connected-component

labeling (CCL) with binary images. CCL is used for image segmentation to identify and assign a unique

label to each connected component or object in the image which is crucial to identify and separate

meaningful regions within an image

I also learned about morphological operators to manipulate images by removing noise, enhancing

the image shape and getting the boundary of an object in the image. This is achieved with operations like

dilation, erosion, opening and closing.

Histogram equalization was introduced to improve the contrast and brightness of an image. Skin

detection was achieved with a histogram-based skin color detector in the HSV color space with minimal

training examples.

The course has also covered edge detection, a key technique for identifying boundaries and

contours in images. A Canny edge detector is a multi-stage algorithm that detects edges in images by

applying a series of filters to reduce noise, calculate image gradients, suppress non-maximum edges, and

using a high and low threshold with recursion to determine final edges.

Hough transforms were introduced for line and circle detection in images. It works by converting

the image space to a parameter space. Template-matching based tracking was also introduced as a

computer vision technique used for object tracking in video streams.

Additionally, I have gained knowledge in camera calibration, pose estimation, image stitching,

visual features, stereo vision, texture modeling, and Face and object detection.

Looking ahead, I plan to further develop my skills in computer vision in the field of robotics. I am

planning to study local visual features, stereo vision, 3D reconstruction and visual slam. With respect to

CNNs I plan on learning more about YOLO and other real time object recognition algorithms. These

topics are very interesting and relevant to the field of robotic perception and navigation. They enable

robots to sense the world around them and act accordingly.

4

By continuing to build upon the fundamental concepts learned in this course and delving into

more advanced topics, I can further deepen my understanding of computer vision and its applications in

the field of robotics. This will equip me with the necessary knowledge and skills to develop robust and

efficient computer vision systems for autonomous robots, object manipulation, and navigation tasks.

2. Project description

The goal of this project is to develop a stereo visual odometry pipeline and to test it on the KITTI

dataset. Visual odometry is the process of estimating the 3D motion of a camera by analyzing the changes

in visual features in consecutive frames. Through stereo vision, which utilizes two cameras to recover

depth information, we aim to accurately track the camera's position and orientation over time in 3D space.

The term visual odometry was chosen for its similarity to wheel odometry as both these

techniques incrementally estimate the motion of the camera. Visual odometry is a critical component of

many computer vision applications, particularly in the field of robotics and autonomous navigation. It

provides the information necessary to enable autonomous tasks such as 3D mapping, localization, and

path planning for mobile robots. The visual odometry task is challenging due to a lot of factors such as

camera noise and environmental conditions. Thus, error accumulation is inevitable and can only be

minimized.

This project focuses on implementing stereo visual odometry on the KITTI dataset. The KITTI

dataset is a widely used benchmark dataset for autonomous driving research, consisting of stereo image

pairs, lidar data, and ground truth poses. The dataset provides a realistic and challenging environment.

The main objectives of the project are as follows:

1. Stereo Image Preprocessing: Load stereo images, camera projection matrix and ground truth

poses.

5

2. Feature Extraction and Matching: Perform feature extraction and matching between two

consecutive left camera frames. Utilize Lowe’s ratio test to identify good features.

3. Disparity Map: Generate the disparity map using the stereo image pair.

4. Stereo to Depth Map: Construct the depth map using the disparity map, the camera’s focal

length and the stereo camera’s baseline distance.

5. Motion Estimation: Utilize the matched features and the camera’s intrinsic matrix to estimate the

camera's motion between consecutive frames. This involves triangulating the matched feature

points and computing the camera's rotation and translation using algorithms like the 8-point

algorithm or RANSAC. Which is known as 3D to 2D correspondence.

6. Trajectory Accumulation: Calculate the cumulative transformation matrix by applying the dot

product of the between frames transformation matrix and total transformation matrix.

7. Trajectory Evaluation: Evaluate the accuracy of the estimated camera trajectory by comparing it

with the ground truth poses provided in the KITTI dataset. This step allows for quantitative

analysis of the system's performance and the identification of areas for improvement.

By successfully implementing stereo visual odometry on the KITTI dataset, this project aims to

develop an accurate and robust pipeline for estimating camera motion for future work in visual SLAM..

Through this project, valuable insights into the challenges and techniques associated with stereo visual

odometry in the realms of robotics and autonomous systems will be gained.

My partner and I wrote individual code for this project. However, we discussed and implemented

each step together, referred to the same documentations, and obtained and evaluated the results together.

3. Pipeline design

This section describes the pipeline design and implementation of stereo visual odometry on the

KITTI dataset. Visual odometry is a technique used to estimate the motion of a camera by analyzing the

6

changes in visual features captured by the camera over time. The KITTI dataset provides stereo image

sequences along with ground truth poses, which allows us to evaluate the accuracy of our odometry

estimation. Figure 1 below displays the general pipeline for the visual odometry problem. In this project

3D to 2D motion estimation was implemented.

Figure 1: Stereo Visual Odometry Pipeline.

1. Preprocess data:

The camera’s projection matrix is loaded from the calibration file. The intrinsic intrinsic matrix is

then extracted from the projection matrix with the function cv2.decomposeProjectionMatrix().

Next the ground truth poses for the dataset is loaded into a list that is used to evaluate the performance of

the visual odometry algorithm. Lastly the grayscale stereo images are loaded into a list for the stereo

visual odometry algorithm.

2. Feature detection:

The features detection function takes in the detector type, the grayscale image to extract features

from, and an optional mask to limit the search region for an increase in performance. It performs feature

detection and extraction using either of the following feature detectors:

7

● Scale-Invariant Feature Transform (SIFT) - It detects distinctive keypoints in an image that

are invariant to scale changes, rotation, and affine transformations, and provides robust

descriptors for matching and recognizing those keypoints. It works by identifying scale-space

extrema in the image at multiple scales using Difference of Gaussian (DoG) filters. The descriptor

is then computed for the keypoint to capture the local appearance and orientation of the keypoint

with histogram gradient orientations. Figure 2 below displays how SIFT works as described

above.

Figure 2: Visualization of Scale-Invariant Feature Transform (SIFT) derector.

● Oriented FAST and Rotated BRIEF (ORB): It combines the key points from the FAST

(Features from Accelerated Segment Test) algorithm and the descriptors from the BRIEF (Binary

Robust Independent Elementary Features) algorithm. ORB first detects keypoints using the FAST

algorithm, which identifies pixels with high intensity changes. These keypoints are used to

compute binary descriptors using BRIEF, which compares pairs of pixel intensities to create a

distinctive representation of the keypoints. Image rotations are handled by incorporating

orientation estimation.

8

Figure 3 below is an example of the features detected on KITTI’s dataset 09:

Figure 3: ORB features.

3. Feature matching:

The Brute-Force (BF) Matcher was used for feature matching between two consecutive frames. It

is a straightforward algorithm, but it is computational intensive and is often used as a baseline.

It works by comparing each feature descriptor of one image to all the feature descriptors of the next image

and finds the best matches based on a chosen distance metric. The chosen distance for SIFT is

cv2.NORM_L2 which is used for real values and cv2.NORM_HAMMING for ORB which is binary values.

K-Nearest Neighbors (KNN) is used with k = 2 as the classification algorithm that assigns two nearest

neighbors to the feature in the next image. Thus each feature in the current image is matched with two

features in the next image.

9

Figure 4 below is an example of the matched features in two consecutive images:

Figure 4: Matched feature between two images with the Brute-Force matcher.

4. Lowe’s Ratio Test:

Lowe's ratio test is a technique used in feature matching to filter out unreliable matches. The test

involves comparing the distance ratio between the best and second-best matches, from the KNN and

feature matching algorithm, for each feature. If the ratio is below a certain threshold the match is

considered ambiguous and discarded. This test helps improve the robustness and accuracy of feature

matching by reducing the number of false matches. A ratio of 0.45 was used for SIFT and 0.6 for ORB.

Figure 5 below is a visualization of Lowe’s ratio test.

Figure 5: Lowe’s ratio test visualized.

10

5. Masking:

A mask is generated to restrict feature detection to a specific region of the image. In this case, a

rectangular mask is defined to exclude the area where the stereo images do not overlap. The mask is

represented as a binary image.

6. Compute the Disparity Map:

The disparity map is computed from the stereo images. The disparity map assigns a disparity

value to each pixel in the left image, indicating how far the corresponding pixel in the right image is

horizontally shifted. This disparity value represents the depth information or the distance between the

camera and the objects in the scene. The below two algorithms were used to generate the disparity map:

● Stereo Block Matching (StereoBM) estimates the disparity map between a pair of stereo images

by dividing the stereo images into small blocks and finding the corresponding block in the other

image by comparing the pixel intensities. It measures the similarity between blocks using a

matching cost, such as the sum of absolute differences (SAD) or the sum of squared differences

(SSD). The algorithm then selects the disparity value that minimizes the matching cost for each

block, producing a disparity map. StereoBM is simple and computationally efficient, which

results in a lower accuracy and increase in sensitivity to noise and occlusions.

● Stereo Semi-Global Block Matching (StereoSGBM) is based on block matching, where

correspondences between pixels in the left and right images are found by comparing local image

patches as in StereoBM. StereoSGBM takes into account both local and global information by

aggregating matching costs over multiple paths in the disparity space. This helps to reduce errors

caused by occlusions and textureless regions. It also has a cost aggregation step and a disparity

refinement step to produce an accurate disparity map. Its robustness and ability to handle

challenging stereo pairs with varying lighting conditions and complex scenes makes it a good

choice for increased robustness in the VO pipeline.

11

Figure 6 is a disparity map generated with StereoSGBM on the KITTI dataset. It is evident that a

car is in the middle right of the picture and a tree at the left top of the picture. It can also be concluded that

the car is closer than the tree by evaluating the change in color or the increase in disparity value.

Figure 6: Disparity map output from the StereoSGBM algorithm.

7. Compute the Depth Map:

A depth map provides information about the distance of objects in a scene relative to the camera.

Each pixel is assigned a depth value, indicating how far away objects are from the camera's viewpoint at

that pixel. The formula below is used to calculate the depth of a object at a specific pixel using the camera

intrinsic parameters and the disparity map:

𝐷𝑒𝑝𝑡ℎ = 𝑓 * 𝑏
𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦

The focal length of the camera is denoted as f and b is the baseline of the stereo camera. To

handle uncertain values in the disparity map, the program sets zero values and -1 (indicating no overlap

between left and right camera images) to a small value of 0.1 in the disparity map. This ensures that the

depth estimation for these points is considered very far away and can be ignored. Figure 7 below shows

the similar triangles used to calculate the depth of a calibrated stereo camera system.

12

Figure 7: Similar triangles used for stereo camera’s depth estimation.

The resulting depth map is displayed in Figure 8 below..

Figure 8: Depth map.

8. Estimate Camera Motion:

The final step in this stereo visual odometry is 3D-to-2D motion estimation of the camera over

time. The matched features, keypoints, depth map, and a depth threshold is used to estimate the

transformation matrix (T) that represents the motion between two consecutive frames. The 2D coordinates

of the matched features in the previous and current frames are extracted from the keypoints. Then, the

camera's intrinsic parameters (cx, cy, fx, fy) are obtained.

13

Next, a loop iterates over the matched feature points. For each point, the corresponding depth

value is retrieved from the depth map. If the depth value exceeds the specified threshold, the point is

considered unreliable and marked for deletion. Otherwise, a 3D point is computed using the depth value

and camera parameters with the below equations:

𝑥 = 𝑢 − 𝑐𝑥
𝑓𝑥 * 𝑑𝑒𝑝𝑡ℎ

𝑦 = 𝑣 − 𝑐𝑦
𝑓𝑦 * 𝑑𝑒𝑝𝑡ℎ

𝑧 = 𝑑𝑒𝑝𝑡ℎ

After removing the unreliable points, the remaining feature points and their corresponding 3D

points are used to estimate the transformation matrix, rotation and translation vectors, using the

solvePnPRansac function from OpenCV. The resulting rotation vector is then converted to a rotation

matrix using Rodrigues' transformation.

The total camera transformation matrix (C) is calculated after each frame's motion estimation to

keep track of the overall trajectory of the camera. It is calculated by multiplying the total camera

transformation matrix with the inverse of the current transformation matrix (T). This accumulates the

transformations over time, allowing the estimation of the camera's trajectory.

Figure 9 displays the stereo visual odometry problems evolution over time. The camera’s start

position to a fixed world frame is represented by the transformation matrix Ck-1. At the next frame

Tk,k-1 is calculated as the motion estimation between frames k and k-1. To estimate the total camera

trajectory at the new frame the camera's previous transformation matrix Ck-1 is then multiplied with the

inverse of Tk,k-1 to generate the new camera transformation matrix Ck. This is done for each frame with

C always holding the transformation matrix of the camera relative to its starting position.

14

Figure 9: 3D-to-2D Stereo visual odometry motion estimation.

4. Results and analysis

The stereo visual odometry pipeline was evaluated on the KITTI dataset 09. The two factors that

influenced the stereo visual odometry outcomes the most were the disparity map algorithms and the

feature detectors. The ground truth duration of the dataset is 2 min and 45 seconds.

The two best results obtained with the respective feature detectors are listed below:

1. SIFT as the feature detector with a lowe’s ratio of 0.45 and StereoSGBM was used to calculate

the disparity map. This resulted in a total runtime of 10 min and 35 seconds with an endpoint

euclidean error of 3.6 m. Figure 10 below displays the groundtruth path in black and the VO

estimated path in red. It is evident that these specific parameters perform well at estimating the

camera motion over time and minimizing the error drift over time. This experiment’s runtime is

3.8 times that of the ground truth which is expected as SIFT and StereoSGBM are both

computational inefficient.

15

Figure 10: Stereo visual odometry path with SIFT and StereoSGBM.

2. ORB as the feature detector with a lowe’s ratio of 0.6 and StereoBM was used to calculate the

disparity map. This resulted in a total runtime of 5 min and 50 seconds with an endpoint

euclidean error of 66 m. Figure 11 below displays the groundtruth path in black and the VO

estimated path in red. It is evident that these specific parameters perform well at estimating the

camera motion over time and minimizing the error drift over time. This experiment’s runtime is

2.12 times that of the ground truth which is expected as ORB and StereoBM are both more

computationally efficient than SIFT and StereoSBGM.

16

Figure 10: Stereo visual odometry path with ORB and StereoBM.

Table 1 below summarizes the findings from the two experiments.

Table 1: Result from stereo visual odometry experiments.

Experiment parameters Total runtime [Time] Endpoint euclidean error [m]

Ground truth 2 min 45 seconds NA

ORB, StereoBM, and

ratio = 0.6

5 min 50 seconds 3.8

SIFT, StereoSGBM, and

ratio = 0.45

10 min 35 seconds 66 m

From the table above it can be derived that neither ORB or SIFT can be applied as is for real-time

visual odometry on an entire image. The experiment with ORB is calculated to be 55% more

computational efficient than SIFT where SIFT’s experiment has 94.5% higher accuracy to the end-point

on dataset 09 of the KITTI dataset.

17

5. Future work

● Real-Time Performance: Optimize the computational efficiency of the stereo visual odometry

pipeline to achieve real-time performance on grayscale images. This could involve algorithm

optimizations, parallelization, or hardware acceleration techniques.

● Sensor Fusion: Integrate other sensors, such as IMU or Lidar to improve accuracy and

robustness of the estimated motion. A Kalman filter or particle filter can be applied to combine

the data from multiple sensors effectively .

● Lidar Data: Incorporate lidar depth data for 3D reconstruction by mapping the lidar point cloud

to the camera pixels.

● ICP (Iterative Closest Point) Odometry: ICP odometry is a technique used in robotics and

computer vision to estimate the relative motion between two 3D point clouds by iteratively

aligning them through the correspondence of their closest points, enabling accurate localization

and mapping in environments with overlapping or dynamic objects.

● Depth Estimation: Investigate methods to improve depth estimation from grayscale stereo

images. This could involve techniques such as deep learning-based depth estimation models.

● Loop Closure: Incorporate loop closure techniques into the visual odometry pipeline to handle

the re-observation of previously visited locations, improving the accuracy and consistency of the

estimated camera trajectory.

● Visual SLAM: Extend the stereo visual odometry system to a full-fledged visual SLAM system,

integrating loop closure, map building, and pose graph optimization to simultaneously estimate

camera motion and reconstruct the environment.

18

6. Course feedback and suggestions

The course covers a comprehensive range of computer vision topics with an emphasis on the

practical application of computer vision techniques. This is great as students receive hands-on experience

with a wide range of fundamental computer vision techniques.

I personally do not have a lot of computer vision experience and this was a great course to lay the

foundation and introduce advanced computer vision topics. Providing a historical overview of computer

vision and contrasting it with modern neural network approaches effectively explained the current

landscape of the field. Additionally, comparing traditional computer vision techniques and neural

networks offered valuable insights into their respective strengths, enabling a better understanding of the

subject.

The project was a great way to apply computer vision in the field of robotics and the course

significantly helped me in understanding and implementing the stereo visual odometry project.

19

References

[1] Scaramuzza, Davide & Fraundorfer, Friedrich. (2011). Visual Odometry [Tutorial]. IEEE Robot.

Automat. Mag.. 18. 80-92. 10.1109/MRA.2011.943233.

[2] Fraundorfer, Friedrich & Scaramuzza, Davide. (2012). Visual Odometry: Part II - Matching,

Robustness, and Applications. IEEE Robotics & Automation Magazine - IEEE ROBOT

AUTOMAT. 19. 78-90. 10.1109/MRA.2012.2182810.

[3] Geiger2012CVPR, Andreas Geiger and Philip Lenz and Raquel Urtasun, Are we ready for

Autonomous Driving? The KITTI Vision Benchmark Suite, Conference on Computer Vision and Pattern

Recognition (CVPR), 2012

[4] Biadgie, Yenewondim & Sohn, Kyung-Ah. (2014). Feature Detector Using Adaptive Accelerated

Segment Test. ICISA 2014 - 2014 5th International Conference on Information Science and Applications.

33. 1-4. 10.1109/ICISA.2014.6847403.

[5] Lindeberg, Tony. (2012). Scale Invariant Feature Transform. 10.4249/scholarpedia.10491.

[6] Rublee, Ethan & Rabaud, Vincent & Konolige, Kurt & Bradski, Gary. (2011). ORB: an efficient

alternative to SIFT or SURF. Proceedings of the IEEE International Conference on Computer Vision.

2564-2571. 10.1109/ICCV.2011.6126544.

[7] Calonder, Michael & Lepetit, Vincent & Strecha, Christoph & Fua, Pascal. (2010). BRIEF:

Binary Robust Independent Elementary Features. Eur. Conf. Comput. Vis.. 6314. 778-792.

10.1007/978-3-642-15561-1_56.

https://www.cvlibs.net/publications/Geiger2012CVPR.pdf
https://www.cvlibs.net
http://www.mrt.kit.edu/mitarbeiter_lenz.php
http://ttic.uchicago.edu/~rurtasun

20

[8] Benlakhdar S, Rziza M, Thami R. O. H. A Robust Model using SIFT and Gamma Mixture

Model for Texture Images Classification: Perspectives for Medical Applications. Biomed

Pharmacol J 2020;13(4). Available from: https://bit.ly/3heperH

[9] Scaramuzza, Davide and Friedrich Fraundorfer. “Visual Odometry Part I: The First 30 Years

and Fundamentals.”.

https://bit.ly/3heperH

